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Abstract:

This paper presents an approach to computing teardtow curve from torque-rotational
velocity data in a Couette rheometer. The approttonaechniques in shear rate calculation
are generally dictated by the radius ratio betweeaxial cylinders and the rheological
behaviour of fluid tested. Here, the approach &®ssn analysing the sheared material as a
Bingham fluid and computing an average shear rdtenvthe fluid in the cylindrical gap is
partially and fully sheared. We focus in particulam the applicability of the Bingham
approximation in shear rate calculation. First,dperoach is assessed by examining synthetic
data generated with Newtonian, non-Newtonian areldystress materials with known
properties, varying the gap radius ratio. The teswhich are compared with commonly used
techniques in shear rate calculation, prove thevegice of the proposed approach. Then, its
efficiency is examined by applying it to procesu€ibe data of yield stress fluids taken from
published works.
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1. Introduction

The Searle-Couette system or rotational coaxiaindgl viscometer is widely used for

rheological measurements. It consists of two coaxiinders with a fluid being placed in the



annulus between them. The torque and rotationalcitgl of the inner cylinder are measured
to determine shear stress and shear rate. The stness can be directly calculated from the
measured torque. However, the problem involved eteminining the shear rate is not as
straightforward and has been the subject of intensesearch for a long time. Actually, in
such a geometry, the shear stress and shear eatotauniformly distributed within the gap
[1]. Moreover, correct evaluation of shear ratarthstion is not independent of the fluid type
and requires an a priori assumption of a fluid nholl@lso depends on the gap size between
the cylinders. So, numerous methods or solutions baen proposed for the determination of
shear rate value. The first attempt in evaluatirgshear rate is attributed to Mooney [2] who
considered the shear rate to be homogeneous \hihigap. He also assumed the shear stress
to be the arithmetic mean of the stresses in thedml cup surfaces. Later, to correct the
homogeneous approximation, Moore and Davies [3lvddrthe infinite series for the shear
rate corresponding to the geometric means of tearséiresses at the bob and cup surfaces.
Finally, Krieger and Elrod [4] derived an infinigeries for the shear rate at the bob that can
be arranged in closed form so that the dominam teridentical to the power-law behaviour
[5]. Yang and Krieger [6] also used a series sotuprocedure to a model fluid with yield
stress. Darby [7] and Nguyen and Boger [1] havewshthat Krieger's approach did not
correctly predict the shear rate at the bob ofdysttess fluids in particular when the fluid is
partially sheared within the gap. Krieger's applo& also limited for noised experimental
data [8]. Recently, Yeow and co-workers [9-11] haveposed the Tikhonov regularization
method to evaluate the Couette shear flow curweanbus materials. The main advantage of
this method is two-fold: it requires neither gappmgximation nor prespecification of
rheological constitutive equation. However, thehkov regularization method depends on
the proper choice of a regularization parameteriaddces iterative procedure to obtain flow
curve and yield stress value when it exists. Meaently, Ancey [12] has reviewed the so-
called Couette inverse problem and has used wavatptelette decomposition to recover the
shear rate at the bob. This approach has been skmvire particularly appropriate for
complex fluids such as yield stress material amhglar suspension. With such an approach,
rheological behaviour and gap approximation areneetded. Nevertheless, the procedure first
requires the filtering of the data. Lately, de Ha@ogl Anderssen [13] derived the flow curve
of Couette rheometer data from the Euler-Maclagum formula solution of the equation
given by Krieger and Elrod [4]. The performance tbis formula has been numerically
analysed and demonstrated from non-Newtonian agld giress material Couette data under

narrow gap limitation.



As previously proposed, the purpose of the presenk is to develop a method for analysing
the Couette viscometer data. The approach considenasists in approximating the sheared
material as a Bingham fluid and computing an avesttear rate at the bob when the annulus
is partially and/or fully sheared, as detailed iectoon 2. The applicability and the
performance of the proposed approximation technigughear rate calculation is given and
analysed numerically in section 3, considering N&ndn, non-Newtonian and yield stress
materials and various annular gaps. The propospdaph has also been shown to allow
appropriated flow curves to be recovered. ThenBingham approximation is examined for
noisy ideal Couette rheometer data. It is finalppleed to published Couette experimental

data of yield stress materials in section 4.
2.Shear rate approximation technique

We consider the Couette geometry of an inner cglindalled the bob, of length h and radius
Ry, and an outer cylinder, called the cup, of radRuQ is the rotational velocity of the inner
cylinder. We assume that the inner cylinder rotaies outer cylinder is stationary and a no-
slip boundary condition is achieved between thesintylinder and the sheared fluid. The
fluid is also assumed to be incompressible andastiel, edge and inertia effects as well as
shearing effect in the bottom zone are neglected.

As previously mentioned, the shear stress exemeti@inner cylinder can be directly related
to the torque as follows:

M

r,(M)= Zmsz :

(1)

The shear stress at the bob is independent ofatueenof the fluid. The angular velocity can
N, 1)
Q:j—dr :—j—dr. 2)
R T 2; T

Several techniques allow equation (2) to be soludée commonly used approximations are

simple shear approximation, Newtonian approximatiGtower-law approximation and



Krieger method. These expressions are presentlyded for comparison purposes with the
analysis developed in this paper.
With a very narrow gap (R- R, < Ry), the system approaches simple shear Couette flow.

Assuming a uniform shear rate across the gap ¢ivds

_OR, _ Q
"R-R, a-1

y 3)

Where,a is the ratio of cup radius,.Ro bob radius R andQ is the angular velocity (rad/s).
For the gap to be classed as narrow, st be greater than 0.97 [15]. When calculating
shear rates with this approximation, correspondwerage shear stress proposed by Mooney
[2] should be used.

M@+a?)

r =1(r +7,) =
a 2 c b 477hRC2

(4)

Where 7, is the average shear stregs,is the shear stress at the cup, apds the shear

stress at the bob.
For Newtonian fluids, the shear rate at the bola iconcentric geometry can be calculated

from the following expression [14, 16],

y=2Q( a’ j (5)

a’-1

Commercial viscometers frequently use equationqapproximate the shear rate. Newtonian
shear rates need to be corrected for non-Newtoh&raviour with the correction term
depending on the extent of the deviation from Newao behaviour. The shear rate factors
may differ according to the equations used andsibe of the gap, as respectively shown by
Martinez-Padilla and Rivera-Vargas [17] and Joy8].[lIn order to minimize errors in
calculated shear rates it is advisable to work wiahcentric cylinders which have a narrow
gap. Yet, the difficulty of coping with suspensiartentaining large particles is an important
limitation of narrow gap approximation. As a conseqce, a wide gap is usually preferred to
study vyield stress materials. With such materialglug flow region may appear within the

gap as shown by [1] who have also proposed usmfplfowing expression:
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Equation (6) is the exact result for a bob rotatmgnbounded fluid.
For a power-law fluid, the shear rate at the bablmaderived [14] as,

.20 a?"

Ve 0
Where, n is the consistency coefficient. The floshéviour index is calculated by evaluating
the derivative of Int, with respect to InQQ [14]. In order to correct the non-Newtonian
behaviour of power-law fluids in concentric cylimdgeometry, an expression presented by

Krieger and Elrod [4] has been extensively used
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The Krieger solution is very close to power-law @gmation. So, when the flow behaviour
index, n, can be calculated at eag)) the power-law approximation solution provides

excellent approximation for the shear rate at tie b

In the present work, the rheological behaviour legased fluid is modelled by the Bingham

constitutive equation, which relates the shearsstreand the shear rage by the following

relationships:
r=K+uy, ifr >K. 9)

Where, K is the yield stress apds the plastic viscosity.

For a Bingham plastic model, two distinct condiformay occur in the annulus:
1)r,<K<r,; (2)r, >K. The first condition implies that a rigid plug Wooccurs in the
region near the cup, while the second one indictitasthe yield value is exceeded in the
entire annulus and the fluid within the gap isyfidheared. Therefore, the rotational velocity

has a separate solution corresponding to eacheskettwo solutions. The rotational velocity



can also be described in terms of torque, Binghardeihparameters and Couette geometrical

system as follows:

M___ K nm),if r, <k <z,, (10)
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Q= M (1 - 1)+5In[ij,ifrc>K. (11)
“ R

Equation (11) corresponds to the Reiner-Rivlin egpion.

The derivative of equations (10) and (11) with exgfo the torque yields

do . 1 K
dM  dryuR?®  2uM

. sKsr,, (12)
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The shear rate for the Bingham plastic model caexpeessed in terms of rotational velocity,
torque, radius of cylinders by combining equati@js (9), (12) and (13), as follows:

VZZMS—I\g/Iz,ifTCSKSTb, (14)
M9 gy 9@
y=2—dM _ dM_ it 7 >K. (15)
- |n(ij
R R

The first equation of shear rate corresponds tstihation developed by [1], see equation (6),
for a yield stress material partially sheared witthe gap. It can be noted that equation (14)
does not depend on the rheological model of th&l\s&ress fluid considered. The second
equation is used to recover the shear rate forymeid stress materials or for completely

sheared condition. So, as proposed in [1], therstaga is a combination of two expressions
following the flow condition in the annulus. It onsidered that the appropriate value of

shear rate is one which maximizes the energy ditisip in the flowing sample. Then, the



characteristic shear rate is defined as
y = max(equation (14); equation (L5)) . (16)

This does not require the knowledge of the flueldistress value a priori or the identification
of the flow regime in the annulus.

It is assumed that a series of torque measurerMr(tsorresponding to stress) are made at

a series of increasing (or decreasing) rotatioaQat The derivativeg—l\gll2 is approximated

Q -Q,. _ L
—MJ MJ ~ . Once the shear rate has been estimated by Egit(l55deemed to correspond

i i-1

by

to the following wall shear stress

T:%(Tj +Tj—1)' (17)

It is worth noting that the proposed equations @mestructed on the linear derivative of the
angular velocity versus the applied (or measurenfyjuie. Logarithmic derivatives are

nevertheless more appropriate for logarithmic emmeof the torque (or the velocity).

3. Numerical results

As was generally done in the works discussed inrttreduction, comparison of the various
shear rate approximations are investigated fromesgmtative fluids in the absence of noise.
Presently, we have considered Newtonian, power Kevschel-Bulkley and Casson fluids.
Here, the goal is to show that the Bingham appration allows for the appropriated flow
curves of different fluids to be recovered, indegmmtly of fluid behaviour and gap size, and
that the shear rate evaluation is better than ameirg from approximations mentioned
previously.

For the Newtonian and power law fluids, the shede is related to the shear stress by the

following relationships.
r=uy, (18)
r=ny". (19)

wherep is the viscosityy is the consistency and n the flow behaviour index.



The constitutive relationship for the generalizeerdd¢hel-Bulkley model has the following

form:

r=K+ny",whent >K. (20)

Where K is the yield stress.
As used in works concerning Couette rheometry [118 13], we have also considered a

Casson fluid. Its constitutive relationship is givey

\/7=\/E+\/W,Whenf > K. (21)

In the current study, the rheological and Couettengetrical parameters used to generate
torque simulated data are described in Table 1. Sdteof torque values are numerically
obtained from equation (1). For Newtonian and poaerfluids, the rotation rate relation can
be obtained analytically via respectively equatipand (7). The rotation rate of Herschel-
Bulkley and Casson fluids is obtained from the téndifference method witl\r = (R~
Rp)/100. We have considered three different radiugsa 1.04, 2 and 3, corresponding
respectively to narrow, moderate and large gapSauoette rheometer. As done in [1], the
performance of our approach compared to other appedions is estimated by computing
the percentage deviation of the calculated shearfram the true shear rate at the bob which

was taken from the fluid model assumed.

3.1 Newtonian and power law fluids

The errors in the shear rate of Newtonian fluid imadependent of shear stress for all the
radius ratios envisaged, respectively 1.04, 2 ars3®xpected, the Newtonian approximation
provides an accurate estimation of shear rate yatgaren shear stress. A similar result is
obtained from the Bingham approximation technicqeethe calculated errors are less than 10
Yo for the radius ratios used. The error involvedsing simple shear approximation appears
to be large, 5.7% with narrow gap and increase&?t6%, respectively 77% with increasing
radius ratio to 2, respectively 3. It is worth mgtithat it was checked that the shear rate of
eg.(15) is always greater than the one obtaineld edt(14), as expected, due to the viscous
behaviour of the fluid investigated here.

The power law fluid represents a more general tiesh the Newtonian fluid. Figure 1
compares the calculated errors in the shear ragefasction of shear stress for similar radius



ratios, respectively 1.04, 2 and 3, using our appnation, the Newtonian, the power law and
the simple shear approximations. A comparison ofspin Figure 1 shows that the simple
shear and Newtonian approximations perform poohly.previously mentioned, the error
involved increases with increasing radius ratideitds to 92.5%, respectively 66.3%, for the
large gap. As expected, the power law approximatrawvides the exact solution in calculated
shear rate for the three different radius ratios fusther shown in Figure 1, the performance
of the Bingham approximation is also quite accufateany radius ratio. It provides a suitable
value of shear rate. In the region up to a sheassiof 50 Pa, the error is respectively 0.35%
for narrow gap, 1% for moderate gap and the eanges 0.5 to 0.07 % as the shear stress
increases for large gap. Here again, it was chethkadthe shear rate of eq.(15) is always
greater than the one obtained with eq.(14).

3.2 Yield stress fluids

Figure 2 shows that the shear rate of the Herd8hldley fluid is accurately determined by
the solution of [1] when the fluid is partially sived, as would be expected. It also shows the
transition between both solutions which is pregeantled to compute the shear rate when the
yield stress is achieved at the cup and when tpebgaomes fully sheared. This provides a
first idea of the flow regime in the annulus. Whitse annulus is fully sheared, results in
Figure 2 demonstrate that commonly used approxanstare no longer applicable, whereas
the Bingham approximation provides accurate detaation of the shear rate.

When the annulus is fully sheared, as done witl Imatrrow and moderate gaps, results in
Figure 3 show that the Bingham approximation presithe best determination of the shear
rate of the Casson fluid. When a plug flow regiepiesent in the annulus, the shear rate here
is also correctly determined by the solution of. [BEigure 3 also clearly shows the transition
between both solutions and allows the flow regimaadition in the annulus to be detected. As
previously shown, the use of Newtonian approxinmatieads to substantial errors in
calculated shear rate of yield stress materiala éwefully sheared flow condition.

3.3 Influence of experimental noise

In order to evaluate the effects of experimentab@amn the performance of the Bingham
approximation technique in shear rate calculatiwg, have considered the Couette noise-

corrupted synthetic data of Casson fluid used by These authors have evaluated the



performance of the Thikonov regularisation from @&sson model fluid previously used in
[1] adding Gaussian random noise with zero mean staddard deviation of 10 % to the
rotational speed obtained from the Casson consttuequation. The first set of these
simulated noisy data, which are detailed in Talghg df [9] and presently used, corresponds
to a radius ratio of 1.1. As mentioned in [9], &ncbe noted that the fluid is completely
sheared with the narrow gap (radius ratio of IThe data corresponding to the moderate gap
(radius ratio of 2) are not used, because in thse cthe fluid is partially sheared [9] and the
solution of Nguyen and Boger [1] is sufficient teakiate the shear rate. The values of wall
shear stress are then used to determine the condisg torque from equation (1) and the
Couette geometry system. For comparison purposdiave considered the arithmetic mean
of the wall shear stress and shear rate at th@btained from synthetic data. As a result, one
can see in Figure 4 that the Bingham approximadmurately determines the shear rate at the
bob for the completely sheared condition. It alsoves that the calculated Couette shear flow
curve of noisy ideal Casson fluid appears to cpwed with the theoretical shear flow curve.
The average percentage deviation between the cechpatirve from the Bingham
approximation and the synthetic data is 5.3 %. Thisf the same order of magnitude as the
random noise added and the average deviation eot&iom the Thikonov regularisation [9].
To improve the resulting shear flow curve, it slddoe necessary to first smooth the data [12]
before applying the Bingham approximation techniguaise a centered difference for the

calculation of shear rate.

4. Experimental application

4.1 Tomato ketchup

Steffe [14] has published a set of Couette viscomaata for commercial tomato ketchup,
which has been used by Leong and Yeow [11] foratpral application of the Tikhonov
regularization. The dimensions of the Couette sysieed for the measurement are detailed
in [14] and the outer/inner radius ratio is 1.088, Steffe [14] has treated experimental data
using narrow gap approximation and also descriltiregtomato ketchup as a Power Law
fluid. The shear rate vs shear stress relationsibpsned by Steffe [14] is described in Fig. 5.
The shear stress range covered by his data is bet@2.85 Pa and 130.12 Pa. The lower
shear stress value obtained by Leong and Yeowi$14(.81 Pa while the higher shear stress
value is the one obtained by Steffe [14]. The shata-shear stress curve obtained from the

Bingham approximation, without first smoothing thiata, is shown in Fig. 5. Good
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correlation is achieved between the data of S{@é#é¢ and the present work, as also obtained
by [11] from the Tikhonov regularization. Becauge trotational velocityQ and torque M
values are used to iteratively process the Couattsometry data, the shear stress range
covered by our analysis is not as large as theconered by Steffe [14] and Leong and Yeow
[11]. It varies between 24.57 Pa and 113.28 PahEtmore, Figure 5 shows that Newtonian
approximation performs poorly compared to othehmegues while the gap is narrow, in
particular at high shear rate.

While Steffe [14] has used a power law model taesent the tomato ketchup flow curve,
Leong and Yeow [11] have shown that this materéd & yield stress equal to 18.45Pa. We
have modelled the shear flow curve obtained from Bingham approximation with the
general Herschel-Bulkley constitutive equation. Tyield stress value obtained is also
18.47Pa, as the flow index and consistency arsdhee than ones determined by Steffe [14].

This yield stress value is in accordance with #salts of Leong and Yeow [11].

4.2 Bentonite suspensions

Kelessidis and Maglione [19] have reported Coueitseometry data of aqueous bentonite
suspensions. This is reproduced in Table 2 foryigtd stress suspensions, respectively W2
(5 wt.% bentonite suspension) and W4 (6.42 wt. #idrate suspension). These authors have
evaluated in particular the shear rate and rhecédgiarameters of the suspensions from both
Casson and Robertson-Stiff constitutive equatiombich have also been compared to
Newtonian approximation results. The rotationatweiseter used in this work has a stationary
inner cylinder of 0.017245 mm in radius and 0.038 m height. The radius of the rotating
outer cup is 0.018415 mm. Here the radius ratid.®3678. Mixing of suspensions and
experimental procedure is described in [19]. Follmimhe steps previously mentioned, the
Bingham approximation is then applied to processatlly the data in Table 2. The resulting
shear rate-shear stress curves are given in Figui@ both suspensions and compared
respectively to the shear flow curve obtained byeksidis and Maglione [19] from Casson
model and Newtonian approximation. Figure 6 shohat tthe Bingham approximation
provides accurate determination of the Couette rsHeav of bentonite suspensions. The
average percentage deviation of the calculatedr shéa from the shear rate obtained from
Casson model is respectively less than 3 % for ba#pensions. Moreover, the Newtonian
approximation is shown to lead to a large errothie calculated shear rate even for narrow

gap and fully sheared flow, as predicted in [19]sHould be mentioned than the shear rate
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obtained from the Bingham approximation spans éimge 80-883 1/s for W2 and W4. This is
smaller that the shear rate range of [19] due ® rthmerical differentiation used in the
Bingham approximation.

5. Concluding remarks

In this paper we have proposed to evaluate ther sheain Couette rheometer assuming the
sheared material as a Bingham fluid. This provekgzarate shear rate solutions depending on
the flow regime within the gap. Where the materglpartially sheared, the shear rate is
accurately determined by the solution of [1]. Fompletely sheared flow condition, the
Bingham approximation presently developed proviaesiitable value of the shear rate. The
relevance of the processing Couette viscometry ftloenBingham technique approximation
has been investigated from both ideal and real,dalso using different viscometer
geometries. In the shear rate calculation, the lBang approximation technique has proven to
be a general and practical method for recoverirgGouette data of Newtonian and non-
Newtonian materials under various gap sizes. Heee shear rate values obtained from the
Bingham approximation technique appear to be bélien commonly used approximation
techniques in the shear rate calculation.

With yield stress materials, as the previous compas have shown, the presently used shear
rate calculation overcomes the problem of a pkoowledge of the yield stress value nor the
flow regime identification within the gap. It wasund that, when fully sheared flow is
achieved, the shear rate can be correctly computidg the Bingham approximation
technique. For narrow and moderate gaps, it wasvishibat the transition between both
solutions of shear rate allows the flow regime rfiodiion to be evaluated.

Shear rate calculation from Bingham approximatias lbeen successfully compared to
previous published Couette results of yield streaterials. The shear stress — shear rate range
obtained in this work covers an appropriate domaimle the processing computes a number
of discrete points rather than a continuous cursewas provided in [9,12]. The major
advantage of our analysis is that it does not reguarrow or wide gap approximation and
shear factor calculations. It can be finally notedt the Tikhonov regularization method
depends on the proper choice of a regularizatioarpater, for denoising the data. Here, the
set of torque-rotational velocity data and Cougdemetry system are only needed to process

the shear stress-shear rate curve.
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Figure captions

Figure 1. Errors in calculated shear rate of Powaw fluid using different shear rate

approximation techniques for various radius raf@sl.04 ; (b) 2 ; (c) 3.

Figure 2. Errors in calculated shear rate of Haxk8ulkley fluid using different shear rate

approximation techniques for various radius rafesl.04 ; (b) 2 ; (c) 3.

Figure 3. Errors in calculated shear rate of Cas8uoil using different shear rate

approximation techniques for various radius rafesl.04 ; (b) 2 ; (c) 3.

Figure 4. Comparison of the theoretical and comp@euette synthetic noisy Casson data.

Figure 5. Comparison of Couette shear flow curdemmato ketchup computed from Steffe

data, Newtonian and Bingham approximations.
Figure 6. Comparison of Couette shear flow curvebemtonite suspension computed with
true shear rate from Casson model, Newtonian andrim approximations — (a) bentonite

suspension W2 ; (b) bentonite suspension W4.

Table Captions

Table 1: geometrical and rheological parameterd tsgenerate synthetic Couette rheometer
data

Table 2: Rotational velocity vs wall shear stressaiqueous bentonite suspensions [19]
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Figure 1. Errors in calculated shear rate of Pokaaw fluid (n = 50 Pa.5; n = 0.3) using

different shear rate approximation techniques #otous radius ratios (a) 1.04 ; (b) 2 ; (c) 3.
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Figure 2. Errors in calculated shear rate of Hek8ulkley fluid using different shear rate

approximation techniques for various radius rafesl.04 ; (b) 2 ; (c) 3.
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approximation techniques for various radius raf@sl.04 ; (b) 2 ; (c) 3.
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Figure 6. Comparison of Couette shear flow curvebemtonite suspension computed with
true shear rate from Casson model, Newtonian andHim approximations — (a) bentonite
suspension W2 ; (b) bentonite suspension W4.
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Table 1: geometrical and rheological parameterd tsgenerate synthetic Couette rheometer
data

Fluid R (mm)|h (mm)| Step in torque (N.m) (Pa)| u (Pa.s) 1 (Pa.§) |n (-)
Newtonian 16 16 0.00046 - 100

Power law 16 16 0.0001 - 50 03
Herschel-Bulkley 14 20 0.008 300 50 0.6
Casson 16 16 0.0005 10D 1 -

Table 2: Rotational velocity vs wall shear stressaiqueous bentonite suspensions [19]

Rotational velocity (rpm) Ty (Pa) — suspension W2 | 1, (Pa) — suspension W4
600 39.25 64.42
300 32.33 53
200 29.5 48.17
100 25.67 41.33
60 23.67 38.25
6 19.17 30.58
3 19.08 31.42

25



