
HAL Id: hal-00664567
https://hal.science/hal-00664567

Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis of Sandwich Plates by Hybrid Finite
Elements

Vincent Manet, Han Woo-Suck

To cite this version:
Vincent Manet, Han Woo-Suck. Static Analysis of Sandwich Plates by Hybrid Finite Elements.
TCIBC 3, Nov 1996, Séoul, South Korea. pp.1-8. �hal-00664567�

https://hal.science/hal-00664567
https://hal.archives-ouvertes.fr


Static Analysis of Sandwich Plates

by Hybrid Finite Elements

V. Manet and W.-S. Han

Materials and Mechanical Engineering Department
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Abstract

As sandwich plates become more and more an important structural component, it
would be essential to develop analysis tools taking their specificities into acount.
The present work concerns the development of hybrid sandwich finite elements mod-
elling the mechanical behaviour of sandwich plates in shear in a more realistic way,
and respecting physical phenomena at the interfaces between the skins and the core
which have in general very heterogeneous mechanical properties.
These elements are initially composed of three sub-elements in the same manner as
the sandwich plate. The hybrid formulation has been retained because it permits
to define, in a simple way, a modelling corresponding to all required specifications
with the minimum number of variables. In the direction of the thickness, stress and
displacement fields are both linear in each layer. They both are quadratic in the
others directions to take flexural effects into account.
We present in this paper several results and comparisons of static linear problems.

Keywords : Finite Elements Method, Hybrid Finite Element, Sandwich Plates,
Composite Materials, Static Analysis

Notations

{ } vector (column)
〈 〉 transposed vector (row)
[ ] matrix
O zero matrix or zero vector
Ω element’s interior (volume or sur-

face)
Γ element’s boundary (surface or

curve)
Γ = ∂Ω = Γu ∪ Γσ; Γu ∩ Γσ = ∅

Γu part of Γ where displacements
are prescribed

Γσ part of Γ where forces are pre-
scribed

u (small) displacements
σ Cauchy’s stresses
ε (small) strains

Hijkl Hooke’s matrix
{σ} = [H] {ε}

fΩ value of prescribed forces in Ω
T value of prescribed forces on Γσ
U value of prescribed displace-

ments on Γu
ΓI interface
[L] differential operator

{ε} = [L] {U}

nodal data :

q displacement
L Lagrange multiplier (stress)
fu equivalent force



1 Introduction

Sandwich plates have become more and more an important structural component in the
field of transport, especially for the TGV Duplex and automobiles. With a view to the
better use of this plate taking full advantage of its mechanical propreties, above all its
stiffness and lightness in relatively sophisticated structures, it is therefore indispensable
to make use of a powerful and efficient analysis tool. The subject of the present work
concerns the development of hybrid sandwich finite elements in order to present better
the mechanical behaviour in shear of sandwich plates, respecting physical phenomena at
the interfaces between the skins and the core which have in general very heterogeneous
properties.

These hybrid sandwich finite elements permit at the same time the balancing of the
shear stress distribution through the thickness in a more realistic manner and present
more correctly the phenomena of delamination or of cracks at the interfaces between the
skins and the core in case of damage. They ensure the continuity of the displacement
field and the equilibrium state at the interfaces at the same time.

A sandwich material is a laminated material with 3 layers, these layers having very
different properties.

From a numerical point of view, taking only the stress distribution through the thick-
ness, it does not exist any significant difference between laminated and sandwich plates.
On the contrary, taking into account the specificity of the nature of the core, numerous
physical differences appear :

• crack modes : shear rupture of the core;

• instability modes : crimping, wrinkling, dimpling;

• behaviour under local loading : local denting; :

• viscoelastic behaviour of the core : creep, damping properties.

Essential points related to laminated plates and/or particular to sandwich plates are
the following :

• transverse shear effects must be taken into account : it is experimentally shown
that sandwich plates often fails in delamination, so under transverse shear effects;

• continuity of displacements and equilibrium state of stresses at each interface of
layers : these conditions stand for the mechanical cohesion at interfaces;

• the way each layer works due do the large difference between geometrical and
mechanical propreties of layers;

• relatives magnitudes of stresses : the plane stress assumption used in the theory of
laminated plates appears generally to be insufficient for sandwich plates.

The experience (and also experiments) shows that the normal component of stresses
in the direction of thickness is not equal to zero, and that, even if its magnitude is
still small related to the other components, this values is sufficiently important for the
core whose crushing strength is not very large. Hence it is important to include this
component in our study of sandwich plates.

In order to take into account the above-mentioned points, we develop a new familly
of hybrid elements called hybrid sandwich elements.



2 Finite Elements Modelling

In a finite elements modelling, different choices can be done :

• displacements elements (will be referred to as classical elements);

• mixed elements;

• hybrid elements.

Classical elements only involve the displacement field, leading to good results for
displacements. On the contrary, stresses computation implies a numerical derivative
which is prejudicial to the numerical accuracy and the equilibrium equations at the
interfaces are not satisfied and none of the stresses components is continuous at the
interfaces.

The accurate computation of stresses is also important : mixed models in which
both displacement and stress fields are independently approximated, can be seen as good
candidates for the modelization. Nevertheless, they present some inconvenients :

• the number of unknowns becomes rapidly very high;

• some of the stress variables must be removed, not only on external faces, but also
at interfaces because otherwise all stress components would be continuous at the
interfaces;

• finally, obtained stiffness matrices are no more definite-positive, contrary to the
classical method.

The most simple method to build a “minimal model”, i.e. a model having the minimal
number of required variables in displacement and stress is the hybride method : in
this method, the stress field is only approximated along interfaces. As for the mixed
method, obtained stiffness matrices are not definite-positive, but we do not face the
critical problem of removing variables. For these reasons, this method has been retained.

The hybrid sandwich element developed here is initially composed of three sub-
elements in the thickness, exactly as a sandwich material : the two extremes represents
the skins and the one at the center does the core. In the thickness, stress and displace-
ment fields both linear in each layer. They both are quadratic in the others directions
to take flexural effects into account.

The considered hybrid sandwich element, divided in three sub-elements, is shown in
a dispatched way, for its 2D version, in Figure (1).

This element is built on the principle of virtual work with extra interfaces relations
introduced through Langrange multipliers {λ}.

We also work with the following veriationnal principle [2] :
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expressed only with displacements :

δ〈ε〉 {σ} = δ〈[L]T {u}〉 [H] {[L]{u}}
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Figure 1: Sub-domains

and where boundary conditions for displacements are assumed to be satisfied explicitly
by the choice of fonctions.

The variation δΠ yields :

δΠ = ...

+
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I

(σ1
ijn
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i )δu
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2
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I

+...

where nkj are the components of the exterior normal to Ωk on Γ1
I . This proves that

Langrage multipliers {λ} are stresses. This method is known as hybrid displacement
model.

Finally, the previous relation leads, for the 2D case which will be considered in the
following for simplicity, to :

σ11nx + σ12ny
σ21nx + σ22ny

and, the normal being so that nx = 0 and ny = 1, we obtain, beyond the continuity of
displacements at the interfaces, the continuity of the components σ12 and σ22 of stresses.

As for the component σ11, it is computed in each sub-element using components σ12

and σ22 and mechanical properties of the sub-element. This component is also, a priori
discountinuous at interfaces.

Using the following shape functions to approximate the different fields :{
U i
}

= [Nui ]
{
qi
}{

λi
}

= [Nλi ]
{
Li
}

we reach the element shown in Figure (2).

Finally, the matricial system obtained is :

[K] {Q} = {F} (1)

with :

[K] =


[K1] [Q11] O O O

[Q11]
T O [Q21]

T O O
O [Q21] [2K2] [Q22] O
O O [Q22]

T O [Q32]
T

O O O [Q32] [K3]


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Figure 2: Hybrid sandwich finite element

{Q} =



{
q1
}{

L1
}{

q2
}{

L2
}{

q3
}



{F} =


{fu1}
O
{fu2}
O
{fu3}


and :

[Ki] =

∫
Ωi

([L] [Nui ])
T [
Hi
]

([L] [Nui ]) dΩi (2)

{fui} =

∫
Ωi

[Nui ]
T
{
f
i

Ω

}
dΩi +

∫
Γσi

[Nui ]
T {

T
}
dΓσi (3)

[Qij ] = (−1)1+δij

∫
ΓjI

[Nui ]
T

[Nλj ] dΓjI (4)

Terms (2) and (3) are the same as in the classical formulation, whereas terms of
equation (4) relate displacements to stresses (hybrid terms).

3 Results

In this section, we will expose the kinds of results which can be obtained using hybrid
sandwich finite elements.

Figure (3) shows different shapes of stress distribution through the thickness of a
sandwhich which can be obtained with the classical method.

Figure (4) presents the same thing but obtained using hybrid sandwich elements.

Hence it is clear that the classical method cannot ensure the continuity of any com-
ponent σy nor σxy of stresses at interfaces.

It can be noticed that the use of hybrid sandwich elements oblige to impose boundary
conditions for stresses : i.e. it is also possible to specify that stresses must equal zero



σx, σy or σxy all discontinuous

Figure 3: Results obtained with displacements elements

σx discontinuous σy or σxy continuous

Figure 4: Results obtained with hybrid sandwich elements

at a free end for example. A classical calculation would show stresses vanishing rapidly
near this free end, but never equal zero.

We present a study in order to illustrate the efficiency of developed hybride sandwich
finite elements : a contilever beam given in Figure (5).

Figure 5: Cantilever beam

Displacement elements Hybrid sandwich elements

Figure 6: Meshing

Let n be the number of hybrid sandwich elements used as defined in Figure (6), then
the number of degrees of freedom is :



displacements : 28 + 18(n− 1)
sandwich : 40 + 26(n− 1) from which :

28 + 18(n− 1) displacements
12 + 8(n− 1) stresses
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Figure 7: Convergence test

Figure (7) shows the convergence rate of displacements ralated to the theoretical
solution. Both methods are seen to converge in a very similar way : this is normal,
because matrices [Ki] and vectors {fui} given in equations (2) and (3) are similar in
both formulations.

4 Conclusion- Perspectives

The formulation of such a hybrid sandwich finite element takes into account the speci-
ficity of these very-heterogeneous materials. Its stiffness matrix is symetric and definite.
But we can mention that this type of element (and also structures modelled by it) is
compatible with the majority of used solvers.

The stresses at the interfaces can be determined, and their components σy and σxy
are continuous. They correspond to the stresses verifying the equilibrium state at the
interfaces.

The determination of these stresses at the interfaces can be of particular importance
when introducing stress-based rupture criteria.

Moreover, it is possible to increase the number of nodal variables by doubling the dis-
placement variables at the interfaces nodes : it permits, when introducing crack criteria,
to simulate in a simple way the eventual disbond of different layers of the sandwich as
illustrated Figure (8)

As it is said in [3], the sandwich plate is inclined to fail under local buckling : i.e.
a form of buckling involving local delamination.The possibility of introducing, just by
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Figure 8: Delamination of layers

modifying a simple parameter, this phenomenon in our sandwich element, allows the
computation of the foresee situations that could be omitted in more classical calculations.
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