
HAL Id: hal-00664429
https://hal.science/hal-00664429v2

Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniqueness for an ill-posed reaction-dispersion model.
Application to organic pollution in stream-waters

Faker Ben Belgacem

To cite this version:
Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic
pollution in stream-waters. 2012. �hal-00664429v2�

https://hal.science/hal-00664429v2
https://hal.archives-ouvertes.fr


Uniqueness for an ill-posed reaction-dispersion model.

Application to organic pollution in stream-waters

Faker Ben Belgacem∗

January 31, 2012

Abstract

We are concerned with the inverse problem of detecting sources in a coupled diffusion-reaction
system. This problem arises from the Biochemical Oxygen Demand-Dissolved Oxygen model(1)
governing the interaction between organic pollutants and the oxygen available in stream waters.
The sources we consider are point-wise and simulate stationary or moving pollution sources.
The ultimate objective is to obtain their discharge location and recover their output rate from
accessible measurements of DO when BOD measurements are difficult and time consuming to
obtain. It is, as a matter of fact, the most realistic configuration. The subject to address here
is the identifiability of these sources, in other words to determine if the observations uniquely
determine the sources. The key tool is the study of coupled parabolic systems derived after
restricting the global model to regions at the exterior of the observations. The absence of
any prescribed condition on the BOD density is compensated by data recorded on the DO
which provide over-determined Cauchy boundary conditions. Now, the first step toward the
identifiability of the sources is precisely to recover the BOD at the observation points (of DO).
This may be achieved by handling and solving the coupled systems. Unsurprisingly, they turn
out to be ill-posed. That issue is investigated first. Then, we state a uniqueness result owing to a
suitable saddle-point variational framework and to Pazy’s uniqueness Theorem. This uniqueness
complemented by former identifiability results proved in [2011, Inverse problems] for scalar
reaction-diffusion equations yields the desired identifiability for the global model.

keywords: Biochemical Oxygen Demand, Dissolved Oxygen, Stream Waters, Ill-posed Parabolic

systems, non-symmetric Mixed problem, saddle point theory, Pazy’s Uniqueness Theorem, point-

wise sources detection, Identifiability.

1 Introduction

Two indicators (tracers) are currently used in the analysis and management of stream water quality.

The Biochemical Oxygen Demand (BOD) is widely employed to measure the pollution extent due

to organic agents and then to evaluate the water characteristics. Another important constituent to

consider is the Dissolved Oxygen (DO), the oxygen absorbed by water and is therefore available to

biological micro-organisms and in general to aquatic life. Measuring the BOD is a procedure that

determines the amount of oxygen consumed by biological organisms for the oxidation of polluting

∗LMAC, EA 2222, Université de Technologie de Compiègne, BP 20529, 60205 COMPIEGNE Cedex, FRANCE.
1The acronym BOD-DO model is currently used.
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material contained in agricultural, domestic or industrial waste (see [24, 20, 4]). The increase in

BOD (at the expense of DO) is interpreted directly as the oxygen uptake in waters and is infor-

mative on the level of the organic pollution. We examine the reconstruction of pollution sources

by observing the depletion of the DO concentration caused by the elevation of the BOD density.

Notice that the ultimate objective of engineers is to know the Biochemical Oxygen Demand from

some given observations. The advantage of this coupled BOD-DO model is that Dissolved Oxygen

observations are much easier to conduct. Obtaining exploitable observations of Biochemical Oxy-

gen Demand requires several days which is too long a period in the identification of an accidental

spill where time is crucial (the standard is five days for BOD observations) (see [24]).

As detailed in [7, 18, 8], well developed models for rivers lead to time-dependent parabolic

boundary value systems (see also [21]). These models are in general one dimensional in the curvi-

linear abscissa of the river. The dispersion of the pollutant and of the deficit (with respect to

the saturation level) of the oxygen concentrations, denoted respectively by b(·, ·) and c(·, ·), are
governed by the partial differential equations

∂tb− (D(x)b′)′ +R(x)b = F (x, t) in (0, L)× (0, T )

∂tc−
(

D∗(x)c′
)′
+R∗(x)c−R(x)b = G(x, t) in (0, L)× (0, T )

b(0, t) = c(0, t) = 0 in (0, T )

D(L)b′(L, t) = D∗(L)c′(L, t) = 0 in (0, T )

b(x, 0) = c(x, 0) = 0 in (0, L).

where F (x, t) is a pollution source, G (x, t) is an oxygen source or sink. D,D∗ are the longitudinal

dispersion parameters and R,R∗ are the deoxygenation and rearation coefficients. They are all

dependent on the space variable x. The term R(x)b in the second equation on the DO is the deple-

tion of oxygen due to elevated BOD. The boundary condition at x = 0 indicates that the water is

clean upstream and the downstream condition at x = L results from the truncation of the domain

away from the source locations. Initial conditions indicates that the media is not polluted initially,

the Biochemical Oxygen Demand is zero and the Dissolved Oxygen is at the saturation level, the

deficit to the saturation is then zero. Throughout, we do not include the transport to the model

we intend to study in detail. This extension and some others are discussed in a separate section at

the end of the paper.

Often, the model treated in the literature consider the same diffusivity for the BOD and the

DO concentrations, that is D∗ = D. Nevertheless, when we are concerned with the interaction

between the DO and other oxidizable contaminants, such as phosphorus or nitrates, the dispersion

parameters are most likely to be different. We choose to handle the general case, given that it

arises some technical points that are worth to deal with.

Now, the direct BOD-DO problem that is when the source F and G are known beforehand, is

well-posed. It is triangular and both equations are weakly coupled. They may be handled sequen-

tially. Solve first the BOD equation to obtain b(·, ·). Then, cope with the DO equation where the
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global source term (G + Rb) is fully known. We are however concerned with the inverse problem

of determining (F,G) from data only given on c(·, ·). As will be seen later on the inverse problem

is strongly coupled and the uncoupling in the direct problem does not work anymore.

Given ζL, ζR two distinct monitoring points such that 0 < ζL < ζR < L, we suppose that the

following observations are available

B [F,G] =
{

(c(ζL, ·), D∗(ζL)c′(ζL, ·)), (c(ζR, ·), D∗(ζR)c′(ζR, ·)), 0 ≤ t ≤ T
}

. (1)

With the above observations alone, one cannot hope to uniquely determine any arbitrary source.

Some a priori information on the structure of the sources must be accessible. We suppose that each

source is spatially supported by a moving point contained within (ζL, ζR) and has a time-varying

strength. The sources are then expressed as

F (x, t) = f (t) δ(x− r(t)) in (0, L)× (0, T ) (2)

G (x, t) = g (t) δ(x− s(t)) in (0, L)× (0, T ). (3)

The symbol δ is for the Dirac distribution. The observations recorded at the two monitoring

points (ζL, ζR), should be located one upstream and the other downstream of the sources that is

ζL < r(t), s(t) < ζR for all t ∈ (0, T ) and the (pollution, oxygen deficit) rates (f, g) have finite

energies. The identifiability result shows that the trajectory of the pollution source and the vary-

ing rate of release can both be retrieved if the variations in DO concentration are observed at two

points. Many practical applications may be listed. One is the discrimination of the polluting agent

in a river. Moving sources would indicate the responsibility of a ship in the pollution while fixed

sources likely suggest the contribution of a factory. Another is to provide responsible authorities

with valuable information about the location and the extent of contamination to make enlightened

decisions of removing accidental organic pollution and clean-up stream-waters. This prevents eu-

trophication processes that are real threats to flora and fauna.

To our knowledge only partial results on the identifiability have been obtained on the inverse

problem. Previously, El Badia and Hamdi [13] and later Hamdi [16] considered the case where

no source G is active (G = 0) and the source F is point-wise with a fixed position r and a time-

dependent intensity, i.e. F (x, t) = f(t)δ(x− r). With the supplementary assumptions that the

physical parameters (D,D∗) and (R,R∗) are constants, that the source becomes inactive after a

given time T ∗ < T and at least one of the observations is made at a strategic point, they proved

an identifiability result. The result we pursue in this contribution is to consider and extend the

identifiability result to the most general situation. We first remove the source inactivity assumption

as well as the requirement that one observation point must be strategic(2). More importantly, we

suppose that the source is moving and our analysis holds for a large class of variable coefficients,

(D,D∗) and (R,R∗). Lastly, we show that with the same observation set, we can determine the

additional point-wise source, G. These generalizations are fundamentally those that are made in

2In the practice, it is hard and even impossible to tell whether an observation point is strategic or not. Indeed,
the set of non-strategic points is dense in (0, L).
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[2] regarding the simpler problem considered earlier in [12, 17]. Let us emphasize the fact that the

difference between [13] and our work is also methodological. We mainly use functional analysis tools

essentially coming from saddle point methodology while in [13], the authors made use of Fourier

computations which is valid only for constant (dispersion, reaction) cœfficients (D,R) and (D∗, R∗).

Since the identifiability process is conducted in several steps, we initially consider the coupled

problem set in both external cylindrical time-space sub-domains, that coincide with the portions

exterior to the observation points. The first and most difficult task will be to recover the Bio-

chemical Oxygen Demand concentration b(·, ·) at observation points ζL and ζR from known data in

(1). We have then to cope with two ill-posed parabolic systems set respectively in (0, ζL)× (0, T )

and in (ζR, L)× (0, T ). To state the uniqueness we choose a constructive formulation that will be

retained in the numerical implementation. The treatment of the boundary value problems, written

in exterior time-space strips is the subject of Section 2. Applying tools from the semi-group theory

requires to study the resolvent of the spacial operator involved in the coupled system. The approach

we follows relies on a suitable mixed variational formulation. The analysis of the resulting problem

is achieved owing to the non-symmetric saddle point theory developed in [5]. Then, the uniqueness

result established for the parabolic system is based on a theorem by A. Pazy (see [22, Chapter

4, Theorem 1.2]) that fits to a large class of ill-posed time-dependent problems. This uniqueness

result is announced in [3] and the proofs are provided here. Armed with this result, we prove in

Section 3 the identifiability of the sources (2)-(3) given the observation data on the dissolved oxygen.

Notation. The Lebesgue space of functions square integrable over I is denoted by L2(I). The

scale of Sobolev spaces Hσ(I), with σ ∈ R, are defined as in [1]. We use also the vector valued

Sobolev spaces L2
(

0, T ;Hσ(I)
)

and Hσ
(

0, T ;L2(I)
)

whose precise definitions are given in [19]. The

space L∞(I) is the space of functions essentially bounded in I. We use the bold symbols L2(I) or

H
1(I) for vector valued spaces, we have for instance L

2(I) = L2(I) × L2(I). Finally, we indicate

by C (I) the space of continuous functions in I. D(I) is the space of indefinitely differentiable

functions with a compact support in I and D ′(I) stands for the dual of D(I), the Schwarz space

of distributions. We refer to [1] for more details on these functional spaces.

2 An Ill-Posed Parabolic System

The milestone of the identification we have in mind is the investigation of two parabolic systems

obtained by restricting the coupled BOD-DO model to the strip (0, ζL)× (0, T ) for the first and to

(ζR, L)× (0, T ) for the other. Throughout, we conduct our study in the reference domain I = (0, π)

and we choose to rather consider lower case physical coefficients to make this section independent
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and self-contained. The first coupled system, the one related to (0, ζL)×(0, T ), reads then as follows

∂tb− (d(x)b′)′ + r(x)b = 0 in I × (0, T ) (4)

∂tc−
(

d∗(x)c′
)′
+ r∗(x)c− r(x)b = 0 in I × (0, T ) (5)

b(0, t) = c(0, t) = 0 in (0, T ) (6)

c(π, t) = α(t) in (0, T ) (7)

d∗(π)c′(π, t) = β(t) in (0, T ) (8)

b(x, 0) = c(x, 0) = 0 in I. (9)

Both (d, d∗) and (r, r∗) belong to L∞(I), are positive and are assumed to be piecewise continuous

on I. The dispersion parameters are also bounded away from zero. There exists a constant d > 0

such that d(x) > d and d∗(x) > d. The positivity assumption on (d, d∗) is necessary and the one

on (r, r∗) is only for convenience. It is possible at the cost of a suitable change of variable to write

down an equivalent time-dependent problem where r(x) > r > 0 and r∗(x) > r . Notice that

from now on we won’t indicate explicitly in the equations the dependence of the parameters on the

abscissa x.

The particularity here is that no boundary conditions are provided on b(·, ·) at point x = π while

c(·, ·) enjoys both Dirichlet and Neumann conditions. This fact induces a strong coupling between

the concentrations b(·, ·) and c(·, ·) and implies the necessity of a mixed formulation for the study,

as will be seen below. Notice that without loss of generality, one can consider for simplicity either

α = 0 or β = 0. We do not fix a choice now because we may need to adapt it to the context.

We begin by investigating the ill-posedness of this coupled system . Then, as currently done, we

study the problem where the boundary data (α, β) are replaced by volume sources (f, g), the main

objective pursued being to state a uniqueness result.

Remark 2.1 The other parabolic problem, corresponding to the restriction to (ζR, L)× (0, T ), can

also be set and studied on the reference segment (0, π). The boundary conditions (6), (7) and (8)

have to be interchanged and modified. The new conditions read as

d∗(π)b′(π, t) = d∗(π)c′(π, t) = 0 in (0, T )

c(0, t) = α∗(t) in (0, T )

d∗(0)c′(0, t) = β∗(t) in (0, T ).

The new Cauchy data (α∗, β∗) are those coming from the observations realized on the dissolved

oxygen by the monitoring station located at x = ζR. The analysis we undertake for the first

system (4)-(9) can be extended as well to this one with some slight adaptations, particularly on

the functional subspaces we use.

2.1 About Ill-Posedness

We assume throughout our discussion that β = 0. A formulation well fitted to investigate the ill-

posedness consists in treating for instance the normal derivative γ(t) = (db′)(π, t), ∀t as an unknown.
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Let then γ ∈ L2(0, T ) be given and define bγ the unique solution of the scalar reaction-diffusion

boundary value problem

∂tbγ − (db′γ)
′ + rbγ = 0 in I × (0, T )

bγ(0, t) = 0 in (0, T )

db′γ(π, t) = γ(t) in (0, T )

bγ(x, 0) = 0 in I.

Then, we construct cγ as the solution of the parabolic equation with rbγ as a source term

∂tcγ − (d∗c′γ)
′ + r∗cγ = rbγ in I × (0, T )

cγ(0, t) = 0 in (0, T )

d∗c′γ(π, t) = 0 in (0, T )

cγ(x, 0) = 0 in I.

With this notation, it is straight forward that the coupled system (4)-(9) may be reduced to the

following: Find γ ∈ L2(0, T ) that satisfies the following equation

Sγ(t) = cγ(π, t) = α(t) in (0, T ). (10)

It can be proved that the operator S is compact in L2(0, T ). This results from the regularity of

bγ and cγ . Indeed, S turns out to be bounded from L2(0, T ) into H3/2(0, T ). The compactness of

S comes then from the compactness of the canonical embedding of H3/2(0, T ) into L2(0, T ). We

refer to [10] for the technical details skipped over here. Let us stress the fact that the operator S

is weekly regularizing given that we have no better regularity than Sγ ∈ H3/2(0, T ). As a result,

the coupled problem is (mildly) ill-posed according to the classification by G. Wahba (see [25]) and

existence and stability for (10) are expected to fail.

To have a better insight we put S as a kernel operator. In the case where (d, d∗) and (r, r∗) are

constants, Fourier computations can be carried out. For simplicity, assume that d = d∗ = r = r∗ =

1. Formal calculations give (after setting λk = (k + 1/2)2 + 1)

bγ(x, t) =
2

π

∑

k∈N

(

(−1)k
∫ t

0
γ(s)e−λk(t−s) ds

)

sin((k + 1/2)x)

cγ(x, t) =
2

π

∑

k∈N

(

(−1)k
∫ t

0
γ(s)(t− s)e−λk(t−s) ds

)

sin((k + 1/2)x).

Plugging these formulas into the expression of S shows that it is a convolution operator. Indeed,

we have that

(Sγ)(t) =

∫ t

0
K(t− s)γ(s) ds ∀t ∈ (0, T ).

The convolution Kernel K(·) is given by

K(s) =
2

π

∑

k∈N
se−λks ∀s ∈ (0, T ).
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Problem (10) is then a Volterra Equation of the first kind. It can be explicitly shown that S ranges

from L2(0, T ) into H3/2(0, T ). The limited regularity of the kernel K(·) at the point s = 0, in

particular the fact that K ′(0) = +∞, confirms the mild ill-posedness. We refer to [15] for further

discussion on the ill-posedness of Volterra problems. Needless to say, the calculations that yield the

Volterra equation are not economically reasonable for non-constant cœfficients. Diagonalization of

the Sturm-Liouville operator is in general avoided.

2.2 Abstract Formulation

To investigate the uniqueness issue, we need to put the coupled system (4)-(9) into an abstract

form. Let f and g be given in L2(I × (0, T )), consider the time-dependent system

∂t

(

b
c

)

+A

(

b
c

)

=

(

f
g

)

, (11)

where A is an unbounded linear operator defined in L
2(I). The domain D(A) ⊂ L

2(I) is given by

D(A) =
{

(ϕ, ψ) ∈ H
1(I), ((dϕ′)′, (d∗ψ′)′) ∈ L

2(I)

ϕ(0) = ψ(0) = 0, ψ(π) = (d∗ψ′)(π) = 0
}

,

and the operator A is defined to be

A

(

ϕ
ψ

)

=

(

− (dϕ′)′ + rϕ

− (d∗ψ′)′ + r∗ψ − rϕ

)

. (12)

Remark 2.2 Another possible and natural characterization of the (same) domain of A is as follows

D(A) =
{

(ϕ, ψ) ∈ L
2(I), ((dϕ′)′, (d∗ψ′)′) ∈ L

2(I)

ϕ(0) = ψ(0) = 0, ψ(π) = (d∗ψ′)(π) = 0
}

.

The fact that it is embedded in H
1(I) may be derived by a hilbertian interpolation argument (see

[10]).

It is well known that the properties of equation (11) are tightly connected with the resolvent

R(λ) = (λ+A)−1 (see [10]). We need then to state existence and boundedness results for R(λ) in

L
2(I), when λ > 0. Before proving such results, we begin by studying the operator A itself. Let

(f, g) ∈ L
2(I), consider the existence and uniqueness of a solution of the problem

A

(

b
c

)

=

(

f
g

)

. (13)

To solve (13), we write down a mixed formulation which allows to express the problem as a saddle

point problem (see [6]).
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2.3 The Stationary System

To construct a variational formulation of (13), we proceed formally and we attempt at last to make

things mathematically rigorous with the accurate definition of the functional spaces we work in.

We multiply the first equation of (13) by a test function, ψ with ψ (0) = ψ (π) = 0, and integrate

over I to obtain
∫

I
db′ψ′ dx+

∫

I
rbψ dx =

∫

I
fψ dx. (14)

Similarly, we multiply the second equation of (13) by another test function, ϕ with ϕ (0) = 0, and

integrate which yields

∫

I
d∗c′ϕ′ dx+

∫

I
r∗cϕ dx−

∫

I
rbϕ dx =

∫

I
gϕ dx. (15)

Now, we need to render things more accurate and describe the spaces to which the unknowns (b, c)

belong and in which the variational problem makes sense. We define the spaces Q = H1
0 (I) and V

as follows

V =
{

ϕ ∈ H1(I) ϕ(0) = 0
}

.

Let us also introduce the two bilinear forms that are involved in equations (14) and (15). We

set then

a(χ, ϕ) = −
∫

I
rχϕdx ∀(χ, ϕ) ∈ V × V

m(∗)(ψ,ϕ) =
∫

I
d(∗)ψ

′ϕ′ dx+

∫

I
r(∗)ψϕdx ∀(ψ,ϕ) ∈ Q× V.

All these forms are continuous. With these new definitions, we can express equations (14) and (15)

as follows find (b, c) ∈ V ×Q verifying

m (b, ψ) = (f, ψ)L2 ∀ψ ∈ Q (16)

m∗(ϕ, c) + a(b, ϕ) = (g, ϕ)L2 ∀ϕ ∈ V. (17)

It is a non-symmetric mixed problem that does not fit into the saddle-point theory elaborated in

[6]. The suitable framework for non-symmetry can be found in [5].

Before going further into the analysis we need to be sure that the (weak) solution of this mixed

system satisfies also equation (13). This requires to check first that (b, c) lies in D(A) and second

that it fulfils the system (13). It holds that

Lemma 2.1 Let (b, c) ∈ V ×Q be the solution of the mixed problem (16)-(17). Then (b, c) ∈ D(A)

and satisfies equation (13).

Proof: Assume for the moment that the problem in equation (16)-(17) admits a solution (b, c) ∈V ×Q.

We begin with the first equation of (16) which says that b∈V satisfies

∫

I
db′ψ′ dx+

∫

I
rbψ dx =

∫

I
fψ dx ∀ψ ∈Q.
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Because b∈V , we have immediately that b (0) = 0. Let ψ ∈ D (I) be arbitrarily chosen. Integrate

by parts the first term in the above equation to find that

−
(

db′
)′
+ rb = f in D

′ (I) .

The fact that b∈L2 (I) yields that (db′)′ ∈L2(I) and the the above equality holds then in L2(I).

Aggregating these results, we have that b ∈ V satisfies

−
(

db′
)′
+ rb = f in I

b(0) = 0.

Next, we turn to the second equation (17). Having c∈Q produces immediately that c (0) = c (π) =

0. Now, let ϕ ∈ D (I). Integrating by parts the first term in (15) provides that

−
(

d∗c′
)′
+ r∗c− rb = g in D

′ (I) . (18)

Proceeding as was done for b, we arrive at the fact that (d∗c′)
′ ∈L2 (I) and that the above equality

holds also in this space. What remains to verify is that c satisfies the third boundary condition,

namely that d∗c′ (π) = 0. Taking ϕ∈V in (15) and integrating by parts yields

∫

I

[

−
(

d∗c′
)′
+ r∗c− rb− g

]

ϕdx = −d∗c′(π)ϕ(π).

On account of equation (18) we deduce that d∗c′ (π) = 0 when ϕ(π) 6= 0. Combining this with the

above results, we have

−
(

d∗c′
)′
+ r∗c− rb = g in I

c(0) = 0

c (π) = d∗c′ (π) = 0.

Any solution to (16)-(17) is hence a solution to (13). The proof is complete.

The next concern is to consider the issue of existence, uniqueness and stability issues for the

mixed problem (16)-(17) by using the analysis tools of [5, 6] where some conditions are given for

the existence and uniqueness of the (b, c). The first one states that the bilinear form a(·, ·) must

satisfy a couple of inf-sup conditions on the null-spaces of m(∗)(·, ·). The second is that each of

m(·, ·) and m∗(·, ·) fulfills an inf-sup condition in Q× V . Let us then denote by

N(∗) =
{

ϕ∈V, m(∗) (ϕ, ψ) = 0 ∀ψ ∈Q
}

.

We have that

Lemma 2.2 The bilinear form a(·, ·) satisfy the following inf-sup conditions, that is

inf
ϕ∈N

sup
χ∈N∗

a(ϕ, χ)

‖ϕ‖H1‖χ‖H1

≥ β, inf
ϕ∈N∗

sup
χ∈N

a(ϕ, χ)

‖ϕ‖H1‖χ‖H1

≥ β∗.

The constants β, β∗ are positive.
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Proof: Let us first observe that dim N(∗) = 1. Both results are therefore achieved if we simply

check that for a ϕ ∈ N , a(ϕ, χ) = 0 for all χ ∈ N∗, necessarily yields that ϕ = 0. To prove this, we

need to introduce ξ ∈ H1(I), the solution of the problem

−
(

dξ′
)′
+ rξ = 0 in I

ξ(0) = 0

ξ(π) = 1.

Denote by ξ∗ ∈ H1(I) its counterpart when the parameters are (d∗, r∗). Invoking the maximum

principle produces that ξ(x) > 0 for all x ∈ I \ {0} (see [14]). The same result holds for ξ∗. Next,

observe that any (ϕ, χ) ∈ N × N∗, may be obtained as (ϕ, χ) = (ϕ(π)ξ, χ(π)ξ∗). Now assume

that a(ϕ, χ) = 0, for all χ ∈ N∗. Choosing χ = ξ∗ necessarily yields that ϕ(π) = 0, given that

a(ξ, ξ∗) > 0. This ends to ϕ = 0. Stating that for a χ ∈ N∗, a(ϕ, χ) = 0, for all ϕ ∈ N , concludes

to χ = 0 can be done similarly. The proof is complete.

Lemma 2.3 The bilinear form m(·, ·) and m∗(·, ·) satisfy the inf-sup conditions in V ×Q,

inf
ψ∈Q

sup
ϕ∈V

m(ϕ, ψ)

‖ϕ‖H1‖ψ‖H1

≥ α, inf
ψ∈Q

sup
ϕ∈V

m∗(ϕ, ψ)
‖ϕ‖H1‖ψ‖H1

≥ α∗.

The constants α, α∗ are positive.

Proof: The inf-sup condition on m(·, ·) is derived easily. Because Q⊂V , we choose ϕ = ψ from

which we deduce that
m (ϕ, ψ)

‖ϕ‖H1‖ψ‖H1

=
m (ψ, ψ)

‖ψ‖2
H1

≥ α.

The desired result is therefore valid. The proof for m∗(·, ·) is achieved following the same lines.

All necessary tools for the well-posedness of the mixed problem (16)-(17) are available. We have

then

Proposition 2.4 The mixed problem (16)-(17) has a unique solution (b, c) ∈ V ×Q such that

‖b‖H1 + ‖c‖H1 ≤ C(‖f‖L2 + ‖g‖L2).

Proof: It is a direct consequence of the saddle point theory in [5] and Lemmas 2.2 and 2.3.

The next and most important point is to check the existence of the resolvent R(λ), for λ > 0,

and to derive its bound with respect to λ. Let us denote by Aλ = λ+A, then R(λ) = (Aλ)
−1. Let

now (f, g) ∈ L
2(I) and consider the equation

Aλ

(

bλ
cλ

)

=

(

f
g

)

. (19)

The invertibility of Aλ can be proved following the same lines as for A. Define a mixed problem like

in (16)-(17). The bilinear form a(·, ·) remains unchanged while the mixed form mλ(·, ·) is obtained

10



by shiftingm(·, ·) andm∗(·, ·) namely thatmλ(·, ·) = m(·, ·)+λ(·, ·) andm∗,λ(·, ·) = m∗,λ(·, ·)+λ(·, ·).
The new mixed problem consists therefore in: finding (bλ, cλ) ∈ V ×Q such that

mλ (bλ, ψ) = (f, ψ)L2 ∀ψ ∈ Q (20)

m∗,λ (bλ, ϕ) + a(bλ, ϕ) = (g, ϕ)L2 ∀ϕ ∈ V. (21)

Everything works just as well as for the problem (16)-(17). However, when it comes to the study

of the unsteady problem, we need an accurate knowledge of the stability constants and how they

grow with respect to λ. This has to do with the inf-sup constants of the bilinear form a(·, ·), when
restricted to Nλ × N∗,λ. The construction of Nλ and N∗,λ follows the one of N and N∗ where

mλ(·, ·) and m∗,λ(·, ·) are used instead of m(·, ·) and m∗(·, ·). The following holds

Lemma 2.5 There exists λ > 0 such that for all λ ≥ λ, the bilinear form a(·, ·) satisfy the inf-sup

conditions,

inf
ϕ∈Nλ

sup
χ∈N

∗,λ

a(ϕ, χ)

‖ϕ‖H1‖χ‖H1

≥ β

λ
, inf

ϕ∈N
∗,λ

sup
χ∈Nλ

a(ϕ, χ)

‖ϕ‖H1‖χ‖H1

≥ β∗
λ
.

The constants β, β∗ are positive and independent of λ.

Proof: The proof is based on tools from the asymptotic analysis. It is technical and postponed to

the Appendix.

Remark 2.3 We have also the following results

inf
ϕ∈Nλ

sup
χ∈N

∗,λ

a(ϕ, χ)

‖ϕ‖L2‖χ‖L2

≥ β, inf
ϕ∈N

∗,λ

sup
χ∈Nλ

a(ϕ, χ)

‖ϕ‖L2‖χ‖L2

≥ β∗,

for all λ ≥ λ. As will be seen later, these inf-sup conditions are the ones used to establish the

desired stability of the resolvent R(λ).

The following inf-sup conditions on m(∗),λ(·, ·) are also valid and their proofs can be conducted

using the same arguments as for Lemma 2.3.

Lemma 2.6 The bilinear form mλ(·, ·) and m∗,λ(·, ·) satisfy the inf-sup conditions in V ×Q,

inf
ψ∈Q

sup
ϕ∈V

mλ(ϕ, ψ)

‖ϕ‖H1‖ψ‖H1

≥ α, inf
ψ∈Q

sup
ϕ∈V

m∗,λ(ϕ, ψ)
‖ϕ‖H1‖ψ‖H1

≥ α∗.

The constants α, α∗ are positive and independent of λ.

We are well equipped to derive the stability on R(λ), needed for the uniqueness result of the

unsteady coupled problem.

Proposition 2.7 Let (f, g) ∈ L
2(I). The mixed problem (20)-(21) has a unique solution (bλ, cλ) ∈

V ×Q. The following estimates hold

‖bλ‖L2 ≤ C(
1

λ
‖f‖L2 + ‖g‖L2)

‖cλ‖L2 ≤ C

λ
(
1

λ
‖f‖L2 + ‖g‖L2).
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The resolvent R(λ) is then a bounded operator in L
2(I) with a uniformly bounded norm that is

‖R(λ)‖(L2(I)→L
2(I)) ≤ C ′ ∀λ ≥ λ. (22)

The constant C and C ′ are independent of λ.

Proof: Results by Lemmas 2.5 and 2.6 allow to derive the existence and uniqueness by applying

the saddle point theory (see [5]). Let us emphasize on the fact that it is necessary here to have

the inf-sup conditions of Lemma 2.5, written with the natural norms, those of H1. Now, that the

existence of (bλ, cλ) are guaranteed, we aim to show the stabilities with respect to the L2-norm, for

which the inf-sup condition provided in Remark 2.3 are better suited. To proceed with the stability

in the space L2(I), we assume first that f = 0. Then, we handle the general case by linearity.

On account of (20) (with f = 0), there comes out that bλ ∈ Nλ. Now, choosing ψ ∈ N∗,λ in (21),

we can write that

a(bλ, ψ) = (g, ψ)L2 , ∀ψ ∈ N∗,λ.

Calling for the first inf-sup condition in Remark 2.3, we obtain the following bound

‖bλ‖L2 ≤ C‖g‖L2 .

Returning to equation (21), choose ϕ = cλ, which lies in Q ⊂ V and is hence admissible, we can

state that

λ‖cλ‖2L2 ≤ (bλ, cλ) + (g, cλ).

Using the bound for bλ, previously stated, yields that

‖cλ‖L2 ≤ C

λ
‖g‖L2 .

Now, when the data f does not vanish, we argue by linearity. Thus, we split bλ into bλ := bλ+bλ(
3)

where bλ ∈ H1
0 (I) is the unique solution of

λbλ − (db′λ)
′ + rbλ = f in I.

Notice that bλ fulfills Dirichlet condition at both extremities of I. Moreover, it is readily checked

that

‖bλ‖L2 ≤ C

λ
‖f‖L2 .

Now, inserting the old bλ in the coupled system (20)–(21), we come up with a new one where the

unknowns are the new bλ and cλ. Besides, the data are changed to f := 0 and g := g + rbλ. The

stability sought for is therefore established owing to the first part of the proof together with the

stability on bλ. This completes the proof.

Remark 2.4 Bounds on the norm of (bλ, cλ) in H
1(I) and in D(A) may be derived. Indeed, it is

readily stated that

‖bλ‖H1 + λ‖cλ‖H1 ≤ C
√
λ(

1

λ
‖f‖L2 + ‖g‖L2)

‖(db′λ)′‖L2 + λ‖(d∗c′λ)′‖L2 ≤ Cλ(
1

λ
‖f‖L2 + ‖g‖L2).

The constant C is independent of λ

3A notation abuse is made here.
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2.4 A Uniqueness Result

The bound on the resolvent R(λ) in Proposition 2.7 does not allow the application of the Hille-

Yosida Theorem. Nevertheless, when we are only interested in the uniqueness, a result stated by

A. Pazy (see [22, Chapter 4, Theorem 1.2]) turns out to be sufficient. Let us provide this theorem

which ensures the uniqueness of the solution under a pretty weak assumption on the norm of the

resolvent. Recall that (b, c) is a solution of problem (11) if

(

b
c

)

∈ C ([0, T ];L2(I)) ∩ C (]0, T ];D(A)),

and satisfies equation (11) for all t ∈]0, T ]. We translate Pazy’s Theorem into the context of the

problem we are concerned with.

Theorem 2.8 (A. Pazy) If R(λ) exists for large real-numbers λ(≥ λ) and

lim sup
λ→+∞

1

λ
log ‖R(λ)‖(L2(I)→L

2(I)) = 0,

then the initial value problem (11) has at most one solution.

We are now in position to give and prove the key result of our work. The following proposition

holds.

Theorem 2.9 Problem (11) has at most one solution.

Proof: Proposition 2.7 tells that R(λ) is well defined for all λ ≥ λ. Moreover, owing to the

resolvent estimate (22) we derive that

lim sup
λ→∞

1

λ
log ‖R(λ)‖(L2(I)→L

2(I)) = 0.

Applying Pazy’s Theorem 2.8 achieves the proof.

3 The BOD-DO System. Identifiability of point-wise sources

We intend to apply the previous results to the original pollution source identification problem of the

Introduction. We show that the sources (2)-(3) are uniquely determined by the observation set (1).

We demonstrate this for moving sources with r(t), s(t), t ∈ (0, T ) still satisfying ζL < r(t), s(t) <

ζR, ∀t. The trajectories of both sources are assumed Lipschitz regular. We first consider two

solutions (bi, ci), i = 1, 2 of the dispersion-reaction system

∂tbi − (D(x)b′i)
′ +R(x)bi = Fi(t, x) in (0, L)× (0, T )

∂tci −
(

D∗(x)c′i
)′
+R∗(x)ci −R(x)bi = Gi(t, x) in (0, L)× (0, T )

bi(0, t) = ci(0, t) = 0 in (0, T )

D(L)b′i(L, t) = D∗(L)c′i(L, t) = 0 in (0, T )

bi(x, 0) = ci(x, 0) = 0 in I.

13



Following the notations in (2) and (3), we recall that Fi(t, x) = fi(t)δ(x − ri(t)) and Gi(t, x) =

gi(t)δ(x − si(t)). Without loss of generality, we suppose that r1 < r2 and that s1 < s2. The

objective is to show that
(

B [F1, G1] = B [F2, G2]
)

implies that (b1, c1) = (b2, c2) .

As a result, uniqueness of the sources will hold; namely that (r1, f1) = (r2, f2) and (s1, g1) = (s2, g2).

Let us first introduce the notations IL = (0, ζL) and IR = (ζR, L).

Before starting our analysis we need to recall the regularity of the solution (bi, ci). We need then

to fix the assumptions on the diffusion and reaction parameters (D,D∗) and (R,R∗). Suppose that

D,R ∈ L∞(I) and there exists D and R (4) two positive constants such that

D(x), D∗(x) ≥ D, R(x), R∗(x) ≥ R ∀x ∈ I.

The direct problem has a unique solution (see [10]),
(

bi
ci

)

∈ L2(0, T ;H1(0, L)) ∩ C ([0, T ];L2(0, L)). (23)

In particular, neither b(·, ·) nor c(·, ·) has no jumps across the trajectories (t, r(t))t∈[0,T ] and (t, s(t))t∈[0,T ].

They have well defined traces on those curves in the space-time domain. Now, denote by AL (re-

spectively AR) the operator defined in (12) when restricted to the intervals IL (respectively in

IR). Given that the sources (si(t), ri(t))t∈(0,T ) are permanently located in between the observation

points ζL and ζR, and the initial conditions are zero we have the additional regularity
(

bi
ci

)

∈ C ([0, T ];D(AL)) ∩ C ([0, T ];D(AR)). (24)

We begin by stating some preparatory lemmas. We have that

Lemma 3.1 Suppose that B [F1, G1] = B [F2, G2], then

(b1, c1) = (b2, c2) in (IL ∪ IR)× (0, T ).

Proof: Assume that B [F1, G1] = B [F2, G2]. Let us focus on IL × (0, T ). The same argument

applies as well to IR × (0, T ). Letting θ = (b2 − b1) and η = (c2 − c1). According to (23) and (24)

we have that
(

θ
η

)

∈ C ([0, T ],L2(I)) ∩ C ([0, T ], D(AL)).

Moreover, we can write the following system

∂tθ − (Dθ′)′ +Rθ = 0 in IL × (0, T )

∂tη −
(

D∗η′
)′
+R∗η −Rθ = 0 in IL × (0, T )

θ(0, t) = η(0, t) = 0 in (0, T )

η(ζL, t) = 0 in (0, T )

D∗η′(ζL, t) = 0 in (0, T )

θ(x, 0) = η(x, 0) = 0 in IL.

4The hypothesis on R and R∗ is optional and can be removed.
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On account of the uniqueness result established in Theorem 2.9, we derive immediately that (θ, η) =

(0, 0) in IL×(0, T ). According to Remark 2.1, the same result holds in the right portion IR×(0, T ).

The proof is complete.

Lemma 3.2 Assume that B [F1, G1] = B [F2, G2], then

(r1(t), f1(t)) = (r2(t), f2(t)), in (0, T ).

Proof: Assume that the equality B [F1, G1] = B [F2, G2] holds true. Set once again θ = (b2 − b1).

We have that

∂tθ −
(

Dθ′
)′
+Rθ = f2(t)δ(x− r2(t))− f1(t)δ(x− r1(t)) in I × (0, T )

θ(0, t) = 0 in (0, T )

Dθ′(L, t) = 0 in (0, T )

θ(x, 0) = 0 in I.

The proof is achieved step by step proceeding as in [2, Theorem 5]. To provide an idea about

the tools used there while avoiding technical details, we limit ourselves to stationary sources. We

assume then that (r1, r2) are time-independent with r1 < r2. We first look at the problem when

restricted to IL × (0, T ). By Lemma 3.1, we derive that θ = 0 in the cylinder IL × (0, T ). Then,

applying the unique continuation theorem (see [23]) we deduce that θ = 0 in (0, r1) × (0, T ).

Similarly, we have that θ = 0 in (r2, L)× (0, T ). Now rewriting the problem in (r1, r2)× (0, T ), we

obtain that

∂tθ −
(

Dθ′
)′
+Rθ = 0 in (r1, r2)× (0, T )

θ(r1, t) = θ(r2, t) = 0 in (0, T )

θ(x, 0) = 0 in (r1, r2).

The traces at r1 and r2 are plainly justified by the regularity (23) of b1 and b2. Then, we conclude

that θ = 0 in the whole I × (0, T ) and as a consequence we obtain that (in a distributional sense)

f1(t)δ(x− r1)− f2(t)δ(x− r2) = 0 in I × (0, T ).

This immediately implies that (r1, f1(t)) = (r2, f2(t)), ∀t ∈ (0, T ). The proof of the identifiability is

complete for stationary sources (r, f). It can be extended to moving sources at the cost of additional

technical work. We refer to [2, Theorem 11] for details.

We now present the final result of the analysis, the identifiability of the sources for the full

coupled system.

Theorem 3.3 Assume that B [F1, G1] = B [F2, G2], then

(r1(t), f1(t)) = (r2(t), f2(t)) in (0, T )

(s1(t), g1(t)) = (s2(t), g2(t)) in (0, T ).
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Proof: The first identifiability result is stated in Lemma 3.2. It remains to prove the second.

Set again θ = (b2 − b1) and η = (c2 − c1). We have already verified that θ = 0. Additionally,

Theorem 2.9 yields η = 0 in the external part of the space/time domain (IL ∪ IR) × (0, T ). The

following equation holds for η,

∂tη −
(

D∗η′
)′
+R∗η = g2(t)δ(x− s2(t))− g1(t)δ(x− s1(t)) in I × (0, T )

η(0, t) = 0 in (0, T ),

D∗η′(L, t) = 0 in (0, T )

η(x, 0) = 0 in I.

Arguing as in Lemma 3.2, and [2, Theorem 11] we conclude with η = 0 in the whole I × (0, T ) and

then we obtain that

g1(t)δ(x− s1(t))− g2(t)δ(x− s2(t)) = 0 in I × (0, T ).

This yields that (s1(t), g1(t)) = (s2(t), g2(t)), ∀t ∈ (0, T ). The proof is complete.

4 Some extensions

We have already indicated that the BOD-DO model investigated here is sufficient to point out the

difficulties arising in the analysis of the identifiability and to propose a way to solve them. Some

generalizations may be however considered. Their study may be conducted following a similar

methodology with presumably some more technical work.

Adding transport.— Another worthy extension is the addition of advective transport to be able

to consider pollution in flowing stream environments. It makes sense to include this term to extend

applicability to the wide range of flowing stream and river systems in which case the advective

transport may be likely the most important. Pollutants are carried further downstream at faster

rates and their impact is probably more extensive.

The addition of advective transport results in the following equations on b and c as follows

∂tc− (Dc′)′ + V c′ +Rc = f(t)δ(x− r(t)) in (0, L)× (0, T ),

∂tc− (D∗c′)′ + V c′ +R∗c−Rb = g(t)δ(x− s(t)) in (0, L)× (0, T ).

where V is the stream velocity and we note that the spatial operator is not self-adjoint. A well

known transformation permits one to remove the advection term in each equations, reducing them

to a self-adjoint equations (the spatial operator is then said to be in a Sturm-Liouville form). The

transformation with constant cœfficients is given in [10, Remark 11, p. 87] and is demonstrated

for the scalar BOD equation with cœfficients in [2]. The extension of our results will not yield

insurmountable difficulties, though some more technical tools are necessary.
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Multiple point-wise sources.— Engineers may be facing the detection of more than one pollution

source. BOD-DO equations on b(·, ·) and c(·, ·) could be enriched by multiple source terms

∂tb− (Db′)′ +Rb =
∑

1≤k≤k∗
fk(t)δ(x− rk(t)) in (0, L)× (0, T ),

∂tc− (D∗c′)′ +R∗c−Rb =
∑

1≤k≤k∗
gk(t)δ(x− sk(t)) in (0, L)× (0, T ).

In [2], it is already noticed that for the scalar model (for BOD for instance), at least 2k∗ observations

are required to obtain the identifiability for k∗ point-wise sources. They should be distributed in a

particular way. Between each pair of neighboring sources one should place two distinct observation

points. This requires of course some a-priori knowledge of the pollution source locations . The same

rule has to be observed here to achieve identifiability. Between two consecutive pairs of sources

(r, s) we must be able to access measurements on (c,D∗c′) at two different points. The study

is conducted following the same lines. The BOD-DO parabolic model to study in between two

neighboring observation points is defined by two-sided Cauchy data on c(·, ·) while no boundary

conditions are provided for b(·, ·). The variational framework written for one-sided Cauchy data

extends and the saddle-point theory applies as well.

5 Conclusion

The identifiability of organic pollution sources by indirect observations of another interacting con-

stituent is a challenging issue. A well established process is the detection of the BOD tracer from

DO observations. The resulting model which is a coupled time-dependent system where the re-

covery of the missing observations on BOD is considered. The identifiability requires uniqueness

results for two ill-posed parabolic systems. Such results may be stated by combining tools from the

saddle point theory and some others coming from the semi-group theory. Specifically, we consider

a mixed variational formulation to study the resolvents of the steady systems, then we call for

Pazy’s uniqueness theorem. They enable to show that the pollutant concentration tracer is unique

with respect to the observations of the dissolved oxygen tracer. This turns out to be a key tool in

order to show the identifiability of a moving source term on each constituent. Before closing, let

us indicate that a careful bibliography makes us believe that this is the first work where the Pazy

theorem is used to state uniqueness for parabolic systems where Hille-Yosida’s theory fails.

6 Appendix : Inf-sup conditions on a(·, ·).
The statement of the necessary inf-sup conditions on a(·, ·), when restricted to Nλ ×N∗,λ may be

achieved following the proof of Lemma 2.2. However, the main point is not solved which is the

knowledge of the behavior of the constants involved in those inf-sup conditions with respect to λ

when it grows to infinity. This may be achieved through some constructive methodology which
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requires some sharp a-priori estimates on the solution ξλ(λ ≥ 0) of the following problem

(λ+ r)ξλ −
(

dξ′λ
)′
= 0, in I,

ξλ(0) = 0,

ξλ(π) = 1.

We call ξ∗,λ the unique solution of the same elliptic problem where the coefficients (d, r) are changed

into (d∗, r∗). The objective is to bound from below a(ξλ, ξ∗,λ), for large values of λ. Qualitatively,

each of ξλ and ξ∗,λ is well known to show a boundary layer along x = π when λ grows to infinity.

Zooming around x = π and picking up tools from the asymptotic analysis enables to derive rigor-

ously the desired result. Let us before recall the minoration (by r > 0) of the reaction parameters

(r, r∗) so as the piecewise continuity assumptions made on the dispersion coefficients (d, d∗). A

direct consequence is that (d, d∗) have finite limits at x = π. We will denote by dπ, d∗,π ∈ R those

limits. Obviously, we have that dπ, d∗,π ≥ d. It holds that

Lemma 6.1 There exists λ and a constant γ independent of λ such that

a(ξλ, ξ∗,λ) ≥
γ√
λ
, ∀λ ≥ λ.

Proof: The approach we use to state the lemma is the one currently employed in the asymptotic

analysis for partial differential equations (see [11, 9] for example). We try to approximate the

solutions ξλ and ξ∗,λ, in the boundary layers located at the vicinity of x = π. Let us focus on ξλ,

the same work should be made for ξ∗,λ.

Observe that the maximum principle yields that ξλ(x) > 0 for all x ∈]0, π] (see [14]). Now, let

us zoom on the narrow interval [π − ǫ, π], with ǫ = 1√
λ
, for large λ. We introduce therefore the

stretching coordinate z ∈ [0, 1] so that x = π− ǫz, and for a function p in the variable x, we define

p̆ in the variable z so that p̆(z) = p(x). With these notations, there comes out that ξ̆λ is such that

(1 + ǫ2r̆)ξ̆λ −
(

d̆ ξ̆′λ
)′

= 0, in [0, 1],

ξ̆λ(0) = 1,

ξ̆λ(1) = τ.

Here τ ∈]0, 1[. Now, let us carefully examine d̆(z) = d(π− ǫz). Due to the smoothness assumption

on the diffusivity d(·) told of above, d̆(z) converges toward dπ > 0 in L∞(0, 1) for large λ. A

straightforward consequence is that (ξ̆λ)λ converges in H1(0, 1) towards

ξ(z) =
sinh(ωπ(1− z))

sinh(ωπ)
+ τ

sinh(ωπz)

sinh(ωπ)
,

when λ tends to infinity. Here, we have set dπ = (ωπ)
2. This, together with the minoration of the

reaction parameter r̆(z) ≥ r > 0, yields the following estimate (valid for large values of λ)

∫

[0,1]
r̆(z)ξ̆λ(z)ξ̆∗,λ(z) dz ≥ γ′

∫

[0,1]
ξ(z)ξ∗(z) dz = γ > 0,
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where γ′ is a positive constant that does not depend on λ. It is however dependent of r and dπ.

Returning to the primary functions, through a changing of variable, we obtain that
∫

[π−ǫ,π]
r(x)ξλ(x)ξ∗,λ(x) dx = ǫ

∫

[0,1]
r̆(z)ξ̆λ(z)ξ̆∗,λ(z) dz ≥ γǫ =

γ√
λ
.

Given the positivity of ξλ and ξ∗,λ , we derive finally that

a(ξλ, ξ∗,λ) =
∫

I
r(x)ξλ(x)ξ∗,λ(x) dx ≥

∫

[π−ǫ,π]
r(x)ξλ(x)ξ∗,λ(x) dx ≥ γ√

λ
.

The proof is complete.

Remark 6.1 The estimate by Lemma 6.1 is optimal and can not be improved. Analytical compu-

tations realized for constant coefficients (r, r∗) and (d, d∗) are liable to sweep away any doubt.

Lemma 6.2 There exists λ and a constant α independent of λ such that

λ‖ξλ‖2L2(I) + ‖ξ′λ‖2L2(I) ≤ α
√
λ, ∀λ ≥ λ.

Proof: The elliptic equation on ξλ being symmetric, it can be formulated as a minimization

problem of the potential energy. The bound in the lemma is therefore directly issued from the

formula

λ‖ξλ‖2L2(I) + ‖√rξλ‖2L2(I) + ‖
√
dξ′λ‖2L2(I) ≤ λ‖ζ‖2L2(I) + ‖√rζ‖2L2(I) + ‖

√
dζ ′‖2L2(I),

where ζ is selected as follows

ζ(x) =
sinh(

√
λx)

sinh(
√
λπ)

.

Straightforward calculations end to the bound λ‖ζ‖2L2(I) + ‖
√
dζ ′‖2L2(I) ≤ γ′′

√
λ. The proof is

therefore complete.

After these preparatory technical results, we are well equipped to establish the inf-sup condition

of Lemma 2.5. The statement in Remark 2.3 is proved following the same lines.

Proof of Lemma 2.5: Let λ be sufficiently large and ϕ be given in Nλ. There comes that

ϕ = ϕ(π)ξλ. Choose ψ = ϕ(π)ξλ,∗ , it is readily checked that ψ ∈ N∗,λ. Then, we have that

a(ϕ, ψ)

‖ϕ‖H1‖ψ‖H1

=
a(ξλ, ξ∗,λ)

‖ξλ‖H1‖ξ∗,λ‖H1

.

Considering the supremum on χ ∈ N∗,λ and calling for Lemmas 6.1 and 6.2, we state that

sup
χ∈N

∗,λ

a(ϕ, χ)

‖ϕ‖H1‖χ‖H1

≥ a(ξλ, ξ∗,λ)
‖ξλ‖H1‖ξ∗,λ‖H1

≥ β

λ
.

β is independent of λ. Switching to the infimum on ϕ ∈ Nλ achieves the proof.

Remark 6.2 The inf-sup conditions in Remark 2.3 by means of the same arguments. The only

modification is to switch from the H1-norm to the L2-norm. The lower bound comes from the

estimate
a(ξλ, ξ∗,λ)

‖ξλ‖L2‖ξ∗,λ‖L2

≥ β,

obtained owing to the L2 bounds of ξλ and ξ∗,λ by Lemma 6.2.
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