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ON THE DERIVED CATEGORY OF THE CAYLEY PLANE II

DANIELE FAENZI AND LAURENT MANIVEL

Abstract. We find a full strongly exceptional collection for the Cayley plane OP
2, the

simplest rational homogeneous space of the exceptional group E6. This collection, closely
related to the one given by the second author in [Man11], consists of 27 vector bundles
which are homogeneous for the group E6, and is a Lefschetz collection with respect to
the minimal equivariant embedding of OP

2.

Introduction

The Cayley plane. Let X = OP
2 be the Cayley plane. This is the closed orbit in the

projectivization of the minimal representation of the complex simply connected exceptional
Lie group E6. The Cayley plane can also be identified with the quotient E6/P1, where P1

is the parabolic subgroup of E6 corresponding to the root α1 of E6. This is sketched in
the diagram below, where the fundamental roots α1 . . . , α6 of E6 are depicted. We will
denote by ω1, . . . , ω6 the corresponding fundamental weights.

◦ ◦ ◦ ◦ ◦

◦

•
α1 α2 α3 α5 α6

α4

The aim of this note is to provide a full strongly exceptional collection of the derived
category of coherent sheaves on the Cayley plane. This completes [Man11], where a
strongly exceptional collection closely related to ours was found. But it was not proved
that this collection generates the whole derived category.

Our proof of this missing point has two important ingredients. On the one hand, we
use specific tensor relations between certain homogeneous bundles on the Cayley plane,
to show that some of these bundles belong to the category generated by our strongly
exceptional collection. This will be the done in Section 1. This allows us, on the other
hand, to use restriction to certain specific subvarieties of the Cayley plane, its maximal
quadrics, for which we know a full exceptional collection of the derived category. We will
do this in Section 2. Section 3 contains the proof of our result.
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2 DANIELE FAENZI AND LAURENT MANIVEL

The octonionic plane geometry. These maximal, 8-dimensional quadrics are called
O-lines since they are copies of OP

1. They define a (slightly degenerate) plane projec-
tive geometry over the Cayley octonions. Let us recall briefly the ingredients from this
geometry we will use in this note. For more details see [IM11].

The Cayley plane OP
2 ⊂ PVω1

has a twin OP̌
2 ⊂ PVω6

= PV ∗
ω1
. Both varieties are

isomorphic as embedded projective varieties, but not equivariantly. If x is a point of
OP

2, the orthogonal to its tangent space in PV ∗
ω1

cuts the dual Cayley plane OP̌
2 along a

smooth 8-dimensional quadric Q̌x. Symmetrically, each point ℓ in OP̌
2 defines a smooth

8-dimensional quadric Qℓ in the Cayley plane.
These quadrics are called O-lines because generically, they have the characteristic prop-

erties of a plane projective geometry: two general O-lines meet in a single point, and
through two general points pass a unique O-line. They can also be considered as entry-
loci in the following sense. The secant variety of OP

2 is a cubic hypersurface in PVω1

which we call the Cartan cubic [IM11]. This secant variety is degenerate (and therefore
equal to the tangent variety of the Cayley plane): this means that a general point y of
the Cartan cubic belongs to infinitely many secant lines to the Cayley plane; in fact, if
y itself does not belong to OP

2, the intersection locus of these secants with the Cayley
plane, traditionally called the entry-locus of y, is a smooth 8-dimensional quadric, and in
fact an O-line.

The main result. To state our main result, we need to setup some material. The
category of homogeneous bundles on the Cayley plane is equivalent to the category of
P1-modules. Let P1 = LP u be a Levi decomposition, where P u is the unipotent radical
and L is reductive. The center of the Levi factor L is one-dimensional. The quotient of L
by its center is the semisimple part of P1, and is isomorphic to Spin10.

The unipotent radical P u has to act trivially on an irreducible P1-module, which is
therefore completely determined by its L-module structure. An irreducible L-module is
determined by its highest weight, a L-dominant weight of E6. The set L-dominant weights
is the set of linear combinations ω = a1ω1+ · · ·+a6ω6, with a2, . . . , a6 ∈ N and a1 ∈ Z. We
denote by Eω the homogeneous bundle on X corresponding to the irreducible L-module
determined by the weight ω.

Set S = Eω6
and S2 = E2ω6

. By the Borel-Weil theorem H0(X,S) ∼= V ∗
ω6

∼= Vω1
and S is

generated by its global section. In particular for any point x in the Cayley plane the fibre
S∗
x of the dual bundle can be considered as a subspace of Vω6

= V ∗
ω1
, and this subspace is

nothing else than the linear span of the O-line Q̌x.
Recall from [Man11] that S∗ ∼= S(−1) and S∗

2
∼= S2(−2). Consider the collections:

A = (S∗
2 ,S

∗,OX),

C = (S∗,OX).

Theorem. The Cayley plane admits the following full strongly exceptional collection:

Db(OP
2) = 〈A,A(1),A(2), C(3), C(4), . . . , C(11)〉.

This is a Lefschetz collection in the sense of [Kuz07]. It was used in [IM11] to study
the derived categories of 7-dimensional cubics.
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1. Generating new bundles from our exceptional collection

Given the exceptional collection appearing in our main result, we denote by D the full
subcategory of Db(X) generated by it:

D = 〈A,A(1),A(2), C(3), C(4), . . . , C(11)〉.

One may ask, what are the sheaves on X that do lie in D? Of course, the goal of this note
is to answer: all of them. In this section, we will first prove that some particular sheaves
lie in D . We will use these sheaves further on, to prove that the orthogonal of D in Db(X)
is zero, which amounts to our main result.

One of our main tools for getting new bundles from our generators of D will be the
following classical observation. Given a P1-module E, we can consider it as an L-module,
and then define a new P1-module structure by extending trivially to P u. We get the asso-
ciated graded module gr(E), which is a direct sum of irreducible P1-modules. Moreover,
E can be reconstructed from gr(E) by a series of extensions.

If we consider an irreducible bundle Eω defined by an L-dominant weight ω, the cor-
responding irreducible Spin10-representation has highest weight ω = a2ω2 + · · · + a6ω6.
Relations between representations of Spin10 will therefore imply relations between the
corresponding homogeneous bundles. For example, the following fact is general: if we
consider a fundamental representation corresponding to an extremal node of some Dynkin
diagram, its second skew-symmetric power contains the fundamental representation cor-
responding to the neighbouring node, and so on till we attain a triple node or a multiple
edge. For Spin10 this is particularly neat since these inclusions are in fact always iden-
tities. In particular the fundamental representation corresponding to the triple node can
be written as a wedge power in three different ways. To get the correct relations between
L-modules there remains to adjust the action of the one dimensional center, which can be
done by computing the first Chern class. Once we cross a triple node, the wedge power
contains (and will be equal in the cases we will be interested in) the irreducible represen-
tation whose highest weight is the sum of the two fundamental weights beyond the triple
node (this follows from Theorem 2.1 in [LM04]). We get:

Lemma 1. The homogeneous bundles defined by the fundamental representations of L can
be described as:

Eω6

∼= S, Eω5

∼= ∧2S, Eω3

∼= ∧3S,

Eω4

∼= TX , Eω2

∼= ΩX(2), Eω3

∼= ∧2TX ∼= Ω2
X(3).

Moreover, the wedge powers that come next are:

∧4S ∼= Eω2+ω4
, ∧3TX ∼= Eω2+ω5

, Ω3
X(4) ∼= Eω4+ω5

.

We already mentioned that we also have Eω1

∼= OX(1), the very ample line bundle which
defines the natural embedding of X into PVω1

. The twisted bundle S(1) is the normal
bundle of this embedding. The restricted Euler sequence reads:

0 → ΩPVω1
|X → Vω6

⊗OX(−1) → OX → 0,(1)
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while the conormal bundle sequence is:

0 → S∗(−1) → ΩPVω1
|X → ΩX → 0.(2)

We deduce that ΩX and TX are the middle cohomology, respectively, of the complexes:

0 → S∗(−1) → Vω6
⊗OX(−1) → OX → 0,(3)

0 → OX → Vω1
⊗OX(1) → S∗(2) → 0.(4)

In the next lemmas we deal with some twisted symmetric and exterior powers of S.

Lemma 2. We have an exact sequence:

0 → S∗

2
→ Vω6

⊗S∗ → (Vω1
⊕ Vω5

)⊗OX → (Vω6
⊕ Vω2

)⊗OX(1) → Vω1
⊗S∗(2) → S∗

2
(3) → 0.

In particular, S∗
2 (t) lies in D for 3 ≤ t ≤ 12.

Proof. We start with the exact sequence:

0 → S∗ → Vω6
⊗OX → Q → 0

and its symmetric square:

0 → S2S∗ → Vω6
⊗S∗ → ∧2Vω6

⊗OX → ∧2Q → 0.

Consider the composition:

S2S∗ → Vω6
⊗S∗ → S2Vω6

⊗OX → V ∗
ω6

⊗OX ,

where the rightmost morphism is defined by the polarization of the invariant cubic form
on Vω1

. We claim that the image of this composition is the one dimensional factor in the
decomposition S2S∗ = S∗

2 ⊕ OX(−1). Indeed, let c be an equation of the Cartan cubic in
PVω1

; we denote its polarisation in the same way. We know that the (dual) Cayley plane
is the singular locus of this hypersurface, and that it meets P(S∗

x), for any x ∈ OP
2, along

the quadric Q̌x. This means that we must have an identity of the form

c(s, s, v) = ℓ(v)q(s) ∀s ∈ S∗
x ⊂ Vω6

, ∀v ∈ Vω6
,

where q is an equation of Q̌x, and ℓ a linear form. This implies that the kernel of the
map S2S∗

x → V ∗
ω6

is the hyperplane defined by q, which is by [Man11] the fibre at x of the
bundle S∗

2 .
We thus get a complex:

0 → S∗
2 → Vω6

⊗S∗ → (∧2Vω6
⊕ Vω1

)⊗OX → K → 0,(5)

where the vector bundle K fits into the exact sequence:

0 → Vω1
/OX(−1) → K → ∧2Q → 0,(6)

where Vω1
/OX(−1) is the restriction to X of TPVω1

(−1). Note that the rightmost term of
this sequence is itself an extension:

0 → TX(−1) → Vω1
/OX(−1) → S → 0.

In order to prove the lemma there just remains to check that K is isomorphic to K∗(1):
this will allow to fit the exact sequence 5 and its twisted transpose into a single long exact
sequence, which is the desired complex since ∧2Vω1

∼= Vω2
, ∧2Vω6

∼= Vω5
, and V ∗

ω1

∼= Vω6
,

V ∗
ω2

∼= Vω5
.
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Recall that Q fits into an exact sequence:

0 → ΩX(1) → Q → OX(1) → 0,

from which we get the exact sequence:

0 → Ω2
X(2) → ∧2Q → ΩX(2) → 0.

Putting this exact sequence together with (6) and the exact sequence that follows, we
deduce a complex:

0 → TX(−1) → K → ΩX(2) → 0

whose middle cohomology is a vector bundle L fitting into the exact sequence:

0 → S → L → Ω2
X(2) → 0.

We claim that this extension is trivial. Indeed, all the construction being equivariant
with respect to the simply connected group E6, it must be defined by an invariant class
e ∈ Ext1X(Ω2

X(2),S)E6 . But a straightforward application of Bott’s theorem implies that
there is no non-zero such class. Hence L = S ⊕ Ω2

X(2). Now, using the same argument
we check that there is no non-trivial extension of L by TX(−1), and finally, no non-trivial
extension of L ⊕ TX(−1) by Ω2

X(2). This implies that K is completely reducible. More
precisely,

K ≃ S ⊕ Ω2
X(2) ⊕ TX(−1)⊕ Ω2

X(2) ≃ K∗(1).

Indeed, we already know that S ≃ S∗(1), and Ω2
X(2) ≃ ∧2TX(−1) by Lemma 1. �

Lemma 3. The bundle ∧2S = ∧2S∗(2) belongs to D2 = 〈S∗,OX ,OX(1),OX (2),S∗(3)〉.
In particular,

∧2S∗(t) ∈ D for 2 ≤ t ≤ 10.

Proof. Consider the adjoint representation Vω4
. By computing its restriction to Spin10

and adjusting the first Chern class, we obtain:

(7) gr(Vω4
⊗OX) ∼= TX ⊕ΩX ⊕ ∧2S(−1)⊕ OX .

Now, using (3) and (4) we get that TX belongs to 〈OX ,OX(1),S∗(2)〉 and ΩX

to 〈S∗(−1),OX (−1),OX〉, so that (7) ensures that ∧2S(−1) ∼= ∧2S∗(1) lies in
〈S∗(−1),OX (−1),OX ,OX(1),S∗(2)〉. This clearly implies our statement. �

Lemma 4. The bundle ∧3S ∼= ∧3S∗(3) lies in:

D3 = 〈OX ,S∗
2 (1),S

∗(1),OX (1),S∗(2),OX (2),OX (3)〉.

In particular,

∧3S∗(t) ∈ D for 3 ≤ t ≤ 11.

Proof. We have to check that ∧3S ∼= Ω2
X(3) (by Lemma 1) lies in D3. To do this, we take

the exterior square of the conormal sequence (2), and we twist by OX(3), so that we are
lead to ask if S2S∗(1), S∗ ⊗ΩPVω1

|X(2) and Ω2
PVω1

|X(3) belong to D3.

For the first bundle, recall from [Man11] the isomorphism S2S∗(1) ∼= S∗
2 (1) ⊕ OX . For

the second one, twisting by S∗ the Euler sequence (1) we see that S∗⊗ΩPVω1
|X(2) belongs
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to 〈S∗(1),S∗(2)〉. For the third bundle, note that Ω2
PVω1

|X(3) lies in 〈OX(1),OX (2),OX (3)〉.

This shows that ∧3S lies in D3.
Using the isomorphism ∧3S∗ ∼= ∧3S(−3), and Lemma 2, we deduce that ∧3S∗(t) lies in

D , for 3 ≤ t ≤ 11. �

Lemma 5. The bundle ∧4S ∼= ∧4S∗(4) lies in:

D4 = 〈S∗(1),OX (1),S∗(2),OX (2),S∗
2 (3),S

∗(3),OX (3),S∗(4)〉.

In particular,

∧4S∗(t) ∈ D , for 3 ≤ t ≤ 11.

Proof. By Lemma 1, we have ∧4S ∼= Eω2+ω4
. Using the same method as before we observe

that the completely irreducible bundle associated to Eω2
⊗Eω4

∼= ΩX(2)⊗TX is:

gr(Eω2
⊗Eω4

) = Eω2+ω4
⊕ ∧2S(1)⊕ OX(2).

Therefore, it we will be enough to show that the three bundles ΩX(2)⊗TX , ∧2S(1) and
OX(2) lie in the subcategory D4. This is obviously the case for OX(2), and also for ∧2S(1)
in view of Lemma 3. To show that ΩX(2)⊗TX lies in D4, we first tensor the complex (3),
twisted by OX(2), with its dual (4). The proof will be finished once we show that all the
terms appearing in the resulting complex lie in D4. This is clear for the twists of OX and
of S∗. But the only term which is not of this form is:

S∗ ⊗S∗(3) ∼= ∧2S∗(3)⊕ S∗
2 (3) ⊕ OX(2),

and we have already seen that ∧2S∗(3) ∼= ∧2S(1) lies in D4, as well as S
∗
2 (3) and OX(2). �

Set S3 = E3ω1
and recall from [Man11] that S3S ∼= S3 ⊕ S(1) and S∗

3
∼= S3(−3).

Lemma 6. The bundle S∗
3 (t) lies in D for 1 ≤ t ≤ 6.

Proof. Taking the symmetric cube of (2) twisted by OX , we get:

0 → S3S∗ → S2S∗ ⊗ΩPVω1
|X(1) → S∗ ⊗Ω2

PVω1
|X(2) → Ω3

PVω1
|X(3) → Ω3

X(3) → 0.

We look at the various terms of this sequence. The first one decomposes as S∗(−1)⊕ S∗
3 ,

and our aim is to understand which of its twists lie in D , so let us study the other terms.
The second term lies in 〈OX(−1),S∗

2 ,OX ,S∗
2 (1)〉, the third one in 〈S∗,S∗(1),S∗(2)〉, and

the fourth one in 〈OX ,OX(1),OX (2),OX (3)〉. So it remains to study the last term Ω3
X(3).

By Lemma 1 we know that Ω3
X(3) ∼= Eω4+ω5

(−1). Moreover we check that:

gr(Eω4
⊗Eω5

(−1)) ∼= Eω4+ω5
(−1) ⊕ Eω2+ω6

(−1)⊕ Eω4
,

gr(Eω2
⊗Eω6

(−1)) ∼= Eω2+ω6
(−1) ⊕ Eω4

.

We deduce that Ω3
X(3) lies in the category generated by Eω4

⊗Eω5
(−1), Eω2

⊗Eω6
(−1) and

Eω4
. Some of these terms are readily settled, for instance Eω4

∼= TX ∈ 〈OX ,OX(1),S∗(2)〉
by (4). Next, Eω6

(−1) ∼= S∗ and Eω2

∼= ΩX(2) ∈ 〈S∗(1),OX (1),OX (2)〉 by (3), so
Eω2

⊗Eω6
(−1) lies in 〈∧2S∗(1),OX ,S∗

2 (1),S
∗(1),S∗(2)〉, so Lemma 3 will take care of this

term.
It remains to analyze Eω4

⊗Eω5
(−1). First recall by Lemma 1 that this bundle

is isomorphic to TX ⊗∧2S∗(1). Moreover, TX ∈ 〈OX ,OX(1),S∗(2)〉, and by Lemma
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3, ∧2S∗(1) belongs to 〈S∗(−1),OX (−1),OX ,OX(1),S∗(2)〉. Recalling that S∗⊗S∗ ∼=
S∗
2 ⊕ ∧2S∗ ⊕ OX(−1) we deduce that:

TX ⊗∧2S∗(1) ∈
〈

∧2S∗(1),S∗
2 (1), {S

∗(r),OX(s), for −1 ≤ r, s ≤ 3},S∗
2 (4),∧

2S∗(4)
〉

.

Putting all these elements together, we get:

S∗
3 ∈

〈

{S∗
2 (p),S

∗(r),OX(s), for 0 ≤ p ≤ 4,−1 ≤ r ≤ 3,−1 ≤ s ≤ 3},∧2S∗(1),∧2S∗(4)
〉

.

Using Lemma 3 and Lemma 2, we deduce that S∗
3 (t) lies in D for 1 ≤ t ≤ 6. �

One can deduce from these lemmas that many more bundles lie in D . One example of
this is the next result, that we will need further on.

Corollary 7. We have:

∧2 S∗⊗S∗(t) ∈ D , for 2 ≤ t ≤ 9,(8)

∧3 S∗⊗S∗(t) ∈ D , for 5 ≤ t ≤ 8,(9)

∧4 S∗⊗S∗(t) ∈ D , for 5 ≤ t ≤ 7.(10)

Proof. In order to prove (8), first recall that by Lemma 3, we know that ∧2S∗(2) ∈
〈S∗,OX ,OX(1),OX (2),S∗(3)〉. We deduce that:

∧2S∗⊗S∗(4) ∈ 〈∧2S∗(2),OX (1),S∗
2 (2),S

∗(2),S∗(3),S∗(4),OX (4),S∗
2 (5),∧

2S∗(5)〉.

Therefore ∧2S∗⊗S∗(t) ∈ D for 4 ≤ t ≤ 9.
Now we use the relation:

(11) ∧2 S∗ ⊗S∗ ⊕ S∗
3
∼= S∗

2 ⊗S∗ ⊕ ∧3S∗,

which is easy to establish using Spin10-representations. With Lemmas 6 and 4 this implies
that S∗

2 ⊗S∗(t) ∈ D for 4 ≤ t ≤ 6. Then we can use the complex from Lemma 2, twisted
by S∗, and deduce that this is still true for t = 2, 3. Then ∧2S∗⊗S∗(t) also belongs to D

for t = 2, 3.
To prove (9), we use Lemma 4, and we tensor by S∗(−3) the generators of the sub-

category D3 appearing in this Lemma. We find that ∧3S∗ ⊗S∗ lies in the subcategory
generated by S∗(r), with −3 ≤ r ≤ 0 and by S∗ ⊗S∗(−2), S∗ ⊗S∗(−1), S∗

2 ⊗S∗(−2). All
these terms have been previously encountered. Using the relation (11), Lemma 6, Lemma
3 and Lemma 2 we get (9).

It remains to prove (10). We use Lemma 5 to see that:

∧4S∗⊗S∗ ∈
〈

∧2S∗(q),S∗
2 (p),S

∗(r),OX(s)
〉

,

with −3 ≤ q, p ≤ 0, −3 ≤ r ≤ −1, and −4 ≤ s ≤ −1. Now the relation (10) can be
deduced from Lemmas 2, 3 and 6. �
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2. Quadrics of dimension seven and eight in the Cayley plane

In order to prove our main result, a key idea is to restrict our exceptional collection
to the quadrics of dimensional 7 and 8 contained in X, for these quadrics are related to
dependency loci of sections of S. Let us first outline this relationship.

Recall that S is a globally generated bundle of rank 10. One can compute from [IM11]
that c10(S) = 0 and c1(S) = 5H, where H is the hyperplane class of X. So, a general
global section s of S vanishes nowhere, and we have a rank-9 vector bundle Ss on X,
having c1(Ss) = 5H, defined by the sequence:

(12) 0 → OX
s
−→ S → Ss → 0.

Lemma 8. Consider a vector bundle Ss as above and a global section σ of Ss. Then:

i) if the global section σ is general enough, then it vanishes on the union Qσ of three
smooth 7-dimensional quadrics,

ii) any smooth 7-dimensional quadric on the Cayley plane is a component of some Qσ.

Proof. A section s of S is defined by a vector v ∈ Vω1
, and s vanishes at x ∈ OP

2 if and

only if v belongs to the affine tangent space T̂xOP
2. This can happen only if v belongs to

the union of the tangent spaces to the Cayley plane, which is nothing else than the cone
over the Cartan cubic. In particular this cannot happen if v is general: this explains why
c10(S) = 0.

A section σ of Ss is defined by a vector ū ∈ Vω1
/Cv. It vanishes at x ∈ OP

2 if and

only if u belongs to the span of v and the affine tangent space T̂xOP
2. Generically, the

projective line generated by u and v cuts the Cartan cubic in three points y1, y2, y3, and
TxOP

2 must contain one of these three points. Suppose that this point is y1. Then x must
be on the entry-locus of y1, a smooth 8-dimensional quadric Q1. Moreover y1 must belong
to TxQ1, which means that x is on the polar hyperplane H1 to y1 with respect to Q1.
Finally, x has to belong to the 7-dimensional quadric Q1 ∩H1. The statement (i) follows.

To check (ii), let Q be a smooth 7-dimensional quadric. Observe that its linear span
〈Q〉 cannot be contained in OP

2, whose maximal linear spaces are only five dimensional
by [LM03, Corollary 7.19]. Since the Cayley plane is cut out by quadrics, this implies that

OP
2 ∩ 〈Q〉 = Q. If we choose a point z in 〈Q〉 \Q, its entry locus Q̃ is an 8-dimensional

quadric containing Q, which must therefore be a hyperplane section of Q̃, say Q = Q̃∩H.
Let y be the point of 〈Q̃〉 polar to H with respect to Q̃. Since Q is smooth, y does not

belong to Q̃, hence not to the Cayley plane either. A general line through y will allow to
define a section σ of some Ss such that Q is a component of Qσ. �

The following lemma might be of independent interest, and closely resembles [OSS80,
Theorem 2.3.2]. Let us denote by Qn a smooth quadric hypersurface in P

n+1. If n is odd,
we denote by Σ the spinor bundle on Qn. If n is even, we denote by Σ+ and Σ− the two
spinor bundle on Qn (see [Ott88]).

Lemma 9. Let n ≥ 3 and let E be a vector bundle on Qn. Then E splits as ⊕iOQn
(ai) if

and only if the restriction of E to some quadric surface Q2 ⊂ Qn splits as ⊕iOQ2
(ai).

The proof closely resembles the argument for P
n. We provide the argument for the

reader’s convenience.
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Proof. One direction is obvious, and it suffices to prove that E splits as ⊕iOQn
(ai) if the

restriction E|Qn−1
to a codimension one quadric splits as ⊕iOQn−1

(ai), for n ≥ 3. Consider
the exact sequence:

0 → E(t− 1) → E(t) → E|Qn−1
(t) → 0.

Since E|Qn−1
splits as ⊕iOQn−1

(ai), we have Hk(Qn−1, E|Qn−1
(t)) = 0 for 0 < k < n − 1

and for all t ∈ Z. Moreover, since E is locally free we must have Hk(Qn, E(t)) = 0 for
all k < n and t ≪ 0 as well as for k > 0 and t ≫ 0. We deduce that Hk(Qn, E(t)) = 0
for 1 < k < n − 1 and for all t ∈ Z. Note that H1(Qn−1, E|Qn−1

(t)) vanishes for all

t ∈ Z because n ≥ 3, so that, for any integer t, Hk(Qn, E(t−1)) maps onto Hk(Qn, E(t)).
This gives H1(Qn, E(t)) = 0 for all t ∈ Z. Applying the argument to E∗ and using Serre
duality, one gets Hn−1(Qn, E(t)) = 0 for all t ∈ Z.

Therefore, by [Knö87], E splits as the direct sum of line bundles, plus a direct sum of
twisted spinor bundles. But the restriction to Qn−1 of none of the bundles Σ, Σ+, Σ+ can
contain any of the summands OQn−1

(ai) (see [Ott88] for the behavior of the restriction of
spinor bundles to linear sections). So no spinor bundle occurs in the decomposition of E,
and we are done. �

The next proposition is the main ingredient of the proof of our main result. Roughly
speaking, it uses the lemmas of the previous section to describe the restriction to 7-
dimensional quadrics of a complex orthogonal to our collection. We will write RΦ the
right-derived functors of a left-exact functor Φ, and similarly for the left-derived LΦ of a
right-exact functor. Given a subvariety Z of X, we will denote by iZ the embedding of Z
in X.

Proposition 10. Let E be an object of the subcategory ⊥D of Db(X). Let Q = Q7 be a
smooth 7-dimensional quadric in X. Then Li∗Q(E) is a direct sum of shifts of OQ(11).

Proof. By Lemma 8, there exist s ∈ H0(X,S) and σ ∈ H0(X,Ss) such that Q is a
component of Q = Qσ, so that Q is the disjoint union of Q and two additional 7-
dimensional quadrics Q′ and Q′′. Denote by ΣQ the sheaf on Q that restricts to the
spinor bundle on Q, Q′ and Q′′, and set j = iQ.

Consider the following subcategories of Db(Q) and of Db(Q):

U = 〈OQ(5),OQ(6),Σ(6),OQ(7),OQ(8),OQ(9),OQ(10)〉,

V = 〈OQ(5),OQ(6),ΣQ(6),OQ(7),OQ(8),OQ(9),OQ(10)〉.

What we have to prove is that Li∗Q(E) lies in ⊥U . Indeed, by [Kap88], we have Db(Q) =

〈U ,OQ(11)〉, so that ⊥U = 〈OQ(11)〉. Hence any object of ⊥U is a direct sum of shifts
of OQ(11).

To prove that Li∗Q(E) lies in ⊥U , it is enough to show that Lj∗(E) lies in ⊥V . In order

to achieve this, since E lies in ⊥D , it suffices to prove that, given a generator v of V , the
sheaf Rj∗(v) ∼= j∗(v) lies in D . So we have to show that:

j∗(OQ(t)) ∈ D for 5 ≤ t ≤ 10,(13)

j∗(ΣQ(6)) ∈ D .(14)
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To accomplish this task, we first note that S|Q
∼= OQ ⊕OQ(1)⊕ΣQ. Then, we consider

the Koszul complex of the global section σ of Ss:

0 → ∧9S∗
s
∼= OX(−5) → ∧8S∗

s → · · · → ∧2S∗
s → S∗

s → OX → j∗(OQ) → 0.

It is now clear that, to prove (13) and (14) it suffices to prove, respectively, that:

∧p S∗
s (t) ∈ D for 0 ≤ p ≤ 9, and for 5 ≤ t ≤ 10,(15)

∧p S∗
s ⊗S∗(7) ∈ D , for 0 ≤ p ≤ 9.(16)

Let us first focus on (15). Taking exterior powers of (12), and of its dual, we get:

∧pS∗
s ∈ 〈∧pS∗,∧p−1S∗, . . . ,OX〉.

Note also that ∧pS∗
s
∼= ∧9−pSs(−5). We deduce that (15) holds as soon as:

∧pS∗(t) ∈ D , and ∧p S∗(p+ t− 5) ∈ D , for 0 ≤ p ≤ 4 and 5 ≤ t ≤ 10.

This last fact is clear for p = 0, 1. Moreover, it follows from Lemma 3 for p = 2, Lemma
4 for p = 3 and Lemma 5 for p = 4.

We now turn to the proof of (16). By the same argument as above, we reduce the
statement to:

∧pS∗(7)⊗S∗ ∈ D , and ∧p S∗(p+ 2)⊗S∗ ∈ D , for 0 ≤ p ≤ 4.

This is clear for p = 0. For p = 1, it amounts to:

∧2S∗(7),S∗
2 (7),OX (7),∧2S∗(3),S∗

2 (3),OX (2) ∈ D ,

which follows from Lemma 3 and Lemma 2. For p = 2, 3, 4, we can apply Corollary 7, and
we are done. �

The last lemma that will be useful to us here is an analogue of [OSS80, Theorem 3.2.1].

Lemma 11. Fix a point x ∈ X, and let E be an object of Db(X) such that, for any
8-dimensional quadric Q8 ⊂ X through x, we have

Li∗Q8
(E) ∼=

⊕

k

O
rk
Q8

[−k]

for some integers rk. Then:

E ∼=
⊕

k

O
rk
X [−k].

Proof. The argument follows the proof given in [OSS80] that any bundle on the projective
plane, which is trivial on any line through a given point, must be trivial. This proof applies
almost verbatim since the Cayley plane and its dual define a kind of plane projective
geometry. Let:

Bx = {(y, ℓ) ∈ OP
2 ×OP̌

2, x, y ∈ Qℓ}.

The second projection q : Bx → OP̌
2 maps Bx to Q̌x, and makes of Bx a locally trivial

fibration in smooth 8-dimensional quadrics over Q̌x. In particular, Bx is smooth of dimen-
sion 16. The first projection p : Bx → OP

2 is birational since a general point of the Cayley
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plane belongs to a unique O-line Qℓ passing through x. Recall also that q has a section ξ
defined by ξ(ℓ) = (x, ℓ) so p ◦ ξ is the constant map x, while of course q ◦ ξ is the identity.

Bx
p

��~~
~~

q   B
BB

X Q̌x

ξhh

Just as in [OSS80], we would like to find a complex F in Db(Q̌x) such that:

(17) Lq∗(F ) ∼= Lp∗(E).

Let us first check that this implies our statement. Note that, by (17), we have:

F ∼= L(q ◦ ξ)∗(F ) ∼= Lξ∗(Lq∗(F )) ∼= Lξ∗(Lp∗(E)) ∼= L(p ◦ ξ)∗(E) ∼=
⊕

k

O
rk
Q̌x

[−k],

where the last isomorphism holds since p ◦ ξ has constant value x, so L(p ◦ ξ)∗(E) is
obtained as (p ◦ ξ)∗(Li∗x(E)), and clearly Li∗x(E) ∼=

⊕

k C
rk
x [−k], by restriction from Q8,

since all the Lki∗Q8
(E) are free. Hence, we get:

Lp∗(E) ∼= Lq∗(F ) ∼=
⊕

k

O
rk
Bx
[−k],

and, in turn:

E ∼= Rp∗(Lp
∗(E)) ∼=

⊕

k

Rp∗(OBx
)rk [−k] ∼=

⊕

k

O
rk
X [−k],

where the last isomorphism is clear, since p being birational, Rp∗(OBx
) ∼= OX .

It remains to prove (17). We set:

F = Rq∗(Lp
∗(E)),

and we have a natural morphism in Db(Bx):

ϕ : Lq∗(F ) = Lq∗(Rq∗(Lp
∗(E))) → Lp∗(E).

We would like to prove that, for any ℓ ∈ Q̌x, this morphism restricts to an isomorphism in
the derived category Db(Qℓ) of the fibre Qℓ of q over ℓ, and this will finish the proof since
these fibres cover Bx. Denote by α the embedding of {ℓ} into Q̌x, by β the restriction of
q to Qℓ → {ℓ} and by γ the embedding Qℓ → Bx so that p ◦ γ = iQℓ

. We have to prove
that Lγ∗(ϕ) is an isomorphism. We write Lγ∗(ϕ) as:

(18) Lγ∗Lq∗Rq∗Lp
∗E → Lγ∗Lp∗E.

On the right-hand-side, we have natural isomorphisms:

Lγ∗Lp∗E ∼= L(p ◦ γ)∗E ∼= Li∗Qℓ
E ∼=

⊕

k

O
rk
Qℓ
[−k].

On the left-hand-side of (18), we have natural isomorphisms:

Lγ∗Lq∗Rq∗Lp
∗E ∼= Lβ∗Lα∗Rq∗Lp

∗E ∼= Lβ∗Rβ∗Lγ
∗Lp∗E ∼= Lβ∗Rβ∗Li

∗
Qℓ
E,

where the middle one is given by smooth base-change. So Lγ∗(ϕ) is the natural map:

Lβ∗Rβ∗Li
∗
Qℓ
E → Li∗Qℓ

E,
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which is clearly an isomorphism since Li∗Qℓ
E ∼=

⊕

k O
rk
Qℓ
[−k]. �

3. Proof of the main result

Here we prove that our subcategory D generates the whole Db(X). We have to show
that ⊥D = 0. The idea, inspired on an argument appearing in [BO95], is to restrict E to
the family of 8-dimensional quadrics in X through a given point. So let E be a complex
of coherent sheaves on X, lying in ⊥D = 0, and let us prove that E = 0.

We let x be a point of X such that, for all k, Hk(E) is locally free around x. We have:

Li∗x(E) ∼=
⊕

k

Lki∗x(E)[−k] ∼=
⊕

k

Hk(E)|x[−k] ∼=
⊕

k

C
rk
x [−k],

for some integers rk, with rk 6= 0 for finitely many k’s.

Let us first use 7-dimensional quadrics. So let Q7 be a smooth 7-dimensional quadric
contained in X and passing through x. In view of Proposition 10, Li∗Q7

(E) is the direct

sum of shifts of OQ7
(11), so that:

Li∗Q7
(E(−11)) ∼=

⊕

k

Lki∗Q7
(E(−11))[−k] ∼=

⊕

k

O
tk
Q7

[−k],

for some (finite) sequence of integers tk. All of these cohomology sheaves are free, so
restricting from Q7 to x each of the Lki∗Q7

(E(−11)) we must get Lki∗x(E(−11)) ∼= C
rk
x .

Hence tk = rk for each k.
Further, note that, given another smooth 7-dimensional quadric Q′

7 ⊂ X, meeting Q7,
we will have:

Li∗Q′

7

(E(−11)) ∼=
⊕

k

Lki∗Q′

7

(E(−11))[−k] ∼=
⊕

k

O
rk
Q′

7

[−k],

for the same sequence of integers rk. Indeed, the rank of the restricted free sheaves to any
point of Q7 ∩Q′

7 must agree.

Now let us move to 8-dimensional quadrics. For any smooth such quadric Q8 ⊂ X con-
taining x, we consider the (finitely many) non-zero sheaves Lki∗Q8

(E). We get finitely many

proper subschemes of Q8 as torsion loci of these sheaves, and we denote by τ(Lki∗Q8
(E))

the torsion locus of each Lki∗Q8
(E). So, we may find a family of smooth hyperplane sec-

tions Q7 of Q8, covering the whole Q8, such that, for any given k, τ(Lki∗Q8
(E)) does not

contain Q7. Let f be the linear form cutting Q7 in Q8. We have a long exact sequence:

· · · → Lk−1i∗Q7
(E) → Lki∗Q8

(E(−1))
f
−→ Lki∗Q8

(E) → Lki∗Q7
(E) → Lk+1i∗Q8

(E(−1)) → · · ·

Since τ(Lki∗Q8
(E)) 6⊃ Q7 for all k, all the maps f = Lki∗Q8

(f) in the above sequence are

injective. So Lki∗Q7
(E) ∼= (Lki∗Q8

(E))|Q7
, and we may split the above long sequence into

short exact sequences:

(19) 0 → Lki∗Q8
(E(−1))

f
−→ Lki∗Q8

(E) → Lki∗Q7
(E) → 0.

Using Proposition 10, this means that, for any k, the sheaf Lki∗Q8
(E(−11)) restricts to Q7

as O
rk
Q7

.
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We have a similar exact sequence for any other Q′
7 in our covering family of hyperplane

sections of Q8. Since all these sections Q
′
7 obviously meet Q7, using again (19) we get that,

for any k, the sheaf Lki∗Q8
(E(−11)) restricts to Q′

7 as O
rk
Q′

7

(for the same integers rk). In

particular Lki∗Q8
(E(−11)) is locally free of rank rk. Lemma 9 now gives Lki∗Q8

(E(−11)) ∼=

O
rk
Q8

.

We have thus, for all k, an isomorphism Lki∗Q8
(E(−11)) ∼= O

rk
Q8

. We would like to

conclude that E(−11) is itself isomorphic to
⊕

k O
rk
X [−k]. To achieve this, consider any

other smooth 8-dimensional quadric Q′
8 contained in X. By the same argument as above,

we get that, given any k, the sheaf Lki∗
Q′

8

(E(−11)) is free. The rank of this free sheaf

must be rk, since Q8 and Q′
8 meet at x, and restricting Lki∗

Q′

8

(E(−11)) to x must give

Lki∗x(E(−11)) ∼= C
rk .

We are now in position to apply Lemma 11 to obtain an isomorphism E(−11) ∼=
⊕

k O
rk
X [−k], so that E ∼=

⊕

k O
rk
X (11)[−k]. But E belongs to ⊥D , in particular

ExtiX(E,OX (11)) = 0 for all i. Therefore rk = 0 for all k, so E = 0. The proof is
now complete.
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Université de Pau et des Pays de l’Adour, Avenue de l’Université - BP 576 - 64012 PAU
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