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Extinction probabilities for a distylous plant population modeled by

an inhomogeneous random walk on the positive quadrant

Pauline Lafitte-Godillon∗, Kilian Raschel†, Viet Chi Tran‡

September 26, 2012

Abstract

In this paper, we study a flower population in which self-reproduction is not permitted. In-
dividuals are diploid, that is, each cell contains two sets of chromosomes, and distylous, that is,
two alleles, A and a, can be found at the considered locus S. Pollen and ovules of flowers with the
same genotype at locus S cannot mate. This prevents the pollen of a given flower to fecundate its
own stigmata. Only genotypes AA and Aa can be maintained in the population, so that the latter
can be described by a random walk in the positive quadrant whose components are the number of
individuals of each genotype. This random walk is not homogeneous and its transitions depend on
the location of the process. We are interested in the computation of the extinction probabilities, as
extinction happens when one of the axis is reached by the process. These extinction probabilities,
which depend on the initial condition, satisfy a doubly-indexed recurrence equation that cannot be
solved directly. Our contribution is twofold : on the one hand, we obtain an explicit, though intri-
cate, solution through the study of the PDE solved by the associated generating function. On the
other hand, we provide numerical results comparing stochastic and deterministic approximations
of the extinction probabilities.

Keywords: Inhomogeneous random walk on the positive quadrant; boundary absorption; transport
equation; method of characteristics; self-incompatibility in flower populations; extinction in diploid
population with sexual reproduction

AMS: 60G50; 60J80; 35Q92; 92D25

1 Introduction

We consider the model of flower population without pollen limitation introduced in Billiard and Tran
[4]. The flower reproduction is sexual: plants produce pollen that may fecundate the stigmata of other
plants. We are interested in self-incompatible reproduction, where an individual can reproduce only
with compatible partners. In particular, self-incompatible reproduction prevents the fecundation of
a plant’s stigmata by its own pollen. Each plant is diploid and characterized by the two alleles that
it carries at the locus S, which decide on the possible types of partners with whom the plant may
reproduce (as it encodes the recognition proteins present on the pollen and stigmata of the plant).
We consider the distyle case with only two possible types for the alleles, A or a. The plants thus
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have genotypes AA, Aa or aa. The only interesting case is when A is dominant over a (see [4]), and
we restrict to this case in this work. Then, the phenotype, i.e. the type of proteins carried by the
pollen and stigmata, of individuals with genotypes AA (resp. Aa and aa) is A (resp. A and a). Only
pollen and stigmata with different proteins can give viable seeds, i.e. pollen of a plant of phenotype A
can only fecundate stigmata of a plant of phenotype a and vice-versa. It can be seen that seeds AA
cannot be created, since the genotype of individuals of phenotype a is necessarily aa that combine only
with individuals of phenotype A that have genotypes AA or Aa, therefore we can consider without
restriction populations consisting only of individuals of genotypes Aa and aa. Each viable seed is
then necessarily of genotype Aa or aa with probability 1/2. It is assumed that ovules are produced
in continuous time at rate r > 0 and that each ovule is fecundated to give a seed, provided there
exists compatible pollen in the population. The lifetime of each individual follows an exponential
distribution with mean 1/d, where d > 0. In all the article, we consider

r > d (1.1)

which, we will see, is the interesting case.
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Figure 1: (a) Transition rates for the continuous-time pure-jump Markov process (Xt, Yt)t∈R+.
(b) Transition probabilities of the embedded random walk, that we denote by (Xt, Yt)t∈N (here and
throughout, N is the set {0, 1, 2, . . .}), with an abuse of notation.

Let us denote by Xt and Yt the number of individuals of genotype Aa (phenotype A) and aa
(phenotype a) at time t ∈ R+. The process (Xt, Yt)t∈R+ is a pure-jump Markov process with transitions
represented in Fig. 1(a). A stochastic differential equation (SDE) representation of (Xt, Yt)t∈R+ is given
in [4]. Here we forget the continuous-time process, and we are interested in the embedded discrete-
time Markov chain, which we denote, with an abuse of notation, by (Xt, Yt)t∈N, and with transitions
represented in Fig. 1(b):

Pi,j [(X1, Y1) = (i− 1, j)] =
d i

(r + d)(i+ j)
, Pi,j [(X1, Y1) = (i+ 1, j)] =

r

2(r + d)
,

Pi,j [(X1, Y1) = (i, j − 1)] =
d j

(r + d)(i+ j)
, Pi,j [(X1, Y1) = (i, j + 1)] =

r

2(r + d)
,

where Pi,j means that the process starts with the initial condition (X0, Y0) = (i, j). The main and
profound difficulty is that this random walk is not homogeneous in space, while techniques developed
in the literature for random walks on positive quadrants mostly focus on the homogeneous case (see
e.g. Fayolle et al. [6], Klein Haneveld and Pittenger [8], Kurkova and Raschel [9], Walraevens, van
Leeuwaarden and Boxma [13]). We introduce a generating function (1.4) that satisfies here a partial
differential equation (PDE) of a new type that we solve. Although the particularity of the problem
is exploited, these techniques and the links between probability and PDEs may be extended to carry
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out general studies of inhomogeneous random walks in cones. The introduction of PDEs through
generating functions had been already used by Feller [7] for a trunking problem with an inhomogeneous
random walk in dimension 1. To our knowledge, the case of inhomogeneous random walks in the cone
with absorbing boundaries has been left open. In [10], the discriminatory processor-sharing queue is
considered but boundaries are not absorbing and the overall arrival rate is constant, which is not the
case in our model.

When one of the phenotype A or a disappears, reproduction becomes impossible and the extinction
of the system occurs. We are interested in the probability of extinction of (Xt, Yt)t∈N (or, equivalently,
in that of (Xt, Yt)t∈R+). Let us introduce the first time at which one of the two types gets extinct:

τ0 = inf{t ∈ N : Xt = 0 or Yt = 0}. (1.2)

For i, j ∈ N, let us denote by
pi,j = Pi,j [τ0 <∞] (1.3)

the absorption probabilities, and by

P (x, y) =
∑
i,j>1

pi,jx
iyj (1.4)

their generating function. By symmetry arguments, we have, for all i, j ∈ N,

pi,j = pj,i. (1.5)

Moreover, for any i, j ∈ N such that i = 0 or j = 0, we have

pi,j = 1. (1.6)

In Section 2, we will see that the pi,j ’s satisfy the Dirichlet problem associated with the following
doubly-indexed recurrence equation

qi,j =
di

(r + d)(i+ j)
qi−1,j +

dj

(r + d)(i+ j)
qi,j−1 +

r

2(r + d)
qi,j+1 +

r

2(r + d)
qi+1,j (1.7)

and with the boundary condition (1.6). This problem does not admit simple solutions. There is no
uniqueness of solutions to this problem. Note that the constant sequence equal to 1 is a solution.
However, we are interested in solutions that tend to 0 as i or j tends to infinity, since, [4] (see Proposi-
tion 2.2 in this paper), estimates for pi,j were obtained through probabilistic coupling techniques; they
show that in the case (1.1) we consider, pi,j is strictly less than 1. In fact, the pi,j ’s correspond to the
smallest positive solution of the Dirichlet problem, and are completely determined if we give the prob-
abilities (pi,1)i>1. We conclude the section with more precise estimates of the absorption probabilities
pi,j as the initial state (i, j) goes to infinity along one axis (Proposition 2.3). These new estimates rely
on Proposition 2.2 and on comparisons with one-dimensional random walks. In Section 3, we consider
the generating function P (x, y) associated with the pi,j ’s and show that it satisfies a PDE, that has
one and only one solution, that is computed (Proposition 3.5) explicitly with a dependence on the
(pi,1)i>1, prompting us to use the name “Green’s function”. This provides a new formulation of the
solution of (1.7), that is however uneasy to work with numerically. Hence, in Section 4, we propose
two different approaches leading to numerical approximations of the solution of the Dirichlet problem
(1.6)–(1.7), that are based on stochastic and deterministic approaches.
In conclusion, we provide here several approaches to handle the extinction probabilities of the in-
homogeneous random walk (Xt, Yt)t∈R+ of our problem. Estimates from [4] are recalled and the
recurrence equation (1.7) is solved numerically and theoretically, pending further investigation of the
PDE formulation.
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2 Existence of a solution

2.1 Dirichlet problem

We first establish that the extinction probabilities pi,j ’s (1.3) solve the Dirichlet problem (1.6)–(1.7).

Proposition 2.1. (i) The extinction probabilities (pi,j)i,j>1 are solutions to the Dirichlet problem
(1.7) with boundary condition (1.6). Uniqueness of the solution may not hold, but the extinction
probabilities (pi,j)i,j∈N define the smallest positive solution to this problem.

(ii) Let the probabilities (pi,1)i>1 be given. Then the probabilities (pi,j)i,j>1 are completely determined.

Proof. We begin with Point (i). Equation (1.7) is obtained by using the strong Markov property at
the time of the first event. Let us denote by K the transition kernel of the discrete-time Markov chain
(Xt, Yt)t∈N∗ ; we have:

Kf(i, j)

= (f(i+ 1, j) + f(i, j + 1))
r

2(r + d)
+ f(i− 1, j)

di

(r + d)(i+ j)
+ f(i, j − 1)

dj

(r + d)(i+ j)
.

Following classical proofs (e.g. [3, 11]), the extinction probabilities (pi,j)i,j∈N satisfy the equation:

∀i, j ∈ N∗, f(i, j) = Kf(i, j) and ∀i, j ∈ N, f(i, 0) = f(0, j) = 1. (2.1)

The constant solution equal to 1 is a solution to (2.1). Let us prove that (pi,j)i,j∈N is the smallest pos-
itive solution to (2.1). Let f be another positive solution. Let us consider Mt = f(Xinf{t,τ0}, Yinf{t,τ0}),
with τ0 defined in (1.2). Denoting by (Gt)t∈N the filtration of (Mt)t∈N, we have:

E
[
Mt+1 | Gt

]
= E

[
Mt+11lτ06t +Mt+11lτ0>t | Gt

]
= E

[
Mt1lτ06t + f(Xt+1, Yt+1)1lτ0>t | Gt

]
= Mt1lτ06t + 1lτ0>tE

[
f(Xt+1, Yt+1) | Gt

]
= Mt1lτ06t + 1lτ0>tKf(Xt, Yt)

= Mt1lτ06t + 1lτ0>tf(Xt, Yt) = Mt.

Hence (Mt)t∈N is a martingale, which converges on {τ0 < ∞} to f(Xτ0 , Yτ0) = 1 (see the boundary
condition in (2.1)). Thus by using the positivity of f and Fatou’s lemma, we obtain that for every
i, j ∈ N:

f(i, j) = Ei,j
[
M0

]
= lim

t→∞
Ei,j
[
Mt

]
> E

[
lim inf
t→∞

Mt1lτ0<∞
]

= Ei,j
[
1lτ0<∞

]
= pi,j .

This concludes the proof of Point (i).

Let us now consider Point (ii). Assume that the probabilities (pi,1)i>1 are given, and let us prove,
by recursion, that every pi,j can be computed. By symmetry, we only need to prove that this is the
case for i > j. Assume

(Hrec j): for j ∈ N∗ all the pk,`’s for ` 6 j and k > ` can be computed from the pi,1’s
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and let us prove that we can determine the pi,j+1’s for i > j + 1. From (1.7) we get:

pi,j+1 =
2(r + d)

r
pi,j −

2 d i

r(i+ j)
pi−1,j −

2 d j

r(i+ j)
pi,j−1 − pi+1,j . (2.2)

All the terms in the r.h.s. of (2.2) are known by (Hrec j), and hence pi,j+1 can be computed for any
i > j + 1. This concludes the recursion. �

The following result shows that there is almost sure extinction in the case r 6 d. In the interesting
case r > d, it also shows that there is a nontrivial solution to the Dirichlet problem (1.6)–(1.7).

Proposition 2.2 (Proposition 9 of [4]). We have the following regimes given the parameters r and d:

(i) If r 6 d, we have almost sure extinction of the population.

(ii) If r > d(> 0), then there is a strictly positive survival probability. Denoting by (i, j) the initial
condition, we have: (

d

r

)i+j
6 pi,j 6

(
d

r

)i
+

(
d

r

)j
−
(
d

r

)i+j
.

In Point (ii), only bounds, and no explicit formula, are available for the extinction probability pi,j .
The purpose of this article is to address (1.7) by considering the Green’s function P (x, y) introduced
in (1.4).

2.2 Asymptotic behavior of the absorption probability as the initial state goes to
infinity along one axis

In this part, using the result of Proposition 2.2, we provide more precise estimates of the asymptotic
behavior of the absorption probability p1,j = pj,1 when j →∞. In particular, these estimates will be
very useful when we tackle the deterministic numerical simulations (see Section 4.2).

Proposition 2.3. If j →∞, then

p1,j = pj,1 =
2d

r

1

j
− 2d(r2 + dr + 2d2)

r2(r + d)

1

j2
+O

(
1

j3

)
. (2.3)

Proof. In addition to τ0, defined in (1.2), we introduce

S = inf{t ∈ N : Yt = 0}, T = inf{t ∈ N : Xt = 0},

the hitting times of the horizontal axis and vertical axis, respectively. Note that we have τ0 = inf{S, T}.
Let f : N→ N be a function such that f(j) < j for any j > 1. In the sequel, we will choose f(j) = bεjc,
with ε ∈ (0, 1) and where b.c denotes the integer part). We obviously have the identity:

p1,j = P(1,j)[τ0 <∞] = P(1,j)[τ0 6 f(j)] + P(1,j)[f(j) < τ0 <∞]. (2.4)

To prove Proposition 2.3, we shall give estimates for both terms in the r.h.s. of (2.4).

First step: Study of P(1,j)[τ0 6 f(j)]. Since f(j) < j, it is impossible, starting from (1, j), to reach the
horizontal axis before time f(j), and we have P(1,j)[τ0 6 f(j)] = P(1,j)[T 6 f(j)]. In order to compute
the latter probability, we introduce two one-dimensional random walks on N, namely X− and X+,
which are killed at 0, and which have the jumps

Pi[X±1 = i− 1] = q±i , Pi[X±1 = i+ 1] = p±i , Pi[X±1 = i] = r±i , q±i + p±i + r±i = 1,
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where

q±i =
di

(r + d)(i+ j ∓ f(j))
, p±i =

r

2(r + d)
. (2.5)

Both X− and X+ are (inhomogeneous) birth-and-death processes on N. These random walks are
implicitely parameterized by j. If T± = inf{t ∈ N : X±t = 0}, then

P1[T
− 6 f(j)] 6 P(1,j)[T 6 f(j)] 6 P1[T

+ 6 f(j)]. (2.6)

The quantities P1[T
± 6 f(j)] are computable: we shall prove that

P1[T
± 6 f(j)] =

2d

r

1

(j ∓ f(j))
− 2d(r2 + dr + 2d2)

r2(r + d)

1

(j ∓ f(j))2
+O

(
1

(j ∓ f(j))3

)
. (2.7)

The main idea for proving (2.7) is that the q±i being very small as j →∞, the only paths which will
significantly contribute to the probability P1[T

± 6 f(j)] are the ones with very few jumps to the right.
Let us define

Λ±t (p) = {the chain X± makes exactly p jumps to the right between 0 and t}
= {there exist 0 6 q1 < · · · < qp 6 t− 1 such that

X±q1+1 −X
±
q1 = · · · = X±qp+1 −X

±
qp = 1}.

We are entitled to write

P1[T
± 6 f(j)] = P1[T

± 6 f(j), Λ±f(j)(0)] + P1[T
± 6 f(j), Λ±f(j)(1)]

+ P1[T
± 6 f(j), ∪p>2Λ±f(j)(p)], (2.8)

and we now separately analyze the three terms in the right-hand side of (2.8). First:

P1[T
± 6 f(j), Λ±f(j)(0)] =

f(j)∑
k=1

P1[T
± = k, Λ±f(j)(0)] =

f(j)∑
k=1

(r±1 )
k−1

q±1

=
q±1

1− r±1

(
1− (r±1 )f(j)

)
=

q±1
1− r±1

(1 +O((r±1 )
f(j)

)). (2.9)

A Taylor expansion of q±1 /(1− r
±
1 ) according to the powers of 1/(j∓ f(j)) together with the fact that

(r±1 )f(j) = o(1/(j ∓ f(j))3) provides that:

P1[T
± 6 f(j), Λ±f(j)(0)] =

2d

r(j ∓ f(j))

(
1−

1 + 2d
r

j ∓ f(j)
+O

(
1

(j ∓ f(j))2

))
. (2.10)

We now consider the second term in the right-hand side of (2.8). On the event Λ±f(j)(1), X± first
stays a time k1 at 1, then jumps to 2, where it remains k2 unit of times; it next goes to 1, and, after
a time k3, jumps to 0. Further, since T± 6 f(j), we have k1 + 1 + k2 + 1 + k3 + 1 6 f(j). Denoting
by k̃1 = k1 + k3 the time spent in position 1, we thus have:

P1[T
± 6 f(j), Λ±f(j)(1)]

=
∑

k1+k2+k36f(j)−3

(r±1 )k1p±1 (r±2 )k2q±2 (r±1 )k3q±1 = p±1 q
±
1 q
±
2

∑
k̃1+k26f(j)−3

(r±1 )k̃1(r±2 )k2

=
p±1 q

±
1 q
±
2

(1− r±1 )(1− r±2 )
(1 +O((r±1 ∨ r

±
2 )

f(j)−2
)). (2.11)
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As for the first term, using the fact that (r±1 ∨ r
±
2 )

f(j)−2
= o(1/(j ∓ f(j))3) and a Taylor expansion

according to the powers of 1/(j ∓ f(j)) gives that:

P1[T
± 6 f(j), Λ±f(j)(1)] =

4d2

r(r + d)(j ∓ f(j))2

(
1 +O

(
1

(j ∓ f(j))

))
. (2.12)

Finally, let us consider the third term P1[T
± 6 f(j), ∪p>2Λ±f(j)(p)]. On ∪p>2Λ±f(j)(p), the two first

jumps to the right are either from 1 to 2 and 2 to 3, or twice from 1 to 2. Thus, extinction means that
there is at least 3 jumps from 3 to 2, 2 to 1 and 1 to 0 or two jumps from 2 to 1 and 1 to 0. Since q±i
is an increasing function of i, we deduce:

P1[T
± 6 f(j), ∪p>2Λ±f(j)(p)]

6
(
q±3
)3

=

(
d

r + d

)3( 3

3 + j ∓ f(j)

)3

= O

(
1

(j ∓ f(j))3

)
. (2.13)

From (2.8), (2.9), (2.11) and (2.13), we obtain (2.7).

Second step: Study of P(1,j)[f(j) < τ0 <∞].

P(1,j)[f(j) < τ0 <∞]

=
∑
k,`>1

P(1,j)[f(j) < τ0 <∞|(Xf(j), Yf(j)) = (k, `)]P(1,j)[(Xf(j), Yf(j)) = (k, `)]

=
∑
k,`>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)], (2.14)

by using the strong Markov property. Introduce now a function g : N→ N such that f(j) + g(j) < j
for any j > 1. We can split (2.14) into∑

k,`>g(j)

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] +
∑

g(j)>k>1
and/or
g(j)>`>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)]. (2.15)

With Proposition 2.2 we obtain the following upper bound for the first sum in (2.15):

∑
k,`>g(j)

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] 6 2

(
d

r

)g(j)
.

In particular, if we choose g such that as j →∞, g(j)→∞ fast enough, then clearly the term above
is negligible compared to (2.7). For the second sum in (2.15),∑

g(j)>k>1
and/or
g(j)>`>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] =
∑

g(j)>k>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)],

since by assumption j − f(j) > g(j) so that Y cannot reach values ` 6 g(j) in f(j) steps. Then we
have ∑

g(j)>k>1

pk,`P(1,j)[(Xf(j), Yf(j)) = (k, `)] 6
∑

g(j)>k>1

P(1,j)[(Xf(j), Yf(j)) = (k, `)]

6 P(1,j)[0 6 Xf(j) 6 g(j)]. (2.16)
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To obtain an upper bound for (2.16) we are going to use, again, a one-dimensional random walk.
Introduce X̃, a random walk on N which is killed at 0, homogeneous on N∗ with jumps

Pk[X̃1 = k − 1] = q̃, Pk[X̃1 = k + 1] = p̃, Pk[X̃1 = k] = r̃, q̃ + p̃+ r̃ = 1,

where

q̃ =
d(1 + f(j))

(r + d)(1 + j − 2f(j))
, p̃ =

r

2(r + d)
.

This walk is again parameterized by j. By construction of X̃, we have

P(1,j)[0 6 Xf(j) 6 g(j)] 6 P1[X̃f(j) 6 g(j)].

Denoting by m̃ and σ̃2 the mean and the variance of (X̃2 − X̃1), respectively (they could easily be
computed), we can write

P1[X̃f(j) 6 g(j)] = P0

[
X̃f(j) − m̃f(j)

σ̃
√
f(j)

6
g(j)− 1− m̃f(j)

σ̃
√
f(j)

]
.

By a suitable choice of the functions f and g, for instance f(j) = bεjc with ε ∈ (0, 1) and g(j) = bj3/4c,
the central limit theorem gives that the latter is negligible compared to P(1,j)[τ0 6 f(j)]. For this last
term, using (2.7), (2.6) and letting ε tend to 0 provides (2.3). The proof is concluded. �

Let us make some remarks on possible extensions of Proposition 2.3.

Remark 1. 1. The proof of Proposition 2.3 can easily be extended to the asymptotic of pi,j as j →∞,
for any fixed value of i. In particular, we have the following asymptotic behavior:

pi,j =

(
2d

r

)i i!
ji

+O

(
1

ji+1

)
. (2.17)

2. It is possible to generalize (2.8) by

P1[T
± 6 f(j)] =

k−1∑
p=0

P1[T
± 6 f(j), Λf(j)p ] + P1[T

± 6 f(j), ∪p>kΛf(j)p ]. (2.18)

We can show as in the proof of Proposition 2.3 that P1[T
± 6 f(j), ∪p>kΛ

f(j)
p ] 6 (q±k+1)

k+1 = o(1/jk+1)

(see (2.13)) and that the probabilities P1[T
± 6 f(j), Λ

f(j)
p ] admit Taylor expansions in powers of

1/(j ∓ f(j)) where the development for the pth probability has a main term in 1/(j ∓ f(j))p+1. This
allows us to push the developments in (2.7) to higher orders.

For instance, the next term in (2.3) can be obtained by a long computation. First, we generalize
(2.11) by writing that

P1[T
± 6 f(j), Λ

f(j)
2 ]

= q±1
(
(p±1 )2(q±2 )2 + p±1 p

±
2 q
±
3 q
±
2

) ∑
k̃1+k̃2+k̃36f(j)−5

(r±1 )k̃1(r±2 )k̃2(r±3 )k̃3 (2.19)

where k̃1, k̃2 and k̃3 are the times spent by the random walk in the states 1, 2 and 3. Then, pushing
further the Taylor expansion leads to:

p1,j =
2d

r

1

j ∓ f(j)
− 2d(r2 + dr + 2d2)

r2(r + d)

1

(j ∓ f(j))2

+ d
(2

r

(
1 +

2d

r

)2 − 24d
(
r
2 + d

)
r2(r + d)

+
5r2d2

2(r + d)2
(
r
2 + d

)3) 1

(j ∓ f(j))3
+O

(
1

(j ∓ f(j))4

)
.
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3 Green’s function

3.1 A functional equation for the Green’s function

In this section, we consider the Green’s function P (x, y) defined in (1.4) associated with a solution
of (1.7) in the same spirit as what can be found in Feller [7, Ch. XVII]. We show that it satisfies a
non-classical linear PDE that can be solved (see Proposition 3.5).

Proposition 3.1. (i) The function P (x, y) satisfies formally:

AP (x, y) = h(x, y, P ), (3.1)

where:

AP (x, y) =Q(x, y)
∂P

∂x
(x, y) +Q(y, x)

∂P

∂y
(x, y) +R(x, y)P (x, y), (3.2)

Q(x, y) =(r + d)x− r

2
− r

2

x

y
− d x2,

R(x, y) =
r

2x
+

r

2y
− dx− dy,

and where:

h(x, y, P ) =− r

2

(
x
∂2P

∂x∂y
(x, 0) + y

∂2P

∂y∂x
(0, y)

)
+ d xy

(
1

1− x
+

1

1− y

)
. (3.3)

(ii) For given (pi,1)i>1, we have a unique classical solution to (3.1)-(3.3) on ]0, 1[×]0, 1[.

The function h in (3.3) only depends on a boundary condition (∂2P/∂x∂y at the boundaries x = 0
or y = 0, i.e. the pi,1’s for i ∈ N∗), which is non-classical, while the operator A is of first order and
hence associated with some transport equations.

Proof of Proposition 3.1. Let us first establish (i). Using the Markov property at time t = 1:

pi,j =
r

2(r + d)
(pi+1,j + pi,j+1) +

dj

(r + d)(i+ j)
pi,j−1 +

di

(r + d)(i+ j)
pi−1,j ,

then multiplying by xiyj , and summing over i, j ∈ N∗ leads to:

(r + d)
∑
i,j>1

(i+ j)pi,jx
iyj =

r

2

∑
i,j>1

(i+ j)(pi+1,j + pi,j+1)x
iyj

+ d
∑
i,j>1

jpi,j−1x
iyj + d

∑
i,j>1

ipi−1,jx
iyj . (3.4)

The l.h.s. of (3.4) equals:

(r + d)
∑
i,j>1

(i+ j)pi,jx
iyj = (r + d)

(
x
∂

∂x
+ y

∂

∂y

)
P (x, y). (3.5)
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For the r.h.s. of (3.4):

r

2

∑
j>1
i>2

pi,j(i− 1 + j)xi−1yj +
r

2

∑
i>1
j>2

pi,j(i+ j − 1)xiyj−1

+ d
∑
i>1
j>0

(j + 1)pi,jx
iyj+1 + d

∑
i>0
j>1

(i+ 1)pi,jx
i+1yj

=
r

2

∑
j>1
i>2

pi,j(i− 1)xi−1yj +
r

2

∑
j>1
i>2

pi,jjx
i−1yj

+
r

2

∑
i>1
j>2

pi,jix
iyj−1 +

r

2

∑
i>1
j>2

pi,j(j − 1)xiyj−1

+ d
∑
i>1
j>0

(j + 1)pi,jx
iyj+1 + d

∑
i>0
j>1

(i+ 1)pi,jx
i+1yj .

(3.6)

For the first term in the r.h.s. of (3.6):

r

2

∑
j>1
i>2

pi,j(i− 1)xi−1yj =
r

2

∑
j>1
i>1

pi,j(i− 1)xi−1yj =
r

2

∑
j>1
i>1

pi,jix
i−1yj − r

2

∑
j>1
i>1

pi,jx
i−1yj

=
r

2

∂

∂x
P (x, y)− r

2

P (x, y)

x
. (3.7)

Similar computation holds for the 4th term of the r.h.s. of (3.6). For the 2nd term:

r

2

∑
j>1
i>2

pi,jjx
i−1yj =

r

2

y

x

∑
j>1
i>2

pi,jjx
iyj−1 =

r

2

y

x

(∑
j>1
i>1

pi,jjx
iyj−1 −

∑
j>1

p1,jjxy
j−1

)

=
r

2

y

x

∂

∂y
P (x, y)− r

2

∑
j>1

p1,jjy
j . (3.8)

We handle the 3rd term of the r.h.s. of (3.6) similarly. Now for the 5th term:

d
∑
i>1
j>0

pi,j(j + 1)xiyj+1 =d

(
y2

∂

∂y
P (x, y) + yP (x, y) +

∑
i>1

xiy

)
. (3.9)

Similar computation holds for the last term of (3.6). From (3.5), (3.6), (3.7), (3.8) and (3.9) we deduce
that:

(r + d)

(
x
∂

∂x
+ y

∂

∂y

)
P (x, y) =

r

2

∂

∂x
P (x, y)− r

2

P (x, y)

x
+
r

2

∂

∂y
P (x, y)− r

2

P (x, y)

y

+
r

2

y

x

∂

∂y
P (x, y)− r

2

∑
j>1

p1,jjy
j +

r

2

x

y

∂

∂x
P (x, y)− r

2

∑
i>1

pi,1ix
i

+d

(
y2

∂

∂y
P (x, y) + yP (x, y) +

∑
i>1

xiy

)
+ d

(
x2

∂

∂x
P (x, y) + xP (x, y) +

∑
j>1

xyj

)
,

and finally
∑

i>1 pi,1ix
i = x ∂2P

∂x∂y (x, 0).
For point (ii), local existence and uniqueness stem from classical theorems [14]. Note that we construct
an explicit, albeit complicated solution (3.5) using the method of characteristics. This concludes the
proof. �
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Remark 2. In the case of homogeneous random walks, the operator AP (x, y) has the product form
R(x, y)P (x, y), see [9]. In some sense, this means that the inhomogeneity leads to partial derivatives
in the functional equation.

Remark 3. This technique allowing to compute the solution of a discrete, linear problem thanks to
generating series is also called the Z-transform method.

3.2 Characteristic curves

In Sections 3.2 and 3.3 we establish, by the methods of characteristic equations, an explicit formula
for the solutions to (3.1), which proves the existence of the solution. Since A is a first-order differential
operator, we have a transport-like PDE. We introduce the following characteristic ordinary differential
equations (ODEs). Let (xs, ys)s∈R+ be the solution to the system:

ẋs =
dx

ds
(s) = Q(xs, ys),

ẏs =
dy

ds
(s) = Q(ys, xs),

(3.10)

where Q has been defined in (3.2). The dynamical system (3.10) and its solutions will turn out to
be decisive in the sequel—e.g. in Proposition 3.4, where we will use these characteristic equations in
order to express the solutions to the fundamental functional equation (3.1).

Proposition 3.2. For any initial condition (x0, y0) ∈ R2 such that x0, y0 6= 0, there exists a unique
solution to (3.10), defined for s ∈ R by:

xs =
λrers + µd eds

d(λers + µed s + 1)
, ys =

λrers + µd eds

d(λers + µed s − 1)
, (3.11)

with:

λ =
2d x0y0 − d(x0 + y0)

(x0 − y0)(r − d)
, µ =

−2d x0y0 + r(x0 + y0)

(x0 − y0)(r − d)
. (3.12)

Figure 2: Differential system (3.10): Vector field (Q(x, y), Q(y, x)). The plain lines correspond to
the sets {Q(x, y) = 0} or {Q(y, x) = 0}.
Proof. First of all, since Q(x, y) and Q(y, x) are locally Lipschitz-continuous for x, y 6= 0, there is local
existence and uniqueness. Let us introduce the new variable zs = xs/ys, which is defined as long as
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(a) (b)

Figure 3: Differential system (3.10): (a) Neighborhood of the saddle point (1,1). (b) Neighborhood of
the attractive equilibrium (r/d, r/d).

ys 6= 0. Using the expression (3.2) of Q, the system (3.10) becomes:

ẋs =(r + d)xs −
r

2
(1 + zs)− dx2s, (3.13)

żs =
ẋsys − xsẏs

y2s

=(r + d)zs −
r

2

zs
xs
− r

2

zs
ys
− dxszs − (r + d)zs +

r

2

zs
ys

+
r

2

zs
xs

+ dyszs

=d xs(1− zs). (3.14)

From (3.14), we obtain:

xs =
żs

d(1− zs)
, (3.15)

and differentiating (3.14) with respect to the time s gives:

ẋs =
dz̈s(1− zs) + dż2s

d2(1− zs)2
.

Plugging this expression and (3.15) into (3.13) provides:

dz̈s(1− zs) + dż2s
d2(1− zs)2

=
(r + d)żs
d(1− zs)

− r

2
(1 + zs)− d

ż2s
d2(1− zs)2

,

and, therefore,

z̈s(1− zs) + 2ż2s − (r + d)(1− zs)żs +
rd

2
(1 + zs)(1− zs)2 = 0. (3.16)

The system (3.15)–(3.16) can be solved explicitly. Let us define us = (1 + zs)/(1− zs), so that

zs =
us − 1

us + 1
, (3.17)

from which we obtain:

żs =
2u̇s

(1 + us)2
, z̈s =

2üs(1 + us)− 4u̇2s
(1 + us)3

. (3.18)
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Using these expressions in (3.16) provides:

2üs(1 + us)− 4u̇2s
(1 + us)3

2

us + 1
+ 2

4u̇2s
(1 + us)4

− (r + d)
2

us + 1

2u̇s
(1 + us)2

+
rd

2

2us
us + 1

4

(us + 1)2
= 0

⇔ 4üs(1 + us)− 4(r + d)u̇s(1 + us) + 4rd us(us + 1) = 0

⇔ üs − (r + d)u̇s + rd us = 0. (3.19)

Hence u satisfies a second-order ordinary differential equation, that solves in:

us = λers + µed s, λ, µ ∈ R. (3.20)

From (3.15), (3.17) and (3.20):

zs =
λers + µed s − 1

λers + µed s + 1
, xs =

λrers + µd eds

d(λers + µed s + 1)
. (3.21)

The integration constants λ and µ can be expressed in terms of the initial conditions x0 and z0 = x0/y0:

λ =
2d x0 − d(1 + z0)

(1− z0)(r − d)
, µ =

r − 2dx0 + z0r

(1− z0)(r − d)
. (3.22)

This yields the announced result with ys = xs/zs. �

Remark 4. Explicit expressions for xs and ys as functions of time and parameterized by r and d can
be obtained. Using the expressions (3.12) of λ and µ in (3.21) and the relations between xs, ys and
zs provides:

xs =

− x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds)

−d
r

x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds) +
(1− d/r)(y0 − x0)
x0 + y0 − 2(d/r)x0y0

, (3.23)

ys =

− x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds)

−d
r

x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(rs) + exp(ds)− (1− d/r)(y0 − x0)
x0 + y0 − 2(d/r)x0y0

. (3.24)

For the sequel, it is useful to notice that the constant

− λ r

µ d
=

x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

(3.25)

which appears in (3.23) and (3.24) belongs to ]0, 1[ for all (x0, y0) ∈]0, 1[2; this is due to the fact that
d/r < 1.

Below, we list some properties of the solutions to the dynamical system (3.10). The trajectories of
the solutions to (3.10) can be decomposed into four steps. In order to describe them, let us introduce

s0 =
1

r − d
log

(
−µ d
λ r

)
=

log

(
x0 + y0 − 2x0y0

x0 + y0 − 2(d/r)x0y0

)
d− r

(3.26)

and s± as the only positive roots of the denominators of xs and ys in (3.11):

λers + µed s ± 1. (3.27)
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Proposition 3.3. Let (x0, y0) ∈]0, 1[2.

(i) The stationary solutions to (3.10) are the saddle point (1, 1) and the attractive point (r/d, r/d).

(ii) s0 ∈]0,∞[ and s± ∈]s0,∞[.

(iii) inf{s+, s−} = s+ (resp. s−) if and only if y0 < x0 (resp. y0 > x0).

(iv) lims↑s+ xs = −∞ and lims↓s− ys = −∞.

The next points specify the behavior of the solution to (3.10).

(v) On [0, s0[, (xs, ys) belongs to ]0, 1[2 and goes to (xs0 , ys0) = (0, 0) as s→ s0.

(vi) On ]s0, inf{s+, s−}[, (xs, ys) goes decreasingly to (xinf{s+,s−}, yinf{s+,s−})—by “decreasingly” we
mean that both coordinates decrease.

(vii) On ] inf{s+, s−}, sup{s+, s−}[, (xs, ys) goes to (xsup{s+,s−}, ysup{s+,s−}) decreasingly.

(viii) On ] sup{s+, s−},∞[, (xs, ys) goes decreasingly to (r/d, r/d).

Proof of Item (i). To find the stationary solutions to (3.10), let us solve ẋ = 0 and ẏ = 0. With (3.10),
we get Q(x, y) = 0 and Q(y, x) = 0. This directly implies that (x, y) = (1, 1) or (x, y) = (r/d, r/d),
see Table 2. Let us now study the stability of these two equilibria.

At (1, 1), the Jacobian of (3.10) is:

Jac(1, 1) =
r

2
J − dI,

where J is the 2× 2 matrix full of ones and where I is the 2× 2 identity matrix. The eigenvalues of
Jac(1, 1) are −d < 0 and r−d > 0, associated with the eigenvectors (1,−1) and (1, 1), respectively. By
classical linearization methods (e.g. [12, Chap. 3]), we deduce that the point (1, 1) is a saddle point.

At (r/d, r/d), the Jacobian of (3.10) is:

Jac(r/d, r/d) =
d

2
J − rI.

The eigenvalues are −r < 0 and d − r < 0, associated with the eigenvectors (1,−1) and (1, 1),
respectively. The point (r/d, r/d) is therefore attractive. �

Proof of Item (ii) to (iv). Now we prove the different facts dealing with s0, s+ and s−. First, (3.25)
and the fact that r > d immediately imply that s0 ∈]0,∞[. Next, we show that (3.27) has on [0,∞[
only one root, which belongs to ]s0,∞[. For this, we shall start with proving that (3.27) is positive on
[0, s0]. Then, we shall show that (3.27) is decreasing in ]s0,∞[ and goes to −∞ as s→∞.

In order to prove the first point above, it is enough to show that (3.27) is positive at s = 0 and
increasing on [0, s0[. (3.27) is positive at s = 0 simply because

λ+ µ± 1 =
x0 + y0
y0 − x0

± 1 =
2y0

y0 − x0
or

2x0
y0 − x0

=
(1− d/r)[x0 + y0 ± (y0 − x0)]

x0 + y0 − 2(d/r)x0y0
> 0.

To check that (3.27) is increasing on [0, s0[, we note that the derivative of (3.27) is positive on [0, s0[—
actually by construction of s0.

Now we prove the second point. From (3.25) and since r > d, we obtain that (3.27) goes to −∞
as s→∞. Also, by definition of s0, the derivative of (3.27) is negative on ]s0,∞[, (3.27) is therefore
decreasing on ]s0,∞[.
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Figure 4: Solutions corresponding to several initial conditions. We see that depending on the initial condition,

the solutions converge of diverge to infinity.

The fact that inf{s+, s−} equals s+ (resp. s−) if and only if y0 < x0 (resp. y0 > x0) follows directly
from (3.27).

Finally, since the numerators of xs and ys are negative on ]s0,∞[, hence in particular at s±, it is
immediate that lims↑s+ xs = −∞ and lims↓s− ys = −∞. �

Proof of Item (v) to (viii). Let us first consider Item (v). By definition of s0, the numerators of xs
and ys in (3.23) and (3.24) vanish for the first time at s0. Moreover, since s± > s0, both denominators
are non-zero at s0 and xs0 = ys0 = 0. In particular, on [0, s0[, we have (xs, ys) ∈ R2

+. In fact,
(xs, ys) ∈]0, 1[2. Indeed, on the segment {1}×]0, 1[, ẋs < 0 whereas on ]0, 1[×{1}, ẏs < 0: it is
therefore not possible to go through these segments.

We turn to the proof of Item (vi). Thanks to (3.23) and (3.24), just after the time s0, (xs, ys)
belongs to the negative quadrant R2

−. But for any (x, y) ∈ R2
−, Q(x, y) 6 0 and Q(y, x) 6 0, see Table

2, in such a way that both xs and ys are decreasing as soon as they stay in this quarter plane, in other
words for s ∈]s0, inf{s+, s−}[. At time inf{s+, s−}, one (or even the two if s+ = s−, i.e. if x0 = y0)
of xs and ys becomes infinite. In the sequel, let us assume that inf{s+, s−} = s+; a similar reasoning
would hold for the symmetrical case inf{s+, s−} = s−.

Let us show Item (vii). Just after s+, (xs, ys) ∈ (R+×R−)∩ {(x, y) ∈ R2 : Q(x, y) < 0, Q(y, x) <
0}. The latter set is simply connected and bounded by the curve {(x, y) ∈ R2 : Q(x, y) = 0}, see
Table 2. Using classical arguments (see e.g. [12]), we obtain that it is not possible to go through this
limiting curve on which ẋs = 0; this is why for any s ∈]s+, s−[, (xs, ys) remains inside of this set.

We conclude with the proof of Item (viii). Just after the time s−, (xs, ys) ∈ R2
+ ∩ {(x, y) ∈ R2 :

Q(x, y) < 0, Q(y, x) < 0}. For the same reasons as above, (xs, ys) cannot leave this set and actually
converges to (r/d, r/d). �
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3.3 Use of the characteristic curves to simplify the functional equation

Let us assume the existence of a solution P (x, y) to (3.1), and let us define gs = P (xs, ys). Then:

ġs =
dg

ds
(s) =

∂P

∂x
(xs, ys)

dxs
ds

+
∂P

∂y
(xs, ys)

dys
ds

=
∂P

∂x
(xs, ys)Q(xs, ys) +

∂P

∂y
(xs, ys)Q(ys, xs).

Thus, if P is a solution to (3.1), then:

ġs +R(xs, ys)gs = h(xs, ys, P ), (3.28)

which looks like a first-order ODE for g, except that h depends on the boundary condition of P .
We first freeze the dependence on the solution in h, i.e. we solve the ODE (3.28) as if the term

in the right-hand side were a known function. Using the solutions to the characteristic equations, we
shall prove the following result:

Proposition 3.4. Let h(x, y) be an analytical function on [0, 1[2. Let (x0, y0) ∈ R2. The solution to
the ODE

ġs +R(xs, ys)gs = h(xs, ys), g0 = P (x0, y0), (3.29)

where (xs, ys)s>0 are the solutions (3.11) to the characteristic curve starting at (x0, y0), is given by

ghs =P (x0, y0) exp

(
−
∫ s

0
R(xu, yu)du

)
+

∫ s

0
h(xu, yu)e−

∫ s
u R(xα,yα)dαdu

=:F (s, x0, y0, h). (3.30)

Proof. Equation (3.29) is an inhomogeneous first-order ODE. The solution to the associated homoge-
neous equation is:

gs = R(x0, y0) exp

(
−
∫ s

0
R(xu, yu)du

)
.

The announced result is deduced from the variation of constant method. �

A solution P to (3.1) hence satisfies the following functional equation for all s, x0 and y0:

P (xs, ys) =P (x0, y0)e
−

∫ s
0 R(xu,yu)du +

∫ s

0
h(xu, yu, P )e−

∫ s
u R(xα,yα)dαdu, (3.31)

with the function h defined in (3.3). Plugging the definitions (1.4) and (3.3) in (3.31), we obtain:∑
i,j>1

pi,jx
i
sy
j
s = P (x0, y0)e

−
∫ s
0 R(xα,yα)dα

−r
2

∑
i>1

pi,1

∫ s

0
i(xu)ie−

∫ s
u R(xα,yα)dαdu− r

2

∑
j>1

p1,j

∫ s

0
j(yu)je−

∫ s
u R(xα,yα)dαdu

+d

∫ s

0
xuyu

(
1

1− xu
+

1

1− yu

)
e−

∫ s
u R(xα,yα)dαdu. (3.32)

Notice that the r.h.s. of (3.32) depends only on the pi,1’s and p1,j ’s, while the l.h.s. depends on all pi,j ’s.
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Proposition 3.5. Let s0 > 0 be defined in (3.26). We have:

P (x0, y0) =
r

2

∑
i>1

pi,1

∫ s0

0
i(xu)ie

∫ u
0 R(xα,yα)dαdu

+
r

2

∑
j>1

p1,j

∫ s0

0
j(yu)je

∫ u
0 R(xα,yα)dαdu

− d

∫ s0

0
xuyu

(
1

1− xu
+

1

1− yu

)
e
∫ u
0 R(xα,yα)dαdu. (3.33)

Before proving Proposition 3.5, let us show that the different quantities that appear in its state-
ment are well defined—indeed, this is a priori not clear: as α → s0, xα → 0 and yα → 0, in such a
way that R(xα, yα)→∞, see (3.2).

Lemma 3.6. Let i, j ∈ N. Then limu→s0(xu)i(yu)je
∫ u
0 R(xα,yα)dα is finite if and only if i+ j > 1—and

equals zero if and only if i+ j > 2.

Proof. First, since the only zero of any function of the form α exp(as) + β exp(bs) with αβ < 0 and
a 6= b has order one, the following function has a simple zero at s0:

− x0 + y0 − 2x0y0
x0 + y0 − 2(d/r)x0y0

exp(ru) + exp(du). (3.34)

Thanks to this and since s+, s− > s0, both xs and ys have a zero of order 1 at s0.
Moreover, with λ and µ defined in (3.12), we obtain that:

exp

(∫ u

0
R(xα, yα)dα

)
=

λ/µ+ 1− 1/µ

(λ/µ) exp(ru) + exp(du)− 1/µ
×

× λ/µ+ 1 + 1/µ

(λ/µ) exp(ru) + exp(du) + 1/µ

r/dλ/µ+ 1

(r/d)(λ/µ) exp(ru) + exp(du)
exp((r + d)u). (3.35)

It is indeed easy to check that the derivative of the logarithm of (3.35) is equal to R(xu, yu), for which
we have an explicit expression, see (3.2), (3.23) and (3.24).

From (3.35), we see that e
∫ u
0 R(xα,yα)dα has three poles, namely at s0, s+, s−. The zero at s0 has

order one by using again the considerations on the zeros of (3.34). In particular, Lemma 3.6 follows
immediately. �

Proof of Proposition 3.5. Start by multiplying (3.32) by e
∫ s
0 R(xα,yα)dα and then let s → s0. Since

P (x, y) = xy
∑

i,j>1 pi,jx
i−1yj−1, see (1.4), and since lims→s0 xsyse

∫ s
0 R(xα,yα)dα = 0, see Lemma 3.6,

we obtain that
lim
s→s0

P (xs, ys)e
∫ s
0 R(xα,yα)dα = 0,

which concludes the proof of Proposition 3.5. �
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Remark 5. When (x0, y0) ∈ (0, 1)2, we also have (xu, yu) ∈ (0, 1)2 for all u ∈ (0, s0). Thus it is possible
to plug approximations of the p1,j ’s and pi,1’s into (3.33) thanks to the terms (xu)i and (yu)j . Using
that p1,i = 2d/(ri) + o(1/i) when i→ +∞, it is possible to find I0 sufficiently large so that:

r

2

∑
i>I0

pi,1

∫ s0

0
i
(
(xu)i + (yu)i

)
e
∫ u
0 R(xα,yα)dαdu

∼d
∫ s0

0

∑
i>I0

(
(xu)i + (yu)i

)
e
∫ u
0 R(xα,yα)dαdu

=d

∫ s0

0

( xI0+1
u

1− xu
+

yI0+1
u

1− yu

)
e
∫ u
0 R(xα,yα)dαdu

Thus:

P (x0, y0) =
r

2

I0∑
i=1

pi,1

∫ s0

0
i
(
(xu)i + (yu)i

)
e
∫ u
0 R(xα,yα)dαdu

+ d

∫ s0

0

(xu(xI0u − yu)

1− xu
+
yu(yI0u − xu)

1− yu

)
e
∫ u
0 R(xα,yα)dαdu+ o(xI0+1

0 + yI0+1
0 ). (3.36)

The latter expression shows that numerically, one can restrict to the computation of a finite number
of probabilities pi,1, for i 6 I0.

4 Numerical results

In this section, we present two different ways of approximating the extinction probabilities pi,j .

4.1 Probabilistic algorithm

A first possibility, if we are interested in a given initial condition (i, j), is to approximate pi,j by
Monte-Carlo simulations. For T > 0 large, we simulate M paths (X`

t , Y
`
t )t∈{1,...,T} started at (i, j),

for ` ∈ {1, . . . ,M}, independent and distributed as the process (Xt, Yt)t∈{1,...,T}. The extinction
probability is estimated by:

p̂M,T =
1

M

M∑
`=1

1l{∃t6T,X`
tY

`
t =0}.

The estimator p̂M,T is the proportion of paths that have gone extinct before time T .

Proposition 4.1. Let (i, j) be the initial condition. The estimator p̂M,T has the following properties:

(i) It is a convergent and unbiased estimator of Pi,j [τ0 6 T ].

(ii) Its variance is Pi,j [τ0 6 T ](1 − Pi,j [τ0 6 T ])/M , and hence we have the following asymptotic
95% confidence interval for pi,j:[

p̂M,T − 1.96

√
p̂M,T (1− p̂M,T )

M
; p̂M,T + 1.96

√
p̂M,T (1− p̂M,T )

M

]
. (4.1)

Proof. These results are straightforward consequences of the law of large numbers and central limit the-
orem, given that 1l{∃t6T,X`

tY
`
t =0} are independent Bernoulli random variables with parameter Pi,j [τ0 6

T ]. �
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Computing the extinction probabilities by Monte-Carlo methods yields good results if we are
interested in a given initial condition (i, j). We then have a complexity of order M × T . However,
biologists may be interested in investigating the extinction probabilities when the initial condition
(i, j) varies, and the method become computationally expensive.

4.2 Deterministic algorithm

For numerical approximations, we restrict ourselves to the computation of (pi,j)i,j∈{1,...,N} for a positive
(large) integer N . In this case, (1.7) can be approximated by the solution to a linear system.

Let us define pN = (p1,1, . . . , p1,N , p2,1, . . . , p2,N , . . . , pN,1, . . . , pN,N )T and TN is a N2×N2-matrix
with five non-zero diagonals:

TN =



A1 D 0 . . . 0

B2,1 A2 D
. . .

...

0 B3,2
. . .

. . . 0
...

. . .
. . .

. . . D
0 . . . 0 BN,N−1 AN


where D = r

2(r+d)IdN , Ai (i ∈ {1, . . . , N}) and Bi,i−1 (i ∈ {2, . . . N}) are the N ×N -matrices

Ai =



−1 r
2(r+d) 0 . . . 0

d
r+d

2
i+2 −1

. . .
. . .

...

0 d
r+d

3
i+3

. . .
. . . 0

...
. . .

. . .
. . . r

2(r+d)

0 . . . 0 d
r+d

N
i+N −1


,

Bi,i−1 =


d
r+d

i
i+1 0 . . . 0

0 d
r+d

i
i+2

. . .
...

...
. . .

. . . 0

0 . . . 0 d
r+d

i
i+N

 .

19



Let us also define the vector bN = (b1N , . . . , bNN )T ∈ RN×N such that:

b1N = −


− d
r+d

d
r+d

1
1+2
...

d
r+d

1
1+(N−1)

d
r+d

1
1+N + r

2(r+d) p̃1,N+1

 ,

biN = −


d
r+d

1
1+i

0
...
0

r
2(r+d) p̃i,N+1

 , for i ∈ {2, . . . , N − 1},

bNN = −



d
r+d

1
1+N + r

2(r+d) p̃N+1,1
r

2(r+d) p̃N+1,2

...
r

2(r+d) p̃N+1,N−1
r

2(r+d)

(
p̃N+1,N + p̃N,N+1

)


where p̃i,N+1 and p̃N+1,N are approximations of pi,N+1 given by Proposition 2.3. With these notations,
(1.7) rewrites as

TNpN = bN .

4.3 Results

We start with r = 3 and d = 2. For the Monte-Carlo simulation, we use M = 200 and T = 5000. For
the deterministic method, we use N = 50, so that (i, j) ∈ {1, . . . , 50}2. Estimators of the extinction

probabilities p̂
(1)
i,j and p̂

(2)
i,j obtained respectively from the methods of Sections 4.1 and 4.2 are plotted

in Figure 5. The results given by both methods are very similar, as shown by the statistics of Table 1.

In Table 1, we compute the square difference between the two predictions (p̂
(1)
i,j − p̂

(2)
i,j )2, the absolute

difference |p̂(1)i,j − p̂
(2)
i,j | and the relative difference |p̂(1)i,j − p̂

(2)
i,j |/p̂

(2)
i,j . For the latter, we consider only

the couples (i, j) where p̂
(1)
i,j and p̂

(2)
i,j do not vanish (else, the fraction is either not defined or either 1

whatever the value of p̂
(1)
i,j ).

Mean St.dev Min Max

Square error 3.24 10−5 2.47 10−4 1.68 10−36 4.63 10−3

Absolute error 1.34 10−3 5.53 10−3 1.30 10−18 6.81 10−2

Relative error 4.49 10−2 1.71 10−1 9.80 10−3 9.71 10−1

Table 1: Square, absolute and relative differences between the predictions of the stochastic method
when r = 3 and d = 2 (Section 4.1) and of the deterministic methods (Section 4.2). Recall that with
M = 200, the width of the confidence interval (4.1) is 6.92 10−2.

To carry further the comparison of the stochastic and deterministic method, and to observe the
influence of N on the quality of the approximation, we compute the relative quadratic error√∑

16i,j610

(
p̂
(2)
i,j − p̂

(3)
i,j

)2√∑
16i,j610

(
p̂
(2)
i,j

)2 or

√∑
16i,j610

(
p̂
(2)
i,j − p̂

(3)
i,j

)2√∑
16i,j610

(
p̂
(3)
i,j

)2 (4.2)
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Figure 5: Estimation of the extinction probabilities pi,j’s when r = 3 and d = 2: (a) with the
Monte-Carlo method of Section 4.1. (b) with the deterministic method of Section 4.2.

when p̂
(2)
i,j is the deterministic approximation for N ∈ {10, . . . , 50} and p̂

(3)
i,j is either given by the

deterministic approximation with N = 50, or by the stochastic approximation p̂
(1)
i,j with M = 200.

In the first case when p̂
(3)
i,j = p̂

(1)
i,j , the decrease in the quadratic errors stops around N = 18 around

0.0891. This corresponds roughly to the stochastic error of the law of large numbers (4.1) which

depends only on M . In the second case, when p̂
(3)
i,j is the deterministic approximation with N = 50,

the relative quadratic errors decrease exponentially fast in exp(−0.6842 N) (R2 = 99.92%).

In a second experiment, we choose r = 2.002 and d = 2. This case is more interesting in population
ecology, since small populations are of interest when they are fragile and endangered species. For the
Monte-Carlo simulation, we use M = 200 and T = 5000. For the deterministic method, we use

N = 100, so that (i, j) ∈ {1, . . . , 100}2. The estimated extinction probabilities p̂
(1)
i,j and p̂

(2)
i,j are

plotted in Figure 6, and statistics are computed in Table 2. Again, results from both methods are

similar. This is confirmed by computing the relative quadratic errors, with the p̂
(2)
i,j ’s obtained from

the deterministic method and the p̂
(3)
i,j = p̂

(1)
i,j ’s from the Monte-Carlo method. The decrease of this

error is exponential with N in exp(−0.0619 N) (R2 = 98.98%) as shown in Figure 6(c). It can be
noticed that in this case, the per! formances of the Monte-Carlo method match better the one of
the deterministic algorithm. This is due to the fact that Monte-Carlo methods fail to produce good
estimates of small probabilities (see [5] and references therein).

When the probabilities p̂
(3)
i,j ’s are given by the deterministic method with N = 50 in (4.2), we have as

in the previous case (r = 3) an exponential decrease of the relative quadratic error in exp(−0.1092 N)
(R2 = 95.07%).

Mean St.dev Min Max

Square error 6.27 10−3 6.25 10−3 8.42 10−10 5.31 10−2

Absolute error 6.89 10−2 3.90 10−2 2.90 10−5 2.31 10−1

Relative error 2.22 10−1 2.17 10−1 1.02 10−4 1

Table 2: Square, absolute and relative differences between the predictions of the stochastic method
when r = 2.002 and d = 2 (Section 4.1) and of the deterministic methods (Section 4.2). As in Table
1, since M = 200, the width of the confidence interval (4.1) is 6.92 10−2.
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Figure 6: Estimation of the extinction probabilities pi,j’s when r = 2.002 and d = 2: (a) with the
Monte-Carlo method of Section 4.1. (b) with the deterministic method of Section 4.2.
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Figure 7: Estimation of the extinction probabilities pi,j’s when r = 2.002 and d = 2: Decrease with
N of the log of the relative quadratic errors (4.2) between the deterministic and Monte-Carlo methods
(M = 200).

Acknowledgements

The authors warmly thank the referees for useful comments and suggestions.

References

[1] Aspandiiarov, S., Iasnogorodski, R., and Menshikov, M.: Passage-time moments for nonnegative
stochastic processes and an application to reflected random walks in a quadrant. Ann. Probab.
24 932–960 (1996)

[2] Athreya, K.B., and Ney, P.E.: Branching Processes. Springer (1970)

[3] Baldi, P., Mazliak, L., and Priouret, P.: Martingales and Markov chains. Chapmann & Hall
(2002)

[4] Billiard, S., and Tran, V.C.: A general stochastic model for sporophytic self-incompatibility.
Journal of Mathematical Biology, 64, No. 1-2, 163-210 (2012)
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