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Abstract: 

This paper presents an approach to computing the shear flow curve from torque-rotational 

velocity data in a Couette rheometer. The approximation techniques in shear rate calculation 

are generally dictated by the radius ratio between coaxial cylinders and the rheological 

behaviour of fluid tested. Here, the approach consists in analysing the sheared material as a 

Bingham fluid and computing an average shear rate when the fluid in the cylindrical gap is 

partially and fully sheared. We focus in particular on the applicability of the Bingham 

approximation in shear rate calculation. First, the approach is assessed by examining synthetic 

data generated with Newtonian, non-Newtonian and yield stress materials with known 

properties, varying the gap radius ratio. The results, which are compared with commonly used 

techniques in shear rate calculation, prove the relevance of the proposed approach. Then, its 

efficiency is examined by applying it to process Couette data of yield stress fluids taken from 

published works. 

 

Keywords: shear flow, Couette viscometer, rheometry, Bingham model 
 

1. Introduction 

 

The Searle-Couette system or rotational coaxial cylinder viscometer is widely used for 

rheological measurements. It consists of two coaxial cylinders with a fluid being placed in the 
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annulus between them. The torque and rotational velocity of the inner cylinder are measured 

to determine shear stress and shear rate. The shear stress can be directly calculated from the 

measured torque. However, the problem involved in determining the shear rate is not as 

straightforward and has been the subject of intensive research for a long time. Actually, in 

such a geometry, the shear stress and shear rate are not uniformly distributed within the gap 

[1]. Moreover, correct evaluation of shear rate distribution is not independent of the fluid type 

and requires an a priori assumption of a fluid model. It also depends on the gap size between 

the cylinders. So, numerous methods or solutions have been proposed for the determination of 

shear rate value. The first attempt in evaluating the shear rate is attributed to Mooney [2] who 

considered the shear rate to be homogeneous within the gap. He also assumed the shear stress 

to be the arithmetic mean of the stresses in the bob and cup surfaces. Later, to correct the 

homogeneous approximation, Moore and Davies [3] derived the infinite series for the shear 

rate corresponding to the geometric means of the shear stresses at the bob and cup surfaces. 

Finally, Krieger and Elrod [4] derived an infinite series for the shear rate at the bob that can 

be arranged in closed form so that the dominant term is identical to the power-law behaviour 

[5]. Yang and Krieger [6] also used a series solution procedure to a model fluid with yield 

stress. Darby [7] and Nguyen and Boger [1] have shown that Krieger’s approach did not 

correctly predict the shear rate at the bob of yield stress fluids in particular when the fluid is 

partially sheared within the gap. Krieger’s approach is also limited for noised experimental 

data [8]. Recently, Yeow and co-workers [9-11] have proposed the Tikhonov regularization 

method to evaluate the Couette shear flow curve of various materials. The main advantage of 

this method is two-fold: it requires neither gap approximation nor prespecification of 

rheological constitutive equation. However, the Tikhonov regularization method depends on 

the proper choice of a regularization parameter and induces iterative procedure to obtain flow 

curve and yield stress value when it exists. More recently, Ancey [12] has reviewed the so-

called Couette inverse problem and has used wavelet-vaguelette decomposition to recover the 

shear rate at the bob. This approach has been shown to be particularly appropriate for 

complex fluids such as yield stress material and granular suspension. With such an approach, 

rheological behaviour and gap approximation are not needed. Nevertheless, the procedure first 

requires the filtering of the data. Lately, de Hoog and Anderssen [13] derived the flow curve 

of Couette rheometer data from the Euler-Maclaurin sum formula solution of the equation 

given by Krieger and Elrod [4]. The performance of this formula has been numerically 

analysed and demonstrated from non-Newtonian and yield stress material Couette data under 

narrow gap limitation. 
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As previously proposed, the purpose of the present work is to develop a method for analysing 

the Couette viscometer data. The approach considered consists in approximating the sheared 

material as a Bingham fluid and computing an average shear rate at the bob when the annulus 

is partially and/or fully sheared, as detailed in section 2. The applicability and the 

performance of the proposed approximation technique in shear rate calculation is given and 

analysed numerically in section 3, considering Newtonian, non-Newtonian and yield stress 

materials and various annular gaps. The proposed approach has also been shown to allow 

appropriated flow curves to be recovered. Then, the Bingham approximation is examined for 

noisy ideal Couette rheometer data. It is finally applied to published Couette experimental 

data of yield stress materials in section 4. 

 

   2. Shear rate approximation technique 

 

We consider the Couette geometry of an inner cylinder, called the bob, of length h and radius 

Rb, and an outer cylinder, called the cup, of radius Rc. Ω is the rotational velocity of the inner 

cylinder. We assume that the inner cylinder rotates, the outer cylinder is stationary and a no-

slip boundary condition is achieved between the inner cylinder and the sheared fluid. The 

fluid is also assumed to be incompressible and inelastic, edge and inertia effects as well as 

shearing effect in the bottom zone are neglected. 

As previously mentioned, the shear stress exerted on the inner cylinder can be directly related 

to the torque as follows: 
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The shear stress at the bob is independent of the nature of the fluid. The angular velocity can 

be described in terms of shear stress and shear rate as follows: 
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Several techniques allow equation (2) to be solved. The commonly used approximations are 

simple shear approximation, Newtonian approximation, Power-law approximation and 
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Krieger method. These expressions are presently included for comparison purposes with the 

analysis developed in this paper. 

With a very narrow gap (Rc – Rb ≤ Rb), the system approaches simple shear Couette flow. 

Assuming a uniform shear rate across the gap gives [14] 
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Where, α is the ratio of cup radius, Rc to bob radius Rb, and Ω is the angular velocity (rad/s). 

For the gap to be classed as narrow, 1/α must be greater than 0.97 [15]. When calculating 

shear rates with this approximation, corresponding average shear stress proposed by Mooney 

[2] should be used. 
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Where aτ  is the average shear stress, cτ  is the shear stress at the cup, and bτ  is the shear 

stress at the bob. 

For Newtonian fluids, the shear rate at the bob in a concentric geometry can be calculated 

from the following expression [14, 16], 
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Commercial viscometers frequently use equation (5) to approximate the shear rate. Newtonian 

shear rates need to be corrected for non-Newtonian behaviour with the correction term 

depending on the extent of the deviation from Newtonian behaviour. The shear rate factors 

may differ according to the equations used and the size of the gap, as respectively shown by 

Martinez-Padilla and Rivera-Vargas [17] and Joye [18]. In order to minimize errors in 

calculated shear rates it is advisable to work with concentric cylinders which have a narrow 

gap. Yet, the difficulty of coping with suspensions containing large particles is an important 

limitation of narrow gap approximation. As a consequence, a wide gap is usually preferred to 

study yield stress materials. With such materials, a plug flow region may appear within the 

gap as shown by [1] who have also proposed using the following expression: 
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Equation (6) is the exact result for a bob rotating in unbounded fluid. 

 

For a power-law fluid, the shear rate at the bob can be derived [14] as, 
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Where, n is the consistency coefficient. The flow behaviour index is calculated by evaluating 

the derivative of ln τb with respect to ln Ω [14]. In order to correct the non-Newtonian 

behaviour of power-law fluids in concentric cylinder geometry, an expression presented by 

Krieger and Elrod [4] has been extensively used 
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The Krieger solution is very close to power-law approximation. So, when the flow behaviour 

index, n, can be calculated at each τb, the power-law approximation solution provides 

excellent approximation for the shear rate at the bob. 

 
In the present work, the rheological behaviour of sheared fluid is modelled by the Bingham 

constitutive equation, which relates the shear stressτ  and the shear rateγ&  by the following 

relationships: 

 
γµτ &+= K ,  if τ  > K. (9) 

 

Where, K is the yield stress and µ is the plastic viscosity. 

 
For a Bingham plastic model, two distinct conditions may occur in the annulus: 

(1) bc K ττ ≤≤ ; (2) Kc >τ . The first condition implies that a rigid plug flow occurs in the 

region near the cup, while the second one indicates that the yield value is exceeded in the 

entire annulus and the fluid within the gap is fully sheared. Therefore, the rotational velocity 

has a separate solution corresponding to each of these two solutions. The rotational velocity 
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can also be described in terms of torque, Bingham model parameters and Couette geometrical 

system as follows: 
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Equation (11) corresponds to the Reiner-Rivlin expression. 

 

The derivative of equations (10) and (11) with respect to the torque yields 
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The shear rate for the Bingham plastic model can be expressed in terms of rotational velocity, 

torque, radius of cylinders by combining equations (1), (9), (12) and (13), as follows: 
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The first equation of shear rate corresponds to the solution developed by [1], see equation (6), 

for a yield stress material partially sheared within the gap. It can be noted that equation (14) 

does not depend on the rheological model of the yield stress fluid considered. The second 

equation is used to recover the shear rate for non yield stress materials or for completely 

sheared condition. So, as proposed in [1], the shear rate is a combination of two expressions 

following the flow condition in the annulus. It is considered that the appropriate value of 

shear rate is one which maximizes the energy dissipation in the flowing sample. Then, the 
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characteristic shear rate is defined as 
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This does not require the knowledge of the fluid yield stress value a priori or the identification 

of the flow regime in the annulus. 

It is assumed that a series of torque measurements M j (corresponding to stressjτ ) are made at 

a series of increasing (or decreasing) rotation rate jΩ . The derivative 
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. Once the shear rate has been estimated by Eq. (16), it is deemed to correspond 

to the following wall shear stress  
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It is worth noting that the proposed equations are constructed on the linear derivative of the 

angular velocity versus the applied (or measured) torque. Logarithmic derivatives are 

nevertheless more appropriate for logarithmic variation of the torque (or the velocity). 

 

3. Numerical results 
 

As was generally done in the works discussed in the introduction, comparison of the various 

shear rate approximations are investigated from representative fluids in the absence of noise. 

Presently, we have considered Newtonian, power law, Herschel-Bulkley and Casson fluids. 

Here, the goal is to show that the Bingham approximation allows for the appropriated flow 

curves of different fluids to be recovered, independently of fluid behaviour and gap size, and 

that the shear rate evaluation is better than one coming from approximations mentioned 

previously. 

For the Newtonian and power law fluids, the shear rate is related to the shear stress by the 

following relationships. 

γµτ &= , (18) 

nγητ &= . (19) 

where µ is the viscosity, η is the consistency and n the flow behaviour index.  
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The constitutive relationship for the generalized Herschel-Bulkley model has the following 

form: 

nK γητ &+= , when τ  > K. (20) 

 
Where K is the yield stress. 

As used in works concerning Couette rheometry [1, 9, 12, 13], we have also considered a 

Casson fluid. Its constitutive relationship is given by 

 

γµτ &+= K , when τ  > K. (21) 

 
In the current study, the rheological and Couette geometrical parameters used to generate 

torque simulated data are described in Table 1. The set of torque values are numerically 

obtained from equation (1). For Newtonian and power law fluids, the rotation rate relation can 

be obtained analytically via respectively equation (5) and (7). The rotation rate of Herschel-

Bulkley and Casson fluids is obtained from the finite difference method with ∆r = (Rc-

Rb)/100. We have considered three different radius ratios, 1.04, 2 and 3, corresponding 

respectively to narrow, moderate and large gaps in Couette rheometer. As done in [1], the 

performance of our approach compared to other approximations is estimated by computing 

the percentage deviation of the calculated shear rate from the true shear rate at the bob which 

was taken from the fluid model assumed.  

 

3.1 Newtonian and power law fluids 

 
The errors in the shear rate of Newtonian fluid are independent of shear stress for all the 

radius ratios envisaged, respectively 1.04, 2 and 3. As expected, the Newtonian approximation 

provides an accurate estimation of shear rate at any given shear stress. A similar result is 

obtained from the Bingham approximation technique, as the calculated errors are less than 10-

11% for the radius ratios used. The error involved in using simple shear approximation appears 

to be large, 5.7% with narrow gap and increases to 62.5%, respectively 77% with increasing 

radius ratio to 2, respectively 3. It is worth noting that it was checked that the shear rate of 

eq.(15) is always greater than the one obtained with eq.(14), as expected, due to the viscous 

behaviour of the fluid investigated here. 

The power law fluid represents a more general test than the Newtonian fluid. Figure 1 

compares the calculated errors in the shear rate as a function of shear stress for similar radius 
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ratios, respectively 1.04, 2 and 3, using our approximation, the Newtonian, the power law and 

the simple shear approximations. A comparison of plots in Figure 1 shows that the simple 

shear and Newtonian approximations perform poorly. As previously mentioned, the error 

involved increases with increasing radius ratio. It tends to 92.5%, respectively 66.3%, for the 

large gap. As expected, the power law approximation provides the exact solution in calculated 

shear rate for the three different radius ratios. As further shown in Figure 1, the performance 

of the Bingham approximation is also quite accurate for any radius ratio. It provides a suitable 

value of shear rate. In the region up to a shear stress of 50 Pa, the error is respectively 0.35% 

for narrow gap, 1% for moderate gap and the error ranges 0.5 to 0.07 % as the shear stress 

increases for large gap. Here again, it was checked that the shear rate of eq.(15) is always 

greater than the one obtained with eq.(14). 

 

3.2 Yield stress fluids 

 
Figure 2 shows that the shear rate of the Herschel-Bulkley fluid is accurately determined by 

the solution of [1] when the fluid is partially sheared, as would be expected. It also shows the 

transition between both solutions which is presently used to compute the shear rate when the 

yield stress is achieved at the cup and when the gap becomes fully sheared. This provides a 

first idea of the flow regime in the annulus. When the annulus is fully sheared, results in 

Figure 2 demonstrate that commonly used approximations are no longer applicable, whereas 

the Bingham approximation provides accurate determination of the shear rate.  

When the annulus is fully sheared, as done with both narrow and moderate gaps, results in 

Figure 3 show that the Bingham approximation provides the best determination of the shear 

rate of the Casson fluid. When a plug flow region is present in the annulus, the shear rate here 

is also correctly determined by the solution of [1]. Figure 3 also clearly shows the transition 

between both solutions and allows the flow regime transition in the annulus to be detected. As 

previously shown, the use of Newtonian approximation leads to substantial errors in 

calculated shear rate of yield stress materials even for fully sheared flow condition. 

 
3.3 Influence of experimental noise 

 
In order to evaluate the effects of experimental noise on the performance of the Bingham 

approximation technique in shear rate calculation, we have considered the Couette noise-

corrupted synthetic data of Casson fluid used by [9]. These authors have evaluated the 
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performance of the Thikonov regularisation from the Casson model fluid previously used in 

[1] adding Gaussian random noise with zero mean and standard deviation of 10 % to the 

rotational speed obtained from the Casson constitutive equation. The first set of these 

simulated noisy data, which are detailed in Table 1(a) of [9] and presently used, corresponds 

to a radius ratio of 1.1. As mentioned in [9], it can be noted that the fluid is completely 

sheared with the narrow gap (radius ratio of 1.1). The data corresponding to the moderate gap 

(radius ratio of 2) are not used, because in this case, the fluid is partially sheared [9] and the 

solution of Nguyen and Boger [1] is sufficient to evaluate the shear rate. The values of wall 

shear stress are then used to determine the corresponding torque from equation (1) and the 

Couette geometry system. For comparison purpose, we have considered the arithmetic mean 

of the wall shear stress and shear rate at the bob obtained from synthetic data. As a result, one 

can see in Figure 4 that the Bingham approximation accurately determines the shear rate at the 

bob for the completely sheared condition. It also shows that the calculated Couette shear flow 

curve of noisy ideal Casson fluid appears to correspond with the theoretical shear flow curve. 

The average percentage deviation between the computed curve from the Bingham 

approximation and the synthetic data is 5.3 %. This is of the same order of magnitude as the 

random noise added and the average deviation obtained from the Thikonov regularisation [9]. 

 To improve the resulting shear flow curve, it should be necessary to first smooth the data [12] 

before applying the Bingham approximation technique or use a centered difference for the 

calculation of shear rate. 

 
4. Experimental application 

4.1 Tomato ketchup 

 
Steffe [14] has published a set of Couette viscometry data for commercial tomato ketchup, 

which has been used by Leong and Yeow [11] for a practical application of the Tikhonov 

regularization. The dimensions of the Couette system used for the measurement are detailed 

in [14] and the outer/inner radius ratio is 1.048. So, Steffe [14] has treated experimental data 

using narrow gap approximation and also describing the tomato ketchup as a Power Law 

fluid. The shear rate vs shear stress relationships obtained by Steffe [14] is described in Fig. 5. 

The shear stress range covered by his data is between 22.85 Pa and 130.12 Pa. The lower 

shear stress value obtained by Leong and Yeow [11] is 20.81 Pa while the higher shear stress 

value is the one obtained by Steffe [14]. The shear rate-shear stress curve obtained from the 

Bingham approximation, without first smoothing the data, is shown in Fig. 5. Good 
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correlation is achieved between the data of Steffe [14] and the present work, as also obtained 

by [11] from the Tikhonov regularization. Because two rotational velocity Ω and torque M 

values are used to iteratively process the Couette viscometry data, the shear stress range 

covered by our analysis is not as large as the one covered by Steffe [14] and Leong and Yeow 

[11]. It varies between 24.57 Pa and 113.28 Pa. Furthermore, Figure 5 shows that Newtonian 

approximation performs poorly compared to other techniques while the gap is narrow, in 

particular at high shear rate. 

While Steffe [14] has used a power law model to represent the tomato ketchup flow curve, 

Leong and Yeow [11] have shown that this material has a yield stress equal to 18.45Pa. We 

have modelled the shear flow curve obtained from the Bingham approximation with the 

general Herschel-Bulkley constitutive equation. The yield stress value obtained is also 

18.47Pa, as the flow index and consistency are the same than ones determined by Steffe [14]. 

This yield stress value is in accordance with the results of Leong and Yeow [11]. 

 

4.2 Bentonite suspensions 

 
Kelessidis and Maglione [19] have reported Couette viscometry data of aqueous bentonite 

suspensions. This is reproduced in Table 2 for two yield stress suspensions, respectively W2 

(5 wt.% bentonite suspension) and W4 (6.42 wt. % bentonite suspension). These authors have 

evaluated in particular the shear rate and rheological parameters of the suspensions from both 

Casson and Robertson-Stiff constitutive equations, which have also been compared to 

Newtonian approximation results. The rotational viscometer used in this work has a stationary 

inner cylinder of 0.017245 mm in radius and 0.038 mm in height. The radius of the rotating 

outer cup is 0.018415 mm. Here the radius ratio is 1.0678. Mixing of suspensions and 

experimental procedure is described in [19]. Following the steps previously mentioned, the 

Bingham approximation is then applied to process directly the data in Table 2. The resulting 

shear rate-shear stress curves are given in Figure 6 for both suspensions and compared 

respectively to the shear flow curve obtained by Kelessidis and Maglione [19] from Casson 

model and Newtonian approximation. Figure 6 shows that the Bingham approximation 

provides accurate determination of the Couette shear flow of bentonite suspensions. The 

average percentage deviation of the calculated shear rate from the shear rate obtained from 

Casson model is respectively less than 3 % for both suspensions. Moreover, the Newtonian 

approximation is shown to lead to a large error in the calculated shear rate even for narrow 

gap and fully sheared flow, as predicted in [19]. It should be mentioned than the shear rate 
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obtained from the Bingham approximation spans the range 80-883 1/s for W2 and W4. This is 

smaller that the shear rate range of [19] due to the numerical differentiation used in the 

Bingham approximation. 

 

5. Concluding remarks 

 
In this paper we have proposed to evaluate the shear rate in Couette rheometer assuming the 

sheared material as a Bingham fluid. This provides separate shear rate solutions depending on 

the flow regime within the gap. Where the material is partially sheared, the shear rate is 

accurately determined by the solution of [1]. For completely sheared flow condition, the 

Bingham approximation presently developed provides a suitable value of the shear rate. The 

relevance of the processing Couette viscometry from the Bingham technique approximation 

has been investigated from both ideal and real data, also using different viscometer 

geometries. In the shear rate calculation, the Bingham approximation technique has proven to 

be a general and practical method for recovering the Couette data of Newtonian and non-

Newtonian materials under various gap sizes. Here, the shear rate values obtained from the 

Bingham approximation technique appear to be better than commonly used approximation 

techniques in the shear rate calculation.  

With yield stress materials, as the previous comparisons have shown, the presently used shear 

rate calculation overcomes the problem of a priori knowledge of the yield stress value nor the 

flow regime identification within the gap. It was found that, when fully sheared flow is 

achieved, the shear rate can be correctly computed using the Bingham approximation 

technique. For narrow and moderate gaps, it was shown that the transition between both 

solutions of shear rate allows the flow regime modification to be evaluated. 

Shear rate calculation from Bingham approximation has been successfully compared to 

previous published Couette results of yield stress materials. The shear stress – shear rate range 

obtained in this work covers an appropriate domain, while the processing computes a number 

of discrete points rather than a continuous curve as was provided in [9,12]. The major 

advantage of our analysis is that it does not require narrow or wide gap approximation and 

shear factor calculations. It can be finally noted that the Tikhonov regularization method 

depends on the proper choice of a regularization parameter, for denoising the data. Here, the 

set of torque-rotational velocity data and Couette geometry system are only needed to process 

the shear stress-shear rate curve. 
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Figure captions 

 

Figure 1. Errors in calculated shear rate of Power Law fluid using different shear rate 

approximation techniques for various radius ratios (a) 1.04 ; (b) 2 ; (c) 3. 

 

Figure 2. Errors in calculated shear rate of Herschel-Bulkley fluid using different shear rate 

approximation techniques for various radius ratios (a) 1.04 ; (b) 2 ; (c) 3. 

 

Figure 3. Errors in calculated shear rate of Casson fluid using different shear rate 

approximation techniques for various radius ratios (a) 1.04 ; (b) 2 ; (c) 3. 

 

Figure 4. Comparison of the theoretical and computed Couette synthetic noisy Casson data.  

 

Figure 5. Comparison of Couette shear flow curves of tomato ketchup computed from Steffe 

data, Newtonian and Bingham approximations. 

 

Figure 6. Comparison of Couette shear flow curves of bentonite suspension computed with 

true shear rate from Casson model, Newtonian and Bingham approximations – (a) bentonite 

suspension W2 ; (b) bentonite suspension W4. 

 

Table Captions 

 

Table 1: geometrical and rheological parameters used to generate synthetic Couette rheometer 

data 
 

Table 2: Rotational velocity vs wall shear stress for aqueous bentonite suspensions [19] 
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Figure 1. Errors in calculated shear rate of Power Law fluid (η = 50 Pa.sn ; n = 0.3) using 

different shear rate approximation techniques for various radius ratios (a) 1.04 ; (b) 2 ; (c) 3. 
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Figure 2. Errors in calculated shear rate of Herschel-Bulkley fluid using different shear rate 

approximation techniques for various radius ratios (a) 1.04 ; (b) 2 ; (c) 3. 
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Figure 3. Errors in calculated shear rate of Casson fluid using different shear rate 

approximation techniques for various radius ratios (a) 1.04 ; (b) 2 ; (c) 3. 
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Figure 4. Comparison of the theoretical and computed Couette synthetic noisy Casson data.  
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Figure 5. Comparison of Couette shear flow curves of tomato ketchup computed from Steffe 

data, Newtonian and Bingham approximations. 
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Figure 6. Comparison of Couette shear flow curves of bentonite suspension computed with 

true shear rate from Casson model, Newtonian and Bingham approximations – (a) bentonite 

suspension W2 ; (b) bentonite suspension W4. 
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Table 1: geometrical and rheological parameters used to generate synthetic Couette rheometer 

data 

 

 

Fluid Ri (mm) h (mm) Step in torque (N.m) K (Pa) µ (Pa.s) - η (Pa.sn)  n (-) 

Newtonian 16 16 0.00046 - 100 - 

Power law 16 16 0.0001 - 50 0.3 

Herschel-Bulkley  14 20 0.008 300 50 0.6 

Casson  16 16 0.0005 100 1 - 

 
 

Table 2: Rotational velocity vs wall shear stress for aqueous bentonite suspensions [19] 

Rotational velocity (rpm) τb (Pa) – suspension W2 τb (Pa) – suspension W4 

600 39.25 64.42 

300 32.33 53 

200 29.5 48.17 

100 25.67 41.33 

60 23.67 38.25 

6 19.17 30.58 

3 19.08 31.42 

 


