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Extinction probabilities for a distylous plant population modeled by

an inhomogeneous random walk on the positive quadrant

Pauline Lafitte-Godillon∗, Kilian Raschel†, Viet Chi Tran‡

January 30, 2012

Abstract

In this paper, we study a distylous flower population in which self-reproduction is not permitted.
Individuals are diploid, and two alleles, A and a, can be found at the considered locus S. Pollen and
ovules of flowers with the same genotype at locus S cannot mate. This prevents the pollen of a given
flower to fecundate its stigmates. Only genotypes AA and Aa can be maintained in the population,
so that the latter can be described by a random walk in the positive quadrant whose components
are the number of individuals of each genotype. This random walk is not homogeneous and its
transitions depend on the location of the process. We are interested in the computation of the
extinction probabilities, where extinction happens when one of the axis is reached by the process.
These extinction probabilities, which depend on the initial condition, satisfy a doubly-indexed
recurrence equation that cannot be solved directly. We consider the associated generating function
and show that it satisfies a partial differential equation that is solved but whose solution is explicit,
though hardly tractable. Numerical results comparing stochastic and deterministic approximations
of the extinction probabilities are studied.

Keywords: Inhomogeneous random walk on the positive quadrant; boundary absorption; transport
equation; method of characteristics; self-incompatibility in flower populations; extinction in diploid
population with sexual reproduction
AMS codes: 60G50; 60J80; 35Q92; 92D25

1 Introduction

We consider the model of distyle plants with sporophytic reproduction and absence of pollen limitation
introduced in Billiard and Tran [4]. The reproduction is sexual and self-incompatible. Each plant is
diploid and characterized by the two alleles that it carries at the locus S, which encode the recognition
proteins present on the pollen and stigmata of the plant, and hence the possible types of partners with
whom the plant may reproduce. We consider the case where only two alleles are available, A or a.
The plants thus have genotypes AA, Aa or aa. The only interesting case is when A is dominant
over a (see [4]), and we restrict to this case in this work. The phenotype, i.e. the type of proteins
carried by the pollen and stigmata, of individuals with genotypes AA (resp. Aa and aa) is A (resp.
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A and a). The self-incompatibility mechanism prevents fecundation of the plant’s ovule by its own
pollen: only pollen and stigmata with different proteins can give viable seeds, i.e. pollen of a plant
of phenotype A can only fecundate stigmata of a plant of phenotype a and vice-versa. It can be seen
that seeds AA cannot be created, since the genotype of individuals of phenotype a is necessarily aa
that combine only with individuals of phenotype A that have genotypes AA or Aa, therefore we can
consider without restriction populations consisting only of individuals of genotypes Aa and aa. Each
viable seed is then necessarily of genotype Aa or aa with probability 1/2. It is assumed that ovules are
produced in continuous time at rate r > 0 and that each ovule is fecundated to give a seed, provided
there exists compatible pollen in the population. The lifetime of each individual follows an exponential
distribution with mean 1/d, where d > 0. In all the article, we consider

r > d (1.1)

which, we will see, is the interesting case.
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Figure 1: (a) Transition rates for the continuous-time pure-jump Markov process (Xt, Yt)t∈R+.
(b) Transition probabilities of the embedded random walk, that we note (Xt, Yt)t∈N (here and through-
out, we denote by N the set {0, 1, 2, . . .}), with an abuse of notation.

Let us denote by Xt and Yt the number of individuals of genotype Aa (phenotype A) and aa
(phenotype a) at time t ∈ R+. The process (Xt, Yt)t∈R+ is a pure-jump Markov process with transitions
represented in Fig. 1(a). A stochastic differential equation (SDE) representation of (Xt, Yt)t∈R+ is given
in [4]. Here we forget the continuous-time process, and we are interested in the embedded discrete-
time Markov chain, which we denote, with an abuse of notation, by (Xt, Yt)t∈N, and with transitions
represented in Fig. 1(b):

Pi,j [(X1, Y1) = (i− 1, j)] =
d i

(r + d)(i+ j)
, Pi,j [(X1, Y1) = (i+ 1, j)] =

r

2(r + d)
,

Pi,j [(X1, Y1) = (i, j − 1)] =
d j

(r + d)(i+ j)
, Pi,j [(X1, Y1) = (i, j + 1)] =

r

2(r + d)
,

where Pi,j means that the process starts with the initial condition (X0, Y0) = (i, j). The main difficulty
is that this random walk is not homogeneous in space, while techniques developed in the literature
for random walks on positive quadrants mostly focus on the homogeneous case (see e.g. Fayolle et al.
[6], Klein Haneveld and Pittenger [8], Kurkova and Raschel [9], Walraevens, van Leeuwaarden and
Boxma [12]). We introduce a generating function (1.4) that satisfies here a partial differential equation
(PDE) of a new type that we solve. Although the particularity of the problem is exploited, these
techniques and the links between probability and PDE may be extended to carry out general study
of inhomogeneous random walks in cones. The introduction of PDEs through generating functions
had been already used by Feller [7] for a trunking problem with an inhomogeneous random walk in
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dimension 1. To our knowledge, the case of inhomogeneous random walks in the cone with absorbing
boundaries has been left open.

When one of the phenotype A or a disappears, reproduction becomes impossible and the system
gets extinct. We are interested in the probability of extinction of (Xt, Yt)t∈N (or, equivalently, in that
of (Xt, Yt)t∈R+). Let us introduce the first time at which one of the two types gets extinct:

τ0 = inf{t ∈ N : Xt = 0 or Yt = 0}. (1.2)

For i, j ∈ N, let us denote by
pi,j = Pi,j [τ0 <∞] (1.3)

the absorption probabilities, and by

P (x, y) =
∑
i,j>1

pi,jx
iyj (1.4)

their generating function. By symmetry arguments, we have, for all i, j ∈ N,

pi,j = pj,i. (1.5)

Moreover, for any i, j ∈ N such that i = 0 or j = 0, we have

pi,j = 1. (1.6)

In Section 2, we will see that the pi,j ’s satisfy the Dirichlet problem associated with the following
doubly-indexed recurrence equation

qi,j =
di

(r + d)(i+ j)
qi−1,j +

dj

(r + d)(i+ j)
qi,j−1 +

r

2(r + d)
qi,j+1 +

r

2(r + d)
qi+1,j (1.7)

and with the boundary condition (1.6). This problem does not admit simple solutions. There is
no uniqueness of solutions to this problem. Note that the constant sequence equal to 1 is a solution.
However, we are interested in solutions that tend to 0 as i or j tends to infinity, since, [4] (see Prop. 2.2
in this paper), estimates for pi,j were obtained through probabilistic coupling techniques; they show
that in the case (1.1) we consider, pi,j is strictly less than 1. In fact, the pi,j ’s correspond to the smallest
positive solution of the Dirichlet problem, and are completely determined if we give the probabilities
(pi,1)i>1. We conclude the section with more precise estimates of the absorption probabilities pi,j as
the initial state (i, j) goes to infinity along one axis (Prop. 2.3). These new estimates rely on Prop.
2.2 and on comparisons with one-dimensional random walks. In Section 3, we consider the generating
function P (x, y) associated with the pi,j ’s and show that it satisfies a PDE, that has one and only one
solution, that is computed (Prop. 3.5) explicitly with a dependence on the (pi,1)i>1, prompting us to
use the name “Green’s function”. This provides a new formulation of the solution of (1.7), that is
however uneasy to work with numerically. Hence, in Section 4, we propose two different approaches
leading to numerical approximations of the solution of the Dirichlet problem (1.7)–(1.6), that are
based on stochastic and deterministic approaches.

2 Existence of a solution

2.1 Dirichlet problem

We first establish that the extinction probabilities pi,j ’s (1.3) solve the Dirichlet problem (1.6)–(1.7).

Proposition 2.1. (i) The extinction probabilities (pi,j)i,j>1 are solutions to the Dirichlet problem
(1.7) with boundary condition (1.6). Uniqueness of the solution may not hold, but the extinction
probabilities (pi,j)i,j∈N define the smallest positive solution to this problem.
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(ii) Assume that the probabilities (pi,1)i>1 are given. Then the probabilities (pi,j)i,j>1 are completely
determined.

Proof. We begin with Point (i). Equation (1.7) is obtained by using the strong Markov property at
the time of the first event. Let us denote by K the transition kernel of the discrete-time Markov chain
(Xt, Yt)t∈N∗ ; we have:

Kf(i, j) = (f(i+ 1, j) + f(i, j + 1))
r

2(r + d)
+ f(i− 1, j)

di

(r + d)(i+ j)
+ f(i, j − 1)

dj

(r + d)(i+ j)
.

Following classical proofs (e.g. [3, 10]), the extinction probabilities (pi,j)i,j∈N satisfy the equation:

∀i, j ∈ N∗, f(i, j) = Kf(i, j) and ∀i, j ∈ N, f(i, 0) = f(0, j) = 1. (2.1)

The constant solution equal to 1 is a solution to (2.1). Let us prove that (pi,j)i,j∈N is the smallest pos-
itive solution to (2.1). Let f be another positive solution. Let us consider Mt = f(Xinf{t,τ0}, Yinf{t,τ0}),
with τ0 defined in (1.2). Denoting by (Gt)t∈N the filtration of (Mt)t∈N, we have:

E
[
Mt+1 | Gt

]
= E

[
Mt+11lτ06t +Mt+11lτ0>t | Gt

]
= E

[
Mt1lτ06t + f(Xt+1, Yt+1)1lτ0>t | Gt

]
= Mt1lτ06t + 1lτ0>tE

[
f(Xt+1, Yt+1) | Gt

]
= Mt1lτ06t + 1lτ0>tKf(Xt, Yt)

= Mt1lτ06t + 1lτ0>tf(Xt, Yt) = Mt.

Hence (Mt)t∈N is a martingale, which converges on {τ0 < ∞} to f(Xτ0 , Yτ0) = 1. Thus by using the
positivity of f and Fatou’s lemma, we obtain that for every i, j ∈ N:

f(i, j) = Ei,j
[
M0

]
= lim

t→∞
Ei,j
[
Mt

]
> E

[
lim inf
t→∞

Mt1lτ0<∞
]

= Ei,j
[
1lτ0<∞

]
= pi,j .

This achieves the proof of Point (i).

Let us now consider Point (ii). Assume that the probabilities (pi,1)i>1 are given, and let us prove,
by recursion, that every pi,j can be computed. By symmetry, we only need to prove that this is the
case for i > j. Assume

(Hrec j): for j ∈ N∗ all the probabilities pk,` for ` 6 j and k > ` can be computed from the pi,1’s

and let us prove that we can determine the probabilities pi,j+1 for i > j + 1. From (1.7) we get that:

pi,j+1 =
2(r + d)

r
pi,j −

2 d i

r(i+ j)
pi−1,j −

2 d j

r(i+ j)
pi,j−1 − pi+1,j . (2.2)

All the terms in the r.h.s. of (2.2) are known by (Hrec j), and hence pi,j+1 can be computed for any
i > j + 1. This achieves the recursion. �

The following result shows that there is almost sure extinction in the case r 6 d. In the interesting
case r > d, it also shows that there is a nontrivial solution to the Dirichlet problem (1.6)–(1.7).

Proposition 2.2 (Prop. 9 of [4]). We have the following regimes given the parameters r and d:

(i) If r 6 d, we have almost sure extinction of the population.

(ii) If r > d(> 0), then there is a strictly positive survival probability. Denoting by (i, j) the initial
condition, we have: (

d

r

)i+j
6 pi,j 6

(
d

r

)i
+

(
d

r

)j
−
(
d

r

)i+j
.

In Point (ii), only bounds, and no explicit formula, are available for the extinction probability pi,j .
The purpose of this article is to address (1.7) by considering the Green’s function P (x, y) introduced
in (1.4).
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2.2 Asymptotic behavior of the absorption probability as the initial state goes to
infinity along one axis

In this part, using the result of Prop. 2.2, we provide more precise estimates of the asymptotic behavior
of the absorption probability p1,j = pj,1 when j →∞. In particular, these estimates will be very useful
when we tackle the deterministic numerical simulations (see Section 4.2).

Proposition 2.3. If j →∞, then

p1,j = pj,1 =
2d

r

1

j
− 2d(r2 + dr + 2d2)

r2(r + d)

1

j2
+O

(
1

j3

)
. (2.3)

Proof. In addition of τ0, defined in (1.2), we introduce

S = inf{t ∈ N : Yt = 0}, T = inf{t ∈ N : Xt = 0},

the hitting times of the horizontal axis and vertical axis, respectively. Note that we have τ0 = inf{S, T}.
Let f : N→ N be a function such that f(j) < j for any j > 1. In the sequel, we will choose f(j) = bεjc,
with ε ∈ (0, 1) and where b.c denotes the integer part). We obviously have the identity:

p1,j = P(1,j)[τ0 <∞] = P(1,j)[τ0 6 f(j)] + P(1,j)[f(j) < τ0 <∞]. (2.4)

To prove Prop. 2.3, we shall give estimates for both terms present in the right-hand side of (2.4).

First step: Study of P(1,j)[τ0 6 f(j)]. Since f(j) < j, it is impossible, starting from (1, j), to reach the
horizontal axis before time f(j), and we have P(1,j)[τ0 6 f(j)] = P(1,j)[T 6 f(j)]. In order to compute
the latter probability, we introduce two one-dimensional random walks on N, namely X− and X+,
which are killed at 0, and which have the jumps

Pi[X±1 = i− 1] = q±i , Pi[X±1 = i+ 1] = p±i , Pi[X±1 = i] = r±i , q±i + p±i + r±i = 1,

where

q±i =
di

(r + d)(i+ j ∓ f(j))
, p±i =

r

2(r + d)
. (2.5)

Both X− and X+ are (inhomogeneous) birth-and-death processes on N. Although it is implicit, these
random walks are parameterized by j. If T± = inf{t ∈ N : X±t = 0}, then

P1[T
− 6 f(j)] 6 P(1,j)[T 6 f(j)] 6 P1[T

+ 6 f(j)]. (2.6)

The quantities P1[T
± 6 f(j)] are computable: we shall prove that

P1[T
± 6 f(j)] =

2d

r

1

(j ∓ f(j))
− 2d(r2 + dr + 2d2)

r2(r + d)

1

(j ∓ f(j))2
+O

(
1

(j ∓ f(j))3

)
. (2.7)

The main idea for proving (2.7) is that the q±i being very small as j →∞, the only paths which will
significantly contribute to the probability P1[T

± 6 f(j)] are the ones with very few jumps to the right.
Let us define

Λtp = {the chain X± makes exactly p jumps to the right between 0 and t}
= {there exist 0 6 q1 < · · · < qp 6 t− 1 such that X±q1+1 −X

±
q1 = · · · = X±qp+1 −X

±
qp = 1}.

We are entitled to write

P1[T
± 6 f(j)] = P1[T

± 6 f(j), Λ
f(j)
0 ] + P1[T

± 6 f(j), Λ
f(j)
1 ] + P1[T

± 6 f(j), ∪p>2Λf(j)p ], (2.8)
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and we now separately analyze the three terms in the right-hand side of (2.8). First:

P1[T
± 6 f(j), Λ

f(j)
0 ] =

f(j)∑
k=1

P1[T
± = k, Λ

f(j)
0 ] =

f(j)∑
k=1

(r±1 )
k−1

q±1

=
q±1

1− r±1

(
1− (r±1 )f(j)

)
=

q±1
1− r±1

(1 +O((r±1 )
f(j)

)). (2.9)

A Taylor expansion of q±1 /(1− r
±
1 ) according to the powers of 1/(j∓ f(j)) together with the fact that

(r±1 )f(j) = o(1/(j ∓ f(j))3) provides that:

P1[T
± 6 f(j), Λ

f(j)
0 ] =

2d

r(j ∓ f(j))

(
1−

1 + 2d
r

j ∓ f(j)
+O

(
1

(j ∓ f(j))2

))
. (2.10)

We now consider the second term in the right-hand side of (2.8). On the event Λ
f(j)
1 , X± first stays

a time k1 at 1, then jumps to 2, where it remains k2 unit of times; it next goes to 1, and, after a time
k3, jumps to 0. Further, since T± 6 f(j), we have k1 + 1 + k2 + 1 + k3 + 1 6 f(j). Denoting by
k̃1 = k1 + k3 the time spent in position 1, we thus have:

P1[T
± 6 f(j), Λ

f(j)
1 ] =

∑
k1+k2+k36f(j)−3

(r±1 )k1p±1 (r±2 )k2q±2 (r±1 )k3q±1 = p±1 q
±
1 q
±
2

∑
k̃1+k26f(j)−3

(r±1 )k̃1(r±2 )k2

=
p±1 q

±
1 q
±
2

(1− r±1 )(1− r±2 )
(1 +O((r±1 ∨ r

±
2 )

f(j)−2
)). (2.11)

As for the first term, using the fact that (r±1 ∨ r
±
2 )

f(j)−2
= o(1/(j ∓ f(j))3) and a Taylor expansion

according to the powers of 1/(j ∓ f(j)) gives that:

P1[T
± 6 f(j), Λ

f(j)
1 ] =

4d2

r(r + d)(j ∓ f(j))2

(
1 +O

(
1

(j ∓ f(j))

))
. (2.12)

Finally, let us consider the third term P1[T
± 6 f(j), ∪p>2Λf(j)p ]. On ∪p>2Λf(j)p , the two first jumps to

the right are either from 1 to 2 and 2 to 3, or twice from 1 et 2. Thus, extinction means that there is
at least 3 jumps from 3 to 2, 2 to 1 and 1 to 0 or two jumps from 2 to 1 and 1 to 0. Since q±i is an
increasing function of i, we deduce that:

P1[T
± 6 f(j), ∪p>2Λf(j)p ] 6

(
q±3
)3

=

(
d

r + d

)3( 3

3 + j ∓ f(j)

)3

= O

(
1

(j ∓ f(j))3

)
. (2.13)

From (2.8), (2.9), (2.11) and (2.13), we obtain (2.7).

Second step: Study of P(1,j)[f(j) < τ0 <∞].

P(1,j)[f(j) < τ0 <∞] =
∑
k,`>1

P(1,j)[f(j) < τ0 <∞|(Xf(j), Yf(j)) = (k, `)]P(1,j)[(Xf(j), Yf(j)) = (k, `)]

=
∑
k,`>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)], (2.14)

by using the strong Markov property. Introduce now a function g : N→ N such that f(j) + g(j) < j
for any j > 1. We can split (2.14) into∑

k,`>g(j)

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] +
∑

g(j)>k>1
and/or
g(j)>`>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)]. (2.15)
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With Prop. 2.2 we obtain the following upper bound for the first sum in (2.15):

∑
k,`>g(j)

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] 6 2

(
d

r

)g(j)
.

In particular, if we choose g such that as j →∞, g(j)→∞ fast enough, then clearly the term above
is negligible w.r.t. (2.7). For the second sum in (2.15), we first note that∑

g(j)>k>1
and/or
g(j)>`>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] =
∑

g(j)>k>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)],

since by assumption j − f(j) > g(j) so that Y cannot reach values ` 6 g(j) in f(j) steps. Then we
have ∑

g(j)>k>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] 6
∑

g(j)>k>1

P(1,j)[(Xf(j), Yf(j)) = (k, `)]

6 P(1,j)[0 6 Xf(j) 6 g(j)]. (2.16)

To obtain an upper bound for (2.16) we are going to use, again, a one-dimensional random walk.
Introduce X̃, a random walk on N which is killed at 0, homogeneous on N∗ with jumps

Pk[X̃1 = k − 1] = q̃, Pk[X̃1 = k + 1] = p̃, Pk[X̃1 = k] = r̃, q̃ + p̃+ r̃ = 1,

where

q̃ =
d(1 + f(j))

(r + d)(1 + j − 2f(j))
, p̃ =

r

2(r + d)
.

This walk is again parameterized by j. By construction of X̃, we have

P(1,j)[0 6 Xf(j) 6 g(j)] 6 P1[X̃f(j) 6 g(j)].

Denoting by m̃ and σ̃2 the mean and the variance of (X̃2 − X̃1), respectively (they could easily be
computed), we can write

P1[X̃f(j) 6 g(j)] = P0

[
X̃f(j) − m̃f(j)

σ̃
√
f(j)

6
g(j)− 1− m̃f(j)

σ̃
√
f(j)

]
.

By a suitable choice of the functions f and g, for instance f(j) = bεjc with ε ∈ (0, 1) and g(j) = bj3/4c,
the central limit theorem gives that the latter is negligible w.r.t. P(1,j)[τ0 6 f(j)]. For this last term,
using (2.7), (2.6) and letting ε tend to 0 provides (2.3). The proof is concluded. �

Let us do some remarks on possible extensions of Prop. 2.3.

Remark 2.4. 1. The proof of Prop. 2.3 can easily be extended to the asymptotic of pi,j as j → ∞,
for any fixed value of i. In particular, we have the following asymptotic behavior:

pi,j =

(
2d

r

)i i!
ji

+O

(
1

ji+1

)
. (2.17)

2. It is possible to generalize (2.8) by

P1[T
± 6 f(j)] =

k−1∑
p=0

P1[T
± 6 f(j), Λf(j)p ] + P1[T

± 6 f(j), ∪p>kΛf(j)p ]. (2.18)
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We can show as in the proof of Prop. 2.3 that P1[T
± 6 f(j), ∪p>kΛ

f(j)
p ] 6 (q±k+1)

k+1 = o(1/jk+1)

(see (2.13)) and that the probabilities P1[T
± 6 f(j), Λ

f(j)
p ] admit Taylor expansions in powers of

1/(j ∓ f(j)) where the development for the pth probability has a main term in 1/(j ∓ f(j))p+1. This
allows us to push the developments in (2.7) to higher orders.

For instance, the next term in (2.3) can be obtained by a long computation. First, we generalize
(2.11) by writing that

P1[T
± 6 f(j), Λ

f(j)
2 ] = q±1

(
(p±1 )2(q±2 )2 + p±1 p

±
2 q
±
3 q
±
2

) ∑
k̃1+k̃2+k̃36f(j)−5

(r±1 )k̃1(r±2 )k̃2(r±3 )k̃3 (2.19)

where k̃1, k̃2 and k̃3 are the times spent by the random walk in the states 1, 2 and 3. Then, pushing
further the Taylor expansion leads to:

p1,j =
2d

r

1

j ∓ f(j)
− 2d(r2 + dr + 2d2)

r2(r + d)

1

(j ∓ f(j))2

+ d
(2

r

(
1 +

2d

r

)2 − 24d
(
r
2 + d

)
r2(r + d)

+
5r2d2

2(r + d)2
(
r
2 + d

)3) 1

(j ∓ f(j))3
+O

(
1

(j ∓ f(j))4

)
.

3 Green’s function

3.1 A functional equation for the Green’s function

In this section, we consider the Green’s function P (x, y) defined in (1.4) associated with a solution
of (1.7) in the same spirit as what can be found in Feller [7, Ch. XVII]. We show that it satisfies a
non-classical linear PDE that can be solved (see Prop. 3.5).

Proposition 3.1. (i) The function P (x, y) satisfies formally:

AP (x, y) = h(x, y, P ), (3.1)

where:

AP (x, y) =Q(x, y)
∂P

∂x
(x, y) +Q(y, x)

∂P

∂y
(x, y) +R(x, y)P (x, y), (3.2)

Q(x, y) =(r + d)x− r

2
− r

2

x

y
− d x2,

R(x, y) =
r

2x
+

r

2y
− dx− dy,

and where:

h(x, y, P ) =− r

2

(
x
∂2P

∂x∂y
(x, 0) + y

∂2P

∂y∂x
(0, y)

)
+ d xy

(
1

1− x
+

1

1− y

)
. (3.3)

(ii) For given (pi,1)i>1, we have a unique classical solution to (3.1)-(3.3) defined in ]0, 1[×]0, 1[.

The function h in (3.3) only depends on a boundary condition (∂2P/∂x∂y at the boundaries x = 0
or y = 0, i.e. the pi,1’s for i ∈ N∗), which is non-classical, while the operator A is of first order and
hence associated with some transport equations.

Proof of Prop. 3.1. Let us first establish (i). Using the Markov property at time t = 1:

pi,j =
r

2(r + d)
(pi+1,j + pi,j+1) +

dj

(r + d)(i+ j)
pi,j−1 +

di

(r + d)(i+ j)
pi−1,j ,
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then multiplying by xiyj , and suming over i, j ∈ N∗ leads to:

(r + d)
∑
i,j>1

(i+ j)pi,jx
iyj =

r

2

∑
i,j>1

(i+ j)(pi+1,j + pi,j+1)x
iyj

+ d
∑
i,j>1

jpi,j−1x
iyj + d

∑
i,j>1

ipi−1,jx
iyj . (3.4)

The l.h.s. of (3.4) equals:

(r + d)
∑
i,j>1

(i+ j)pi,jx
iyj = (r + d)

(
x
∂

∂x
+ y

∂

∂y

)
P (x, y). (3.5)

For the r.h.s. of (3.4):

r

2

∑
j>1
i>2

pi,j(i− 1 + j)xi−1yj +
r

2

∑
i>1
j>2

pi,j(i+ j− 1)xiyj−1 +d
∑
i>1
j>0

(j+ 1)pi,jx
iyj+1 +d

∑
i>0
j>1

(i+ 1)pi,jx
i+1yj

=
r

2

∑
j>1
i>2

pi,j(i− 1)xi−1yj +
r

2

∑
j>1
i>2

pi,jjx
i−1yj +

r

2

∑
i>1
j>2

pi,jix
iyj−1 +

r

2

∑
i>1
j>2

pi,j(j − 1)xiyj−1

+d
∑
i>1
j>0

(j + 1)pi,jx
iyj+1 + d

∑
i>0
j>1

(i+ 1)pi,jx
i+1yj .

(3.6)

For the first term in the r.h.s. of (3.6):

r

2

∑
j>1
i>2

pi,j(i− 1)xi−1yj =
r

2

∑
j>1
i>1

pi,j(i− 1)xi−1yj =
r

2

∑
j>1
i>1

pi,jix
i−1yj − r

2

∑
j>1
i>1

pi,jx
i−1yj

=
r

2

∂

∂x
P (x, y)− r

2

P (x, y)

x
. (3.7)

Similar computation can be done for the fourth term of the r.h.s. of (3.6). For the second term:

r

2

∑
j>1
i>2

pi,jjx
i−1yj =

r

2

y

x

∑
j>1
i>2

pi,jjx
iyj−1 =

r

2

y

x

(∑
j>1
i>1

pi,jjx
iyj−1 −

∑
j>1

p1,jjxy
j−1

)

=
r

2

y

x

∂

∂y
P (x, y)− r

2

∑
j>1

p1,jjy
j . (3.8)

Similar computation holds for the third term of the r.h.s. of (3.6). Now for the fifth term:

d
∑
i>1
j>0

pi,j(j + 1)xiyj+1 =d

(
y2

∂

∂y
P (x, y) + yP (x, y) +

∑
i>1

xiy

)
. (3.9)

Similar computation holds for the last term of (3.6). From (3.5), (3.6), (3.7), (3.8) and (3.9) we deduce
that:

(r + d)

(
x
∂

∂x
+ y

∂

∂y

)
P (x, y) =

r

2

∂

∂x
P (x, y)− r

2

P (x, y)

x
+
r

2

∂

∂y
P (x, y)− r

2

P (x, y)

y

+
r

2

y

x

∂

∂y
P (x, y)− r

2

∑
j>1

p1,jjy
j +

r

2

x

y

∂

∂x
P (x, y)− r

2

∑
i>1

pi,1ix
i

+d

(
y2

∂

∂y
P (x, y) + yP (x, y) +

∑
i>1

xiy

)
+ d

(
x2

∂

∂x
P (x, y) + xP (x, y) +

∑
j>1

xyj

)
,

(3.10)
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and finally
∑

i>1 pi,1ix
i = x ∂2P

∂x∂y (x, 0).
For point (ii), local existence and uniqueness stem from classical theorems [13]. Note that we construct
an explicit, albeit complicated solution (3.5) using the method of characteristics. This concludes the
proof. �

Remark 1. In the case of homogeneous random walks, the operator AP (x, y) has the product form
R(x, y)P (x, y), see [9]. In some sense, this means that the inhomogeneity leads to partial derivatives
in the functional equation.

Remark 2. This technique allowing to compute the solution of a discrete, linear problem thanks to
generating series is also called the Z-transform method.

3.2 Characteristic curves

In Sections 3.2 and 3.3 we establish, by the methods of characteristic equations, an explicit formula
for the solutions to (3.1), which proves the existence of the solution. Since A is a first-order differential
operator, we have a transport-like PDE. We introduce the following characteristic ordinary differential
equations (ODEs). Let (xs, ys)s∈R+ be the solution to the system:

ẋs =
dx

ds
(s) = Q(xs, ys),

ẏs =
dy

ds
(s) = Q(ys, xs),

(3.11)

where Q has been defined in (3.2). The dynamical system (3.11) and its solutions will turn out to be
decisive in the sequel—e.g. in Prop. 3.4, where we will use these characteristic equations in order to
express the solutions to the fundamental functional equation (3.1).

Proposition 3.2. For any initial condition (x0, y0) ∈ R2 such that x0, y0 6= 0, there exists a unique
solution to (3.11), defined for s ∈ R by:

xs =
λrers + µd eds

d(λers + µed s + 1)
, ys =

λrers + µd eds

d(λers + µed s − 1)
, (3.12)

with:

λ =
2d x0y0 − d(x0 + y0)

(x0 − y0)(r − d)
, µ =

−2d x0y0 + r(x0 + y0)

(x0 − y0)(r − d)
. (3.13)

Proof. First of all, since Q(x, y) and Q(y, x) are locally Lipschitz-continuous for x, y 6= 0, there is local
existence and uniqueness. Let us introduce the new variable zs = xs/ys, which is defined as long as
ys 6= 0. Using the expression (3.2) of Q, the system (3.11) becomes:

ẋs =(r + d)xs −
r

2
(1 + zs)− dx2s, (3.14)

żs =
ẋsys − xsẏs

y2s

=(r + d)zs −
r

2

zs
xs
− r

2

zs
ys
− dxszs − (r + d)zs +

r

2

zs
ys

+
r

2

zs
xs

+ dyszs

=d xs(1− zs). (3.15)

From (3.15), we obtain:

xs =
żs

d(1− zs)
, (3.16)

10



(a) (b) (c)

Figure 2: Differential system (3.11): (a) Vector field (Q(x, y), Q(y, x)). The plain lines correspond to
the sets {Q(x, y) = 0} or {Q(y, x) = 0}. (b) Neighborhood of the saddle point (1,1). (c) Neighborhood
of the attractive equilibrium (r/d, r/d).

and differentiating (3.15) with respect to the time s gives:

ẋs =
dz̈s(1− zs) + dż2s

d2(1− zs)2
.

Plugging this expression and (3.16) into (3.14) provides:

dz̈s(1− zs) + dż2s
d2(1− zs)2

=
(r + d)żs
d(1− zs)

− r

2
(1 + zs)− d

ż2s
d2(1− zs)2

,

and, therefore,

z̈s(1− zs) + 2ż2s − (r + d)(1− zs)żs +
rd

2
(1 + zs)(1− zs)2 = 0. (3.17)

The system (3.16)–(3.17) can be solved explicitly. Let us define us = (1 + zs)/(1− zs), so that

zs =
us − 1

us + 1
, (3.18)

from which we obtain:

żs =
2u̇s

(1 + us)2
, z̈s =

2üs(1 + us)− 4u̇2s
(1 + us)3

. (3.19)

Using these expressions in (3.17) provides:

2üs(1 + us)− 4u̇2s
(1 + us)3

2

us + 1
+ 2

4u̇2s
(1 + us)4

− (r + d)
2

us + 1

2u̇s
(1 + us)2

+
rd

2

2us
us + 1

4

(us + 1)2
= 0

⇔ 4üs(1 + us)− 4(r + d)u̇s(1 + us) + 4rd us(us + 1) = 0

⇔ üs − (r + d)u̇s + rd us = 0. (3.20)

Hence u satisfies a second-order ordinary differential equation, that solves in:

us = λers + µed s, λ, µ ∈ R. (3.21)

11



From (3.16), (3.18) and (3.21):

zs =
λers + µed s − 1

λers + µed s + 1
, xs =

λrers + µd eds

d(λers + µed s + 1)
. (3.22)

The integration constants λ and µ can be expressed in terms of the initial conditions x0 and z0 = x0/y0:

λ =
2d x0 − d(1 + z0)

(1− z0)(r − d)
, µ =

r − 2dx0 + z0r

(1− z0)(r − d)
. (3.23)

This yields the announced result with ys = xs/zs. �

Remark 3. Explicit expressions for xs and ys as functions of time and parameterized by r and d can
be obtained. Using the expressions (3.13) of λ and µ in (3.22) and the relations between xs, ys and
zs provides:

xs =

− x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds)

−d
r

x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds) +
(1− d/r)(y0 − x0)
x0 + y0 − 2(d/r)x0y0

, (3.24)

ys =

− x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds)

−d
r

x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds)− (1− d/r)(y0 − x0)
x0 + y0 − 2(d/r)x0y0

. (3.25)

For the sequel, it is useful to notice that the constant

− λ r

µ d
=

x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

(3.26)

which appears in (3.24) and (3.25) belongs to ]0, 1[ for all (x0, y0) ∈]0, 1[2; this is due to the fact that
d/r < 1.

Below, we list some properties of the solutions to the dynamical system 3.11. The trajectories of
the solutions to (3.11) can be decomposed into four steps. In order to describe them, let us introduce

s0 =
1

r − d
log

(
−µ d
λ r

)
=

log

(
x0 + y0 − 2x0y0

x0 + y0 − 2(d/r)x0y0

)
d− r

(3.27)

and s± as the only positive roots of the denominators of xs and ys in (3.12):

λers + µed s ± 1. (3.28)

Proposition 3.3. Let (x0, y0) ∈]0, 1[2.

(i) The stationary solutions to (3.11) are the saddle point (1, 1) and the attractive point (r/d, r/d).

(ii) s0 ∈]0,∞[ and s± ∈]s0,∞[.

(iii) inf{s+, s−} = s+ (resp. s−) if and only if y0 < x0 (resp. y0 > x0).

(iv) lims↑s+ xs = −∞ and lims↓s− ys = −∞.

The next points specify the behavior of the solution to (3.11).

(v) On [0, s0[, (xs, ys) belongs to ]0, 1[2 and goes to (xs0 , ys0) = (0, 0) as s→ 0.
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Figure 3: Solutions corresponding to several initial conditions. We see that depending on the initial condition,

the solutions converge of diverge to infinity.

(vi) On ]s0, inf{s+, s−}[, (xs, ys) goes decreasingly to (xinf{s+,s−}, yinf{s+,s−})—by “decreasingly” we
mean that both coordinates decrease.

(vii) On ] inf{s+, s−}, sup{s+, s−}[, (xs, ys) goes decreasingly to (xsup{s+,s−}, ysup{s+,s−}).

(viii) On ] sup{s+, s−},∞[, (xs, ys) goes decreasingly to (r/d, r/d).

Proof of Item (i). To find the stationary solutions to (3.11), let us solve ẋ = 0 and ẏ = 0. With (3.11),
we get Q(x, y) = 0 and Q(y, x) = 0. This directly implies that (x, y) = (1, 1) or (x, y) = (r/d, r/d),
see Table 2. Let us now study the stability of these two equilibria.

At (1, 1), the Jacobian of (3.11) is:

Jac(1, 1) =
r

2
J − dI,

where J is the 2× 2 matrix full of ones and where I is the 2× 2 identity matrix. The eigenvalues of
Jac(1, 1) are −d < 0 and r−d > 0, associated with the eigenvectors (1,−1) and (1, 1), respectively. By
classical linearization methods (e.g. [11, Chap. 3]), we deduce that the point (1, 1) is a saddle point.

At (r/d, r/d), the Jacobian of (3.11) is:

Jac(r/d, r/d) =
d

2
J − rI.

The eigenvalues are −r < 0 and d − r < 0, associated with the eigenvectors (1,−1) and (1, 1),
respectively. The point (r/d, r/d) is therefore attractive. �

Proof of Item (ii) to (iv). Now we prove the different facts dealing with s0, s+ and s−. First, (3.26)
and the fact that r > d immediately imply that s0 ∈]0,∞[. Next, we show that (3.28) has on [0,∞[
only one root, which belongs to ]s0,∞[. For this, we shall start with proving that (3.28) is positive on
[0, s0]. Then, we shall show that (3.28) is decreasing in ]s0,∞[ and goes to −∞ as s→∞.

In order to prove the first point above, it is enough to show that (3.28) is positive at s = 0 and
increasing on [0, s0[. (3.28) is positive at s = 0 simply because

λ+ µ± 1 =
x0 + y0
y0 − x0

± 1 =
2y0

y0 − x0
or

2x0
y0 − x0

=
(1− d/r)[x0 + y0 ± (y0 − x0)]

x0 + y0 − 2(d/r)x0y0
> 0.

To check that (3.28) is increasing on [0, s0[, we note that the derivative of (3.28) is positive on [0, s0[—
actually by construction of s0.
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Now we prove the second point. From (3.26) and since r > d, we obtain that (3.28) goes to −∞
as s→∞. Also, by definition of s0, the derivative of (3.28) is negative on ]s0,∞[, (3.28) is therefore
decreasing on ]s0,∞[.

The fact that inf{s+, s−} equals s+ (resp. s−) if and only if y0 < x0 (resp. y0 > x0) follows directly
from (3.28).

Finally, since the numerators of xs and ys are negative on ]s0,∞[, hence in particular at s±, it is
immediate that lims↑s+ xs = −∞ and lims↓s− ys = −∞. �

Proof of Item (v) to (viii). Let us first consider Item (v). By definition of s0, the numerators of xs
and ys in (3.24) and (3.25) vanish for the first time at s0. Moreover, since s± > s0, both denominators
are non-zero at s0 and xs0 = ys0 = 0. In particular, on [0, s0[, we have (xs, ys) ∈ R2

+. In fact,
(xs, ys) ∈]0, 1[2. Indeed, on the segment {1}×]0, 1[, ẋs < 0 whereas on ]0, 1[×{1}, ẏs < 0: it is
therefore not possible to go through these segments and on [0, s0], (xs, ys) remains inside of the square
[0, 1]2.

We turn to the proof of Item (vi). Thanks to (3.24) and (3.25), just after the time s0, (xs, ys)
belongs to the negative quadrant R2

−. But for any (x, y) ∈ R2
−, Q(x, y) 6 0 and Q(y, x) 6 0, see Table

2, in such a way that both xs and ys are decreasing as soon as they stay in this quarter plane, in other
words for s ∈]s0, inf{s+, s−}[. At time inf{s+, s−}, one (or even the two if s+ = s−, i.e. if x0 = y0)
of xs and ys becomes infinite. In the sequel, let us assume that inf{s+, s−} = s+; a similar reasoning
would hold for the symmetrical case inf{s+, s−} = s−.

Let us show Item (vii). Just after s+, (xs, ys) ∈ (R+×R−)∩ {(x, y) ∈ R2 : Q(x, y) < 0, Q(y, x) <
0}. The latter set is simply connected and bounded by the curve {(x, y) ∈ R2 : Q(x, y) = 0}, see
Table 2. Using classical arguments (see e.g. [11]), we obtain that it is not possible to go through this
limiting curve on which ẋs = 0; this is why for any s ∈]s+, s−[, (xs, ys) remains inside of this set.

We conclude with the proof of Item (viii). Just after the time s−, (xs, ys) ∈ R2
+ ∩ {(x, y) ∈ R2 :

Q(x, y) < 0, Q(y, x) < 0}. For the same reasons as above, (xs, ys) cannot leave this set and actually
converges to (r/d, r/d). �

3.3 Use of the characteristic curves to simplify the functional equation

Let us assume the existence of a solution P (x, y) to (3.1), and let us define gs = P (xs, ys). Then:

ġs =
dg

ds
(s) =

∂P

∂x
(xs, ys)

dxs
ds

+
∂P

∂y
(xs, ys)

dys
ds

=
∂P

∂x
(xs, ys)Q(xs, ys) +

∂P

∂y
(xs, ys)Q(ys, xs).

Thus, if P is a solution to (3.1), then:

ġs +R(xs, ys)gs = h(xs, ys, P ),

which looks like a first-order ODE for g, except that h depends on the boundary condition of P .
We first freeze the dependence on the solution in h. Using the solutions to the characteristic

equations, we shall prove the following result:

Proposition 3.4. Let h(x, y) be an analytical function on [0, 1[2. Let (x0, y0) ∈ R2. The solution to
the ODE

ġs +R(xs, ys)gs = h(xs, ys), g0 = P (x0, y0), (3.29)

where (xs, ys)s>0 are the solutions (3.12) to the characteristic curve starting at (x0, y0), is given by

ghs = P (x0, y0) exp

(
−
∫ s

0
R(xu, yu)du

)
+

∫ s

0
h(xu, yu)e−

∫ s
u R(xα,yα)dαdu =: F (s, x0, y0, h). (3.30)
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Proof. Equation (3.29) is an inhomogeneous first-order ODE. The solution to the associated homoge-
neous equation is:

gs = R(x0, y0) exp

(
−
∫ s

0
R(xu, yu)du

)
.

The announced result is deduced from the variation of constant method. �

A solution P to (3.1) hence satisfies the following functional equation for all s, x0 and y0:

P (xs, ys) =P (x0, y0)e
−

∫ s
0 R(xu,yu)du +

∫ s

0
h(xu, yu, P )e−

∫ s
u R(xα,yα)dαdu, (3.31)

with the function h defined in (3.3). Plugging the definitions (1.4) and (3.3) in (3.31), we obtain:∑
i,j>1

pi,jx
i
sy
j
s =P (x0, y0)e

−
∫ s
0 R(xα,yα)dα

−r
2

∑
i>1

pi,1

∫ s

0
i(xu)ie−

∫ s
u R(xα,yα)dαdu− r

2

∑
j>1

p1,j

∫ s

0
j(yu)je−

∫ s
u R(xα,yα)dαdu

+d

∫ s

0
xuyu

(
1

1− xu
+

1

1− yu

)
e−

∫ s
u R(xα,yα)dαdu. (3.32)

Notice that the r.h.s. of (3.32) depends only on the pi,1’s and p1,j ’s, while the l.h.s. depends on all
pi,j ’s.

Proposition 3.5. Let s0 > 0 be defined in (3.27). We have:

P (x0, y0) =
r

2

∑
i>1

pi,1

∫ s0

0
i(xu)ie

∫ u
0 R(xα,yα)dαdu+

r

2

∑
j>1

p1,j

∫ s0

0
j(yu)je

∫ u
0 R(xα,yα)dαdu

− d

∫ s0

0
xuyu

(
1

1− xu
+

1

1− yu

)
e
∫ u
0 R(xα,yα)dαdu. (3.33)

Before proving Prop. 3.5, let us show that the different quantities that appear in its statement are
well defined—indeed, this is a priori not clear: as α → s0, xα → 0 and yα → 0, in such a way that
R(xα, yα)→∞, see (3.2).

Lemma 3.6. Let i, j ∈ N. Then limu→s0(xu)i(yu)je
∫ u
0 R(xα,yα)dα is finite if and only if i+ j > 1—and

equals zero if and only if i+ j > 2.

Proof. First, since the only zero of any function of the form α exp(as) + β exp(bs) with αβ < 0 and
a 6= b has order one, the following function has a simple zero at s0:

− x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(ru) + exp(du). (3.34)

Thanks to this fact and since s+, s− > s0, both xs and ys have at s0 a zero of order one.
Moreover, with λ and µ defined in (3.13), we obtain that:

exp

(∫ u

0
R(xα, yα)dα

)
=

λ/µ+ 1− 1/µ

(λ/µ) exp(ru) + exp(du)− 1/µ
×

× λ/µ+ 1 + 1/µ

(λ/µ) exp(ru) + exp(du) + 1/µ

r/dλ/µ+ 1

(r/d)(λ/µ) exp(ru) + exp(du)
exp((r + d)u). (3.35)

It is indeed easy to check that the derivative of the logarithm of (3.35) is actually equal to R(xu, yu),
for which we have an explicit expression, see (3.2), (3.24) and (3.25).

From (3.35), we see that e
∫ u
0 R(xα,yα)dα has three poles, namely at s0, s+, s−. The zero at s0 has

order one by using again the considerations on the zeros of (3.34). In particular, Lem. 3.6 follows
immediately. �
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Proof of Prop. 3.5. Start by multiplying Equation (3.32) by e
∫ s
0 R(xα,yα)dα and then let s→ s0. Since

P (x, y) = xy
∑

i,j>1 pi,jx
i−1yj−1, see (1.4), and since lims→s0 xsyse

∫ s
0 R(xα,yα)dα = 0, see Lem. 3.6, we

obtain that
lim
s→s0

P (xs, ys)e
∫ s
0 R(xα,yα)dα = 0,

which concludes the proof of Prop. 3.5. �

Remark 3.7. When (x0, y0) ∈ (0, 1)2, we also have (xu, yu) ∈ (0, 1)2 for all u ∈ (0, s0). Thus it is
possible to plug approximations of the p1,j’s and pi,1’s into (3.36) thanks to the terms (xu)i and (yu)j.
Using that p1,i = 2d/(ri) + o(1/i) when i→ +∞, it is possible to find I0 sufficiently large so that:

r

2

∑
i>I0

pi,1

∫ s0

0
i
(
(xu)i + (yu)i

)
e
∫ u
0 R(xα,yα)dαdu

∼ d
∫ s0

0

∑
i>I0

(
(xu)i + (yu)i

)
e
∫ u
0 R(xα,yα)dαdu = d

∫ s0

0

( xI0+1
u

1− xu
+

yI0+1
u

1− yu

)
e
∫ u
0 R(xα,yα)dαdu

Thus:

P (x0, y0) =
r

2

I0∑
i=1

pi,1

∫ s0

0
i
(
(xu)i + (yu)i

)
e
∫ u
0 R(xα,yα)dαdu

+ d

∫ s0

0

(xu(xI0u − yu)

1− xu
+
yu(yI0u − xu)

1− yu

)
e
∫ u
0 R(xα,yα)dαdu+ o(xI0+1

0 + yI0+1
0 ). (3.36)

The latter expression shows that numerically, one can restrict to the computation of a finite number
of probabilities pi,1, for i 6 I0.

4 Numerical results

In this section, we present two different ways of approximating the extinction probabilities pi,j .

4.1 Probabilistic algorithm

A first possibility, if we are interested in a given initial condition (i, j), is to approximate pi,j by
Monte-Carlo simulations. For T > 0 large, we simulate M paths (X`

t , Y
`
t )t∈{1,...,T} started at (i, j),

for ` ∈ {1, . . . ,M}, independent and distributed as the process (Xt, Yt)t∈{1,...,T}. The extinction
probability is estimated by:

p̂M,T =
1

M

M∑
`=1

1l{∃t6T,X`
tY

`
t =0}.

The estimator p̂M,T is the proportion of paths that have gone extinct before time T .

Proposition 4.1. Let (i, j) be the initial condition. The estimator p̂M,T has the following properties:

(i) It is a convergent and unbiased estimator of Pi,j [τ0 6 T ].

(ii) Its variance is Pi,j [τ0 6 T ](1 − Pi,j [τ0 6 T ])/M , and hence we have the following asymptotic
95% confidence interval for pi,j:[

p̂M,T − 1.96

√
p̂M,T (1− p̂M,T )

M
; p̂M,T + 1.96

√
p̂M,T (1− p̂M,T )

M

]
. (4.1)
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Proof. These results are straightforward consequences of the law of large numbers and central limit the-
orem, given that 1l{∃t6T,X`

tY
`
t =0} are independent Bernoulli random variables with parameter Pi,j [τ0 6

T ]. �

Computing the extinction probabilities by Monte-Carlo methods yields good results if we are
interested in a given initial condition (i, j). We then have a complexity of order M × T . However,
Biologists may be interested in investigating the extinction probabilities when the initial condition
(i, j) varies, and the method become computationally expensive.

4.2 Deterministic algorithm

For numerical approximations, we restrict ourselves to the computation of (pi,j)i,j∈{1,...,N} for a positive
(large) integer N . In this case, (1.7) can be approximated by the solution to a linear system.

Let us define pN = (p1,1, . . . , p1,N , p2,1, . . . , p2,N , . . . , pN,1, . . . , pN,N )T and TN is a N2×N2-matrix
with five non-zero diagonals:

TN =



A1 D 0 . . . 0

B2,1 A2 D
. . .

...

0 B3,2
. . .

. . . 0
...

. . .
. . .

. . . D
0 . . . 0 BN,N−1 AN


where D = r

2(r+d)IdN , Ai (i ∈ {1, . . . , N}) and Bi,i−1 (i ∈ {2, . . . N}) are the N ×N -matrices

Ai =



−1 r
2(r+d) 0 . . . 0

d
r+d

2
i+2 −1

. . .
. . .

...

0 d
r+d

3
i+3

. . .
. . . 0

...
. . .

. . .
. . . r

2(r+d)

0 . . . 0 d
r+d

N
i+N −1


,

Bi,i−1 =


d
r+d

i
i+1 0 . . . 0

0 d
r+d

i
i+2

. . .
...

...
. . .

. . . 0

0 . . . 0 d
r+d

i
i+N

 .

Let us also define the vector bN = (b1N , . . . , bNN )T ∈ RN×N such that:

b1N = −


− d
r+d

d
r+d

1
1+2
...

d
r+d

1
1+(N−1)

d
r+d

1
1+N + r

2(r+d) p̃1,N+1

 , for i ∈ {2, . . . , N − 1}, biN = −


d
r+d

1
1+i

0
...
0

r
2(r+d) p̃i,N+1

 ,

bNN = −



d
r+d

1
1+N + r

2(r+d) p̃N+1,1
r

2(r+d) p̃N+1,2

...
r

2(r+d) p̃N+1,N−1
r

2(r+d)

(
p̃N+1,N + p̃N,N+1

)
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where p̃i,N+1 and p̃N+1,N are approximations of pi,N+1 given by Prop. 2.3. With these notations, (1.7)
rewrites as

TNpN = bN .

4.3 Results

We start with r = 3 and d = 2. For the Monte-Carlo simulation, we use M = 200 and T = 5000. For
the deterministic method, we use N = 50, so that (i, j) ∈ {1, . . . , 50}2. Estimators of the extinction

probabilities p̂
(1)
i,j and p̂

(2)
i,j obtained respectively from the methods of Sections 4.1 and 4.2 are plotted

in Figure 4. The results given by both methods are very similar, as shown by the statistics of Table 1.

In Table 1, we compute the square difference between the two predictions (p̂
(1)
i,j − p̂

(2)
i,j )2, the absolute

difference |p̂(1)i,j − p̂
(2)
i,j | and the relative difference |p̂(1)i,j − p̂

(2)
i,j |/p̂

(2)
i,j . For the latter, we consider only

the couples (i, j) where p̂
(1)
i,j and p̂

(2)
i,j do not vanish (else, the fraction is either not defined or either 1

whatever the value of p̂
(1)
i,j ).

(a) (b)

Initial num
ber of Aa

Initia
l n

umber o
f a

a

E
xtinction probability

Initial num
ber of Aa

Initia
l n

umber o
f a

a

E
xtinction probability

Figure 4: Estimation of the extinction probabilities pi,j’s when r = 3 and d = 2: (a) with the
Monte-Carlo method of Section 4.1. (b) with the deterministic method of Section 4.2.

Mean St.dev Min Max

Square error 3.24 10−5 2.47 10−4 1.68 10−36 4.63 10−3

Absolute error 1.07 10−8 5.53 10−3 1.30 10−18 6.81 10−2

Relative error 4.49 10−2 1.71 10−1 9.80 10−3 9.71 10−1

Table 1: Square, absolute and relative differences between the predictions of the stochastic method
when r = 3 and d = 2 (Section 4.1) and of the deterministic methods (Section 4.2). Recall that with
M = 200, the width of the confidence interval (4.1) is 6.92 10−2.

To carry further the comparison of the stochastic and deterministic method, and to observe the
influence of N on the quality of the approximation, we compute the relative quadratic error√∑

16i,j610

(
p̂
(1)
i,j − p̂

(3)
i,j

)2√∑
16i,j610

(
p̂
(1)
i,j

)2 or

√∑
16i,j610

(
p̂
(1)
i,j − p̂

(3)
i,j

)2√∑
16i,j610

(
p̂
(3)
i,j

)2 (4.2)
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when p̂
(1)
i,j is the deterministic approximation for N ∈ {10, . . . , 50} and p̂

(3)
i,j is either given by the

deterministic approximation with N = 50, or by the stochastic approximation p̂
(2)
i,j with M = 200. In

the first case when p̂
(3)
i,j is the deterministic approximation with N = 50, the relative quadratic errors

decrease exponentially fast in exp(−0.6842 N) (R2 = 99.92%). In the second case, when p̂
(3)
i,j = p̂

(2)
i,j ,

the decrease in the quadratic errors stops around N = 18 around 0.0891. This corresponds roughly
to the stochastic error of the law of large numbers (4.1) which depends only on M .

In a second experiment, we choose r = 2.002 and d = 2. This case is more interesting in population
ecology, since small populations are of interest when they are fragile and endangered species. For the
Monte-Carlo simulation, we use M = 200 and T = 5000. For the deterministic method, we use

N = 100, so that (i, j) ∈ {1, . . . , 100}2. The estimated extinction probabilities p̂
(1)
i,j and p̂

(2)
i,j are

plotted in Figure 5, and statistics are computed in Table 2. Again, results from both methods are

similar. This is confirmed by computing the relative quadratic errors, with the p̂
(1)
i,j ’s obtained from the

deterministic method and the p̂
(3)
i,j = p̂

(2)
i,j ’s from the Monte-Carlo method. The decrease of this error is

exponential with N in exp(−0.0619 N) (R2 = 98.98%) as shown in Figure 5(c). It can be noticed that
in this case, the performances of the Monte-Carlo method match better the one of the deterministic
algorithm. This is due to the fact that Monte-Carlo methods fail to produce good estimates of small
probabilities (see [5] and references therein).

When the probabilities p̂
(3)
i,j ’s are given by the deterministic method with N = 50 in (4.2), we have as

in the previous case (r = 3) an exponential decrease of the relative quadratic error in exp(−0.1092 N)
(R2 = 95.07%).

(a) (b) (c)

Initial num
ber of Aa

Initia
l n

umber o
f a

a
E

xtinction probability

Initial num
ber of Aa

Initia
l n

umber o
f a

a

E
xtinction probability

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

-0.0

10 15 20 25 30 35 40 45 50

Figure 5: Estimation of the extinction probabilities pi,j’s when r = 2.002 and d = 2: (a) with the
Monte-Carlo method of Section 4.1. (b) with the deterministic method of Section 4.2. (c) Decrease
with N of the relative quadratic errors (4.2) between the deterministic and Monte-Carlo methods
(M = 200).
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Mean St.dev Min Max

Square error 6.27 10−3 6.25 10−3 8.42 10−10 5.31 10−2

Absolute error 6.89 10−2 3.90 10−2 2.90 10−5 2.31 10−1

Relative error 2.22 10−1 2.17 10−1 1.02 10−4 1

Table 2: Square, absolute and relative differences between the predictions of the stochastic method
when r = 2.002 and d = 2 (Section 4.1) and of the deterministic methods (Section 4.2). As in Table
1, since M = 200, the width of the confidence interval (4.1) is 6.92 10−2.
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