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Abstract

In the current estimation of a GLM model, the correlation structure of regres-

sors is not used as the basis on which to lean strong predictive dimensions.

Looking for linear combinations of regressors that merely maximize the like-

lihood of the GLM has two major consequences: 1) collinearity of regressors

is a factor of estimation instability, and 2) as predictive dimensions may lean

on noise, both predictive and explanatory powers of the model are jeopar-

dized. For a single dependent variable, attempts have been made to adapt

PLS Regression, which solves this problem in the classical Linear Model, to

GLM estimation. In this paper, we first discuss the methods thus developed,

and then propose an algorithm that combines PLS regression with GLM

estimation in the multivariate context, under a conditional independence as-

sumption. Our algorithm is tested on simulated data.
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1. Introduction

The framework is that of a multivariate Generalized Linear Model (GLM):

a set of q random variables Y = {y1, . . . , yq} is assumed to be dependent on

p common explanatory variables, {x1, . . . , xp}. Each yk is modeled through

a GLM taking X = {x1, . . . , xp} as regressors. Moreover, {y1, . . . , yq} are

assumed independent conditional to X. All variables are measured on the

same n statistical units.

The standard estimation of a GLM model maximizes the model fit on

all linear combinations of regressors. Doing so, it attaches the same impor-

tance a priori to linear combinations close to many observed variables (i.e.

dimensions that focussed a lot of the attention and measuring effort) than to

linear combinations far from any of them (i.e. related to weak dimensions of

measurement, not to say noise). Take the extreme case where all regressors

are highly correlated because they reflect the same latent variable with inde-

pendent error terms and suppose this latent variable is rather poorly related

to the dependent ones. Combining the regressors, one may generate as many

noise dimensions. These dimensions may even span a space large enough

to provide a model with an excellent fit, although there is but one poorly

explanatory structural dimension in regressors. Another way of looking at

the contradiction is as follows. On the one hand, such a situation as previ-

ously described is known to cause instability of coefficient estimation. On

the other hand, the presence of such correlated regressors indicates a major
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concern as to measuring a single predictive dimension; so, if this dimension

were directly observed, and the model were based on it, there would be a

single precisely estimated coefficient.

In order to remedy this contradiction between measurement concerns and

estimation in the classical linear model, PLS Regression (PLSR) currently

maximizes a covariance criterion that combines the model’s goodness of fit

index (R2) with the variance of the linear combination of regressors, that

measures its structural strength. Doing so, PLSR draws this combination

towards strong measurement dimensions, i.e. away from structurally weak

ones.

The PLSR criterion is naturally adapted to the linear context, but not to

the GLM one.

There has been attempts to combine PLSR with a GLM. Let us briefly

review three of them.

• When there is but one dependent variable y to be modeled, Marx (1996)

has proposed an Iteratively Reweighted Partial Least Squares (IRPLS)

estimation for Generalized Linear Regression. The principle is based

on the fact that the maximum likelihood estimation of a GLM can be

carried out by an iterative re-weighted least square (IRLS) procedure

McCullagh and Nelder (1989), derived from the Fisher Scoring Algo-

rithm (FSA). Each iteration of it performs Generalized Least Squares

(GLS) using a weighting matrix, the design of which derives from the

model’s hypotheses, and, as such, depends on the model parameters.

Therefore, this weighting matrix has to be updated on every GLS step

using the current estimated value of these parameters. Now, the GLS
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step can be straightforwardly replaced by a PLSR step using the cur-

rent weighting matrix.

This method is consistent both with the linear aspect of PLSR and

with likelihood estimation of the GLM, because the weighting matrix

deriving from the GLM’s likelihood is taken into account in the lo-

cal PLSR estimation. But this method has not yet been extended to

multiple dependent variables.

• In the same context, Bastien et al. (2005) have proposed a different way

to extend PLSR to GLM: PLS Generalized Linear Regression (PLS-

GLR). Only regression of a single dependent variable (PLS1) has been

dealt with. PLSGLR is based on the fact that, while modeling a quan-

titative variable z with a linear combination of {x1, . . . , xp}, PLSR

of z on X yields a rank 1 component f 1 collinear to:
∑p

j=1 ẑj , where

ẑj =
cov (z,xj)

var(xj)
xj is the predictor given by OLS regression of z on xi

alone. To obtain rank 2 component, one performs the same calculus

replacing each xi with its OLS regression residuals on f 1, and so on.

Hence an apparently straightforward extension of PLS1: given depen-

dent variable y modeled through a GLM using explanatory variables

{x1, . . . , xp}, rank 1 component f 1 of PLSGLR is defined as the stan-

dardized version of :
∑p

j=1 ẑj , where ẑj = b̂jxj is the predictor given by

Generalized Linear Regression (GLR) of y on xj alone. Rank 2 com-

ponent f 2 is obtained in the same manner replacing every xj with its

OLS regression residuals on f1, and so on.

What may be criticized in this extension is the inconsistency in the
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(implicit) weighting of observations. Indeed, each GLR uses its own

weighting system, linked to the estimated variance matrix of observa-

tions. As a consequence, GLR of y on xj alone implicitly uses a weight-

ing matrix Wj specific to (y, xj). Not only are matrices {Wj ; j = 1, p}
different from one another, but they are different from the weighting

matrix corresponding to GLR of y on X, i.e. that of the model to

be regularized. Moreover, when calculating rank 2 component (and

further ones), OLS regression is being used, i.e. uniform weighting of

observations.

Thus, the estimated variance structure of observations according to the

model based on X is never used by this method, as we might expect.

• Bry (2006) has proposed an extension to GLM of a PLSR-related multi-

block technique: Thematic Component Analysis (TCA). As PLSR is a

particular instance of TCA, this method also extends PLSR to GLM.

Both univariate (PLS1) and multivariate (PLS2) PLSR are extended

using Generalized Linear Thematic Component Analysis (GLTCA). In

the particular case of a single group of explanatory variables X pre-

dicting Y , the principle of the method can be described easily. Rank

1 explanatory component f 1 is obtained as follows: GLR of each yk is

performed on X separately, yielding predictor ẑk = Xb̂k . Note that

each GLM of yk on X is entitled to its own weighting matrix, this ma-

trix corresponding to the variance structure of yk as modeled through

X. Let Ẑ = {ẑk; k = 1, q} . Then, PLS2 of Ẑ on X is performed,

yielding f 1.
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To obtain rank 2 component, one first replaces each xj with its OLS

regression residuals on f 1, which gives a new explanatory group X1.

But then, one performs GLR of each yk on X̃1 = [X1, f 1] in order to

completely deflate the effect of component f 1 in calculating f 2. And

so on.

This method has assets and drawbacks.

The first asset is that step 1 calculates correct predictors of each yk

based on the complete X, according to GLM theory. Each predictor

is calculated using the correct variance structure. In step 2, the set of

these predictors is used through PLS2 with uniform weighting structure

to find a common structural predictor. Step 2 may be considered a

separate empirical regularization step involving Ẑ in itself, and not Y .

The uniform weighting it uses may then be advocated easily: weighting

in this step does not derive from likelihood maximization, but only

reflects a default balance of observations in the regularization process.

The second asset is that, if regressors have no structure with respect to

this weighting system (for instance if they are uncorrelated), then the

method obviously yields the GLR predictor as rank 1 component. Such

is not the case for PLSGLR. The third asset is that, in the estimation

step, the calculation of the current component correctly deflates the

effect of the former ones.

A first drawback of this method is that estimation and regularization

remain separated, so that the estimated variance of the regularized

GLM does not intervene in its estimation. A second drawback is that

collinearity in X leads to technical problems in step 1, since direct GLR
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becomes then impossible. It is easy to get round this technical problem:

a preliminary PCA step can be taken on X, giving component set C,

on which to perform GLR of Y .

• In this paper, we propose an extension of Marx’s method to the mul-

tivariate case. Integrating regularization into the estimation algorithm

ensures that on each step, the estimated variance structure of the reg-

ularized model is used to estimate it.

Plan of the paper: In section 2, we recall the PLSR mechanism. In section

3, we recall the FSA. In section 4, we show how to nest PLSR within the FSA,

and show how it takes the GLM variance structure into account. Finally, in

section 5, we study the performance of our algorithm on various simulated

data structures.

2. Multivariate PLS Regression

2.1. Rank 1 problem and solution

Let X = {x1, . . . , xp} , Y = {y1, . . . , yq} , f = Xu, g = Y v, with

u′u = v′v = 1. Let W be the weighting matrix of observations. The classical

rank 1 program of PLSR is:

P (X, Y ) : max
u′u=1 ; v′v=1

〈Xu|Yv〉W

It is easy to show that the f solution of P is the same as that of:

P ′(X, Y ) : max
u′u=1

q∑

k=1

〈Xu|yk〉2W

Proof:
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• Solution of P :

L = 〈Xu|Yv〉W − λ(u′u− 1)− µ(v′v − 1)

∇
u
L = 0 ⇔ X ′WYv = 2λu (1) ; ∇

v
L = 0 ⇔ Y ′WXu = 2µv (1′)

(1, 1′) ⇒ X ′WY Y ′WXu = ηu (2) and Y ′WXX ′WY v = ηv (2′) with η = 4λµ

Besides: u′(1) ⇔ 2λ = u′X ′WY v , v′(1′) ⇔ 2µ = u′X ′WY v = 2λ =
√
η = 〈Xu|Yv〉W

which implies that η be maximum. So, solution u is the unit eigenvector

u1 of X ′WY Y ′WX associated with the largest eigenvalue.

• Solution of P ′:

q∑

k=1

〈Xu|yk〉2W =

q∑

k=1

u′X ′Wyky
′
kWXu = u′X ′W

(
q∑

k=1

yky
′
k

)
WXu = u′X ′WYY ′WXu

P ′ : max
u′u=1

u′X ′WYY ′WXu

The solution of P ′ is given by the unit eigenvector u1 of X ′WY Y ′WX

associated with the largest eigenvalue.

2.2. Rank 2 and over

Let X0 = X , and let f r = Xur be rank r component. On step r + 1,

Xr−1 is regressed on f r, with respect to weighting W , leading to residuals:

Xr = Xr−1 −
1

‖f r‖2W
f rf r′WXr−1

Rank r + 1 component, f r+1, is found solving P (Xr, Y ) or P ′(Xr, Y ).
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2.3. An extended problem

• P ′(X, Y ) clearly offers the opportunity to extend the program to the

case where weighting is different for each variable yk. Let Wk be a

weighting matrix associated with yk, and consider the program:

P ′′(X, Y ) : max
u′u=1

q∑

k=1

〈Xu|yk〉2Wk

Since:

q∑

k=1

〈Xu|yk〉2Wk
= u′X ′ΩXu with Ω =

q∑

k=1

Wkyky
′
kWk

The solution of P ′′ is given by the unit eigenvector u1 of X ′ΩX associ-

ated with the largest eigenvalue.

• Some statistical interpretation remains to be given for program P ′′. For

all k, yk will be taken Wk-centered, which means:

∀k : yk = Πe⊥kyk,

where e ∈ R
n has all components equal to 1 and ⊥k refers to orthog-

onality with respect to metric Wk. As a consequence, observations in

X may be centered on any a ∈ R
p :

∀k : 〈Xu|yk〉2Wk
= 〈(X − ea ′)u|yk〉2Wk

∀a ∈ R
p

Proof:

∀j : 〈Xu|yk〉2Wk
= 〈Xu|Πe⊥kyk〉2Wk

= 〈Πe⊥kXu|yk〉2Wk

= 〈(Πe⊥k (X − ea ′))u|yk〉2Wk
= 〈(X − ea ′)u|Πe⊥kyk〉2Wk

= 〈(X − ea ′)u|yk〉2Wk
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Then:

∀k : 〈Xu|yk〉2Wk
= 〈(X − ex̄k ′)u|yk〉2Wk

where x̄k =
1

e′Wke
X ′Wke

= ‖(X − ex̄k ′)u‖2Wk
‖yk‖2Wk

cos2Wk

(
(X − ex̄k ′)u, yk

)

Thus, we find back the classical interpretation of the covariance crite-

rion used by PLS1, as compounding interpretable terms:

– ‖(X − ex̄k ′)u‖2Wk
is the variance of the component. Under con-

straint u′u = 1, it measures the component’s structural strength.

– cos2Wk

(
(X − ex̄k ′)u, yk

)
measures the goodness of fit of the regres-

sion model of yk on X.

• A problem arises for rank 2 (and higher) components, since we no

longer have a single weighting matrix with respect to which component

orthogonality could be imposed. So, an extra weighting matrix W has

to be chosen for that purpose.

We can chose uniform weighting W = I to reflect a priori balance of

observations, or alternatively chose to keep closer to weights derived

from estimation, taking some weighted average of matrices Wk as W .

3. Structure and estimation of the Generalized Linear Model

3.1. Model of Y conditional to X

• Let yi = (yki)k=1, q and xi = (xji)j=1, p respectively be the vector of

dependent and explanatory variables for unit i. Conditional to xi,
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(yki)k=1, q are assumed independently distributed according to a model

having an exponential structure Nelder and Wedderburn (1972):

lk(yki|δki, φ) = exp

(
yktδki − bk(δki)

aki(φ)
+ ck(yki, φ)

)

(δki)k,i are called canonical parameters.

• Let us recall classical results for this structure:

µki = E(yki) = bk
′(δki) ; Var(yki) = aki(φ)bk

′′(δki) = aki(φ)bk
′′(bk

′−1
(µki))

Let vk(µki) = bk
′′(bk

′−1
(µki)). Independence of (yki)k=1, q conditional

to xi implies that they have conditional variance matrix:

Var(yi) = diag{aki(φ)vk(µki)}k=1,q

• We assume that, attached to variables {y1, . . . , yq}, are predictors

{η1, . . . , ηq} that are linear combinations of the xj ’s. Then, ∀k = 1, q,

ηk ∈ R
n can be written:

ηk = αke +Xβk where βk is a p-coefficient vector.

Let B = (β1, . . . , βq) be the (p, q) coefficient matrix, α = (α1, . . ., αq)
′,

and η = [η1, . . . , ηq]. In matrix form, we have:

η = eα′ + XB

• As usual in GLM, linear predictors and expectations of dependent vari-

ables are linked through a link function gk:

∀k, i : ηki = gk(µki)

The canonical link function corresponding to yk is: gk = b′−1
k .
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3.2. Estimating a GLM through the Fisher scoring algorithm

3.2.1. Univariate GLM

Recall that for the GLM of some variable y, with expectation µ, link

function g, and linear predictor η = Xβ , β ∈ R
p, the log-likelihood of the

model is given by:

L(δ; y) =

n∑

i=1

(
yiδi − b(δi)

ai(φ)
+ c(yi, φ)

)

Derivation with respect to β yields:

∇
β
L = 0 ⇔ X ′W−1

β

∂η

∂µ
(y − µ) = 0 (1)

with:

Wβ = diag
(
g′(µi)

2ai(φ)v(µi)
)
i=1,n

,

and:
∂η

∂µ
= diag

(
∂ηi

∂µi

)

i=1,n

= diag (g′(µi))i=1,n .

Equation system (1), not linear in β, is solved using the iterative Fisher

scoring algorithm. On iteration t + 1:

β [t+1] = β [t] −
(
E

[
∂2L

∂β∂β ′

][t])−1(
∂L

∂β

)[t]

= β [t] −
(
X ′W−1

β[t]X
)−1

X ′W−1
β[t]

(
∂η

∂µ

)[t]

(y − µ[t])

=
(
X ′W−1

β[t]X
)−1

X ′W−1
β[t]zβ[t] (2)

where:

zβ[t] = Xβ [t] +

(
∂η

∂µ

)[t]

(y − µ[t])
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Equation (2) may be interpreted as the GLS normal equations of the following

linear model, on iteration t:

M [t] : zβ[t] = Xβ + ζ [t]

where: E(ζ [t]) = 0 ; V (ζ [t]) = W
[t]
β = g′2(µt)V (yt).

We shall refer to M [t] as the (current) linearized model.

One important point is that GLS estimation of this model is nothing but

a Quasi-Likelihood Estimation (QLE). This estimation by maximum of QL

mimics MLE on each step, under a normality and independence assumption

of the zβ[t]
′s with a fixed covariance structure.

Note: as the 1st order development of g at point µ yields:

g(y) ≈ g(µ) + g′(µ)(y − µ) = z,

we may perform OLSR of g(y) on X, in order to get an initial value β [0].

When g(y) is not defined owing to zero-values in data, we have to mix y up

with some relevant quantity. We propose to take:

∀i = 1, n : z
[0]
i = g(αyi + (1− α)ȳ), with α = 0.95

3.2.2. Multivariate GLM with common predictor (MGLMCP)

We are now considering a multivariate approach to GLM (for an overview,

see Fahrmeir and Tutz (1994)). Let variables y1, . . . , yq depend on the “same”

linear predictor (in fact predictors collinear to one another), conditional to

which they are all independent. To be more precise:

∀k = 1, q : ηk = Xβk = Xγku
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For obvious identification purposes, we impose constraint u′u = 1.

In view of the conditional independence assumption, and of the indepen-

dence of units:

l(y|η) =
n∏

i=1

q∏

k=1

lk(yki|ηki)

As a result, the corresponding linearized model in the FSA is the following:

∀k = 1, q : zkβk
= Xγku+ ζk,

where the ζk
′s are independent and ∀k : E(ζk) = 0; V (ζk) = Wkβk

.

The FSA is used to estimate this model, with some modification, owing to

u and γ = (γk)k=1,q. Indeed, estimation of model M [t] is carried out iterating

the following alternated least squares two steps sequence:

(i) Given γ, vector (zkβk
)k ∈ R

nq is regressed on matrix γ⊗X, with respect

to variance matrix Wβ = diag (Wkβk
)k . The resulting coefficient vector

û is made unit-norm, yielding new u.

(ii) Given Xu, each zkβk
is regressed independently on Xu, with respect to

variance matrix Wkβk
, yielding new βk.

The fixed point values of u and g of these iterations are taken as u[t] and γ[t].

4. Component-based Generalized Linear Regression: principle and

basic algorithm

The above-mentioned mechanisms can now be inter-woven to form a

CGLR algorithm.
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4.1. Rank 1 component f 1

The basic principle of the method we propose is quite simple: on each

step of the FSA in the estimation of the MGLMCP, we replace the GLS

regression step with a multivariate PLS regression one.

Thus, at step k of the FSA, the regression of the z′s in the MGLMCP

is the solution, as far as u is concerned, of several equivalent programs (for

simplicity’s sake, let us write zk for zkβk
, and Wk for Wkβk

):

Q1 : Min
γ,u:u′u=1

∑

k

‖zk −Xγku‖2Wk
⇔ Q2 : Min

u:u′u=1

∑

k

‖zk − ΠXuzk‖2Wk

‖zk − ΠXuzk‖2Wk
= ‖zk‖2Wk

sin2
Wk

(zk,Xu) = ‖zk‖2Wk
(1− cos2Wk

(zk,Xu))

So:

Q2 ⇔ Q3 : max
u:u′u=1

∑

k

‖zk‖2Wk
cos2Wk

(zk,Xu)

We propose to currently replace Q3, in the MGLMCP estimation algorithm,

by:

R : max
u:u′u=1

∑

k

‖zk‖2Wk
cos2Wk

(zk,Xu)‖Xu‖2Wk
⇔ max

u:u′u=1

∑

k

〈zk|Xu〉2Wk

⇒ R = P ′′(Z,X)

where P ′′ is the extended PLSR program studied in section 2.3.

As a consequence of §2.3, the current solution u[t] is the unit eigenvector

associated with the largest eigenvalue of the following matrix:

X ′Ω[t]X with Ω[t] =

q∑

k=1

W
[t]
k z

[t]
k z

[t]
k

′
W

[t]
k
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where the zk
′s have been Wk-centred.

N.B. Program R′s criterion not being zero-degree homogenous in W
[t]
k , it

is important that all W
[t]
k be currently normalized to unit-sum.

4.2. Rank ≥ 2 components

4.2.1. Orthogonality of components

We shall ensure zero-correlation of components with respect to a given

fixed weighting W (i.e. the fk will form an W -orthogonal system). Indeed,

weighting is not linked here to the variance of the dependent variables, since

it does not derive from estimation optimality concerns. If all observations

are considered equally important, we must take W = 1
n
In .

So, let:

f r = Xr−1ur with X0 = X and Xr = Π〈fr〉W -⊥Xr−1 (3)

4.2.2. Role of every extra component

Every extra component f r must complement the existing ones F r−1 =

{f 1, . . ., f r−1} as well as possible. So, as far as f r is concerned, F r−1 must

be viewed as a group of covariates. Now:

cos2W (z, 〈F r−1, f r〉) = cos2W (z, 〈F r−1〉) + cos2W (z, 〈Π〈F r−1〉W−⊥f r〉) (4)

where Π〈F r−1〉W−⊥f r = Π〈F r−1〉W−⊥Xr−1ur = X̃r−1
W ur (5)

with X̃r−1
W = Xr−1 − F r−1(F r−1′WF r−1)−1F r−1′WXr−1

Let us take a look back at the MGLMCP. Supposing we already have

r − 1 available components for {zk}k=1,q and we want to look for the best
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possible rth common component. This component should be the solution of

the following program (having the form of Q3):

max
fr∈〈Xr−1〉

∑

k

‖zk‖2Wk
cos2Wk

(zk, 〈F r−1, f r〉)

According to (4) and (5), this is equivalent to:

max
ur

∑

k

‖zk‖2Wk
cos2Wk

(zk, X̃
r−1
Wk

ur)

To account for residual variance structure in Xr−1, we propose to replace

this latter program by:

max
ur:ur′ur=1

∑

k

〈zk|X̃r−1
Wk

ur〉2Wk

So, the solution is the unit-norm eigenvector associated with the largest eigen-

value of matrix: [
∑

k

X̃r−1
Wk

′Wkz
kzk

′
WkX̃

r−1
Wk

]

4.3. Algorithm

The complete algorithm used to calculate a set of R components according

to these principles may be found in appendix A (algorithm A0).

4.4. Predictive model

Once calculated the components, they are used to produce a set of coef-

ficients of the original explanatory variables in a predictive model of Y. We

want to write an expression of the form:

Xr = Xπr (6)
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From (3) and (6), we get:

f r = Xπr−1u
r = Xvr with vr = πr−1u

r (7)

which leads to:

Xr = Xπr−1 −
1

f r ′Wf r
f rf r ′WXπr−1 = Xπr−1 −

1

f r ′Wf r
Xπr−1u

rf r ′WXπr−1

= X

[
Idp −

1

f r′Wf r
πr−1u

rf r′WX

]
πr−1

Hence the recurrence formula:

πr =

[
Idp −

1

f r′Wf r
πr−1u

rf r′WX

]
πr−1

from which we draw V = [v1| . . . |vR] in view of (7).

Then, estimating the GLM of Y on F = XV along with the constant e yields

the predictor matrix H :

H = ea + FC = ea+XB with B = V C (8)

N.B. If X has been standardized prior to GLPLS/CGLR and one wants the

coefficients of the unstandardized X in the model, then:

Let Xo denote the original unstandardized explanatory variable matrix, and

X the standardized one. We have:

X = (Xo−e(e′We)−1e′WXo)Λ
−1, where Λ = diag(σk), σ

2
k = V (xk) ∀k = 1, q.

So, we have:

H = ea+ (Xo − e(e′We)−1e′WXo)Λ
−1B

= e(a− (e′We)−1e′WXoΛ
−1B) +XoΛ

−1B

Hence the model constants: a − (e′We)−1e′WXoΛ
−1B and coefficients of

variables: Λ−1B.
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5. CGLR: an enhanced algorithm

In order to solve convergence problems of the above-given algorithm in

some situations, we have added two tuning parameters giving flexibility to

the combination of PLS and GLM estimation.

5.1. Tuning the attraction of predictors towards principal components

Recall that the solution of P ′′ is given by the unit eigenvector u1 of X ′ΩX

associated with the largest eigenvalue, where:

Ω =

q∑

k=1

Wkykyk
′Wk

It is possible to fine-tune the attraction of the corresponding component

towards X’s principal components by taking instead the unit eigenvector u1

associated with the largest eigenvalue, of the following matrix:

As = (X ′WX)sX ′ΩX

where s is a tuning parameter indicating the strength we intend to give to

this attraction, and W is the weighting matrix with which we intend to

perform PCA (typically, W = 1
n
In). To understand this, let us review two

particularly important values :

• s = 0 gives back the solution of P ′′.

• s → ∞ :

then, u1 is the unit eigenvector of X ′WX associated with its largest

eigenvalue, so f1 = Xu1 is precisely X ′s first CP in the PCA of X
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weighted by W : with infinite attraction, the dependent yk’s no longer

play any role in component extraction.

In the sequel of this section, we shall refer to extracting the first eigenvector

of As as to performing a “tuned” PLS step.

5.2. Tuning the rate of the FSA steps with respect to the PLS steps in the

combination

We may chose the number of steps of the FSA to be performed in between

each tuned PLS step. Informally: given components F , a certain number of

FSA steps of Y on F are performed, possibly until convergence, yielding

variables zk and corresponding Wk. Then, the tuned PLS step of zk’s on X

updates the components, and so on.

This enables to eventually get a converging algorithm. Indeed, pushing s

far enough, we get components that weakly vary about PC’s. Operating on

thus “stabilized” and uncorrelated components, the FSA itself is most likely

to converge. Such convergence is of course paid for with less freedom for

components to adjust the explanatory model.

5.3. Algorithm

The enhanced algorithm may be found in appendix B (algorithm A1).

6. Numerical results on simulated data

6.1. Data generation

The less easy type data to deal with is binary variables, for their values

are usually never close to their expectation. So, we chose to use binary
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dependent variables in our simulations. Our simulation scheme is as follows.

We consider n = 100 units.

• 100 explanatory variables X are simulated so as to be structured around

two uncorrelated factors {φ1, φ2}.

– Simulation of {φ1, φ2}:

∗ Simulate a vector γ of 100 random numbers uniformly dis-

tributed on [0;1] (abbrev. 100 r.n. U[0;1]), and take φ1 =

standardized γ.

∗ Simulate a vector δ1 of 100 r.n. U[0;1], take δ2 = (δ1− 1
n
φ1φ1′δ1)

and finally φ2 = standardized δ2.

Thus, we get two uncorrelated standardized factors.

Let now a be a parameter tuning noise about factors (roughly, the

tangent of the semi-angles of the bundles), and ranging from 1/5

(reduced noise) to 2 (important noise).

– Simulation of a first bundle of variables, X1, structured around

φ1. For j = 1 to p1 = 70:

∗ Simulate a vector κj of 100 r.n. U[0;1], and take εj = stan-

dardized κj .

∗ Let λj = εj + αjφ
2 where αj = r.n. U[−1/5;+1/5], and γj =

standardized λj.

N.B. This step is necessary to inject a bit of φ2 into the vari-

ables. Indeed, if their deviations from φ1 were obtained as

vectors of random numbers, they would be almost systemati-

cally orthogonal to φ2.
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∗ Let ξj = φ1 + aγj , and xj = standardized ξj.

– Simulation of a second bundle of variables, X2, structured around

φ2. For j = 1 to p2 = 30:

∗ Simulate a vector κj of 100 r.n. U[0;1], and take εj = stan-

dardized κj .

∗ Let λj = εj + αjφ
1 where αj = r.n. U[−1/5;+1/5], and γj =

standardized λj.

∗ Let ξj = φ2 + aγj , and xj = standardized ξj.

– X = [X1, X2]

• Dependent variables Y are simulated as follows:

– For k = 1 to q = 10, simulate yk ∼ B(1, pk(φ
1, φ2)) with:

ln

[
pk(φ

1, φ2)

1− pk(φ1, φ2)

]
= ak1φ

1 + ak2φ
2

where, for h = 1, 2 : akh ∼ U[− 2
3
;+ 2

3
]

For each value of a, we used the simulation scheme 100 times, each time

yielding a pair (X, Y ), on which we ran the estimation procedure asking for

3 components. For each such simulated (X, Y ), estimation was carried out

using algorithm A0 as follows: starting with s = 0, if convergence threshold

(sin2(fk[m], fk[m+1])<10−8) could not be reached in less then 100 iterations

(most of the time, less than ten were enough), then increment s by 1 and

try again. Convergent estimation giving components denoted (f 1, f 2, f 3) ,

we calculated all square correlations {ρ2(φk, f l); k = 1, 2; l = 1, 2, 3}.
Then, for each value of a, we calculated the mean, over all simulations, of each

ρ2(φk, f l) and also that of the smallest s leading to converging estimation.
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6.2. Results

The distribution of the smallest required s according to the value of noise

parameter a may be found in table 2.

Unsurprisingly, the mean value of s mostly increases with noise for each

of the first two components (which are supposedly the two relevant ones, in

view of the model). But even with the highest level of noise, the algorithm

never had to go up to s = 3 in order to converge. The square correlations

of the components with the factors are satisfactory (see table 1). In fact,

components f are more or less drawn towards principal components of X,

and these have generally no reason to be individually very close to the factors

underlying the bundles, especially as soon as these factors are somewhat

correlated (which was not the case here). So, these square correlations matter

less than their sums: R2
K,L = 1

K

∑K
k=1

∑L
l=1 ρ

2(φk, f l) . Indeed, R2
K,L close

to 1 means that estimation has captured explanatory space 〈{φk}k=1,K〉 with

component space 〈{f l}l=1,L〉 . What is important is to check that, K being

the true number of underlying factors, 1
K
R2

K,K ≈ 1 . This was clearly the

case in our simulation, even with the highest degree of noise about factors

(see table 1).

When component space 〈{f 1, f 2}〉 almost perfectly captures explanatory

space 〈{φ1, φ2}〉, component f 3 can have no explanatory role. As a conse-

quence, its direction can only depend on the structural strength it captures

in array X2 it is extracted from, so it should be close to X2’s first PC. It

then stands to reason that the more important the noise gets, the less of

〈{φ1, φ2}〉 is captured by 〈{f 1, f 2}〉; an increasing part of 〈{φ1, φ2}〉 is then

left in X2, which may at times help the algorithm focus on f 3.
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Table 1: Factor-component square correlations according to the amount of model simulation noise

a= 1/5 1/4 1/3 1/2 1 2
(Noise increasing)

Average Square φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2

Correlations

f 1 .94 .06 .95 .05 .93 .06 .94 .06 .92 .06 .88 .05

f 2 .06 .94 .05 .95 .06 .93 .06 .93 .07 .83 .06 .61

f 3 <10−4 <10−4 <10−4 <10−4 <10−4 2.10−3 10−4 6.10−3 8.10−4 7.10−2 .01 .21

1
2
R2

2,2 1 1 .99 1 .98 .91
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Table 2: Distribution of required structural strength parameter according to maount of model simulation noise

a= 1/5 1/4 1/3 1/2 1 2
(Noise increasing)

f 1 Average s .10 .13 .15 .17 .13 .33

s= 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Distribution .90 .10 0 .88 .11 .01 .87 .11 .02 .83 .17 0 .87 .13 0 .70 .27 .03
of s

f 2 Average s 0 .05 .05 .19 .45 .60

s= 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Distribution 1 0 0 .95 .05 0 .95 .05 0 .81 .19 0 .55 .45 0 .43 .54 .03
of s

f 3 Average s 1.01 1.01 1.03 .99 .95 .93

s= 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Distribution 0 .99 .01 0 .99 .01 .01 .95 .04 .01 .99 0 .06 .93 .01 .02 .85 .04
of s
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7. Conclusion

IRPLS being, according to us, the only extension of PLS Regression to

GLM that respects the variance structure of that model, we have tried to

extend it to multivariate dependent variables. In the current GLS step of

the Fisher scoring algorithm, we have introduced some multivariate PLS-

type regularization. As the algorithm it leads to may encounter convergence

problems in some cases, we have introduced a numeric parameter that allows

to continuously tune the attraction of explanatory components towards the

principal components of explanatory variables. In view of this flexibility

bonus, the algorithm proved to always converge, and yield very satisfactory

results on simulated data.

26



References

Bastien, P., Esposito Vinzi, V., Tenenhaus, M.. Pls generalized linear

regression. CSDA 2005;48(1):17–46.

Bry, X.. Extension de l’analyse en composantes thématiques univariée au

modèle linéaire généralisé. RSA 2006;54(3).

Fahrmeir, L., Tutz, G.. Multivariate Statistical Modeling Based on Gener-

alized Linear Models. New York, USA: Springer-Verlag, 1994.

Marx, D.. Iteratively reweighted partial least squares estimation for gener-

alized linear regression. Technometrics 1996;34(4):374–381.

McCullagh, P., Nelder, J.. Generalized linear models. New York, USA:

Chapman and Hall, 1989.

Nelder, J., Wedderburn, R.. Generalized linear models. Journal of the

Royal Statistical Society: Series A 1972;135:370–384.

27



Appendix A

We get the following algorithm, denoted A0:

Initialization

Let: X0 = X ; ∀k = 1, q : X̃0
Wk

= X and F 0 = ∅

Component iteration

For r = 1 to R:

Calculate f r as follows:

Initialize Z = [z1| . . . |zq] to Z [0] and {Wk}k=1,q to {W [0]
k }k=1,q = { 1

n
Idn}k=1,q

Iterate from m = 0, until convergence:

For k = 1 to q:

Standardize every z
[m]
k with respect to W

[m]
k

If r > 1, set: X̃r−1

W
[m]
k

= Xr−1 − F r−1(F r−1′W
[m]
k F r−1)−1F r−1′W

[m]
k Xr−1

Define u
[m]
r as the unit-norm eigenvector associated with the largest eigenvalue

of matrix: [∑
k X̃

r−1

W
[m]
k

′W
[m]
k z

[m]
k z

[m]
k

′
W

[m]
k X̃r−1

W
[m]
k

]

Set f r[m] = Xr−1u
[m]
r

For k = 1 to q:

Carry out GLS regression with respect to weighting W
[m]
k of each model:

z
[m]
k = γk,0 + F r−1[γk,1, . . . , γk,r−1]

′ + f r[m]γk,r + ζk

thus getting coefficient vector γ
[m]
k = (γ

[m]
k,0 , . . ., γ

[m]
k,r )

Update z
[m]
k and W

[m]
k using γ

[m]
k

Set F r = [F r−1, f r]

Calculate next current X array:

Xr = Π〈fr〉W−⊥Xr−1
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Appendix B

We get the following algorithm, denoted A1:

Initialization

Let: X0 = X ; ∀k = 1, q : X̃0
Wk

= X , F 0 = ∅

Component iteration

For r = 1 to R:

Calculate f r as follows:

Initialize Z = [z1| . . . |zq] to Z [0] and {Wk}k=1,q to {W [0]
k }k=1, q = { 1

n
Idn}k=1, q

Iterate from m = 0, until convergence:

For k = 1 to q:

Standardize every z
[m]
k with respect to W

[m]
k

If r>1, set: X̃r−1

W
[m]
k

= Xr−1 − F r−1(F r−1′W
[m]
k F r−1)−1F r−1′W

[m]
k Xr−1

Define u
[m]
r as the unit-norm eigenvector associated with the largest eigenvalue

of matrix:

(Xr−1′WXr−1)s
[∑

k X̃
r−1

W
[m]
k

′W
[m]
k z

[m]
k z

[m]
k

′
W

[m]
k X̃r−1

W
[m]
k

]

Set: f r[m] = Xr−1u
[m]
r

For k = 1 to q:

Set z
[m,1]
k = z

[m]
k ,W

m,1]
k = W

[m]
k and f r[m,1] = f r[m]

and from l = 1 until some convergence precision is reached:

Carry out the current step of the FSA, i.e. GLS regression with respect to

weighting W k[m,l] of each model:

z
[m,l]
k = γk,0 + F r−1[γk,1, . . ., γk,r−1]

′ + f r[m,l]γk,r + ζk

thus getting coefficient vector γ
[m,l+1]
k = (γ

[m,l+1]
k,0 , . . ., γ

[m,l+1]
k,r )

Update z
[m,l+1]
k and W

[m,l+1]
k using γ

[m,l+1]
k

Update z
[m]
k = z

[m,∞]
k ,W

[m]
k = W

[m,∞]
k and γ

[m]
k = γ

[m,∞]
k
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Set F r = [F r−1, f r]

Calculate next current X array:

Xr = Π〈fr〉W -⊥Xr−1
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