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The SignCom System for Data-Driven Animation

of Interactive Virtual Signers: Methodology and

Evaluation

SYLVIE GIBET, NICOLAS COURTY, KYLE DUARTE, and THIBAUT LE NAOUR

Université de Bretagne-Sud, Laboratoire VALORIA

In this paper we present a multichannel animation system for producing utterances signed in

French Sign Language (LSF) by a virtual character. The main challenges of such a system are
simultaneously capturing data for the entire body, including the movements of the torso, hands,
and face, and developing a data-driven animation engine that takes into account the expressive
characteristics of signed languages. Our approach consists of decomposing motion along different

channels, representing the body parts that correspond to the linguistic components of signed

languages. We show the ability of this animation system to create novel utterances in LSF, and
present an evaluation by target users which highlights the importance of the respective body parts
in the production of signs. We validate our framework by testing the believability and intelligibility
of our virtual signer.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Process-

ing—Language generation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Real-
ism—Animation; J.5 [Arts and Humanities]: —Linguistics

General Terms: Algorithms,Design,Experimentation,Human Factors,Languages

Additional Key Words and Phrases: Communicative gestures, data-driven animation, multichan-
nel animation, multimedia generation, multimodal corpora, signed language gestures

1. INTRODUCTION

For some time now, the computer animation and signed language linguistics commu-
nities have been jointly interested in developing signing avatars capable of realistic
communication in signed languages; the SignCom project is one of many in this
category of research.

As with all signing avatar projects, SignCom focuses on the nonverbal modalities
of human-machine interaction, particularly human-humanoid interaction. More
specifically to SignCom, the project seeks to build interaction between users and
virtual agents communicating in French Sign Language (LSF), and thus engaging
in real-time dialog. This is achieved by the human user signing towards a camera
by which the system recognizes his/her signs, and by the virtual agent providing
culturally- and linguistically-acceptable responses in behavior and sign, respectively.
In this paper, we will present the sign generation part of this interactive system,
with the specific goal of producing real-time, novel, and realistic LSF utterances.

Most signing avatar projects adopt synthetic animation techniques for their vir-
tual agents, methods that have not as yet been able to convince audiences with
their overt realism. In our work however, we draw on data-driven animation tech-
niques, i.e., those that record human motion, such as motion capture. We believe
that data-driven virtual signers will have more fluid and thus more convincing sign-
ing styles than their synthetic counterparts. Just the same, animating expressive
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virtual signers in an interactive context becomes tedious, mostly for these reasons:

i the linguistic (read phonological) structure of signs is still widely debated in the
sign language linguistic community, thus modeling particular aspects of signed
languages using such elements may sometimes fail in forming new signs or utter-
ances;

ii animation methods are made more complex by the multi-channel nature of ges-
tures found in signed languages and by the need for real-time output imposed by
the interactive nature of the application; and

iii the intended user group (i.e., Deaf1 people) are known to be critical of misuse
of their language, requiring thorough evaluation of the system’s output.

The major contributions of this paper are in the direction of the last two points,
i.e., the animation methods we use for the virtual signer, and our evaluation of the
system through a survey of our target audience. In all, we present an original data-
driven animation system dedicated to linguistic interaction between humans and
virtual agents using French Sign Language. This system uses both accepted com-
ponents from the animation community as well as original modules, such as our
streaming architecture for motion retrieval or our regression technique for facial
animation. The system is preliminarily evaluated to quantify the system’s accept-
ability and the pertinence of our technical choices.

The paper is organized as follows. We begin by describing the historical and
technical context for creating a signing avatar, including a discussion on procedural
versus data-driven models, and give an overview of the SignCom project in Sec-
tion 2. Section 3 will describe our data capture sessions, and discuss the design and
annotation of our signed data following a current linguistic theories and practices;
this data is stored in databases of motion and semantic content for later retrieval.
Then, in Section 4, we will detail our animation modules, specifically those that
handle simultaneous corporal animation, facial expressions, and gaze direction, and
discuss how these modules make use of the data stored in the previous section. Ul-
timately, we ask target users to evaluate the ability of our generation system to
produce novel utterances in French Sign Language, isolating motions by channel
within various scenarios, and comparing synthesized sequences with playback se-
quences; results are outlined in Section 5 and discussed in Section 6.

2. CONTEXT AND MOTIVATION

As Deaf people generally do not have access to the sounds of spoken languages,
signed languages are their native languages, being fully accessible through the vi-
sual modality. Also, by nature of living in a hearing world, Deaf people are neces-
sarily bilingual, reading signs and gaining world knowledge by reading the written
language of their hearing compatriots. However, spoken/written language fluency
varies considerably among members of any single Deaf community, and relying
solely on written text or subtitles can be challenging.

1We follow orthographic convention in this paper, using a lowercase deaf to describe the physical
condition of deafness, and an capitalized Deaf to refer to the linguistic and cultural traditions of
a people group.
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Thus, novel interactive systems for communication in signed languages have been
developed in recent years to improve Deaf accessibility to various media. The most
current and linguistically-native assistive technologies center around the generation
of signed languages using virtual humans, or avatars. Importantly, avatars present
an exciting opportunity to model interactions based on the desires of the inter-
locutor, to provide on-the-fly access to otherwise inaccessible content, and even to
anonymize interactions between interlocutors.

We review here some of the technologies used to animate virtual communicative
agents, separating descriptive and procedural methods from data-driven animation
methods, then we present the main technologies used for virtual signers, and finally
we describe the main objectives of the SignCom project, which incorporates a fully
data-driven approach for animating a virtual signer.

2.1 Descriptive and Procedural Methods for Embodied Communicative Agents

Gesture taxonomies have been proposed early on in [McNeill 1992] and [Kendon
1993], some of which require the identification of specific phases in co-verbal gestures
and signed language signs [Kita et al. 1997]. Recent studies on expressive gesture
rely on the segmentation and annotation of gestures to describe the spatial structure
of a gesture sequence, or transcribe and model gestures with the goal of later re-
synthesis [Kipp et al. 2007].

A growing number of systems provide for the animation of embodied conver-
sational agents (ECAs). In such systems, crossing linguistics, artificial intelli-
gence, and psychology with computer animation, gestures have been described at
behavioral-planning levels and generated with animation engines.

Regarding high-level gesture specification, historical and current methods range
from formalized scripts to dedicated gestural languages. The Behavior Expres-
sion Animation Toolkit (BEAT), as one of the first systems to describe the desired
behaviors of virtual agents, uses textual input to combine gesture features for gener-
ation and synchronization with speech [Cassell et al. 2000]. XML-based description
languages have been developed to describe various multimodal behaviors, some of
which are dedicated to complex gesture specification [Kranstedt et al. 2002], de-
scribe style variations in gesture and speech [Noot and Ruttkay 2005], or introduce
a set of parameters to categorize expressive gestures [Hartmann et al. 2006]. Vil-
halmsson et al. and Kopp et al. have defined the BML unified framework containing
several levels of abstraction, which interprets a planned multimodal behavior into a
performed behavior, and may integrate different planning schemas and controllers
[Vilhalmsson et al. 2007; Kopp et al. 2006]. More recently, the real-time system
EMBR introduces a new layer of control between the behavioral level and the pro-
cedural animation level, thus providing the animator a more flexible and accurate
interface for synthesizing nonverbal behaviors [Héloir and Kipp 2010].

Passing from the specification of gestures to their generation has given rise to
a few publications. Largely, the authors of these methods desire to translate a
gestural description, expressed in any of the above-mentioned formalisms, into a
sequence of gestural commands that can be directly interpreted by a real-time
animation engine. Most of these concern pure synthesis methods, for instance
by using inverse kinematics techniques, such as in [Tolani et al. 2000; Kopp and
Wachsmuth 2004].
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These approaches using high-level specification languages coupled with procedu-
ral animation methods allow for building consistent and precise behaviors, and can
account for specific constraints due to the expressivity of the computer language.
The main drawback of such methods is the lack of realism for generating motion,
in particular for complex behaviors requiring the synchronization of multiple body
parts.

2.2 Virtual Signers

Sensibly, signs differ from other communicative gestures, given the strict linguistic
nature of their movements. They are indeed dependent on syntactic, semantic,
and morphological constraints, as well as phonetic characteristics that encode the
spatial features of signs conveyed by different channels (i.e., the gestures of the two
arms and the two hands, facial expressions, and gaze direction). During the last
decade, 3D virtual characters called virtual signers have been designed to provide
increased accessibility for deaf people on a range of computing devices. Moreover,
these avatars have given rise to different applications, including sign production,
translation from text, and evaluation of sign synthesis that may support signed
linguistics research.

Until now, signing avatars have been focused on generating sign utterances given
a phonetic or phonological description of the sign sequence, using animation tech-
niques as described above. With specific reference to French Sign Language, one of
the first virtual signers was based on a description of the signing space, associated
to a phonological description of hand-arm movements [Gibet et al. 2001]. Incor-
porating the HamNoSys [Prillwitz et al. 1989] sign language notation system as
input, the ViSiCAST European project has designed an XML-based specification
language called SigML [Kennaway 2003; Elliott et al. 2004], which can represent
signing expressed in any signed language, and is interpreted into signed language
gestures using a procedural animation technique. In the line of this project, the
eSign project was undertaken as a response to the need for technologies that enable
efficient production of sign language content over the Internet [Kennaway et al.
2007]. By using the SigML scripting notation and a client-side web browser plug-in
to interpret this notation into motion data, a signing avatar can be incorporated
in a variety of contexts. More recently, the Dicta-Sign project aims to develop the
necessary technologies that make Web 2.0 interactions possible in different signed
languages using high-level planners for signing avatars based on fine-grain geomet-
rical descriptions [Delorme et al. 2009], or on knowledge-based descriptions [Fotinea
et al. 2008].

Chiu et al. discuss a novel approach to translating from written Chinese to Tai-
wanese Sign Language, producing videos of signs using a bilingual corpus and sign
data [Chiu et al. 2007]. In the ATLAS project, a virtual interpreter translates
from Italian to Italian Sign Language (LIS). The system parametrizes pre-captured
and hand-animated signs, to adapt them to the discourse context [Lombardo et al.
2010]. The user-based evaluation of American Sign Language generation has also
been discussed in recent studies[Huenerfauth et al. 2007]. Important factors have
been highlighted in this research, for example the influence of speed and pausing
in animation of ASL [Huenerfauth 2009].

ACM Journal Name, Vol. V, No. N, Month 20YY.



The SignCom System for Data-Driven Animation of Virtual Signers · 5

One of the main criticisms made by deaf signers regarding virtual agents is the
lack of realism and expressiveness of avatars. Moreover, many avatar systems ignore
the importance of facial expressions and gaze direction even though these compo-
nents are crucial to comprehension in signed languages. Data-driven animation
methods can be substituted for the above-discussed pure synthesis methods in or-
der to improve the realism of produced gestures, making the avatar more expressive
and human-like [Awad et al. 2009].

2.3 Data-Driven Methods for Embodied Communicative Agents

Data-driven methods constitute an appealing way to animate virtual avatars. Based
on motion data, those methods also allow to modify the input data on purpose.
Hence most of the previous work on data-driven animation methods present edit-
ing and composition techniques, with an emphasis on the re-use of motion chunks
and the adaptation of captured motion for creating new motion sequences. The
modification techniques involved are classical editing operations such as blending
or concatenation as in Kovar et al. (2002), Liu and Popović (2002) or Mukai
and Kuriyama (2005), but also spatial or temporal modifications as shown in Tak
and Ko (2005) and Wang and Bodenheimer (2008). More recently, many data-
driven approaches have also focused on building statistical models from motion
data [Grochow et al. 2004; Chai and Hodgins 2007; Ikemoto et al. 2009]. Other
relevant works include approaches that rely on qualitative annotations of motion
clips [Arikan et al. 2003]. One can note that very few approaches deal with both
motion-captured data and their implicit semantic content, and nearly nothing con-
cerns communicative gestures. Stone et al. propose an approach for meaningfully
synchronizing gesture and speech at common points of maximum emphasis [Stone
et al. 2004]; in this kind of work, the entire body is controlled by motion capture.
Another approach uses annotated videos of human behaviors to synchronize speech
and gestures and a statistical model to extract specific gestural profiles: from tex-
tual input, a generation process then produces a gestural script which is interpreted
by a motion simulation engine [Neff et al. 2008]. It should also be noted that motion
capture data may be manipulated to enhance the expressivity of the gestures (e.g.
[Wang et al. 2006]) or exagerate given traits.

As an added benefit, motion capture (mocap) data provides analytical material
from which to extract specific features or parse generic features of signed languages,
such as the dynamics of the movements or the spatial-temporal relationship between
production channels, between kinematics and phonetics, etc. These invariants or
user-dependent characteristics may be manually identified through an annotation
process, or automatically computed through statistical or signal-processing meth-
ods, and re-incorporated into the data-driven animation techniques.

As a conclusion, the main challenge with respect to the state-of-the-art data-
driven animation methods is i) to be able to synchronize and handle at the same
time several modalities involved in communicative gestures, with different sources
of data, to produce a continuous flow of animation ii) and to handle correctly,
in terms of data structures, both the data and the associated semantic. Our work
constitutes an original step in this direction. We know present the SignCom project,
which motivated our animation system.
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2.4 The SignCom Project

The Signcom project aims to improve the quality of real-time interaction between
humans and virtual characters conversing with each other in French Sign Language.
The results of this research will be valuable for the creation of intelligent and
expressive interfaces for people who use signed languages. Three aspects of the
interaction are studied in this project: the recognition of signs made by a user,
the dialog which provides an adapted response, and the synthesis of an appropriate
response by a virtual signer. The recognition system, in tandem with the dialogue
generator, is able to progressively specify the entities of the discourse and their
relations, with the possibility of confirming or canceling the transmitted messages
or of raising ambiguities if necessary. Dialogue is processed in real time and in
a restricted applied context with a limited vocabulary, allowing us to build new
utterances from signs contained in the database.

This rest of the paper focuses on the synthesis part of the Signcom project, i.e.,
our fully data-driven virtual signer. We present a multichannel animation frame-
work decomposed along different channels that represent information-conveying
body parts: lower body, torso, arms, hands, head, face, and gaze.

The functional organization of SignCom is represented in Figure 1. The system is
composed of two large building blocks: one, operating off-line, is a dually-indexed
database containing both motion capture and semantic data, and the other, op-
erating on-line, comprises the automatic recognition of signs, the animation of a
virtual signer, and a go-between module that produces meaningful and appropriate
dialog. The indexed database has been previously discussed in [Awad et al. 2009],
in a manner similar to [Arikan et al. 2003]; the multimodal aspects of the animation
have since been added.

3. CORPUS AND METHODOLOGY

3.1 Understanding Signed Language Motion

The notion of decomposing signs into various components is not new to the linguis-
tic community. In 1960, William Stokoe debuted his system of Tab (location), Dez
(handshape), and Sig (movement) specifiers that were to describe any sign [Stokoe
2005]. Since then, other linguists have expanded on Stokoe’s decompositional sys-
tem, introducing wrist orientation, syllabic patterning, etc. [Brentari 1999; Johnson
and Liddell 2009].

However, signed languages are not restricted to conveying meaning via the config-
uration and motion of the hand; instead, they require the simultaneous use of both
manual and non-manual components. The manual components of signed language
include hand configuration, orientation, and placement or movement, expressed in
the signing space (the physical three-dimensional space in which the signs are per-
formed), while non-manual components consist of the posture of the upper torso,
head orientation, facial expression, and gaze direction.

3.2 SignCom Corpus Development

With the above understanding of signed languages in mind, we and other members
of the SignCom project specially constructed a corpus of signs to record for later
use with the signing avatar. We detail here some of the challenges posed by certain
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Motion File
Motion File

Motion FileMocap 

Data

Motion File
Motion File

Motion FileSemantic 

Data

Sign Language
Recognition

Interactive Dialog
Generator

Sign Language
Animation

Off-line  ←|→  On-line

Fig. 1. An overview of the SignCom system. Only modules and data flows indicated in solid lines
will be discussed in this paper.

aspects of LSF, and how we have chosen to incorporate such challenging data into
our project experiments.

Spatial content. As signed languages are by nature spatial languages, forming
sign strings requires a signer to understand a set of spatial-temporal grammatical
rules and inflection processes. These processes have shaped the range of LSF signs
recorded for the project.

The corpus was designed by a team of researchers that includes linguists, motion
capture engineers, and computer scientists, among them both Hearing and Deaf
[Duarte and Gibet 2010]. We chose a set of nouns, as well as depicting and indicat-
ing verbs which are modulated in the context of dialog situations. In one example,
the sign INVITE can be modified grammatically to be understood as “I invite you”,
“you invite him”, etc. Verbs that have typically been labelled classifiers and size
and shape specifiers were also included.

Moreover, for the purposes of signed language synthesis, signing avatar corpora
require many repetitions of the same sign in different contexts. This allows for
the composition of new utterances with different components associated to differ-
ent spatial locations. The repetition of signs also provides an important base for
motion retrieval and re-use for animation purposes. With multiple phonological
instances of the same sign recorded, a computer animator can choose a best-fit sign
out of many, instead of forcing a single instance of the sign into a unique context.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Spatial-temporal aspects of hand movements. With signed languages being
natural languages composed of spatial-temporal components, the question of the
timing and dynamics of signs is critical. Specifically, the hand movements involved
in a sign must be synchronized according to human motion principles and linguistic
constraints in order for them to be believable.

The LSF sign DISAGREE is a compound sign formed from the signs THINK and
DIFFERENT. In the sign, the strong2 index finger moves from touching the center
of forehead to being touched by the weak index finger in front of the forehead;
the hands then move away from the center of the body while rotating outwards.
Here, the motion of the weak hand is clearly synchronized to the strong hand,
anticipating the arrival of the strong hand in front of the forehead. In other signs,
we observe symmetrical or alternate roles of the two hands, with symmetry being
usually defined about one of the three planes (sagittal, frontal and horizontal). In
this case, both hand movements are synchronized.

As any component of a sign may modify the syntactic or semantic content, we
should be able to acquire some knowledge of the temporal schemes characterizing
the formation of signs along the different channels. For example, it is commonly
understood that the handshape is attained before the beginning of the hand move-
ment. Other relationships between left and right hand, between hand movement
and facial expression, etc., should be identified and then utilized in a compositional
animation system.

Synchronization is an important consideration for a signing avatar system, and
ultimately would be a good candidate for automation. At this point, however,
channel synchronization is performed by a member of the animation team.

Hand motion and handshape precision. Comprehension of signs requires
accuracy in their formation. Particularly in fingerspelling, where each letter of
an alphabet is named with a sign, the degree of openness of the fingers can be
the sole differentiating factor between letters. Some handshapes differ only by the
position of one finger or by whether or not it contacts another part of the hand.
This calls for notable accuracy in the motion capture and data animation processes.

Non-manual components. While much of our description focuses on hand
configuration and motion, important non-manual components are also taken into
account, such as shoulder motions, head swinging, changes in gaze, or facial mimics.
For example, eye gaze can be used to recall a particular object in the signing space;
it can also be necessary to the comprehension of a sign, as in READ(v), where
the eyes follow the motion of fingers as in reading. In the case of facial mimics,
some facial expressions may serve as adjectives (i.e., inflated cheeks make an object
large or cumbersome, while squinted eyes make it thin) or indicate whether the
sentence is a question (raised eyebrows) or a command (frowning). It is therefore
very important to preserve this information during facial animation.

2According to Johnson and Liddell, the strong hand is the hand used most actively during signers,
which for most right-handed people is the right hand; the weak hand would thus be their left hand.
This can be reversed for left-handed signers or when experienced signers sign two signs at the same
time.
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Fig. 2. Left, our native signer poses with motion capture sensors on her face and hands; right,
our virtual signer in a different pose.

3.3 Data Conditioning and Annotation

The motion capture system used to capture our data employed Vicon MX infrared
camera technology at frame rates of 100 Hz. The setup was as follows: 12 motion
capture cameras, 43 facial markers, 43 body markers, and 12 hand markers. The
photo at left of Figure 2 shows our signer in the motion capture session, and at
right we show the resulting virtual signer.

In order to replay a complete animation and have motion capture data available
for analysis, several post-processing operations are necessary. First, finger motion
was reconstructed by inverse kinematics, since only the fingers’ end positions were
recorded. In order to animate the face, cross-mapping of facial motion capture data
and blendshape parameters was performed [Deng et al. 2006]. This technique allows
us to animate the face directly from the raw motion capture data once a mapping
pattern has been learned. Finally, since no eye gazes were recorded during the
informant’s performance, an automatic eye gaze animation system was designed.

We also annotated the corpus, identifying each sign type found in the mocap data
with a unique gloss so that each token of a single type can be easily compared. Other
annotations follow a multi-tier template which includes a phonetic description of
the signs [Johnson and Liddell 2009], and their grammatical class [Johnston 1998].
These phonetic and grammatical formalisms may be adapted to any sign language
and therefore the multimodal animation system, which uses a scripting language
based on such linguistics models, can be used for other sign language corpora and
motion databases.

3.4 Multichannel Signed Language Data Composition

Our goal is to be able to produce new utterances from the corpus data by combining
several channels, as depicted in Figure 3.

The sign composition follows the description of signs into manual and non-manual
components (Section 3.1) along different channels phonetically annotated (Sec-
tion 3.3). This composition process serves as inspiration for our animation system,
though our goals do not require the phonetic specificity that linguists generally
desire. Just the same, we must still encode how the multiple parts of the signer’s
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Fig. 3. Creating new utterances from the corpus. Annotation segments the data into multiple

channels, and a new utterance is composed with several elements from the corpus.

body (channels) are articulated in parallel over time, and we must also specify mo-
tion along the channels that correspond to the linguistic categories of handshape,
location, movement, orientation, facial expression, and gaze direction, as illustrated
in Figure 4.

Body parts

Right/Left
Fingers

Right/Left
Upper

Head

Upper
Body

Lower
Body

Body

Annotation elements

Hand shapes

Wrists 

orientation

Movements

Facial 

expression

Gaze direction
eyes

Fig. 4. The channels we manipulate in our animation system are inspired by the mechanics of

signed languages, as proposed by signed language linguists. This figure shows the rough correlation
between linguistic features and the channels of the SignCom animation system.

Despite there being some large technical differences between the semantic and
phonological channels that we must consider for this work, their general corre-
spondence aids in making this new work more manageable. This approach thus
follows Vogler and Metaxas’s modeling of the simultaneous features of ASL into
independent channels for recognition purposes [Vogler and Metaxas 2004].

Before proceeding, we note that the choice of motion elements to be combined,
being a linguistic issue, is governed in this paper by simple semantic and grammat-
ical rules, involving motion segments on independent channels that have specific
meanings (hand movements or handshapes). In our experiments, our different
composition scenarios were carefully designed by a signed language linguist, and
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Fig. 5. Overview of the animation system.

expressed as a simple script used by the animation engine. Our more pressing
aim is to show the feasibility, from an animation point of view, of a multichannel
compositional system that integrates the inherent constraints of signed language
utterances.

4. OUR DATA-DRIVEN ANIMATION SYSTEM

We will now describe our animation system and how we arrive at comprehensi-
ble signed language sequences such as those used in the evaluation we discuss in
Section 5. An overview of the system is given in Figure 5. The process begins
with a list of motion elements paired with timing information, retrieved from two
different databases that contain semantic (annotation) and raw (motion capture)
data (Section 4.2). Then our multichannel composition system builds a new motion
expressed as a sequence of skeletal postures (Section 4.3). These postures contain
information that encodes body and hand configurations as well as facial markers.
Next, the facial markers are turned into a new geometric facial configuration by
means of blendshapes and a learning method (Section 4.4); eye animation is also
inferred from this skeletal posture (Section 4.5). Finally, the rendering engine com-
putes the final avatar image.

4.1 Body Part Nomenclature

As discussed in the section on annotation above, we divide the skeleton into several
sub-articulated chains. Throughout the rest of this paper, we will refer to these
chains as body parts, and we associate each body part to a channel. The animation
system functions off of the body parts shown in Figure 4, labeled UpperBody, Spine,
Head, RightUpper, RightFingers, LeftUpper, LeftFingers, and LowerBody.

4.2 Data Coding and Retrieval

As shown at the beginning of this paper in Figure 1, the SignCom interaction
system is divided into two parts: an off-line process of data storage and on-line
data retrieval for real-time interaction. The originality of the work presented here
originates in the methodology used for data storage and in the streaming method
used to retrieve motion data. Our system provides fast and efficient motion retrieval
during the animation process, taking into consideration the spatial and temporal
aspects of signed language motion described above. The nature of the different
types of information encoded in and by signs makes it necessary to store data in
two different structures, namely a semantic database for textual annotations, and
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a raw database for motion capture data.

Motion
Query

Motion
ID

Motion

Composition

Raw

Database

Semantic

Database

Streaming

Fig. 6. Data retrieval and stream loading system. The semantic database, containing textual

information from the annotation process, is queried first. The motion data corresponding to the
obtained results are then streamed to the motion composition process.

As depicted in Figure 6, retrieving data from the databases is divided into two
parts. The first part of the process consists of querying the semantic database,
allowing us to extract data corresponding to a list of MotionIDs. Briefly, these
MotionIDs represent the canonical index data structure of a motion element. Each
contains the name of the sequence in which the chunk occurs, time stamps relative to
the beginning of this sequence (noted as Frame In and Frame Out), and the involved
body parts. This mapping between the annotation and motion data constitutes the
semantic database (Figure 7), which is automatically constructed from an XML
hierarchical description language provided by the annotation tool (ELAN in our
case). We emphasize here the one-to-many nature of this mapping, where any one
gloss from the textual annotation can be associated with several different instances
of the same gesture. As one example, the gloss COCKTAIL in Figure 7 corresponds
to two MotionIDs, 1 and 4.

ACM Journal Name, Vol. V, No. N, Month 20YY.



The SignCom System for Data-Driven Animation of Virtual Signers · 13

Motion 1

Motion 2

Motion 3

Motion 4

Motion 5

Motion 6

Motion 7

Motion n

COCKTAIL

FRUIT

JUS

KIR

PAILLE

VERRE

VERSER

VODKA

List of Motion Annotation Map

Motion ID:

Name,
Body Part,
Frame In,
Frame Out

Fig. 7. The semantic database is a one-to-many mapping between annotated glosses and Motion-
IDs, which are canonical index data structures of motion elements.

In our application, retrieving data from the semantic database is achieved by
specifying multiple-condition queries, the conditions of which can be keywords
and/or body parts, and which return one or several MotionIDs. Secondarily, the
query results are interpreted so that each MotionID leads to accessing the raw
database and rendering the corresponding motion frames.

Raw motion database. In our system, the internal representation of a motion
contains an association of the hierarchical structure (commonly called a bindpose),
and a list of relative transformations for each joint. The transformation for the
root joint contains joint position and rotation (expressed in quaternions), while
the transformation for the rest of the joints contains only a rotation. The time
needed to read a motion file into this internal representation depends naturally
on the complexity of the parser and the amount of geometrical computations, and
is usually far from being negligible, preventing dynamic loads in our interactive
application. Motion files are thus loaded and interpreted one time, and stored as a
sequence of bits in our database, having written our own serialization process for
this purpose.

Traditional databases function with a set of pair-valued data: one key (preferably
unique) is associated to the useful data (in our case the motion). The simplest way
to proceed is to associate for instance the whole motion file with a unique key, which
might be defined as the name of the original data file. The whole sequence is then
handled by the database manager, and stored on the hard drive. This approach
assumes that when retrieving the motion, all the data will be reconstructed in the
CPU memory. In the context of a real-time animation controller, where small pieces
of the motion are dynamically combined to achieve a desired goal, this approach
is no longer efficient. We have thus designed our database to handle a different
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Frame In Frame Out

LeftThumb

LeftWrist

LeftElbow

LeftShoulder

Time

Legend

Memory address =
Sequence address + Joint Position + 
Frame In * Size of Transformation

Joint Transformation

LeftArm Selection

Path to Find Memory Position

Fig. 8. Storage and data access in the raw database

Table I. Querying the Databases

Semantic Number Size of Motion Complete Streaming access by
Query(ms) of Frames motion (ko) loading(ms) 256ko fragment (ms)

gloss SALADE 0.0652 64 426.5 9,79 3.533
A scenario // 5739 38 244.7 3 785 3.533

data representation, allowing us to retrieve any part of a motion corresponding to
a given annotation element (Figure 8).

Decomposing motions in the database is innovative because only a small portion
of the motion (associated to a query result) is reconstructed in the memory. How-
ever, in traditional databases, data decomposition generally yields an increasing
number of entries, which usually increases the search time and the index size. Yet
in our case we consider each motion to be a list of transformations with given sizes;
therefore it is easy to find the memory address of a list of transformations as a linear
combination of the sequence address, joint offset, and time stamps, as illustrated
as a path in Figure 8.

To complete the access to the raw motion capture data, we have developed a
streaming system which loads the motion to animate in a fragment-by-fragment
manner during the animation process (a fragment being a small set of transforma-
tions), and with regards to the need of the motion composition system. This avoids
costly access to large elements which could result in a drop in frame rate during
the execution of the application, and gives the process a small memory footprint.
Computationally, this allows the interactive nature of this animation system to
move forward, since database search and data load time become negligible during
animation. As examples, results for different queries are shown in Table I.

4.3 Motion Composition

From our corpus of mocap data, our animation system computes a skeleton using
a pre-defined morphology of joints and bindposes, which can be represented hierar-
chically as a tree of joints or articulations. Within the skeleton, we have identified
sub-skeletons composed of potentially non-exclusive subsets of joints, including the
upper body, lower body, arms, hands, head, etc. A controller associated to each
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sub-skeleton can set the system in motion using different techniques, i.e., motion
playback, keyframe interpolation, inverse kinematics, etc.

The motion composition process can be divided into spatial and temporal com-
position processes. The spatial composition process uses motions computed for
each controller’s sub-skeleton, combining them in a priority scheme that depends
on the desired animation; generally, the smaller sub-skeletons have a higher priority
level, as shown in Figure 9. Temporal composition occurs for the set of controllers
attached to the skeletal elements. Each controller has its own timing interval and
a playback style (e.g., play once, repeat, reverse, etc.), and the blender process is
responsible for blending the motions.

Figure 9 is a graphical representation of how we organize blenders and con-
trollers during composition. Algorithm 1 shows how the blender controllers blend
sub-skeletons both temporally and spatially. Finally, we have developed a simple
script language in order to easily specify different animation scenarios, containing
controller and blender information associated with time stamps.

The controllers applied on sub-skeletons (body, arms, hands, torso, etc.) are
traditional controllers that are not described in this paper. More specific controllers
developed for facial and eye animation are described in the rest of the section. Both
of them use motion captured data as input and produce information useful for the
animation engine.

body blender

spine blender

right arm blender

body controller

spine controller 1

spine controller 2

spine controller 3

right arm ctrl 1 right arm ctrl 2 right arm ctrl 3

left arm controller

head ctrl 1

eye controller

head controller 3head ctrl 2

P
ri
o

ri
ty

Motion composition process

Controllers with different playback styles         Blenders             Interpolation

Fig. 9. Blenders are arranged hierarchically in the system and contain a series of controllers to
animated different sections of the body. Skeletons are computed according to priority of controllers
and, over time, the engine produces a stream of fluid motion.
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Algorithm 1 Blending Algorithm

for all joints do
set joint weights to 1 and joint transformations to Identity

end for
while childController && a joint weight > 0 do

if time ∈ [startTime - fadeIn, endTime + fadeOut] then
find weight w wrt. time and compute controller skeleton

for j = 0 to skeleton.jointCount do
k = joint index in joint transformations

if joint weights[k] > 0 then
if joint weights[k]! = 1 then

joint transformations[k] = interpolate wrt. w between
joint transformations[k] and skeleton.joint transformations[k]

else
joint transformations[k] = skeleton.joint transformations[k]

end if
joint weights[k] = max(0, joint weights[k] - w)

end if
end for

end if
end while

4.4 Facial Animation

Facial animation by blendshapes is a popular technique in the animation commu-
nity, and we have chosen likewise. Following this method, the animation system
blends several key facial configurations, manually designed by an animator, to pro-
duce appropriate facial animations. In order to choose the blending weights at each
moment, the system uses the facial mocap data contained in the currently-processed
skeleton, as described below.

Cross-mapping of facial mocap data and blendshape parameters. The
process of cross-mapping mocap data and blendshapes parameters can be prob-
lematic for the animation process: it is often challenging to quantify the relation
between facial mocap data and the animation parameters of a blendshape. Tradi-
tional approaches to solving this problem identify pairs of mocap data and blend-
shape parameters that are carefully selected and designed by the animator [Deng
et al. 2006]. These pairs are then used in a learning process that determines the se-
lection of corresponding blendshape parameters from new mocap data input values.
Other current methods largely rely on radial basis functions and kernel regression
to achieve these steps [Cao et al. 2005; Deng et al. 2006; Deng et al. 2006; Liu et al.
2008].

However, such methods have several drawbacks: a number of localized basis func-
tions have to be chosen prior to the learning process, and the result is conditioned by
the quality and density of input data. Thus, noisy input often yield bad estimates,
this being known as the classical over-fitting problem.

In our work, both the body and facial data were recorded at the same time, and
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the positions of the facial markers in particular were observed to be quite noisy,
resulting in marker inversions. For these reasons, we consider the problem as a
probabilistic (Bayesian) inference problem and use a separate learning technique
based on Gaussian Process Regression, which is well-known in the machine learn-
ing and vision communities [Rasmussen and Williams 2005].

Gaussian Process Regression (GPR). The GPR approach aims to solve
the following prediction problem: given p observations X = (X(l1), . . . , X(lp))

T

localized at the li sites, one looks at the estimation of X(lk) at a given unobserved
localization lk. This problem is solved by assuming that the underlying generative
process is Gaussian, and by building the conditional distribution p(X(lk)|X) which
is itself Gaussian.

In our approach, unknown sites correspond to new facial marker configurations
(as produced by the previously-described composition process), and the correspond-
ing estimated value is a vector of blendshape weights. Since the dimensions of the
learning data are rather large (123 for marker data and 50 for the total amount of
blendshapes in the geometric model we used), we rely on an online approximation
method of the distribution that allows for a sparse representation of the posterior
distribution [Csató and Opper 2002]. As a preprocess, facial data is expressed in
a common frame that varies minimally with respect to face deformations. The
upper-nose point works well as a fixed point relative to which the positions of the
other markers can be expressed. Secondly, both facial mocap data and blendshape
parameters were reduced and centered before the learning process.

Figure 10 shows an illustration of the resulting blended faces along with the
different markers used for capture.

Fig. 10. Results of the facial animation system. Some examples of faces are shown, along with
the corresponding markers position projected in 2D space.

4.5 Eye Animation

Our capture protocol was not able to capture the eye movements of the signer, even
though it is well-known that the gaze is an important factor of non-verbal commu-
nication and is of assumed importance to signed languages. Recent approaches to
model this problem rely on statistical models that try to capture the gaze-head
coupling [Lee et al. 2002; Ma and Deng 2009]. However, those methods only work
for a limited range of situations and are not adapted to our production pipeline.
Other approaches, like the one of Gu and Badler [Gu and Badler 2006], provide a
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computational model to predict visual attention. Our method follows the same line
as we use a heuristic synthesis model that takes the neck’s motion as produced by
the composition process as input and generates eye gazes accordingly. First, from
the angular velocities of the neck, visual targets are inferred by selecting times when
the velocity passes below a given threshold for a given time period. Gazes are then
generated according to those targets such that eye motions anticipate neck motion
by a few milliseconds [Warabi 1977]. This anticipatory mechanism provides a base-
line for eye motions, to which glances towards the interlocutor (camera) are added
whenever the neck remains stable for a given period of time. This ad-hoc model
thus integrates both physiological aspects (modeling of the vestibulo-ocular reflex)
and communication elements (glances) by the signer. Figure 11 shows two exam-
ples of eye gazes generated by our approach. However, this simple computational
model fails to reproduce some functional aspects of the gaze in signed languages,
such as referencing elements in the signing space. As suggested in the following
evaluation, this factor was not critical with regards to the overall comprehension
and believability of our avatar, but can be an area of enhancement in the next
version of our model.

a b

Fig. 11. The two types of glances produced by our system (a) direct look to the interlocutor (b)
anticipation of the neck rotation

5. EVALUATION OF THE SIGNCOM DATA-DRIVEN SIGNING AVATAR

Evaluation of virtual signers [Huenerfauth et al. 2007] has been performed in the
USA, using a native ASL signer whose movements were recorded by motion capture
techniques (using datagloves and a mocap suit), but with only hand and body
movements being recorded. To our knowledge, using simultaneous motion capture
for hand and body movements, facial expression, and gaze direction has not yet
been performed, therefore we have devised an evaluation of our system which is
divided in two parts: first, we test the importance of facial expressions and gaze
movements when generating LSF sentences, and second, we evaluate the animation
system’s ability to produce a realistic and comprehensible signing avatar.

We test these abilities by showing LSF users videos of the avatar in action, show-
ing pairs of videos synthesized from motion capture data (with channel/without
channel), and comparing native LSF movements (from motion capture data) to
synthesized ones (from reconstructed sequences).

5.1 Survey Dissemination and Respondents

Evaluation was carried out via a web-based survey, sent to members of the French
Deaf community who were requested to disseminate the link. In all, 38 people
completed the survey to its end, and we consider 25 respondents who self-reported
to know French Sign Language (LSF) at a bon (good, N=8), très bon (very good,
N=6), or signeur natif/expert (native signer/expert, N=11) level. Respondents
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were mostly from the Paris area (N=16), and were most often female (N=18). We
received responses from a range of ages (19-56), and had a mix of hearing (N=8)
and deaf (N=17) respondents.

5.2 Facial Expression Tests

In the French signed language linguistics community, there is a relatively heavy em-
phasis placed on the role of facial expressions in the use of LSF, and rightly so since
facial expressions encode both grammatical (adjectival) and prosodic/pragmatic
details. As a result of this emphasis, Deaf French avatar users demand appropriate
expressivity in the avatar’s face.

To support the aims and outcomes of SignCom, we carried out three facial
expression tests in order to better grasp respondents’ comprehension of signing
avatar facial expressions in general, and to see if our method for animating the face
using blendshapes was sufficient.

Three videos were prepared with three different sign sequences, and each with a
different method for animating facial expressions:

A manually-synthesized facial animations were created, using facial blendshapes
determined by an animator; this sequence’s motion capture file was replayed along
with the body motion, and used as a baseline LSF native animation sequence

B the data-driven synthesized facial animation method described in Section 4.4
uses the facial mocap data and blendshape parameters learned from sequence A
to animate this sequence

C the face was left unanimated during the sign sequence

Survey takers were shown three pages, each containing a pair of videos; the same
set of questions on each page asked respondents which video they preferred and
why.

When comparing the manual and data-driven animated facial expressions in se-
quences A and B, respondents generally had no preference, choosing instead to
comment on the quality of the avatar’s signing or other topics. As a group, the
respondents tended slightly toward sequence B, the sequence with the data-driven-
synthesized facial expressions. On a scale of -2 – 2 with -2 being a strong preference
for sequence B and 2 being a strong preference for sequence A, the responses aver-
aged x̄ = −.44, σ = 1.26.

Indeed, the qualitative responses during this pairing made it clear that respon-
dents didn’t notice much of a difference between the two facial animations. Instead,
participants took the opportunity to describe other suggestions they had to improve
the animation system (detailed later in this section). We consider this finding to
validate the use of blendshapes for the facial animation process for signing avatars,
even when these blendshapes are taken from a single motion capture sequence and
applied to others.

In comparing videos A and B with video C, respondents trended towards the
videos with facial expressions, though not as strongly as we would have predicted.
For example, when -2 meant a strong preference for video C and 2 meant a strong
preference for video A respondents rated the pairing x̄ = .52, σ = 1.48, and when
-2 meant a strong preference for video C and 2 meant a strong preference for video
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Fig. 12. Ratings of each of the three facial expression tests. We suspected that users would find
an order of naturalness that would follow A > B > C, however this trend was not always followed.

B respondents rated the pairing x̄ = .88, σ = 1.48. Results for all three tests are
summarized graphically in Figure 12.

During these two tasks, we received a number of comments preferring the facial
expressions in videos A and B over those in video C, in contrast to the lack of
comments we received in the first task suggesting that both videos from the first
task were accessible to the respondents. This again supports our theory that using
facial blendshapes to animate the face not only saves on computation cost, but also
provides a convincing and preferable facial animation for users of signing avatars.

5.3 Gaze Direction Test

Referring again to the French signed language linguistics community, some have
argued that signers use their eye gaze for prosodic or even grammatical functions
during the discourse. Thus we animated two almost identical videos, the difference
between them being the animation of the eyes: in one video the signer’s eyes moved
as described in Section 4.5, and in the other video the signer’s eyes were fixed.

The respondents generally had no preference for either video; 20 of them (80%)
rated the pair a 0 on a -2 – 2 scale. Qualitative responses verified that respondents
didn’t notice the real difference between the two videos, with some believing that
we had altered the coloring on the avatar and others using the comment box to
suggest other non-eye-related improvements. This suggests that eye animation is
rather unimportant in the overall task of understanding a signing avatar, simply
because the eyes were too small in the video to notice a difference, or because
deficits in other channels supersede the importance of eye animation.

5.4 Motion Capture Playback and Constructed Sequence Tests

The first video shown to respondents was a control video of a simple replay of a
motion capture sequence. In the sequence, the avatar explains to the audience that
she has recently held a cocktail party for her friends, and describes the preparations
she made for them to come over.

We asked respondents to rate their comprehension of the signs used, their com-
prehension of the entire story, and the realism of the avatar using a 1 – 5 Likert
scale, with 5 being very realistic or very comprehensible. On average, respondents

ACM Journal Name, Vol. V, No. N, Month 20YY.



The SignCom System for Data-Driven Animation of Virtual Signers · 21

rated the motion capture sequence as 3.12 for realism, 3.48 for sign comprehension,
and 3.88 for story comprehension, as shown in Table II. While these numbers were
lower than expected, they still remain above the median threshold of 3.

The second and third tests in this section showed two constructed dialogues and
asked respondents to rate them for the same three factors as in the control playback
sequence (realism, sign comprehension, and story comprehension). This allowed us
to test our system’s ability to produce convincing linguistic utterances by combining
motion segments across different channels.

The two constructed dialogues we used contain a large number of tokens related
to the cocktail party scenario we recorded while building our corpus. With a large
variety and frequency of cocktail-related lexemes in our corpus, we are able to
produce a number of novel utterances around the same subject. One of these
constructed sequences is transcribed below, and diagramed to show motion retrieval
and combination in Fig 13.

I asked my friend, “what do you want?”
(S)he said, “Well, I don’t like orange juice. What would you suggest?”
“I’d suggest a Cuba Libre,” I responded.

SUIVANT TOI VOULOIR

QUOI (c/r) EUH MOI
AIMER-PAS JUS ORANGE

TOI PROPOSER-1 QUOI (c/r) MOI

PROPOSER-2 COCKTAIL NOM

GUILLEMETS CUBA LIBRE

Fig. 13. Signs can be rearranged to create novel phrases. Here, signs are retrieved from two

different recording takes (white and gray backgrounds) and linked with transitions created by the
animation engine (striped background). The sign AIMER (like) is reversed to create AIMER-
PAS (don’t like). The signs shown here represent the manual animation of the avatar during a

single sequence; other tracks are animated simultaneously to move the body and head in ways
meaningful to the discourse.

Respondents rated stories 1 and 2 similarly to the control playback sequence.
This suggests that although those surveyed have hesitations about signing avatars,

Fig. 14. Animation strip of the first scenario.
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Fig. 15. Ratings of each of the three sequences grouped by question. There is obvious visual
similarity to the responses, which has been confirmed with t-test P values.

they don’t find our concatenated sequences any less real or understandable than
simple playback sequences. Responses are quantified in Table II, and grouped by
question in Figure 15.

Table II. Ratings given by respondents for a simple playback sequence and two stories created with
our animation engine. The response scale ranged from 1 as not at all realistic/comprehensible to
5 as very realistic/comprehensible. P values compare the story sequences to the control playback

sequence.

Playback (x̄, σ) Story 1 (x̄, σ; P ) Story 2 (x̄, σ; P )

Realism 3.12, .83 3.16, .90; .8709 3.16, .90; .8709

Sign Comprehension 3.48, .77 3.44, 1.00; .8748 3.84, .85; .1231
Story Comprehension 3.88, .88 4.08, .76; .3940 3.96, .79; .7367

Given the need for the human signer to wear distracting markers during record-
ing sessions we were unable to evaluate concatenated sequences against videos of
the human signer performing the same sequences. It is conceivable that different
instantiations of the same phrase from different recording techniques (video, mocap
playback, mocap concatenation) be evaluated against each other, but this is work
for future studies.

5.5 Qualitative Results

As mentioned previously, respondents were asked to give written impressions about
the avatar throughout the evaluation. These provide us with valuable feedback on
issues arising in signing avatar use that we hadn’t previously thought to focus on.

A sizable amount of respondents (N=12) state that sign comprehension was com-
promised by poor hand configurations on the part of the avatar. We suspect that
our kinematic model for the hand was oversimplified: between the motion capture
data and the specificities of the geometric model, finger contact does not often oc-
cur when expected. Clearly, this model has to be reconsidered in future versions of
our virtual signer.

Regarding facial animation, some respondents found that our avatar lacked ex-
pressivity, which could be caused by two factors. Firstly, producing expressive
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facial animations is a notoriously difficult problem, and the data-driven blendshape
method is directly tied to the quality of the input data. Given that simultaneously
capturing all the channels of a signer’s performance is difficult, the resulting data
is sometimes noisy or incomplete. Secondly, the artistic choice made by the artist
while producing the blendshapes could influence facial expression realism and could
be the subject of further evaluation.

Other comments (N=4) noted that the position of the virtual interlocutor (virtual
camera position) must be precisely controlled to ensure that participants feel that
the avatar is speaking directly to them, as opposed to above, below, or around
them. Finally, some respondents (N=3) noted that the avatar was too skinny or
had the impression of having had a facelift; such artistic choices should be rectified
in future implementations so as not to detract from the interaction.

6. DISCUSSION AND CONCLUSIONS

Our system is able to work with a multichannel representation of signed language,
and produce real-time data-driven animations that include body, hand, face, and
eye motion. Importantly, it is able to do so with realism and comprehensibility -
similar to that of replayed motion capture sequences.

We have detailed a preliminary evaluation of our techniques for generating ut-
terances in LSF. Several results have been highlighted: first of all, our experiments
have confirmed the importance of including facial expressions in signed language
animations; furthermore, our facial animation method exhibits strong qualities,
such that there was no significant difference between our method and manually-
synthesized animations (i.e., those performed by an animator). This result rein-
forces the idea of using such a data-driven model for synthesizing any facial ex-
pression from motion capture data. Surprisingly, we also concluded that in the
experiments conducted with our signing avatar, gaze direction had no particular
significance on the sign stream. Finally, our motion composition process allows
us to form novel utterances for which the results are promising, as respondents
to our survey were unable to dissociate the synthetic motion from the playback
movements.

Although we are convinced that the framework reported in this paper is one
of the most advanced attempts to produce utterances by a virtual signer that are
believable and better accepted by the deaf people, several unresolved problems must
still be addressed in our data-driven techniques.

Signs are in effect gestures that require extreme precision and rapidity in the
acquisition process; as a result, imperfect sign formation or improper sign synchro-
nization can alter the semantic content of an utterance. Therefore, an expressive
data-based animation system should handle all the spatial inflections and timing
variations which are due to coarticulation effects. This is feasible if the basic mo-
tion chunks used to reconstruct the signing sequence are whole signs or glosses. It
is clear however that extracting and using the separate phonetic components which
should be adapted and brought together to form complete signs remains difficult.

The appearance of the virtual signer may also have an impact on the believability
of the avatar. While realistic avatar could fail in the well known problem of the
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”uncanny valley”, other representations of the avatar (with a more abstract shape
or a cartoonish representation) could also be tested.

In the near future, we hope to make significant improvements in our animation
system:

i by introducing new controllers that are able to handle different constraints (e.g.,
spatial coherency, collision detection, or dynamics of movements),

ii by developing other ways of combining partial human motions that account for
the coordination schemes between various channels, and

iii by developing new evaluation methodologies that more thoroughly analyze the
degree of comprehension of the signs (i.e., through more detailed questionnaires),
and the degree of expressivity of our virtual signer.
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