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Abstract—While key for human-robot interaction, natural
language interpretation is a notoriously difficult task, especially
because the interaction context is at the same time essential
for dialogue understanding, difficult to build for machines, and
depends on each speaker point of view. However, robots as em-
bodied artifacts, can perceive their environment and interactors,
and hence compute symbolic models from various perspectives.
This allows in turn to build symbolic contexts for dialogues.
In this paper, we introduce DIALOGS, a component for natural
language interpretation that relies on these structured symbolic
models of the world to ground verbal interaction.

I. GROUNDING HUMAN INTERACTION INTO THE ROBOT
KNOWLEDGE

A. Situated speech acts

A messy table, covered with cardboard boxes, books, video
tapes... Thomas is moving and packs everything with the help
of Jido, its robot.

“ — Jido, give me this”, says Thomas, looking at a box that
contains a video tape. The robot smoothly grasps the tape, and
hands it to the human.

While this kind of interaction should hopefully sound quite
familiar in a foreseeable future, our robots are not yet quite up
to the task. Neither regarding natural language understanding
nor plan-making and manipulation.

To be combined together, those abilities require an unam-
biguous and shared representation of concepts (objects, agents,
actions...) underlying the interaction: what are the prerequisites
for such a human sentence — “Jido, give me this” — to be
understood by the robot, correctly interpreted in the spatial
context of the interaction, and ultimately transformed into an
action?

Austin [1] would have at first glance analyzed such kind
of sentence as a speech act, comprising of locutionary, il-
locutionary and possibly perlocutionary acts. First, we want
to understand the direct meaning of the sentence (locutionary
act): we must acquire the sentence, convert it into a useful
syntactic form (quite probably by mean of speech recognition),
and understand the semantics of the sentence, i.e. , What is
refered by “Jido”? What is “give”? What is “me”? And “this”?

Working in a situated context, we want furthermore to
resolve these semantics atoms, i.e. ground them in the sensory-

Fig. 1. Interacting with the robot in an everyday setup: the human asks
for help in vague terms, the robot takes into account the human’s spatial
perspective to refine its understanding of the question.

motor space of the robot. For instance, “this” is a demon-
strative pronoun that refers in this context to the object the
human is focusing on, whatever focusing means: here, Thomas
is looking at something, which is a possible cue. But it could as
well point at something or refer to some previously mentioned
concept.

Second, the illocutionary force, i.e. the intent of the ut-
terance as thought by the agent must be extracted, and un-
derstood. In our example, Thomas obviously wants an action
to be performed by the robot. The action parametrization is
conveyed by the semantics attached to the words and the
grammatical structures of the sentence. In our example, the
type of action is given by the verb “give”. Assuming the robot
has some procedural knowledge attached to this symbol, the
action type can be considered as grounded for the robot. We
can as well understand that the recipient of the action is the
human, the performer is the robot itself, and the object acted
upon is the tape. These are the basic thematic roles [2] that
can be extracted from the sentence that allow to fully ground
the action.

B. Building a symbolic model

Extracting these speech acts and turning them into a content
processable by the robot is a difficult challenge in the general
case. We base our approach on three distinct, inter-related
cognitive functions:



1) Physical environment modeling and spatial reasoning
(grouped under the term situation assessment) are in charge
of building and maintaining a coherent model of the physical
world. This model is realistic in the sense that it relies on
accurate 3D models of both manipulated objects and humans.
It also has dedicated mechanisms to manage disappearing or
occluded objects. The geometric model is used to compute
several spatial properties of the scene that actually convert the
original sensory data into symbolic beliefs. This includes rela-
tive locations of objects, visibility state, gestures like pointing,
etc. Assuming that other agents are as well represented in the
model, the same computations are applied to analyze the scene
from each agents’ point of view (i.e. from their perspectives).
This approach is presented in depth in [3].

2) Knowledge representation and management: the robot
is endowed with an active knowledge base that provides a
logically sound symbolic model of its beliefs on the world, as
well as models for each cognitive agent the robot interacts
with. Each of these models is independent and logically
consistent. This enable reasoning on different perspectives of
the world that would be considered otherwise inconsistent (for
instance, an object can be visible for the robot but not for the
human. This object can have at the same time the property
isVisible true and isVisible false, in two dif-
ferent models). Our platform also features continuous storage,
querying and event triggering over the pool of facts known by
the robot. It relies on OWL ontologies (a decidable subset of
the predicate logics). The knowledge base is presented in [4].

Used in combination with the situation assessment frame-
work, the robot is thus able to maintain different models of the
world, one per agent. This proves an essential feature ([5], [6])
to enable perspective-aware grounding of natural language, as
we will see in next sections.

3) Dialogue input processing, including natural language
parsing capabilities, disambiguation routines and interactive
concept anchoring. We focused our efforts on three classes
of utterance, commonly found in human-robot interaction:
statements (i.e. new facts the human wants to inform the
robot), orders (or more generically desires) and questions
on declarative knowledge (whose answers do not require
explicit planning). This would roughly cover the representative
(sometimes referred as assertives) and directives type of illo-
cutionary acts, in Searle [7] classification. This paper focuses
on this last facet (dialogue processing).

C. Related work

Processing natural language in situated context is already
an established research field. In [5], Roy summarizes what
he sees as the main challenges to be tackled: cross-modal
representation systems, association of words with perceptual
and action categories, modeling of context, figuring out the
right granularity of models, integrating temporal modeling and
planning, the ability to match past (learned) experiences with
the current interaction and the ability to take into account the
human perspective.

Kruijff et al. provides in [6] an up-to-date survey of liter-
ature on situated human-robot dialogue, focusing on formal
representation systems, bi-directionality of the interaction and
context building. They point as well that, compared to the
cognitive psychology community, the “situated AI” commu-
nity started only recently to take into account agents focus,
perspective and temporal projection abilities.

Dialogue processing on real robots have been explored by
several teams. Scheutz [8] has contributions regarding natural
language processing in an incremental way, and how this
enables instant back-channel feedback (like nodding).

Hiiwel et al. [9] propose the concept of Situated Semantic
Unit: these meaning atoms are extracted from sentences and
expose semantic links to other units. The parser tries to satisfy
these links and rate accordingly the semantic interpretation
of the sentence. Used in conjunction with ontologies, their
approach offers good robustness to ungrammatical or partial
utterances. They validated the approach with an extensive user-
study.

While mostly implemented on virtual agents, the GLAIR
cognitive architecture by Shapiro et al. [10] is an architecture
explicitly built to tackle the grounding issue from the percept
to the decision. The knowledge layer relies on a custom
knowledge representation language, it has natural language
processing capabilities similar to ours. It features explicit
management of contexts of facts and memory models (long
term/short term, episodic/semantic).

Also worth mentioning, Mavridis and Roy [11] propose the
idea of a grounded situation model which is an amodal model
of the world where different sensing modalities, including
verbal ones (the robot is able to imagine objects), are merged.
Their framework also allows management of the interaction
history (the human can ask for a past event). They propose an
implementation in an environment built on simple entities (a
manipulator arm and color balls).

D. Contribution

Compared to previous contributions, our efforts have two
foci: (1) integration between language processing and per-
ception of the environment and the humans, from several
perspectives; and (2) realistic human-robot interactions: re-
altime processing; open speech; complex, dynamic, partially
unknown human environments; fully embodied autonomous
robots with manipulation abilities.

We do not claim any contribution to the field of compu-
tational linguists (see [6] for a survey of formal approaches
to natural language processing in the robotics field): our main
contribution here is the grounding of concepts involved in the
human discourse through the robot’s own knowledge.

Section II presents the overall grounding process, section III
proposes an analysis of the processing of three prototypical
sentences. Experimental results are presented in section IV.
A discussion regarding the current limitations of our system
concludes this article.



II. THE NATURAL LANGUAGE GROUNDING PROCESS

Verbal interaction with human presents two categories of
challenges: syntactic ones, and semantic ones. The robot
must be able to process and analyze the structure of human
utterances, i.e. natural language sentences, and then make
sense of them. As stated in the introduction, we process three
categories of sentences: statements, desires and questions that
can be answered from the declarative knowledge present in
the robot knowledge base (a choice similar to the Behaviour
Cycle in the GLAIR architecture [10]). The grounding of
the human discourse consists for us either in extracting the
informational content of the sentence to produce statements
or its intentional content (i.e. , performative value) to collect
orders and questions.

We have developed a dedicated module called DIALOGS!
that processes human input in natural language, grounds the
concepts in the robot’s knowledge and eventually translates
the discourse in a set of declarative OWL/RDF statements.
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Fig. 2. The DIALOGS module has three main steps: the parsing, the
interpretation and the verbalization. The interpretation module is responsible
for both the resolution and the semantic content analysis and translation.

As shown in Figure 2, the DIALOGS module is composed
of three main blocks. The user’s input is first pre-processed.
For instance, I’m constructs are expanded into I am and then
parsed. The parser is a custom-made, rule-based (i.e. grammar-
free) tool that extracts the grammatical structure from the
user’s sentence.

The result of the parsing is then sent to the interpretation
module, the core of the approach. Interpretation consists in
three distinct operations: the sentence resolution (concepts
grounding), the content analysis (what is the intent of the
utterance: information, question or desire) and the statement
building (translation into RDF statements).

IDIALOGS is an open-source project. Source code is available from http:
//dialogs.openrobots.org.

The sentence resolution has three steps: (/) pronouns and
anaphora are replaced by, respectively, the correct speaker ID
and the ID of the last object spoken about (extracted from
the dialogue history), (2) nominal groups are disambiguated
and grounded (noun phrase resolution), and (3) verbal groups
are resolved as well, and their associated thematic roles are
retrieved (verbal phrase resolution). Algorithm II.1 describes
the overall process. Next section describes specific examples
to show how the noun and verbal phrase resolution takes place.

Algorithm II.1: RESOLUTION(sentence, currentSpeaker)

G < PARSENOMINALGROUPS(sentence)

for each g € G

D < GENERATEDESCRIPTION(g) (1)
candidates < ONTOLOGY.FIND(D) )
if |candidates| =0

output (Couldn’t resolve the group!)

then .
exit
else if |candidates| =1
do then id + candidates|0] 3)

if ONTOLOGY.CHECKEQUIVALENT(candidates)

then id < candidates|0]
else

else id < DISCRIMINATION(candidates)
REPLACE(g, id, sentence)

As represented on Figure 2, interpretation tightly relies on
the communication with the knowledge base. All the concepts
the robot manipulates are stored in the ontology server and
retrieved through logical queries, except for the verbs that are
currently stored in a dedicated library (the action library on
the diagram).

III. TECHNICAL ANALYSIS

In order to better understand the overall process we next
describe the different steps based on three examples.

In this example, we assume some initial facts are present
in the knowledge base, both in the robot’s own model and in
the human’s model. Since the robot tries to ground a human
utterance, all queries are sent to the human model, i.e. from
the human perspective.

A. Informational content extraction

Figure 3 shows a first example of human discourse ground-
ing and the extraction of informational content. We suppose
that the robot knowledge base only contains two initial state-
ments in the human model. The user asserts a new one: “The
yellow banana is big!”.

We need to resolve the nominal group The yellow banana to
a known concept. A set of partial statements that describe the
concept is generated based on the grammatical parsing of the
sentence (algorithm II.1, (/)). In the example, a banana (?0bj
type Banana) that is yellow (20bj hasColor yellow)2. Based

2Predicates like hasColor or hasSize that bind banana 01 to
adjectives are extracted from a predefined database of [Predicate —
AdjectiveCategory], and falls back on the generic hasFeature predicate
if the adjective is not known.



Initial knowledge model of human_01

banana_01 type Banana

banana_01 hasColor yellow

Human input
“The yellow banana is big!”

Generated partial statements

?0bj type Banana
?o0bj hasColor yellow
= ?0bj = banana_01

Newly created statements

banana_0l1 hasSize big

Fig. 3. First example of natural language grounding: the nominal group “the
yellow banana” is matched with the ipdividual banana_01

Initial knowledge model of human_01

banana_01 type Banana

banana_01 hasColor yellow

Human input
“Give me the banana.”

Generated partial statements

?obj type Banana
— ?0bj = banana_01

Newly created statements

human_01 desires situation_a3f74

situation_a3f74 type Give

situation_a3f74 performedBy myself
situation_a3f74 actsOnObject banana_ 02

situation_a3f74 receivedBy human_01

Fig. 4. Second example: processing an order.

on these partial statements a query is sent to the ontology
server to retrieve possible instances that match the description
(algorithm II.1, (2)).

In this first simple case, the concept banana_01 iS unam-
biguously matched (since there is only one possible banana)
and returned. We can then add the new information provided
by the human, i.e. the new statement banana_01 hasSize big,
to the human model in the ontology server.

B. Intentional content through verb resolution

The sentence in the first example is built with the state verb
be at indicative. Let us examine a different example with an
action verb at imperative mode (i.e. an order): “Give me the
banana”. The process is described in Figure 4.

In order to capture the intentional content of a sentence (for
example, an order) we need to retain the semantics of the verb
and its complements. Thematic roles allow to semantically
link a verb to its complements. We use a small set of them
that matches the relations the robot can actually achieve. In
this second example, the verb give has three thematic roles:
performedBy, actsOnObject and receivedBy.

Initial knowledge model of human_01

banana_01 type Banana

banana_ 01 hasColor yellow
banana_02 type Banana

banana_02 hasColor green

Human input
“The banana is good.”

Generated partial statements

?0bj type Banana

Robot output speech
“The yellow one or the green one?”

Human answer
“The green one.”

Newly created statements

banana_02 hasFeature good

Fig. 5.  Ambiguity resolution: in this example, “banana” can refer to the
yellow banana (banana_01) or the green one (banana_02). Discrimination
routines handle the disambiguation process.

The list of actions the robot can plan for (currently take,
place, give, show, hide and move) along with possible syn-
onyms and their associated thematic roles are stored in a
predefined library of actions (Figure 2). For each action we
identify and store the role of the subject of the sentence —
always performedBy; the role of the direct object (for instance,
actsOnObject); and the role of each of the indirect objects
with their optional prepositions (for instance, receivedsy)’.
Moreover, we check with the help of the ontology that each
holder of a role has a consistent semantic. For instance, action
Give must have a manipulable physical item (Artifact) as direct
object. Thus, if the concept the robot finds for the thematic
role actsOnObject can not be inferred to be an artifact, it goes
back to the human saying it does not understand.

Once the sentence is completely resolved and translated into
a formal representation (a human desire in this case?), we
store it in the ontology server. The robot’s decisional/executive
layers should then decide whether to execute the order or not.

C. Informational content extraction requiring clarification

This last example (Figure 5) shows the resolution of am-
biguous concepts. In this case the user refers to “the banana”
while two instances of the Banana class exist in the ontology.
The robot needs to find out to which instance the user is
actually referring to. To this end, disambiguation routines [12]
find differences between the instances (in the example, one
banana is yellow while the other one is green) and build a
sentence through the verbalization module to ask the user
a closed question that will help clarify the ambiguity: “Is
it yellow or green?” The user’s answer is parsed and added

3Note that in example 2, “give me the banana”, the pronoun “me” appears
before “banana”, while it is an indirect complement — “give it to me”. The
parser correctly handles these cases.

4Orders are here represented as human desires: the human desires a specific
new situation.



to the previous sentence. The resulting, augmented, sentence
(i.e. “Give me the green banana”) goes again through all
the interpretation steps. This process is repeated until no
ambiguities arise. In the example, the banana_02 is finally
returned.

Several other strategies are used in parallel to disambiguate
concepts without having to ask for more information to the
human:

« Which objects are currently visible to the human? If only
one of them, then it is probably the one the user is talking
about.

« Did a previous interaction involved a specific object that
would still be the subject of the current sentence?

o Is the user looking or pointing to a specific object?

While no examples involving questions have been detailled,
W- questions and yes/no questions can be processed in a simi-
lar way by DIALOGS. For instance, a question like: What is on
the table? is grounded (to extract the relation isOn and to find
what table refers to) and transformed into the following kind
of query: find ?var [?var 1sOn tablel]. Answers
are converted back to a full sentence and uttered to the human.

IV. EXPERIMENTAL RESULTS

In order to illustrate the approach presented in this paper,
we have designed the following daily life situation. Tom and
Jerry are moving to London, so they are packing things in
boxes. The scenario takes places in the living-room, where
Jido (our robot) is observing while they move things here and
there. To assess the reasoning abilities of the robot they ask
Jido for information (entered through keyboard). Ideally, the
robot should also perform actions when required (e.g. hand an
object when asking “give me...”). However, since it is out of
the scope of this work, we do not include any motion from
the robot’s side.

Perception of objects is done through a tag-based system
and humans are detected through motion capture. The robot
knowledge base is pre-loaded with the ORO Commonsense
Ontology®. We next describe in detail two situations where we
can follow the internal robot’s reasoning and the interaction
with the users.

1) Implicit disambiguation through visual perspective tak-
ing: Tom enters the room while carrying a big box (Figure 1,
page 1). He approaches the table and asks Jido to handle him
the video tape: “Jido, can you give me the video tape”. The
DIALOGS module queries the ontology to identify the object
the human is referring to: 2obj type VideoTape.

There are two video tapes in the scene: one on the table,
and another one inside the cardboard box. Thus, the knowledge
base returns both: = 20bj =

However, only one is visible for Tom (the one on the
table). Thus, although there is an ambiguity from the robot’s
perspective (since it can see both video tapes), based on the
perspective of its human partner it infers that Tom is referring
to the video tape on the table, and not the one inside the

[videoTapel, videoTapeZ2].

5This ontology can be downloaded from http://oro.openrobots.org/.

Robot’s beliefs about itself (robot’s model):
videoTapel type VideoTape
videoTapel isOn table
videoTapel isVisible true
videoTape2 type VideoTape
videoTape2 isIn cardBoardBox
videoTape2 isVisible true

Robot’s beliefs about Tom (Tom’s model):
videoTapel type VideoTape
videoTapel isOn table
videoTapel isVisible true
videoTape2 type VideoTape
videoTape2 isIn cardBoardBox
videoTape2 isVisible false

TABLE 1
ROBOT’S BELIEFS ABOUT ITSELF AND ITS HUMAN PARTNER.

box which is not visible from his view. Therefore, non-visible
objects are removed obtaining: ?obj =[videoTapel].

Since only one object is available, the robot infers that the
human refers to it and would eventually execute the command,
i.e. give it to the human. Alternatively, the robot could first
verify with the human if that was the object being referred to
or not before proceeding to execute the action. Table I lists
the robot’s beliefs about itself and its human partner involved
in this situation.

Fig. 6.

Jerry asks Jido for the content of the box by pointing at it.

2) Explicit disambiguation through verbal interaction and
gestures: In this situation, Jerry enters the living room without
knowing where Tom had placed the video tapes. So he first
asks Jido: “What’s in the box?”. Before the robot can answer
the question it has to figure out which box Jerry is talking
about. Similar to the previous situation, there are two available
boxes:

?0bj type box

= ?0bj = [cardBoardBox, toolbox]

However both are visible and the cognitive ambiguity
resolution cannot be applied. The only option is to ask Jerry
which box he is referring to: “Which box, the toolbox or
the cardboard box?” Jerry could now simply answer the
question. Instead, he decides to point at it while indicating:
“This box” (Figure 6). The robot’s perception identifies
the cardBoardBox as being pointed at and looked at
by the human and updates the ontology with this new



information using a rule available in the commonsense
ontology (pointsAt (?ag, ?obj) A looksAt (?ag,
?0bj) — focusesOn(?ag, ?obj)) The DIALOGS
module is then able to merge both sources of information,
verbal (“this”) and gestural to distinguish the box Jerry refers
to.

Jerry pointsAt carboardBox
Jerry looksAt carboardBox
—r Jerry focusesAt carboardBox

= 20bj = [cardBoardBox]

Finally, the DIALOGS queries the ontology about the content
of the box and the question can be answered: “Jido-E”. Note
that the object’s label is used instead of its ID. This way we
enhance interaction using familiar names given by the users.

?0bj isIn cardBoardBox
= ?0bj = videoTape2

At this point Jerry wants to know where the other tape
is, and that is exactly what he asks Jido: “And where is the
other tape?”. In this occasion, the DIALOGS module is able
to interpret that Jerry is not referring to the video which they
were just talking about, but to the other one:

?0bj type VideoTape
?0bj differentFrom videoTape2

= ?20bj = [videoTapell]

Since there is only one possible “other” video (there are
only two videos in the scene), it can directly answer Jerry:
“The other tape is on the table and next to the toolbox.”

videoTapel isOn table

videoTapel isNextTo toolbox

V. FUTURE DEVELOPMENTS

While perspective-awareness proves to play an important
role in dialogue grounding, several improvements need to be
considered.

For instance, we would like to add temporal reasoning
abilities: currently, all the interaction takes place in a model
that only stores the current state of the world, with basic
extensions like management of dialogue history.

The current framework also lacks a proper management of
uncertainty which is essential for real world environments. A
probabilistic layer could be added by attaching truth probabil-
ities to statements, similar to [13].

Non-verbal communication (so-called “back-channel com-
munication”: nodding, social gaze, cues based on small move-
ments, ...) should be also largely extended, both as new input
percepts and as new communication behaviours [8].

We plan eventually to conduct a user study with non-expert
humans to validate our hypotheses regarding the importance
of perspective awareness for the natural language grounding.

VI. CONCLUSION

In this paper we have presented the DIALOGS module that
converts natural language utterances into either symbolic facts

(OWL statements) or natural language answers, depending on
the intent conveyed by the original sentence.

Grounding of referent is done by relying on a symbolic
knowledge base that is able to store several perspectives on
the world state, one for each agent. Our system takes also into
account non-verbal communication cues, like gaze or pointing
gestures.

Using so-called thematic roles and the symbolic reasoning
capabilities of the knowledge base, semantic correctness of
utterances can be checked by the robot who can react accord-

ingly.

We have demonstrated this module in an experiment in-
volving a service robot, in an everyday environment. This
experiment showed how ambiguous referents are successfully
resolved by the robot, using multi-modal communication cues.
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