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Abstract

This paper defines homometry in the rather general case of locally-compact topological
groups, and proposes new cases of its musical use. For several decades, homometry has raised
interest in computational musicology and especially set-theoretical methods, and in an inde-
pendent way and with different vocabulary in crystallography and other scientific areas. The
link between these two approaches was only made recently, suggesting new interesting musical
applications and opening new theoretical problems. We present some old and new results on
homometry, and give perspective on future research assisted by computational methods. We
assume from the reader basic knowledge of groups, topological groups, group algebras, group
actions, Lebesgue integration, convolution products, and Fourier transform.

Keywords: GIS (Generalized Interval Systems); interval vector; Patterson function; Z-relation;
homometry; hexachord theorem.

MCS/CCS/AMS Classification/CR Category numbers: AMS MSC 05E15, 20H15,
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1 Introduction
Although already present in Howard Hanson’s work [8], the concept of Z-relation is presented and
discussed in a systematic way by Allen Forte in [6]. In the classical framework of musical set theory,
the n-tone equal temperament is modeled via the cyclic group Zn = Z/nZ, and each class of Zn is
said to be a pitch-class. Any pitch-class set is simply called set.1 For any set A ⊆ Zn one can define
the interval vector (iv) as for every k ∈ Zn, iv(A)k = ifunc(A,A)k = #{(s, t) ∈ A2, t−s = k}. One
∗∗Corresponding author. Email: mandereau@mail.dm.unipi.it

1We denote any set {[a1]n, . . . , [as]n} as {a1, . . . , as}n.
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Figure 1: A well-known example of Z-related sets, in Z12.

might notice that we define the iv function via the ifunc function borrowed from David Lewin [11];
Forte’s original icv only features 6 values, because of inherent symmetries, e.g. for a diatonic scale
the values of iv are [7, 2, 5, 4, 3, 6, 2, 6, 3, 4, 5, 2] and Forte only keeps < 2, 5, 4, 3, 6, 1 > (the tritone
is only counted once and the cardinality iv(0) is ommited). Since we generalize the notion to much
more complicated groups than T (or T/I), and later to k−sets instead of couples of elements, it is
convenient to keep the whole list instead of a reduced version. A brief history of the interval class
vector is found in [5, Sec. 1.2].

Two sets A and B are said to be Z-related if iv(A) ≡ iv(B), i.e. if the same number of intervals
of each type is showing up in both sets. In other words, A and B share the same interval content.
Clearly, transposing or inverting a set does not change its interval content, and thus we have a lot
of trivially Z-related sets. In order to avoid this trivial case, we may consider sets classes up to
transposition and inversion, and we notice that there still exists Z-related sets in Forte’s sense.2
A well-known example is sets {0, 1, 4, 6}12 and {0, 1, 3, 7}12 in Z12, which share the same interval
vector [4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1] – see Figure 1. Some composers have (implicitly or explicitly)
dealt with the Z-relation; for example this couple of Z-related sets is exactly the one used by Elliot
Carter in his second quartet [7].

To improve upon the classical model, one can substitute pitch-class sets with multisets, i.e.
integer-valued distributions, which might be useful to represent a chord where notes might be
repeated (Fig. 2, center); one can even consider rational- or real-valued distributions3 , which
include in the representation the dynamics of each note (Fig. 2, right). In this case, the interval
vector is no more sufficient, and must be replaced (as we will see) by the Patterson function, which
will extend the concept of interval content, as it represents (as suggested by Lewin) the probability
of hearing a given interval, if the notes of a given set are played randomly.

The name Patterson function comes from X-ray crystallography. LetG be an abelian group (with
2 i.e. unrelated by transposition or inversion. In [1] the full equivalence relation, including the trivial cases, is

called Lewin’s relation.
3Let K be a field and let G be an abelian group (with additive notation). A distribution on G with coefficients

in K has the form E =
∑

g∈G agδg , where ag ∈ K and δg is the Dirac mass related to the element g. For practical
purposes a distribution can be viewed as the map g 7→ ag . Non integral values happen in many practical applications,
say, for instance, the probability of occurrence of a given note, or interval, in a whole piece of music. If ag 6= 0 only
finitely often, we say that the distribution is finite. Recall that the algebra of such distributions under the convolution
product is isomorphic with the group ring KG, and thus we will sometimes write E ∈ KG.
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Figure 2: An example showing the usefulness of improving the classical model. A standard set is
an element of P(Zn), i.e. a 0-1 distribution on Zn. If we allow some notes to be repeated, we have
a multiset, as in the middle example (the same chord given to a string quartet), i.e. a distribution
of NZn . Finally, if we add a dynamic mapping (right example), we can see the chord as a real
distribution, i.e. a distribution of QZn . In this example we have arbitrarily chosen mf = 1, f = 2,
p = 1/2, pp = 1/4.
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additive notation). Given a distribution E =
∑
g∈G egδg, we call inversion2 of E the distribution

I(E) =
∑
g∈G egδ−g, and the k-transposition of E is the distribution Tk(E) =

∑
g∈G egδg+k (k ∈ G).

Then, the Patterson function of any distribution E is the convolution product E∗I(E). Now, for any
X ⊆ G, let 1X be the distribution

∑
g∈X δg. By reading [10], we know that iv(A) = 1A ∗ 1−A, and

since 1−A = I(1A), we see that the Patterson function is nothing more than a generalization of the
interval vector to a generic distribution. In crystallography, the Patterson function is the starting
point for solving the phase retrieval problem, i.e. to determine the arrangement of atoms within a
crystal, given the module of the Fourier transform3 of the atoms’ distribution. Indeed, if we know
D ∗ I(D), we know the absolute values of its Fourier transform D̂D̂(ω) = ‖D̂(ω)‖2 for all ω ∈ Zn.
Thus, to reconstruct D̂(ω) = ‖D̂(ω)‖eiφ(ω) (and D from there by inverse Fourier transform), since
we know its module, we just need to retrieve the phase φ(ω). This is the central problem that we
address in this paper.

In this article, we will link vocabulary from musical set theory — Generalized Interval System,
interval vector, Z-relation — with vocabulary from crystallography — implicit usage of group struc-
ture, Patterson function, homometry. These objects and their elementary properties are presented in
a theoretical framework large enough to cover most of the areas wherein homometry and Z-relation
have been previously studied. In Section 2, we introduce topological and measure and integration
theory tools that we use on Lewin’s Generalized Interval Systems (GIS); in Section 3 we introduce
the interval content and the Patterson function, and in Section 4 Z-relation and homometry. Then,
we study properties of Patterson functions and homometry: in Section 5 we relate interval structure
and interval content, including two examples of a Z-relation in a non-commutative GIS; in Section
6 we study how Patterson functions transfer through quotients, and in Section 7 we present and
illustrate a generalized hexachord theorem.

2 Using Generalized Interval Systems (GIS)

2.1 Mathematical definition of a GIS
The notion of Generalized Interval System, introduced in [11], formalizes the notion of interval
between two points in a set of values of an abstract musical parameter.

Definition 2.1 (Lewin). A Generalized Interval System (GIS) is a triple (S,G, int), where S
is a set called space of the GIS, G a group called interval group of the GIS, and int : S × S → G a
map such that

(A) For every r, s, t in S, int(r, s) int(s, t) = int(r, t).
(B) For every s in S, i in G, there is a unique t in S such that int(s, t) = i.

It is noted in [17] that

• (A) and (B) in the definition above are equivalent to defining a simply transitive right action
of group G on S, such that for every s, t in S, s int(s, t) = t;

2The inversion of E, namely I(E), is sometimes found as E′ or E∗ and referred to as reflection.
3Recall that, for G = Zn, the Fourier transform of a distribution E =

∑
g∈Zn

egδg is the map

ω ∈ Zn 7→ Ê(ω) =
∑
g∈Zn

eg exp(−2iπg ω/n)

.
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• the definition of a GIS is analogous with the definition of an affine space, the difference being
that the underlying algebraic structure of an affine space is not a group, but a vector space.

In every GIS, the musical parameter space S and the interval group G have the same cardinality;
more precisely, condition (B) implies that for every s in S, the label map4 is bijective:

label : S→ G
t 7→ int(s, t)

We develop now two usages of label bijections, which are also common with the couple “affine
space–vector space”.

The first possibility is using the interval group G itself as the space S: in this case, the group
action that defines the GIS is right translation, i.e. for every s, t in G, int(s, t) = s−1t. As a
consequence, every group defines a canonical GIS associated with it via this group action. To avoid
confusion that may arise from this identification of the interval group G and the GIS space, elements
of the space will be called points, elements of the interval group will be called intervals, and unless
explicitly mentioned otherwise, subsets of G mean subsets of the GIS space.

The second possibility is using label bijections for transferring some additional structure of the
interval group G — e.g. a topology, a distance or a measure — onto S. Moreover, if this structure
is translation invariant, the resulting structure on S does not depend on a particular s ∈ S that
defines label map. This principle of translation-invariant structure transfer for GIS is detailed in
[9], and we will use it below.

When G is abelian, we will denote the group operation with a plus sign + instead of a multiplica-
tive notation. Although most of our examples will happen in the commutative case, the definition
and several basic properties of the objects that we will define also hold in the non-abelian case. A
musically significant example of a non-commutative GIS is the GIS of time spans[11, 4.1.3.1], which
is defined as the positive affine group of R, that is the semi-direct product RomR∗+ where the group
morphism m : (R∗+, .)→ (Aut(R),+) maps r to multiplication by r.

2.2 Transferring translation-invariant topologies and measures onto a
GIS

We are interested in measuring subsets of the space of a GIS. The most straightforward measure of a
set is its cardinality; however, many definitions and tools we will present are, under some conditions,
still valid with using certain measures — e.g. the Lebesgue measure — on a GIS. More precisely, we
need a measure on both the space of a GIS and its interval group, and we require that the measure
on the interval group be translation-invariant, so that the measure on the space naturally comes
from transferring the measure of the group; we will implicitly assume from now on that defining
a translation-stable σ-algebra A (the borelian subsets, see notations below) on a group G and a
measure on A also defines, through the transfer principle, the same structures on the space of a GIS
with G as its interval group. We will exclude structures which are not translation-invariant, because
giving different weights to a subset and its translations would break the concept of an isotropic GIS
with its transfer principle. This generalization of measuring the cardinality of sets in GIS has already
been proposed by Lewin in [11, section 6.10], but has never been further elaborated as far as we
know. We believe that such a generalization is not gratuitous, from a mathematical point of view.

4The denomination label comes from [11, beginning of Chap. 3].
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In fact, there are fortunately many groups which may be fitted with a right-translation-invariant
measure, thanks to the following result.

Definition 2.2. Let (G,A, µ) be a measured space where G is a group. µ is called right-
translation-invariant if A is right-translation-stable and for every A ∈ A, g ∈ G, µ(Ag) = µ(A).
If, in addition, G is a topological group, and A is the Borel σ-algebra on G, then µ is called a right
Haar measure on G.

Theorem 2.3. Any locally-compact Hausdorff topological group G has a right Haar measure µ;
moreover, this measure is uniquely defined, up to a multiplicative constant.

The previous theorem, which is a classical theorem in topology, allows us to define the notion
of interval content in any locally-compact topologic group, including every group with the discrete
topology — the associated right Haar measure is simply the cardinality function — R, and all
products and quotients of such groups.

Since the topology of a topologic group G is translation-invariant, it can be naturally transferred
onto the space of a GIS that has G as its interval group. We recall the idea from [9], that using
topologies in GIS could help express notions of continuity of musical patterns; this would make
sense for instance with R, the continuous circle R/Z, or any product of these groups fitted with
their respective usual topologies, as an interval group of a GIS.

As we want to be able to compare measures of certain sets and to do some computations on
measure values (multiplications, additions, subtractions. . . ), we will restrict our study to measurable
sets with finite measure, as suggested in [11].

We end this introduction of topological GIS with a (right) Haar measure with some notations,
which we will assume throughout the rest of the article. Let G be a locally compact group, K a
subfield of C closed under the complex conjugation : x 7→ x; we denote

• S(X) the permutation group of a set X,

• A the σ-algebra of Borel sets of G,

• µ a right Haar measure on G,

• Ã the set of measurable subsets of G with finite measure,

• KG the K-algebra of maps from G to K, which are also called (K-valued) distributions on G,

• for every g ∈ G, Tg : KG→ KG

E 7→
(
Tg(E) : h 7→ E(g−1h)

)
the left translation of distributions by g; we may also write Tg(A) = gA for A ⊂ G when there
is no ambiguity;

• T (G) = {h 7→ Tg(h) = gh, g ∈ G}, or simply T , the group of left translations on G,

• I : KG→ KG

E 7→
(
I(E) : h 7→ E(h−1)

) the inversion on distributions; we also overload I by defin-

ing, for every A ⊂ G, I(A) = A−1,

• D(G) (or D) the generalized dihedral group over G, which is the subgroup of S(G) generated
by the left translations of G and the inversion g 7→ g−1,
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• D(G) or D the subgroup of the linear group of KG generated by {Tg, g ∈ G} ∪ {I}, which is
an isomorphic representation of D(G),

• when K ∈ {R,C}, ΣC(G, k) the algebra of bounded functions5 with compact support from G
to a subset k of K; this is the class of functions on which we will define the Patterson function;

• [x]H = {h(x), h ∈ H} where X is a set, H a subgroup of S(X) and x ∈ X; [x]H is the orbit of
x under the natural group action of H on X, elements of [x]H are said congruent to x modulo
H; the same notation is used with H a subgroup of a group G and for every g ∈ G [g]H = Hg;

• for every a, b in Z, Ja, bK = {x ∈ Z, a 6 x 6 b}.

It should be noticed that, in defining int(a, b) as a−1b, we favor left translations over right
translations: for any a, b, c ∈ G, one has int(ca, cb) = a−1c−1cb = a−1b = int(ab), but int(ac, bc) =
c−1a−1bc = c−1int(a, b)c 6= int(a, b) in general. Thus this notion of interval is invariant by left
translations only.6 There is, of course, an alternative definition of the interval from a to b, namely
ĩnt(a, b) = ba−1, which is invariant under right translation. This explains why we have found not
one, but two generalizations of the hexachord theorem (see subsection 7 below). Obviously, the
abelian case is much simpler, with only one possible notion of interval, and one kind of translation.
In the sequel, unless otherwise indicated, we keep with int(a, b) = a−1b.

In general, in a non-abelian locally compact group, the left- and right-invariant Haar measures
do not coincide; for instance, in the affine group of maps x 7→ ax + b on the real line, the left-
and right- invariant measures are respectively da db/a2 and da db/a. This motivates the following
definition.

Definition 2.4. A locally compact group is unimodular if it admits a Haar measure that is both
right- and left-invariant.

The unimodularity is a reasonable assumption in many cases; in particular, it is satisfied when-
ever G is compact – see [14, Chap. 3, 1(iv)] – and even more easily when G is discrete – since
cardinality is both right- and left-translation-invariant.

3 Interval vector and Patterson function
Definition 3.1. Let A,B in Ã. The interval function between A and B is the function

ifunc(A,B) : G→ R+

g 7→ µ(B ∩Ag)

Since B∩Ag = {a ∈ A,∃b ∈ B, int(a, b) = g}, this definition is a straightforward generalization
of [11, 5.1.3], where ifunc is defined for discrete G.

Definition 3.2. Let A ∈ Ã. The interval content of A is the function

iv(A) : G→ R+

g 7→ µ(A ∩Ag)

5In measure theory, this should be read ‘almost everywhere’ as usual; for a definition, see [16, Def. 1.35].
6 This fact is well commented in [11, section 3.4].
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If G is discrete, the interval content is also called interval vector, hence the notation iv.
It is clear, from the right translation invariance of µ and the fact that it is real-valued, that for

every A ∈ Ã and g ∈ G, iv(A)(g) = µ(Ag−1∩A) = µ(Ag−1 ∩A), i.e. I(iv(A)) = iv(A). In [10], the
interval vector is expressed as a convolution product through the natural bijection between Ã and
ΣC(G, {0, 1}), i.e. iv(A) = 1A ∗ 1A−1 . However, to include the case of a non-commutative group,
the interval content shall be expressed as iv(A)(g) =

∫
1A(hg−1)1A(h)dµ(h) = I(1A)∗1A(g), where

∗ is the convolution product for the right Haar measure – see [14, Chap. 3, 3.5 and 5.1]. Then,
this definition can be extended to every (almost everywhere) bounded function on G with compact
support, which is customary in crystallography; for example, see the introduction of [15].

In a non abelian group, we can introduce two distinct definitions of the interval content, because
there are two different definitions of the interval from a to b.

Definition 3.3. We note rifunc = ifunc, riv = iv the right interval function and interval content
already defined above. Let lifunc(A,B) be the left interval function:

g ∈ G 7→ lifunc(A,B) = µ(B ∩ gA) =

∫
1B(h)1A(g−1h)dµ(h)

Similarly the left interval content is defined as

liv(A) : g ∈ G 7→ µ(A ∩ gA) =

∫
1A(h)1A(g−1h)dµ(h)

Unless otherwise indicated, we will use the rightwise definitions of the interval function and
interval content.

Definition 3.4. For every function E ∈ ΣC(G,K),7 the Patterson function of E is defined by

d2(E) := I(E) ∗ E : g ∈ G 7→
∫
E(hg−1)E(h) dµ(h)

As the interval content of a finitely measured subset of G is the Patterson function of its charac-
teristic function, that is iv(A) = d2(1A), all features of interval contents can and will be expressed
in terms of Patterson functions. We introduce below the most basic properties of d2, which will
motivate the ensuing definitions for finitely measured subsets of G that share the same interval
contents, and more generally functions in ΣC(G,K) that share the same Patterson function.

Proposition 3.5 (Invariance under transposition and inversion). If G is unimodular, then for
every E ∈ ΣC(G,K), for every g ∈ G, d2(Tg(E)) = d2(E); furthermore, if G is abelian, then
d2(I(E)) = d2(E).

Proof. The transposition invariance is implied by the left translation invariance of the Haar measure
on G: for every x ∈ G, d2(Tg(E))(x) =

∫
E(g−1yx−1)E(g−1y) dµ(y) =

∫
E(zx−1)E(z) dµ(gz) =∫

E(zx−1)E(z) dµ(z), where the variable substitution y = gz is made in the second equality.
If G is abelian, the inversion invariance is a consequence of the commutativity of the convolution

product and the involutive property of the inversion: d2(I(E)) = I(I(E)) ∗ I(E) = E ∗ I(E) =
I(E) ∗ E = d2(E).

7It could be defined for a larger set of functions, e.g. the algebra L1(µ) of µ-integrable maps from G to C or the
algebra L2(µ) of maps from G to C whose square is µ-integrable, but ΣC(G, k) where k ⊂ K is sufficient for musical
applications.
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Figure 3: The interval vector changes when A is transformed by I4.

The invariance under translation may also hold without the hypothesis that G is unimodular,
for instance for Tg with g central in G, that is for every h ∈ G, gh = hg.

Example 3.6. As a counterexample of the invariance, consider the GIS of major and minor triads
with the dihedral group of transpositions and inversions as the interval group with 24 elements, and
let for instance A = {{0, 4, 7}, {2, 7, 11}, {2, 5, 9}, {4, 7, 11}} and B = I4(A) be its “translate” by the
inversion I4 : x 7→ 4−x, i.e. B = {{0, 4, 9}, {2, 5, 9}, {2, 7, 11}, {0, 5, 9}}. We can see in Figure 3 that
the inversion I2 : x 7→ 2−x occurs twice in B but never in A, i.e. iv(B)(I2) = 2 while iv(A)(I2) = 0.
Since every transposition Ti is central in G, one can check that iv(Ti(A))(g) = iv(A)(g) for all g ∈ G.

4 Z-relation and homometry

4.1 Definitions
Definition 4.1. The elements of a family (Aj)j∈J valued in Ã are said to be Z-related if they
have the same interval content almost everywhere. If, in addition, for every distinct j, k in J,
[Aj ]D 6= [Ak]D, then the elements of (Aj)j∈J are said to be non-trivially Z-related.

Example 4.2. In Z8, {1, 2, 3, 6}8 and {0, 1, 3, 4}8 are non-trivially Z-related. It is the simplest
example (with subsets).

Definition 4.3. Let (Ej)j∈J a family of elements of ΣC(G,K). Elements of (Ej)j∈J are said to
be homometric if they have the same Patterson function almost everywhere. If, in addition, for
every distinct j, k in J , [Ej ]D 6= [Ek]D, the Aj are said to be non-trivially homometric.

It should be noted that the Z-relation as defined by Allen Forte in [6, section 1.9] is what we
call non-trivial Z-relation, and that our definition of homometry follows Rosenblatt [15]. We choose
these definitions so that Z-relation and homometry are equivalence relations on Ã and ΣC(G,K),
respectively.8

Obviously, subsets of A are Z-related if and only if their characteristic functions are homometric.
8 In [1] the equivalence relation is called Lewin’s relation, leaving to ‘Z-relation’ its traditional meaning.
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4.2 Elementary properties
We will give now properties of the Patterson function related to monotonicity, periodicity and
commutation with quotients.

In order to give a monotonicity property of the Patterson function, we introduce a pointwise
order on ΣC(G,R): we note E 6 F if, for every x in G, E(x) 6 F (x). This order is compatible with
the inclusion order on Ã, i.e. the natural bijection between Ã onto ΣC(G, {0, 1}) is an increasing
map.

Lemma 4.4. For all distributions E,F in ΣC(G,R+), if E 6 F , then d2(E) 6 d2(F ), i.e. d2 :
ΣC(G,R+) 7→ ΣC(G,R+) is an increasing map. In particular, for every A,B in Ã, if A ⊂ B then
iv(A) 6 iv(B).

Proof. For every x, y in G, 0 6 E(y) 6 F (y) and 0 6 E(yx−1) 6 F (yx−1), therefore taking the
product term by term, E(yx−1)E(y) 6 F (yx−1)F (y); moreover the Lebesgue integral with measure
µ is positive, so finally d2(E) 6 d2(F ).

Proposition 4.5. For every distribution E in ΣC(G), for k ∈ C, d2(kE) = |k|2d2(E). Moreover,
if G is commutative, then for all distributions E,F in ΣC(G) d2(E ∗ F ) = d2(E) ∗ d2(F ).

Proof. The first part of the proposition is obvious. To prove the second part, we assume that G is
commutative. Let E,F ∈ ΣC(G). It is straightforward to see that I(E ∗ F ) = I(E) ∗ I(F ), so we
have d2(E ∗ F ) = I(E ∗ F ) ∗E ∗ F = I(E) ∗ I(F ) ∗E ∗ F , then the result follows by commutativity
of the convolution product.

Proposition 4.6 (Periodicity invariance). Let E ∈ ΣC(G). If for some r ∈ G, for every g ∈ G,
E(gr−1) = E(g), then for every g ∈ G, d2(E)(gr−1) = d2(E)(g).

There is a partial and fuzzy converse result for {0, 1}-valued distributions: if A ∈ Ã has a finite
measure and there is r ∈ G such that iv(A)(r) = iv(A)(e), then there are N,N ′ µ-negligible subsets
of G such that A tN = Ar tN ′ = A ∪Ar, that is, A is “almost periodic”.

Proof. d2(E)(gr−1) =
∫
E(h(gr−1)−1)E(h)dµ(h) =

∫
E(hrg−1)E(h)dµ(h), so by right translation

invariance of µ, d2(E)(gr−1) =
∫
E(h′g−1)E(h′r−1)dµ(h′) =

∫
E(h′g−1)E(h′)dµ(h′) = d2(E)(g).

As for the second part of the proposition, we have

Ar = (A ∩Ar) t (AC ∩Ar) (1)
A = (Ar ∩A) t (ArC ∩A) (2)

A t (Ac ∩Ar) = A ∪Ar = Ar t (ArC ∩A) (3)

By right translation invariance of µ, µ(Ar) = µ(A), so by (1), µ(A) = µ(A ∩ Ar) + µ(AC ∩ Ar);
moreover, µ(A) = iv(A)(e) = iv(A)(r−1) = iv(A)(r) = µ(A ∩ Ar) is finite, so µ(AC ∩ Ar) = 0, so
N := Ac ∩Ar is negligible. In a similar way, we get from (2) that N ′ := ArC ∩A is negligible. We
finally get the result by (3).

Example 4.7. The Proposition 4.6 tells us that any periodic distribution has a periodic interval
content. Hence the interval content of any of Messiaen’s modes of limited transposition will be
periodic. For example – see Figure 4 – the interval vector of A = {0, 1, 3, 6, 7, 9}12 is iv(A) =
[6, 2, 2, 4, 2, 2, 6, 2, 2, 4, 2, 2]. Since T6(A) = A, we have T6(iv(A)) = iv(A).

We will make use of the following simple necessary condition on measure equality for Z-relation.

10



Figure 4: An OpenMusic patch showing that the interval vector of a periodic set is periodic.

Lemma 4.8. If (Aj)j∈J is a family of Z-related subsets of G, then all the Aj have the same measure.

Proof. For every j ∈ J, µ(Aj) = iv(Aj)(e), where e is the neutral element of G.

In particular, if the topology on G is discrete, then any two Z-related subsets of G have the same
cardinality.

5 Interval structure and interval content
We will now build a link between interval content and interval structure, expressing the former
using the latter. We will focus our attention to a restricted class of discrete groups, namely discrete
groups with a total order compatible with left translation.

Definition 5.1. An left-(totally-)ordered group is a couple (G,6) where G is a discrete group
and 6 is a total order on G which is compatible with left translation, that is for every f, g, h in G,
if f 6 g then hf 6 hg.

Examples of left-ordered groups are all abelian ordered groups, e.g. Z, R, and the time spans
group Rom R∗+ fitted with Lewin’s attack order, which is simply the lexicographic order associated
with the usual order on R and R∗+. Every direct product of left-ordered groups fitted with the
lexicographic order associated to the orders of these groups is a left-ordered group too.

Definition 5.2. Let G be a left-ordered group. For every finite subset A of G, there is a unique
strictly increasing family (ai)i∈J1,nK where n = |A|, such that A = {ai}i∈J1,nK. The interval
structure of A is the family is(A) = (int(ai, ai+1))i∈J1,n−1K.

Example 5.3. LetA = {−3,−1, 1, 5, 6} in Z; is(A) = (2, 2, 4, 1). LetB = {(2, 1), (3, 1), (5, 2), (7, 12 ), (7+
1
2 ,

1
2 ), (9, 3)} in the time spans group Rom R∗+; is(B) = ((1, 1), (2, 2), (1, 14 ), (1, 1), (3, 6)).

Proposition 5.4. Let G be a left-ordered group. The interval structure of every finite subset of G is
invariant by left translation, that is for every finite subset A of G, for every g in G, is(gA) = is(A).
Conversely, if A,B are finite subsets of G such that is(A) = is(B), then there is g ∈ G such that
B = gA.

11



Proof. The invariance of interval structure by left translation directly follows from the preservation
of intervals by left translation. As for the second part of the proposition, it is obvious that by
defining g = min(B) min(A)−1 we get by finite induction on the lists defined by ordering A and B
that B = gA.

We shall now define a partition of a non-negative element of a left-ordered group, which naturally
generalizes the notion of partition of a positive integer, and a consecutive subfamily of a sequence
valued in a left-ordered group.

Definition 5.5. Let G be a left-ordered group, let e be the neutral element of G, let p ∈ G such
that p > e. An ordered partition of p is a family of elements of G (dj)j∈J1,kK such that k ∈ N, for
all j in J1, kK dj > e and

∏k
j=1 dj = p.

Definition 5.6. Let G be a left-ordered group, let A = (aj)j∈J1,kK be a family of elements of G. A
consecutively-indexed subfamily of A is any subfamily (aj)j∈J of A such that J = Jl,mK with
1 6 l 6 m 6 k.

Theorem 5.7. Let A = {ai}i∈J1,kK be a finite subset of a left-ordered group G, such that (ai)i
is strictly increasing. We denote by (di)i∈J1,k−1K the interval structure of A. For every p ∈ G,
let Ip(A) = {(j, j′) ∈ J1, k − 1K2, j + 1 6 j′and

∏j′

i=j di = |p|}, where |p| = max(p, p−1); then
iv(A)(p) = #(Ip(A)), that is, iv(A)(p) is equal to the number of consecutively-indexed subfamilies
of is(A) which are partitions of |p|.

Proof. For every p ∈ G \ {e}, iv(A)(p) = iv(A)(|p|), so we can suppose that p > e. The map

Ip(A)→ A ∩Ap
(j, j′) 7→ aj′ = ajp

is well-defined and bijective, and #(A ∩Ap) = iv(A)(p).

This theorem may be used to compute the interval content from an interval structure. For
instance, the time spans group G is non-commutative and has no central element besides the neutral
(0, 1), so interval structure and the interval content have exactly the same invariance properties on
this group, including invariance by left translation. Thus, an approach for finding Z-related subsets
of the time spans is by generating interval structures and sorting them by their interval content. For
example, by taking E =

∏4
j=1{(1 + k

2 , 2
l)}k=0,...,6,l=−1,0,1, we find with computer search two and

only two interval structures in E that have the same interval content, and by “integrating them”, we
obtain that the time spans sets {(0, 1), (1, 1), (2, 12 ), ( 5

2 ,
1
2 ), ( 7

2 ,
1
4 )}, {(0, 1), (1, 1), ( 5

2 ,
1
2 ), (3, 12 ), ( 7

2 ,
1
4 )}

are Z-related, as shown in Figure 5.

6 Patterson function transfer through quotients
We keep the same notations as in the previous section. Let H be a closed and normal subgroup of
G; then G/H is a locally compact group. Details and proofs for the measure theory results below
can be found in [14, Chap. 3, 3.3(i) and 4.5].

Let µ be a right Haar measure on G, ν a right Haar measure on H with the topology induced
by G, and λ the unique right Haar measure on G/H such that for every E in ΣC(G)∫

G/H

∫
H

E(hx) dν(h) dλ([x]H) =

∫
G

E dµ (4)
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Figure 5: Example of Z-relation between two time spans (non-commutative case).

By defining ˜: ΣC(G)→ ΣC(G/H)

E 7→ Ẽ : [x]H 7→
∫
H
E(hx) dν(h)

the equality above is rewritten
∫
Ẽ dλ =

∫
E dµ.

In the particular case of G = Z with the discrete topology, let H be a non-trivial subgroup of Z:
H = nZ for some integer n > 1; for all E ∈ ΣC(Z), k ∈ Z, Ẽ([k]) =

∑
j∈ZE(j n+ k).

Theorem 6.1. With the previous hypotheses and notations, the ˜ operator defined above and the
Patterson function operator “commute”, that is, for every E ∈ ΣC(G), d2(Ẽ) = d̃2(E):

ΣC(G) ΣC(G)

L1(G/H) L1(G/H)

//d2

��

˜
��

˜
//d2

Proof. We reuse two results of [14, Chap. 3, 5.3], namely that ˜: ΣC(G)→ ΣC(G/H) is a morphism
of algebras with the convolution product, and that I and ˜ commute. Thus, for every E ∈ ΣC(G),
d2(Ẽ) = I(Ẽ) ∗ Ẽ = Ĩ(E) ∗ Ẽ = ˜I(E) ∗ E = d̃2(E).

Corollary 6.2. Under the same notations and hypotheses as the previous theorem, if E1, . . . , Es in
ΣC(G) are homometric, then Ẽ1, . . . , Ẽs are homometric in ΣC(G/H).

Example 6.3. A = {0, 1, 2, 6, 8, 11} and B = {0, 1, 6, 7, 9, 11} are Z-related in Z, so their projections
π(A) = {0, 1, 2, 6, 8, 11}12 and π(B) = {0, 1, 6, 7, 9, 11}12 are Z-related in Z12. Actually, the pro-
jections {0, 1, 2, 6, 8, 11}n and {0, 1, 6, 7, 9, 11}n are homometric for every n ∈ N, n > 2; and they
collapse into multisets for n 6 11.

Example 6.4. In general, non-triviality is not preserved through quotients. The setsA = {0, 1, 2, 3, 4, 6, 7, 8, 11}
and B = {0, 1, 4, 5, 6, 7, 8, 9, 11} are Z-related in Z, and so are their projections on Z12; however,
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these projections are related by transposition, namely π(B) = T5(π(A)). It is easy to see that for
any Z-relation of subsets of Z one can always find a n′ such that for every n > n′ the non-triviality
of a Z-relation is preserved mod n. In this case, n′ = 13 is enough: this follows from the fact that
for n > n′, in B mod n there are six consecutive integers, a feature invariant under transposition
and inversion, while there is no such configuration in A mod n.

A loose but always valid choice for n′ is n′ = 2(max(A)−min(A)) = 2(max(B)−min(B)).

Note that the converse of Corollary 6.2 is not true: A = {0, 1, 2, 5}8 and B = {3, 4, 6, 7}8 are
Z-related in Z8, but for every A′, B′ subsets of Z such that π(A′) = A and π(B′) = B, it is easy to
see that diam(A′) 6= diam(B′), where diam denotes the diameter, hence A′ and B′ are not Z-related.

7 The hexachord theorem

7.1 Patterson functions of generalized hexachords
The hexachord theorem has been significantly popular in the literature – see [13, Chap. V, 5.16], [11,
Sec. 6.6] and [3]. Since it is actually a feature of Patterson functions, we propose here a restatement
in the framework of locally compact (not necessarily commutative) GIS, and add a few geometric
remarks.

G,A, µ are defined as above. We will additionally assume in this subsection that µ(G) is finite,
which is equivalent to the compactness of G.

The initial form of the hexachord theorem by Milton Babbitt is an invariance property of the
interval vector by complementation. Wherever there is no ambiguity, 1G will be written9 1, and
for every a ∈ C, a1G will be written a. For every measurable subset A ⊂ G, 1AC = 1− 1A, where
AC = G \ A, hence we can naturally extend the complement function to ΣC(G), which we define
as C : E 7→ 1 − E. This extension allows us to express a generalization of the hexachord theorem,
which results immediately from the following lemma.

Lemma 7.1. For every E in ΣC(G), for every a ∈ R, d2(a−E) = a2µ(G)− 2aRe(
∫
Edµ) + d2(E).

In particular, for a = 1, d2(C(E)) = µ(G)− 2Re(
∫
Edµ) + d2(E).

Proof. The inversion I is linear and I(a) = ā = a, so d2(a−E) = I(a−E)∗ (a−E) = a∗a−a∗E−
I(E) ∗ a+ I(E) ∗E = a2µ(G)− a

∫
Edµ− a

∫
Edµ+ d2(E) = a2µ(G)− 2aRe(

∫
Edµ) + d2(E).

Theorem 7.2 (Generalized hexachord theorem). For every E in ΣC(G), d2(C(E)) = d2(E) if and
only if Re(

∫
Edµ) = µ(G)/2.

In the non-commutative case, this theorem admits two versions, i.e. it holds with either left or
right interval content.

From a geometric point of view, C is the central symmetry relative to constant map 1/2; this
means that the hexachord theorem is a condition of invariance of the Patterson function under this
kind of symmetry — see Figure 6 — just like its invariance under I, but that is valid only under
some normalization condition. If E is a {0, 1}-valued map, i.e. E is the characteristic map of a
measurable set A ⊂ G, this normalization condition requires that µ(A) = µ(G)/2, which in the case
where G is discrete means that the cardinality of A is half the cardinality of G, which is already the
original result.

9 All the more so since without loss of generality, one can assume µ(G) = 1.
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Figure 6: An illustration of the generalized hexachord theorem in the case of G = R/Z.

A more general formulation of the hexachord theorem – see [13], is by computing the difference
between the interval contents of a function and of its complement. It entails immediately that
homometry is preserved by the complement operator C.

Corollary 7.3. For every E in ΣC(G), d2(E)− d2(C(E)) is a constant map.

Proof. This results immediately from Lemma 7.1.

Corollary 7.4. For every E1, . . . , Es in ΣC(G), E1, . . . , Es are homometric if and only if C(E1), . . . , C(Es)
are homometric.

A previous generalization of Babbitt’s hexachord theorem to the unit circle is the subject of [3],
but it cannot be further generalized for lack of reference to an integration theory and generalized
notion of interval. Nevertheless, the paper mentions the problem of an hexachord theorem on the
sphere S2; unfortunately, since there is no topological group structure on the sphere S2 (with its
usual topology), the notions of interval and interval content in a Generalized Interval System are
meaningless.10

7.2 Some examples of the generalized hexachord theorem
• Musical scales can be modelized as elements of a torus, which is the space of a GIS under

transposition. Say we define the set of ‘in tune’ scales as major scales whose maximal deviation
from a well-tempered major scale does not exceed 10 cents, e.g. the ‘in tune’ D major scales
would be in [190, 210]× [390, 410]× [590, 610]× [690, 710]× [890, 910]× [1090, 1110]× [90, 110]
where each pc is given in cents. So the reunion ITS of all 12 ‘in tune’ major scales is a subset
of the torus T7 = (R/1200Z)7, with measure 1/607 of the whole torus. Now the complement
OTS (Out of Tune Scales) has the same interval content, up to a constant.

10Only the spheres S1 (the circle), S3 (in dimension 4), and in some measure S7 may be provided with a group
structure and a Haar measure compatible with their natural topology. It is conceivable that a more general notion of
interval could be defined as geodesics on manifolds.
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• We have explained why, for lack of a group structure, we cannot hope to give a hexachord
theorem in the sphere S2. But in 4 dimensions, the sphere S3 is a compact Lie group, for
instance one can set G = SU(2) = S3:

Definition 7.5. The group SU(2) is the set of complex matrices
(
z1 −z2
z2 z1

)
with determinant

1. As a set it coincides with the sphere in C2 : {|z1|2 + |z2|2 = 1}, e.g. the sphere S3 in R4.

The group operation is then simply matrix multiplication. It can be shown that, parametrizing
S3 with z1 = cos θ eiφ, z2 = sin θ eiψ with θ ∈ [0, π/2], 0 ≤ φ, ψ ≤ 2π, the Haar measure is (up
to a constant) µ1 = sin 2θ dθ dφ dψ.

With this measure, the hexachord theorem with either right or left interval content hold
on S3. This may have interesting applications in visualization of musical structures on this
hypersphere, see for instance [4].

• We can now turn back to discrete, but non abelian, groups. The Haar measure is the counting
measure. For instance, let G be the dihedral group over Z12, which makes a GIS for instance
on the space of major and minor triads. A very simple ‘hexachord’ is the set M of major
triads. It is a copy of the normal subgroup T of transpositions. The interval vector on M (or
T , if G acts on itself) is computed immediately with the following general proposition:

Proposition 7.6. Let H be a subgroup of G. Then

liv(H)(g) = riv(H)(g) =

{
µ(H) when g ∈ H
0 else

.

Our generalized hexachord theorem now states that the complement of M (i.e. the minor
triads) share the same interval vector. More generally, there are as many transformations
(intervals) between a given triad and the major triads, as there are between this triad and the
minor triads.

For a less trivial case, consider for instance the < LPR > group of the (dual) neo-Riemannian
Tonnetz, acting as interval group on the same set of major and minor triads. If A = white
triads (the 6 triads without black keys, CEG,DFA . . . ACE) and B is its complement (triads
with at least one black key), then

1. In A there is 6 times the ‘interval’ R, meaning 3 pairs of relative major-minor triads.
The theorem yields that there are 6 + 12 cases of R in B, i.e. the 9 remaining pairs of
relative triads.

2. Less obviously, there are no cases of the transformation RP (which moves any major
triad to its translate by a major third) in A, hence, without further ado, there are 12
occurences of RP in B (e.g. E major to G# major).

For more examples, see [2].
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8 Conclusion
We have extended and unified the definition of interval content and Patterson function to a larger
framework using common mathematical tools, namely Haar measures and Lebesgue integration
theory. This approach has allowed us to obtain the following results on Patterson functions, also
valid in the non-commutative case:

• translation and periodicity invariance;

• transfer through quotients;

• a generalization of the hexachord theorem to a large class of GIS;

• first musical examples of Z-relation in a non-commutative GIS.

In our next paper, Discrete Phase Retrieval in Musical Distributions [12], we tackle the more
general question of searching for all possible distributions yielding a given Patterson function, a
general formulation of the search for sets of a musical parameter with a given interval vector, i.e. of
all Z-related sets.
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