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We present a method to measure the viscosity of polymer thin films. The material is spin coated onto a silicon
substrate and specially designed nanopatterns are imprinted on the film using thermal nanoimprint. A brief reflow
is performed during which patterns flow under surface tension. Spectral densities of the topology before and after
annealing are compared and the rheologic properties, such as viscosity, are extracted as fitting parameters of an
evolution model. Contrary to previous similar approaches, emphasis was put on the spatial description rather
than the temporal decay of the patterns. We used this method to measure the viscosity of polystyrene for two
molecular weights at various temperatures and successfully recovered results of previous authors.

I. INTRODUCTION

Nanoimprint lithography (NIL) emerged in the mid-1990s
[1] and has been rapidly considered as a high-resolution
and high-throughput patterning technique. Despite a huge
development of imprinting equipment, stamp manufacturing
processes, imprint processes, dedicated materials, and metrol-
ogy approaches, a complete simulation toolbox of NIL is still
lacking. To propose a complete modeling approach several
issues are still pending: The complex mechanical stamp defor-
mations during imprinting [2,3] are not yet fully understood;
the flow properties of melted resists within nanometric cavities
are not well known and resist property characterizations at
such small scales are not always possible; the stamp-resist
adhesion and friction mechanisms either in parallel or peeling
[4] demolding schemes also need to be introduced to overcome
the resist fracture defect [5]. In this paper we propose to
address the issue related to the resist characterization at the
submicron scale in order to provide the resist properties data
sheet needed to model the imprint process. Characterization of
flow properties of melted polymers at the macroscopic scale is
now a quite easy task to perform from classical measurement
devices devoted to volume rheology. In NIL processes, resist
film thickness ranges from several tens of nanometers up
to several hundreds of nanometers. In such configurations,
surface phenomena increasingly play a decisive role with
significant deviation for viscous flows properties [6].

To measure the properties of fluids at the nanoscopic scale,
numerous methods have been presented. An early approach is
based on the nucleation and growth rate of holes in a dewetting
polymer film [7–10]. Although this approach yields consistent
results, it also raises both theoretical and experimental issues.
The dynamics of a moving contact line is indeed largely
simplified [11]. Moreover, a limited range of film thickness
and substrate material can be used in order to observe the
expected dewetting dynamics. A second approach is based
on measuring the resistance of the flow around an immersed
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AFM tip [12–16]. This method only measures mechanical
properties at high frequency and depends to a large extent on an
accurate knowledge of the tip shape. Finally, a third approach,
closely related to what is presented here, is to measure the
relaxation dynamics of a surface relief. We can distinguish
between methods where the topography is induced by thermal
fluctuations [9,17–19] and methods where the topography is
imprinted by a mold, using common nanoimprint techniques
[20,21]. The dynamics is probed either by using x-ray photon
correlation microscopy or more generally by light scattering
techniques. In this approach, attention is given to the time
evolution of the fundamental spatial frequency of the shape,
and viscosity is determined from the measured relaxation time.
In many cases, neither the exact topology nor the thermal
dependance of the optical index of the material is known, and
delicate data processing is needed.

In this paper, we present a method to measure the viscosity
of a polymer thin film from the reflow of nanoimprinted
patterns. We focus our efforts on the accurate spatial deter-
mination of the surface of the film, rather than on its temporal
evolution, and we extend the method formulated by Leveder
et al. [22,23]. Atomic force microscopy (AFM) measurements
with a spatial resolution lower than 1 nm are used to extract
the spectral density of the topography at two different times of
the reflow. The mechanical properties of the film are extracted
from the comparison of these two densities, by means of a
robust analytical model. The imprinted patterns are specially
designed to provide relevant spectral densities, in order to
perform measurement of a large viscosity range and at different
temperatures.

II. METHOD

A. Overview

In this section, we present the main steps of the method,
drawn in Fig. 1. The material (polymer) is spin coated
onto a silicon substrate, panel (a), and the thickness of the
film is measured by ellipsometry. We begin with imprinting
the film by thermal nanoimprint [1,3], panel (b), using a
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FIG. 1. Main steps of the viscosity measurement method.

specially designed mold which will be described hereafter.
After demolding at room temperature, a first measurement of
the imprinted profile is done by AFM, panel (c). The film is
then heated at a definite temperature above the glass transition
temperature (Tg) during a definite time, panel (d). The film
is then rapidly cooled down and the reflowed profile is again
measured by AFM, panel (e). Spectral densities of the profiles
are computed using standard Fourier transform algorithms,
and the sought viscosity is a fitting parameter of an evolution
model for the spectral density of the topology, described in the
next section.

At temperatures above Tg , the film becomes viscous and
begins to flow. At submicron scale and for highly viscous
fluids, both gravity and inertia are negligible: The flow is only
driven by surface tension (and in some cases van der Waals
forces) [24]. The film reaches a steady state when the surface
energy of the free interface is minimum. In other words, if
no dewetting occurs, then the film becomes completely flat.
During the reflow process, the shape of the interface evolves
with the balance between the surface tension, which tends
to smooth the bumps and protrusions, and the viscous shear,
which damps the flow. Locally, the more curved the interface is,
the higher the pressure inside the fluid is: Short-length features
of high curvature are the first elements to disappear. Moreover,
long-length general shapes flatten out more slowly because
the fluid must flow over longer distances under high shear.
These local behaviors produce a large-scale consequence of
the reflow which is a low-pass filtering of the topology of the
film. We precisely take advantage of this spatial filtering to
extract the viscosity of the material.

B. Model

We model a fluid film which is supported by a flat solid
substrate, typically made of silicon (Fig. 2). The thickness of
the film is described by the local and instantaneous function
h(x,y,t), which we write as a sum of two parts: h = h0 +
h̃(x,y,t), where h0 is the mean thickness of the film (over
time and space). In order to derive a simple analytical model
for the flow, we assume that the deviation of the free surface

FIG. 2. Schematic of a thin fluid film.

from the mean thickness value is small, in other words that
h̃/h0 � 1. Note that the geometric condition h̃/h0 � 1 is
only a condition on the amplitude of the deformation, not on
the pattern wavelength (or wave vector), as it usually would
be in the lubrication approximation [25,26].

A flow model under this kind of setup was previously
solved by Henle and Levine [27] for the characterization
of spontaneous capillary waves. Here we summarize their
approach and in addition we take the van der Waals forces
into account. We make the fundamental hypothesis that we can
describe our microfluidic systems by the laws of continuum
mechanics. Assuming that the fluid is incompressible, the mass
conservation is formulated by

∇ · v = 0,

where v is the fluid velocity. At scales smaller than the capillary
length, we can neglect body force terms (such as gravity)
compared to surface forces. Moreover, since the Reynolds
number of the flow is extremely low (Re ∼ 10−12), the viscous
terms in the equation of motion overcome inertial terms. The
dynamics of the flow is thus described by the Stokes equation:

∇p = ∇ · T ,

where p is the pressure field and T is the viscous stress tensor.
The hydrodynamics problem is closed by a behavior law for
the material. Polymer melts are known to have a nonlinear
behavior at high strain, such as shear thinning. However, in
the limit of small strain, the response of the material at a given
frequency ω can be described by the complex shear modulus
G(ω) [28]. In the case of a linear behavior, the Stokes equation
in the frequency domain becomes

∇p(ω) = i
G(ω)

ω
∇2v(ω).

We describe below a method to solve the flow from a
linear perturbative method. We begin with transforming the
flat coordinates (x,y) into the Fourier domain k = (kx,ky),
and the time into the frequency domain. The height coordinate
z is left in the real space. Each variable depends then on kx ,
ky , z, and ω, but for simplicity most of these dependencies
are not written. The horizontal part of the velocity is written
u = (vx,vy). We also write the z derivative ∂v/∂z = v′. Under
this transformation, we have for the continuity equation

k · û = iv̂′
z (1)
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and for the equation of motion

ωp̂

G
k = −k2û + û′′, (2)

ωp̂′

iG
= −k2v̂z + v̂′′

z , (3)

where k =
√

k2.
We now focus on boundary conditions. At the bottom of

the fluid, the velocity must vanish (no-slip condition):

v̂(z = 0) = 0. (4)

By assuming that the film is almost flat (h̃/h0 � 1), the
boundary condition at the fluid-air interface can be linearized.
The pressure at that interface is given by the sum of two
contributions: the surface tension and the van der Waals forces
(disjoining pressure) [25,26]. The linearized condition is

p̂(z = h0) =
(

γ k2 + A

2πh4
0

)
ĥ(k,ω), (5)

where γ is the surface tension and A is the Hamaker constant.
Moreover, as no shear stress is supposed to apply along the
interface, we can write

iG(ω)

ω
(iv̂zk + û′)z=h0 = 0. (6)

In addition, as a linearized kinematic condition at the fluid-air
interface, the vertical velocity equals the growth rate of the
thickness:

−iωĥ(k,ω) = v̂z(z = h0).

Finally, we say that there is no stress applied on the material
at time before the reflow (t < 0); in other words there is no
residual elastic stress caused by the imprint (see Sec. III B).

All the elements are set to solve the equation of motion.
This calculation is carried out in the Appendix. We finally
get the dispersion relation between the wave vector k and the
complex frequency ω:

h0G(ω)

γ
+ f (kh0,Ha) = 0, (7)

where f is a dimensionless function of the normalized wave
vector kh0 and of the dimensionless Hamaker number Ha =
A/2πγh2

0. The function f is given by

f (kh0,Ha) = sinh kh0 cosh kh0 − kh0

2kh0 cosh2 kh0

(
k2h2

0 + Ha
)
.

Note that Ha may be either positive or negative, depending
on the sign of A [29]. When A is negative, the film is known
to be unstable and Ha quantifies the competition between the
surface tension which smooths the film and the van der Waals
forces which dewet it. Features whose wave vectors are smaller
than kc = √|Ha|/h0 tend to grow exponentially leading to the
rupture of the film. In our experimental setup, Ha ∼ 10−5, we
have kmin/kc ∼ 103, so kmin � kc, which is why van der Waals
forces do not cause the rupture of the film, and Ha is rather
considered as a small (often negligible) corrective parameter.

In the case of a simple Newtonian fluid, G(ω) = −iωη

where η is the viscosity. Then Eq. (7) has only one root on
the imaginary axis, which means that all the modes are purely

damped (i.e., they do not propagate). The decay time τ (k) for
each mode of wave vector k is extracted from the dispersion
relation and leads to

iω = 1

τ (k)
= γf (kh0,Ha)

ηh0
.

From this result, we can write the evolution of the thickness:

ĥ(k,t) = ĥ(k,0) exp

(
− t

τ (k)

)
. (8)

Equation (8) shows that the reflow of the film is equivalent to a
low-pass Fourier spatial filter. The filter kernel exp [−t/τ (k)] is
given by the physical parameters of the problem. In particular,
when the van der Waals forces are not significant, the decay
time τ (k) has two known asymptotic regimes. When kh0 � 1,
referred to as the lubrication regime, we have τk ∼ 3η/γ h3

0k
4.

This scaling of the decay time regarding both k and h0

was experimentally verified by Leveder et al. [23]. On the
other hand, when kh0 � 1, we find τk ∼ 2η/γ k which is the
dispersion relation for bulk flows reported by Hamdorf [20].
Note that in the case with h0 → ∞, the decay time does not
depend on the thickness of the film. It is therefore important to
take both regimes into account with the full dispersion relation
Eq. (7) since in the data analysis a large range of normalized
wave vectors kh0 is involved.

C. Mold design

From Eq. (8) we can see that there are two ways to measure
the kernel function and then extract the viscosity. The first
one, used by [9,17–21,23], is to follow the amplitude h(k1,t)
of the surface for a given mode k1, as a function of time t . This
is done with periodical patterns, focusing on the decrease of
the fundamental frequency. An exponential decrease is found,
and the model is fitted to that data. This is straightforward if
there is a real-time analysis, such as scatterometry. However,
along with the issues raised in the introduction section of this
paper, an additional problem is that, due to the steep variation
of the decay time with respect to the wave vector and the mean
thickness, one can only measure viscosity with a range of a
single decade, for a given pattern and thickness, and assuming
reasonable experimental times. Multiple patterns are therefore
needed to cover a wide range of viscosity. Another issue is the
fact that one measurement flattens the topology, hence several
samples have to be used in order to perform measurements at
different temperatures.

The other way to obtain the kernel function is to measure
the decay of all the modes for a given time ta of annealing,
in other words, to measure h(k,0) and h(k,ta) as a function of
wave vector k. In order to realize this effectively, we need a
topology with a rich spectral density but short enough to be
measured by a single AFM scan. We present below a patented
approach to designing a mold with such a profile.

We can define a pattern shape m(x) of length L and of depth
2m̃ by the modulation function

m(x) = m̃ sgn

[
cos

(∫ x

0
k(ξ )dξ

)]
,

where k(ξ ) is the local wave vector. Note that if k(ξ ) = k1

(the pattern is periodical), then m(x) = m̃ sgn [cos k1x]. The
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choice of the function k(ξ ) is essential to determine the spectral
density. Here we give two examples of local wave vector
functions. The first one aims at providing a uniform spectral
density, so that the same weight is given to low and high
frequencies. Its expression is given by

k(x) = kmax + (kmin − kmax)
x

L
,

where kmin and kmax are, respectively, the minimum and
the maximum local wave vectors. This type of profile is
particularly relevant if the measurements are performed by
AFM. However, one could also use other instruments, such
as optical or confocal microscopy. A second expression is
thus needed to enhance visual contrast between reflowed
areas (high frequencies) and slower dynamics areas (low
frequencies). Such profile can be defined by

k(x) = kmax

(
kmin

kmax

)x/L

.

In the next section we present some experimental applica-
tion and results of the method.

III. EXPERIMENT

Experiments were carried out on polystyrene samples. The
following subsections cover many aspects of the experimental
process. The first one is dedicated to material properties and
preparation. The second and third subsections go through the
imprint and reflow of the samples. The last one is a comment
on the AFM measurements. Results are finally presented in
the next section.

A. Materials

Low molecular weight (Mw = 30 kg · mol−1 and Mw =
130 kg · mol−1) monodisperse (Mw/Mn < 1.06) polystyrene
(PS 30k and PS 130k) solution is spin coated onto 8−inch
silicon substrates. Prior to coating PS, substrates were rinsed
with a hydroxylamine/aminethoxyethanol (60%/40%) bath
during 600 s at 343 K, and a O2/N2H2 (2150 sccm/240 sccm)
plasma during 180 s at 543 K was performed in order to obtain a
homogeneous 4-nm-thick SiOx layer. The glass transition tem-
perature (Tg = 102 ± 1 ◦C) is measured by differential scan-
ning calorimetry (DSC). Thicknesses of coated polystyrene
films were 150 ± 1 nm and measured by ellipsometry.

The surface tension of polystyrene melts varies with both
molecular weight and temperature. However, this variation is
small—in contrast with the variation of viscosity—for entan-
gled polystyrene and for the range of temperature investigated
in this paper (120 ◦C to 180 ◦C). Typical values (extrapo-
lated for our molecular weights from tabulated values [28])
are γ@120◦C = 33.3 mN · m−1 and γ@180◦C = 29.0 mN · m−1

for PS 30k, and γ@120◦C = 34.8 mN · m−1 and γ@180◦C =
30.4 mN · m−1 for PS 130k. As we do not know the exact
thermal dependency, it is reasonable to take a constant value
γ = 32 ± 3 mN · m−1 for both molecular weights.

B. Imprint

The imprints of the patterns were made at 13 bars of
pressure and at temperature Tg + 80 ◦C where the elastic stress

relaxes quickly (measured by disk rheometry to be less than 1 s)
in comparison to the imprint time (which was at least 30 min).
The uniformity of the residual layer is ensured because, first,
the depth of the pattern is small compared with the initial
thickness of the film, second, the pattern is locally isodense
(no large scale flow of mass), and third, the total length of
the pattern (40 μm) is small compared to the thickness of the
mold (750 μm) so that no bending of the mold occurred [3].
Demolding was performed at room temperature.

C. Heating and quench

The model we previously described requires that the
polymer film changes instantaneously from a glassy solid
state below Tg to a fluid state at a fixed temperature above
Tg . From an experimental point of view, this cannot be strictly
achieved because of thermal inertia of the sample. However,
we can choose the total reflow duration so that the time in a
non-steady-state can be neglected, at the cost of an appropriate
error estimate on the final viscosity measurement.

In our experiments, the heating of the sample was done
with a hot plate with 1 ◦C precision. The energy is transferred
to the sample through the contact surface. The quench, i.e.,
the rapid cooling, was performed by using a cooling plate
thermalized at room temperature. Given that the sample is thin
(no significant heat flux at the edges) and that the flux through
both sides is homogeneous, this quench is a one-dimensional
thermal transfer through the thickness of the sample. One way
to address the heat transfer dynamics is to compute the order
of magnitude for the time scale of each transfer phenomenon.
Given by an energy balance, such a time scale takes the general
form τ = eC/H , where e is the thickness of the sample, C is
the heat capacity of the sample per unit of volume, and H

is the thermal conductance per unit of surface related to the
(linearized) transfer phenomenon. In our case, there are three
types of transfers for which we can give typical time scales:
the conduction of heat inside the wafer (τcd ∼ 1 ms), the free
convection and radiation on the top side (τcv−rd ∼ 120 s), and
the contact transfer through the bottom side (τtc ∼ 1 s).

The fact that τcd � τtc demonstrates that the temperature
is always homogeneous inside the sample. In addition, τtc �
τcv−rd means that free convection and radiation can be ne-
glected in the heat transfer dynamics. Finally, the characteristic
time governing the temperature of the sample is τtc ∼ 1 s;
therefore the sample reaches a steady state within a few
seconds at most. According to the foregoing scaling analysis,
if we choose a reflow duration of at least 5 min, it is reasonable
to consider that the transition is instantaneous.

D. AFM measurements

For the AFM measurements we used Nanosensors AR5-
NCHR tips in tapping mode. These tips have high aspect ratios
(7:1) and low radii (<15 nm). The typical resonance frequency
was 330 kHz.

All AFM measurements are done at room temperature;
thus there is essentially no issue of temperature drift. It is
however well known that tip geometry induces a distortion
in the measured image [30,31]. This effect is a nonlinear
convolution which can have a direct influence on the spectral
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density, and finally on the viscosity measurement. The
mathematical treatment of a nonlinear deconvolution is not
straightforward and requires an accurate knowledge of the tip
shape. Without special equipment dedicated to this issue it is
thus of importance to minimize such convolution. In our case,
this is ensured by the low aspect ratio of the imprinted profiles,
which means that the tip can fully enter the trenches and that
the shadows induced by the steep steps are negligible. It is also
possible to perform a brief reflow just after demolding in order
to soften the edges of the profile, and thus reduce or suppress
the tip convolution. This new state may be therefore used as
the initial one.

IV. RESULTS AND DISCUSSION

Figure 3 gives an example of a viscosity measurement done
with the method described above. A 150-nm-thick PS 30k was
annealed at 120 ◦C during 5 min. The AFM measurements
reported in Fig. 3(a) emphasize the low-pass filtering behavior
of the reflow, since the high-frequency part of the profile
completely vanished after annealing. The ratio of Fourier
transforms of both profiles plotted in Fig. 3(b) gives the kernel
function of the filter whose expression is given by Eq. (8).
The error bars are drawn assuming a 1 nm rms Gaussian noise
for each AFM measurement. The large uncertainty area for
the high-order modes accounts for the fact that no information
can be extracted from features which have completely flowed.
From the data points it is then possible to compute the number
Ca = ηh0/tγ as a fitting parameter of the kernel function
exp [−f (kh0)/Ca]. The viscosity is readily obtained with the
knowledge of the other physical parameters.

Let us now make several remarks about the accuracy of the
method. The number Ca is given with a relative error σCa = 2%
which comes from the residuals of the fitting. The uncertainty
of the other parameters is, in our experiments (see previous
section), σh0 = 0.7% for the mean thickness, σγ = 9% for the

FIG. 3. Single-temperature measurement example. Polystyrene
(Mw = 30 kg · mol−1) was annealed at 120 ◦C during 5 min. (a) AFM
measurements of the imprinted profile before and after annealing.
(b) Kernel function of the reflow, experimental points, and fitted
model exp [−t/τ (k)] as defined by Eq. (8). The fitted value is
η = 1.0 ± 0.1 × 106 Pa · s.

FIG. 4. Viscosity measurements for polystyrene of two molecular
weights. The experimental points are plotted along with reference
curves [32].

surface tension, and σt = 1% for the duration of the reflow.
The way the uncertainty of the mean thickness influences the
final result is not straightforward since it plays a role both in
the fitting [through f (kh0)] and in the number Ca. Still, it is
possible to estimate an upper bound of this error by recalling
the fact that the dynamics of the film is independent of its
thickness for high-order modes (kh0 � 1) and varies as h3

0 for
low-order modes (lubrication). Keeping the most significant
dependency, we can finally write

ση = σ 2
Ca + σ 2

γ + σ 2
t + (3σh0 )2 = 10%.

The uncertainty of the surface tension is the main factor of
the final uncertainty, and it is clear that a dedicated equipment
to accurately measure the surface tension could be worthily
employed. To conclude, the result of the fit for this particular
example of PS 30k at 120 ◦C is η = 1.0 ± 0.1 × 106 Pa · s.

Finally, the viscosity of polymer melts can be extracted
using the previously described technique at various tempera-
tures. Results for PS 30k and 130k between 120 ◦C and 180 ◦C
are reported in Fig. 4. The reference curves are obtained from
the review by Kim et al. [32] on bulk polystyrene rheology.
Good agreement can be seen between viscosity measurements
and reference values.

The temperature dependency of viscosity corresponds to
a well-known behavior of a polymer material validated at
macroscopic scale (polymer bulks), extensively studied by
Williams et al. [33]. These authors proposed a constitutive law
describing thermal behavior for most amorphous polymers,
now known as the WLF law:

η(T )

ηs

= exp

(
−c1

T − Ts

c2 + T − Ts

)
,

where Ts is a reference temperature, ηs = η(Ts), and c1 and
c2 are fitting parameters. This normalization was done for
our experimental data, taking Ts = 150 ◦C, and results are
summed up in Fig. 5. The WLF law was fitted to our data and
parameters c1 = 12.6 ± 0.1 and c2 = 101 ± 1 K were found.
Our results are consistent with data from previous authors
[17,34]. These results also confirm that the deviation of flow
properties encountered for thickness below ten nanometers
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FIG. 5. Normalized polymer viscosity evolution versus tempera-
ture. Results and data from references [17,34] are normalized by the
viscosity value at 150 ◦C. WLF law with parameters c1 = 12.6 ± 0.1
and c2 = 101 ± 1 K is also plotted (solid line).

does not occur here, since we obtained the properties of the
bulk materials [6].

V. CONCLUSION

In this paper, we presented a method to measure the
rheologic properties of polymer thin films from the reflow of
nanoimprinted patterns. We derived a complete and accurate
model for the evolution of the spectral density of the topology.
Contrary to previous similar approaches, emphasis was put
on the spatial description rather than the temporal decay
of the patterns. With this model, we could develop relevant
stamp designs with spatially modulated patterns to optimize
experimental measurements and ensure fruitful data process-
ing. Our approach was then successfully applied to measure
the viscosity of PS 30 k and PS 130 k thin films. Thermal
dependency of polymer viscosity was determined from reflow
experiments, AFM characterizations, and spectral analysis.
Consistent results were found and confirmed the presented
model. Our method does not require dedicated equipment since
it makes use of imprint tools and AFM. It is then a fast and
cost-effective method to measure the rheologic properties of
polymer thin films.

APPENDIX A: CALCULATION
OF THE DISPERSION RELATION

In this section, we calculate the dispersion relation (7). We
first compute (2)′ − ik(3) and get

−k2û′ + û′′′ + ik2v̂zk − iv̂′′
z k = 0.

We take the scalar product by k and then mass conservation
yields

v̂′′′′
z − 2k2v̂′′

z + k4v̂z = 0. (A1)

Equation (A1) is directly solved in

v̂z(z) = P1(z) cosh kz + P2(z) sinh kz,

where P1 and P2 are unknown polynomials of degree one (i.e.,
linear functions),

P1(z) ≡ A1 + B1z and P2(z) ≡ A2 + B2z,

and where we have four unknown constants A1, B1, A2, and
B2. We use the property P ′′

1 = P ′′
2 = 0 to write

v̂′
z = (B1 + kP2) cosh kz + (B2 + kP1) sinh kz,

v̂′′
z = (2kB2 + k2P1) cosh kz + (2kB1 + k2P2) sinh kz,

v̂′′′
z = (3k2B1 + k3P2) cosh kz + (3k2B2 + k3P1) sinh kz.

From Eq. (2) and Eq. (1) we deduce the pressure:
ω

iG
p̂k2 = −k2v̂′

z + v̂′′′
z ,

(A2)
ω

2iG
p̂ = B1 cosh kz + B2 sinh kz.

In order to find a relationship between the constants B1 and B2,
we use the boundary conditions on velocity and shear stress.
Condition (4) on velocity implies

A1 = 0 and A2 = −B1

k
.

We use this result to rewrite P1 and P2 at z = h0:

P1(h0) = B1h0 and P2(h0) = −B1

k
+ B2h0.

Now we consider condition (6). We have

(kh0B1 + B2) cosh kh0 + kh0B2 sinh kh0 = 0.

We are now able to write B2 as a function of B1:

B2 = − kh0 cosh kh0

cosh kh0 + kh0 sinh kh0
B1.

We now use the boundary conditions involving the free inter-
face ĥ(k,ω) and apply the usual properties of the hyperbolic
functions to write

−iωĥ(k,ω) = P1(h0) cosh kh0 + P2(h0) sinh kh0

= B1h0
kh0 − sinh kh0 cosh kh0

kh0(cosh kh0 + kh0 sinh kh0)
.

In addition, from Eq. (A2) and condition (5) on the pressure,
we get(

γ k2 + A

2πh4
0

)
ĥ(k,ω) = 2

iG

ω
(B1 cosh kh0 + B2 sinh kh0)

= 2
iG

ω
B1

cosh2 kh0

cosh kh0 + kh0 sinh kh0
.

By canceling B1, we get[
kh0

h0 (kh0 − sinh kh0 cosh kh0)
−

(
γ k2 + A

2πh4
0

)

× 1

2G(ω) cosh2 kh0
ĥ(k,ω) = 0.

The expression written between brackets is the dispersion
relation we are looking for and which is reformulated in
Eq. (7).
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