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, ce qui permet d'établir entre autres que des vitesses initiales ayant une régularité Besov (pas trop) négative génèrent une solution unique. La densité initiale est à régularité critique et doit juste être strictement positive et tendre vers une constante à l'infini. Les coefficients de viscosité preuvent dépendre de la densité. L'usage de coordonnées lagrangiennes est la clef de toutes ces améliorations car il permet de résoudre le système par itérations de Picard. Comme corollaire immédiat, on obtient que les conditions pour l'unicité sont les mêmes que pour l'existence, ainsi que la continuité de l'opérateur solution (pour le système écrit en coordonnées lagrangiennes).

Introduction

We address the well-posedness issue for the barotropic compressible Navier-Stokes equations with variable density in the whole space R n : (0.1)

     ∂ t ρ + div (ρu) = 0, ∂ t (ρu) + div (ρu ⊗ u) -2div (µ(ρ)D(u)) -∇(λ(ρ)div u) + ∇(P (ρ)) = 0, ρ| |t=0 = ρ 0 , u| |t=0 = u 0 .
Above ρ = ρ(t, x) ∈ R + stands for the density, u = u(t, x) ∈ R n , for the velocity field. The space variable x belongs to the whole R n . The notation D(u) designates the deformation tensor which is defined by D(u) := 1 2 (Du + ∇u) with (Du) ij := ∂ j u i and (∇u) ij := ∂ i u j .

The pressure function P and the viscosity coefficients λ and µ are given suitably smooth functions of the density. With no loss of generality, one may assume that P is defined over R and vanishes at 0. As we focus on viscous fluids, we suppose that (0.2) α := min inf ρ>0 (λ(ρ) + 2µ(ρ)), inf ρ>0 µ(ρ) > 0, which ensures the second order operator in the velocity equation of (0.1) to be uniformly elliptic.

We supplement System (0.1) with the condition at infinity that u tends to 0 and ρ, to some positive constant (that may be taken equal to 1 after suitable normalization). The exact meaning of those boundary conditions will be given by the functional framework in which we shall consider the system.

In the present paper, we aim at solving (0.1) in critical functional spaces, that is in spaces which have the same invariance with respect to time and space dilation as the system itself (see e.g. [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF] for more explanations about this nowadays classical approach). In this framework, it has been stated [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF][START_REF] Danchin | On the uniqueness in critical spaces for compressible Navier-Stokes equations[END_REF] in the constant coefficients case that, for data (ρ 0 , u 0 ) such that

a 0 := (ρ 0 -1) ∈ Ḃn/p p,1 (R n ), u 0 ∈ Ḃn/p-1 p,1 (R n )
and that, for a small enough constant c, (0.3) a 0 Ḃn/p p,1 (R n ) ≤ c, we have for any p ∈ [1, 2n):

• existence of a local solution (ρ, u) such that a := (ρ -1) ∈ C b ([0, T ]; Ḃn/p p,1 ), u ∈ C b ([0, T ];

Ḃn/p-1 p,1

) and ∂ t u, ∇ 2 u ∈ L 1 (0, T ; Ḃn/p-1 p,1

); • uniqueness in the above space if in addition p ≤ n. If p ≤ n then the viscosity coefficients may depend (smoothly) on ρ and the smallness condition (0.3) may be replaced by the following positivity condition (see [START_REF] Chen | Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities[END_REF][START_REF] Danchin | Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density[END_REF]): (0.4) inf x∈R n ρ 0 (x) > 0. Those results have been somewhat extended in [START_REF] Haspot | Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces[END_REF] where it has been noticed that a 0 may be taken in a larger Besov space, with another Lebesgue exponent.

The above results are based on maximal regularity estimates in Besov spaces for the evolutionary Lamé system, and on the Schauder-Tychonoff fixed point theorem. In effect, owing to the hyperbolicity of the density equation, there is a loss of one derivative in the stability estimates thus precluding the use of the contraction mapping (or Banach fixed point) theorem. As a consequence, with this method it is found that the conditions for uniqueness are stronger than those for existence.

Following our recent paper [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF] dedicated to the incompressible density-dependent Navier-Stokes equation, and older works concerning the compressible Navier-Stokes equations (see [START_REF] Mucha | The Cauchy problem for the compressible Navier-Stokes equations in the L p -framework[END_REF][START_REF] Valli | An existence theorem for compressible viscous fluids[END_REF][START_REF] Valli | Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case[END_REF]), we here aim at solving System (0.1) in the Lagrangian coordinates. The main motivation is that the mass is constant along the flow hence, to some extent, only the (parabolic type) equation for the velocity has to be considered. After performing this change of coordinates, we shall see that solving (0.1) may be done by means of the Banach fixed point theorem. Hence, the condition for uniqueness is the same as that for the existence, and the flow map is Lipschitz continuous. In addition, in the case of fully nonhomogeneous fluids with variable viscosity coefficients, the analysis turns out to be simpler than in [START_REF] Chen | Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities[END_REF][START_REF] Danchin | Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density[END_REF] even for density-dependent viscosity coefficients and in the case where the density is not close to a constant. Indeed, our proof relies essentially on a priori estimates for a parabolic system (a suitable linearization of the momentum equation in Lagrangian coordinates) with rough constant depending only on the initial density hence time-independent. In contrast, in [START_REF] Chen | Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities[END_REF][START_REF] Danchin | Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density[END_REF] tracking the time-dependency of the coefficients was quite technical.

We now come to the plan of the paper. In the next section, we introduce the compressible Navier-Stokes equations in Lagrangian coordinates and present our main results. Section 2 is devoted to the proof of our main existence and uniqueness result in the simpler case where the density is close to a constant and the coefficients, density independent. In Section 3, we treat the general fully nonhomogeneous case with nonconstant coefficients. A great deal of the analysis is contained in the study of the linearized momentum equation for (0.1) (see Subsection 3.1) which turns out to be a Lamé type system with variable rough coefficients. This will enable us to define a self-map Φ on a suitably small ball of some Banach space E p (T ) and to apply the contraction mapping theorem so as to solve the compressible Navier-Stokes equations in Lagrangian coordinates. In the Appendix we prove several technical results concerning the Lagrangian coordinates and Besov spaces.

Notation: Throughout, the notation C stands for a generic constant (the meaning of which depends on the context), and we sometimes write A B instead of A ≤ CB. For X a Banach space, p ∈ [1, +∞] and T > 0, the notation L p (0, T ; X) or L p T (X) designates the set of measurable functions f : [0, T ] → X with t → f (t) X in L p (0, T ), endowed with the norm f L p T (X) := f X L p (0,T ) . We agree that C([0, T ]; X) denotes the set of continuous functions from [0, T ] to X.

Main results

Before deriving the Lagrangian equations corresponding to (0.1), let us introduce more notation. We agree that for a

C 1 function F : R n → R n × R m then div F : R n → R m with (div F ) j := i ∂ i F ij for 1 ≤ j ≤ m,
and that for A = (A ij ) 1≤i,j≤n and B = (B ij ) 1≤i,j≤n two n × n matrices, we denote

A : B = TrAB = i,j A ij B ji .
The notation adj(A) designates the adjugate matrix that is the transposed cofactor matrix. Of course if A is invertible then we have adj(A) = (det A) A -1 . Finally, given some matrix A, we define the "twisted" deformation tensor and divergence operator (acting on vector fields z ) by the formulae

D A (z) := 1 2 Dz • A + T A • ∇z and div A z := T A : ∇z = Dz : A.
Let X be the flow associated to the vector-field u, that is the solution to

(1.1) X(t, y) = y + t 0 u(τ, X(τ, y)) dτ.
Denoting ρ(t, y) := ρ(t, X(t, y)) and ū(t, y) = u(t, X(t, y))

with (ρ, u) a solution of (0.1), and using the chain rule and Lemma 1 from the Appendix, we gather that (ρ, ū) satisfies

(1.2)    ∂ t (J ρ) = 0 ρ 0 ∂ t ū -div adj(DX) 2µ(ρ)D A (ū) + λ(ρ) div A ū Id + P (ρ)Id = 0
with J := det DX and A := (D y X) -1 . Note that one may forget any reference to the initial Eulerian vector-field u by defining directly the "flow" X of ū by the formula

(1.3) X(t, y) = y + t 0 ū(τ, y) dτ.
We want to solve the above system in critical homogeneous Besov spaces. Let us recall that, for 1 ≤ p ≤ ∞ and s ≤ n/p, a tempered distribution u over R n belongs to the homogeneous Besov space Ḃs

p,1 (R n ) if u = j∈Z ∆j u in S ′ (R n ) and (1.4) u Ḃs p,1 (R n ) := j∈Z 2 js ∆j u L p (R n ) < ∞.
Here ( ∆j ) j∈Z denotes a homogeneous dyadic resolution of unity in Fourier variables -the socalled Littlewood-Paley decomposition (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2 for more details on the Littlewood-Paley decomposition and Besov spaces).

Loosely speaking, a function belongs to Ḃs p,1 (R n ) if it has s derivatives in L p (R n ). In the present paper, we shall mainly use the following classical properties:

• the Besov space Ḃn/p p,1 (R n ) is a Banach algebra embedded in the set of continuous functions going to 0 at infinity, whenever 1 ≤ p < ∞; • the usual product maps Ḃn/p-1

p,1 (R n ) × Ḃn/p p,1 (R n ) in Ḃn/p-1 p,1 (R n ) whenever 1 ≤ p < 2n; • Let F : I → R be a smooth function (with I an open interval of R containing 0)
vanishing at 0. Then for any s > 0, 1 ≤ p ≤ ∞ and interval J compactly supported in I there exists a constant C such that

(1.5) F (a) Ḃs p,1 (R n ) ≤ C a Ḃs p,1 (R n )
for any a ∈ Ḃs p,1 (R n ) with values in J. In addition, if a 1 and a 2 are two such functions and s = n/p then we have

(1.6) F (a 2 ) -F (a 1 ) Ḃn/p p,1 (R n ) ≤ C a 2 -a 1 Ḃn/p p,1 (R n ) .
From now on, we shall omit R n in the notation for Besov spaces. We shall obtain the existence and uniqueness of a local-in-time solution (ρ, ū) for (1.2), with ā := ρ -1 in C([0, T ]; Ḃn/p p,1 ) and ū in the space

E p (T ) := v ∈ C([0, T ]; Ḃn/p-1 p,1 ), ∂ t v, ∇ 2 v ∈ L 1 (0, T ; Ḃn/p-1 p,1
)

• That space will be endowed with the norm

v Ep(T ) := v L ∞ T ( Ḃn/p-1 p,1 ) + ∂ t v, ∇ 2 v L 1 T ( Ḃn/p-1 p,1
) . Let us now state our main result. Theorem 1. Let 1 < p < 2n and n ≥ 2. Let u 0 be a vector-field in Ḃn/p-1 p,1

. Assume that the initial density ρ 0 satisfies a 0 := (ρ 0 -1) ∈ Ḃn/p p,1 and (1.7) inf

x ρ 0 (x) > 0.

Then If ρ 0 is close enough to some positive constant then the statement holds true for all p ∈ [1, ∞) and n ≥ 1.

In Eulerian coordinates, this result recasts in: Theorem 2. Under the hypotheses of Theorem 1 with 1 < p < 2n and n ≥ 2, System (0.1) has a unique local solution (ρ, u) with u ∈ E p (T ), ρ bounded away from 0 and (ρ-1) ∈ C([0, T ]; Ḃn/p p,1 ). Let us make a few comments concerning the above assumptions.

• We expect the Lagrangian method to improve the uniqueness conditions given in e.g. [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF] for the full Navier-Stokes equations. We here consider the barotropic case for simplicity. • The condition 1 ≤ p < 2n is a consequence of the product laws in Besov spaces. It implies that the regularity exponent for the velocity has to be greater than -1/2 (to be compared with -1 for the homogeneous incompressible Navier-Stokes equations). It would be interesting to see whether introducing a modified velocity as in B. Haspot's works [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF][START_REF] Haspot | Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces[END_REF] allows to consider different Lebesgue exponents for the Besov spaces pertaining to the density and the velocity so as to go beyond p = 2n for the velocity. • The regularity condition over the density is stronger than that for density-dependent incompressible fluids (see [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF]). In particular, in contrast with incompressible fluids, it is not clear that combining Lagrangian coordinates and critical regularity approach allows to consider discontinuous densities. • Owing to the fact that the density satisfies a transport equation, we do not expect Lipschitz continuity of the flow map in high norm for the Eulerian formulation to be true. • It is worth comparing our results with those of P. Germain in [START_REF] Germain | Weak-strong uniqueness for the isentropic compressible Navier-Stokes system[END_REF], and D. Hoff in [START_REF] Hoff | Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow[END_REF] concerning the weak-strong uniqueness problem. In both papers, the idea is to show that, in the constant viscosity case, a finite energy weak solution coincides with a strong one under some additional assumptions. The weak solution turns out to have less regularity than in Theorem 2. At the same time, the assumptions on the strong solution (ρ, u) are much stronger. In both papers, ∇u has to be in L 1 (0, T ; L ∞ ), and to satisfy additional conditions: roughly ∇ 2 u or ∂ t u have to be in L 2 (0, T ; L d ) in Germain's work, while √ tD 2 u ∈ L r (0, T ; L 4 ) with r = 4/3 if n = 2, and r = 8/5 if n = 3 in Hoff's paper. Some regularity conditions are required on the density but they are, to some extent, weaker than ours.

The simple case of almost homogeneous compressible fluids

As a warm up and for the reader convenience, we here explain how local well-posedness may be proved for the system in Lagrangian coordinates in the simple case where:

(1) The viscosity coefficients are constant, (2) The density is very close to one. Let µ ′ := λ + µ. Keeping in mind the above two conditions and using the fact that the first equation of (1.2) implies that (2.1)

J(t, •)ρ(t, •) ≡ ρ 0 , with J := | det DX| and (2.2) X(t, y) := y + t 0 ū(τ, y) dτ,
we rewrite the equation for the Lagrangian velocity as (recall that A := (DX) -1 ):

(2.3) ∂ t ū -µ∆ū -µ ′ ∇div ū = (1 -ρ 0 )∂ t ū + 2µ div adj(DX)D A (ū) -D(ū)
+ λdiv adj(DX) div A ū -div ū Id -div adj(DX)P (J -1 ρ 0 ) .

The left-hand side of the above equation is the linear Lamé system with constant coefficients, the solvability of which may be easily deduced from that of the heat equation in the whole space (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2 or [START_REF] Danchin | Fourier analysis methods for compressible flows, topics on compressible Navier-Stokes equations, états de la recherche SMF[END_REF]). We get:

Proposition 1. Let the viscosity coefficients (µ, µ ′ ) ∈ R 2 satisfy µ > 0 and µ + µ ′ > 0. Let p ∈ [1, ∞] and s ∈ R. Let u 0 ∈ Ḃs p,1 and f ∈ L 1 (0, T ; Ḃs p,1
). Then the Lamé system

(2.4) ∂ t u -µ∆u -µ ′ ∇div u = f in (0, T ) × R n u| t=t 0 = u 0 on R n has a unique solution u in C([0, T ); Ḃs p,1 ) such that ∂ t u, ∇ 2 u ∈ L 1 (0, T ; Ḃs p,1
) and the following estimate is valid:

(2.5) u L ∞ T ( Ḃs p,1 ) + min(µ, µ + µ ′ ) ∇ 2 u L 1 T ( Ḃs p,1 ) ≤ C( f L 1 T ( Ḃs p,1 ) + u 0 Ḃs p,1
)

where C is an absolute constant with no dependence on µ, µ ′ and T.

In the rest of this section, we drop the bars on the Lagrangian velocity field. Granted with the above proposition, we define a map Φ : v → u on E p (T ) where u stands for the solution to

(2.6) ∂ t u -µ∆u -µ ′ ∇div u = I 1 (v) + 2µdiv I 2 (v, v) + λdiv I 3 (v, v) -div I 4 (v)
with initial data u 0 and (2.3). We claim that the existence of such points is a consequence of the standard Banach fixed point theorem in a suitable closed ball of E p (T ).

I 1 (w) = -a 0 ∂ t w, I 2 (v, w) = adj(DX v )D Av (w) -D(w), I 3 (v, w) = div Av w adj(DX v ) -div w Id, I 4 (v) = adj(DX v )P (J -1 v ρ 0 ). Note that any fixed point of Φ is a solution in E p (T ) to
First step: estimates for I 1 , I 2 , I 3 and I 4 . Throughout we assume that for a small enough constant c,

(2.7) T 0 Dv Ḃn/p p,1 dt ≤ c. It is obvious that (2.8) I 1 (w) L 1 T ( Ḃn/p-1 p,1 ) ≤ a 0 M( Ḃn/p-1 p,1 ) ∂ t w L 1 T ( Ḃn/p-1 p,1
)

where the multiplier norm M( Ḃs p,1 ) for Ḃs p,1 , is defined by (2.9)

f M( Ḃs p,1 ) := sup ψf Ḃs p,1
.

The supremum is taken over those functions ψ in Ḃs p,1 with norm 1.

Next, taking advantage of the fact that Ḃn/p p,1 is an algebra if 1 ≤ p < ∞, of (A.12), (A.13) and (2.7), we readily get (2.10)

I 2 (v, w) L 1 T ( Ḃn/p p,1 ) + I 3 (v, w) L 1 T ( Ḃn/p p,1 ) ≤ C Dv L 1 T ( Ḃn/p p,1 ) Dw L 1 T ( Ḃn/p p,1
) . As regards the pressure term (that is I 4 (v)), we use the fact that under assumption (2.7), we have, by virtue of the composition inequality (1.5) and of flow estimates (see (A.9) and (A.11)), (2.11)

I 4 (v) L ∞ T ( Ḃn/p p,1 ) ≤ C 1 + Dv L 1 T ( Ḃn/p p,1 ) 1 + a 0 Ḃn/p p,1
.

Second step: Φ maps a suitable closed ball in itself. At this stage, one may assert that if v ∈ E p (T ) satisfies (2.7) then the right-hand side of (2.6) belongs to L 1 (0, T ; Ḃn/p-1 p,1

). Hence Proposition 1 implies that Φ(v) is well defined and maps E p (T ) to itself. However it is not clear that it is contractive over the whole set E p (T ). So we introduce u L the "free solution" to

∂ t u L -µ∆u L -µ ′ ∇div u L = 0, u L | t=0 = u 0 .
Proposition 1 guarantees that u L belongs to E p (T ) for all T > 0.

We claim that if T is small enough (a condition which will be expressed in terms of the free solution u L ) and if R is small enough (a condition which will depend only on the viscosity coefficients and on p, n and

P ) then v ∈ BEp(T ) (u L , R) implies that (2.7) is fulfilled and that u ∈ BEp(T ) (u L , R). Indeed u := u -u L satisfies ∂ t u -µ∆ u -µ ′ ∇div u = I 1 (v) + 2µdiv I 2 (v, v) + λdiv I 3 (v, v) -div I 4 (v), u| t=0 = 0. So Proposition 1 yields 1 u Ep(T ) I 1 (v) L 1 T ( Ḃn/p-1 p,1 ) + I 2 (v, v) L 1 T ( Ḃn/p p,1 ) + I 3 (v, v) L 1 T ( Ḃn/p p,1 ) + T I 4 (v) L ∞ T ( Ḃn/p p,1
) . Inserting inequalities (2.8), (2.10) and (2.11), we thus get:

u Ep(T ) Dv 2 L 1 T ( Ḃn/p p,1 ) + a 0 M( Ḃn/p-1 p,1 ) ∂ t v L 1 T ( Ḃn/p-1 p,1 ) + T (1 + a 0 Ḃn/p p,1
).

That is, keeping in mind that v is in BEp(T

) (u L , R), u Ep(T ) ≤ C a 0 M( Ḃn/p-1 p,1 ) (R + ∂ t u L L 1 T ( Ḃn/p-1 p,1
)

) + Du L 2 L 1 T ( Ḃn/p p,1 ) + R 2 + T (1 + a 0 Ḃn/p p,1
) .

So we see that if T satisfies (2.12) CT (1 + a 0 Ḃn/p p,1

) ≤ R/2 and Du L L 1 T ( Ḃn/p p,1 ) + ∂ t u L L 1 T ( Ḃn/p-1 p,1 ) ≤ R then we have u Ep(T ) ≤ 2C a 0 M( Ḃn/p-1 p,1
) R + 2CR 2 + R/2. Hence there exists a small constant η = η(n, p) such that if

(2.13) a 0 M( Ḃn/p-1 p,1
) ≤ η, and if R has been chosen small enough then u is in BEp(T ) (u L , R). Of course, taking R and T even smaller ensures that (2.7) is satisfied for all vector-field of BEp(T ) (u L , R).

Third step: contraction properties. We claim that under Conditions (2.13) and (2.12) (with a smaller R if needed), the map Φ is 1/2-Lipschitz over BEp(T ) (u L , R). So we are given v 1 and v 2 in BEp(T ) (u L , R) and denote

u 1 := Φ(v 1 ) and u 2 := Φ(v 2 ).
Let X 1 and X 2 be the flows associated to v 1 and v 2 . Set A i = (DX i ) -1 and J i := det DX i for i = 1, 2. The equation satisfied by δu := u 2 -u 1 reads ∂ t δu -µ∆δu -µ ′ ∇div δu = δf := δf 1 + div δf 2 + 2µdiv δf 3 + λdiv δf 4 1 For simplicity, we do not track the dependency of the coefficients with respect to µ and µ ′ .

with δf 1 := -a 0 ∂ t δu, δf 2 := adj(DX 1 )P (ρ 0 J -1 1 ) -adj(DX 2 )P (ρ 0 J -1 2 ), δf 3 := adj(DX 2 )D A 2 (u 2 ) -adj(DX 1 )D A 1 (u 1 ) -D(δu), δf 4 := adj(DX 2 ) T A 2 : ∇u 2 -adj(DX 1 ) T A 1 : ∇u 1 -div δu Id.
Once again, bounding δu in E p (T ) stems from Proposition 1, which ensures that (2.14) δu Ep(T )

δf 1 L 1 T ( Ḃn/p-1 p,1 ) + T δf 2 L ∞ T ( Ḃn/p p,1 ) + δf 3 L 1 T ( Ḃn/p p,1 ) + δf 4 L 1 T ( Ḃn/p p,1
) . In order to bound δf 1 , we just have to use the definition of the multiplier space M( Ḃn/p-1 p,1

). We get

δf 1 L 1 T ( Ḃn/p-1 p,1 ) ≤ a 0 M( Ḃn/p-1 p,1 ) ∂ t δu L 1 T ( Ḃn/p-1 p,1
) . (2.15)

Next, using the decomposition

δf 2 = (adj(DX 1 ) -adj(DX 2 ))P (ρ 0 J -1 2 ) + adj(DX 1 )(P (ρ 0 J -1 1 ) -P (ρ 0 J -1 2 )
), together with composition inequalities (1.5), (1.6) )

Dδv L 1 T ( Ḃn/p p,1 )
Finally, we have

δf 4 = (adj(DX 2 )-adj(DX 1 )) T A 2 : ∇u 2 +adj(DX 1 ) T (A 2 -A 1 ) : ∇u 2 +(adj(DX 1 ) T A 1 -Id) : ∇δu,
whence, by virtue of (A.9), (A.10), (A.18) and (A. [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF]),

(2.17)

δf 4 L 1 T ( Ḃn/p p,1 ) Dδv L 1 T ( Ḃn/p p,1 ) Du 2 L 1 T ( Ḃn/p p,1 ) + Dδu L 1 T ( Ḃn/p p,1 ) Dv 1 L 1 T ( Ḃn/p p,1
) . Bounding δf 3 works exactly the same. So we see that if Conditions (2.12) and (2.13) are satisfied (with smaller η and larger C if need be) then we have

δu Ep(T ) ≤ 1 2 δv Ep(T ) .
Hence, the map Φ : BEp(T ) (u L , R) → BEp(T ) (u L , R) is 1/2-Lipschitz. Therefore, Banach' fixed point theorem ensures that Φ admits a unique fixed point in BEp(T ) (u L , R). This completes the proof of existence of a solution in E p (T ) for System (1.2). A tiny variation over the proof of the contraction properties yields uniqueness and Lipschitz continuity of the flow map. We eventually get:

Theorem 3. Assume that n ≥ 1. Let p ∈ [1, ∞) and u 0 be a vector-field in Ḃn/p-1 p,1
. Assume that the initial density ρ 0 satisfies a 0 := (ρ 0 -1) ∈ Ḃn/p p,1 . There exists a constant c depending only on p and on n such that if ) and u ∈ E p (T ).

We do not give here more details on how to complete the proof of Theorem 3 and its Eulerian counterpart, Theorem 4, as it will done in the next section under much more general assumptions.

The fully nonhomogeneous case

For treating the general case where ρ 0 only satisfies (1.7), just resorting to Proposition 1 is not enough because the term I 1 (v, v) in the r.h.s. of (2.6) need not be small. One has first to establish a similar statement for a Lamé system with nonconstant coefficients. More precisely, keeping in mind that ρ = J -1 u ρ 0 (we still drop the bars for notational simplicity), we recast the velocity equation of (1.2) in:

L ρ 0 (u) = ρ -1 0 div I 1 (u, u) + I 2 (u, u) + I 3 (u, u) + I 4 (u) with (3.1) L ρ 0 (u) := ∂ t u -ρ -1 0 div 2µ(ρ 0 )D(u) + λ(ρ 0 )div u Id and I 1 (v, w) := (adj(DX v ) -Id) µ(J -1 v ρ 0 )(Dw A v + T A v ∇w) + λ(J -1 v ρ 0 )( T A v : ∇w)Id I 2 (v, w) := (µ(J -1 v ρ 0 ) -µ(ρ 0 ))(Dw A v + T A v ∇w) + (λ(J -1 v ρ 0 ) -λ(ρ 0 ))( T A v : ∇w)Id I 3 (v, w) := µ(ρ 0 ) Dw(A v -Id) + T (A v -Id)∇w + λ(ρ 0 )( T (A v -Id) : ∇w)Id I 4 (v) := -adj(DX v )P (ρ 0 J -1 v )
. Therefore, in order to solve (1.2) locally, it suffices to show that the map

(3.2) Φ : v -→ u
with u the solution to

L ρ 0 (u) = ρ -1 0 div I 2 (v, v) + I 3 (v, v) + I 4 (v, v) + I 5 (v) , u| t=0 = u 0
has a fixed point in E p (T ) for small enough T.

As a first step, we have to study the properties of the linear Lamé operator L ρ 0 . This is done in the following subsection.

3.1. Linear parabolic systems with rough coefficients. As a warm up, we consider the following scalar heat equation with variable coefficients:

(3.3) ∂ t u -adiv (b∇u) = f.
We assume that

(3.4) α := inf (t,x)∈[0,T ]×R n (ab)(t, x) > 0.
Let us first consider the smooth case.

Proposition 2. Assume that a and b are bounded functions satisfying (3.4) and such that b∇a and a∇b are in L 2 (0, T ; Ḃn/p p,1 ) for some 1 < p < ∞. There exist two constants κ = κ(p) and C = C(s, n, p) such that the solutions to (3.3) satisfy for all t ∈ [0, T ], Proof. We first rewrite the equation for u as follows:

u L ∞ t ( Ḃs p,1 ) + κα u L 1 t ( Ḃs+2 p,1 ) ≤ u 0 Ḃs p,1 + f L 1 t ( Ḃs
∂ t u -div (ab∇u) = f -b∇a • ∇u,
then localize the equation in the Fourier space, according to Littlewood-Paley decomposition:

∂ t u j -div (ab∇u j ) = f j -∆j (b∇a • ∇u) + R j
with u j := ∆j u, f j := ∆j f and R j := div ([ ∆j , ab]∇u).

Next, we multiply the above equation by u j |u j | p-2 and integrate over R n . Taking advantage of Lemma 8 in the appendix of [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF] (here 1 < p < ∞ comes into play) and of Hölder inequality, we get for some constant c p depending only on p:

1 p d dt u j p L p + c p α2 2j u j p L p ≤ u j p-1 L p f j L p + ∆j (b∇a • ∇u) L p + R j L p ,
which, after time integration, leads to

(3.5) u j L ∞ t (L p ) + c p α2 2j u j L 1 t (L p ) ≤ u 0,j L p + f j L 1 t (L p ) + t 0 ∆j (b∇a • ∇u) L p + R j L p dτ.
According to Lemmas 4 and 5 in Appendix, there exist a positive constant C and some sequence (c j ) j∈Z with c ℓ 1 (Z) = 1, satisfying .

(3.6) ∆j (b∇a • ∇u) L p + R j L p ≤ Cc j 2 -
So plugging this in (3.7) and applying Gronwall lemma completes the proof of the proposition.

In the rough case where the coefficients are only in Ḃn/p p,1 , the above proposition has to be modified as follows: Proposition 3. Let a and b be bounded positive and satisfy (3.4). Assume that b∇a and a∇b are in L ∞ (0, T ; Ḃn/p-1 p,1

) with 1 < p < ∞. There exist three constants η, κ and C such that if for some m ∈ Z we have

inf (t,x)∈[0,T ]×R n Ṡm (ab)(t, x) ≥ α/2, (3.9) (Id -Ṡm )(b∇a, a∇b) L ∞ T ( Ḃn/p-1 p,1
) ≤ ηα (3.10) then the solution to (3.3) satisfies for all t ∈ [0, T ], , which may be obtained by taking σ = 1 and ν = 1 in Lemmas 4 and 5. However, when bounding R j , in addition to (3.11), one has to assume that p ≤ n. Also, as it involves the highest regularity of u, we cannot expect to absorb this "remainder term" any longer, unless a∇b and b∇a are small in Ḃn/p-1 p,1

u L ∞ t ( Ḃs p,1 ) + ακ u L 1 t ( Ḃs+2 p,1 ) ≤ u 0 Ḃs p,1 + f L 1 t ( Ḃs p,1 ) exp C α t 0 Ṡm (b∇a, a∇b)
(which would correspond to the case that has been treated in the previous section). So we rather rewrite the heat equation as follows:

∂ t u -div ( Ṡm (ab)∇u) = f + div ((Id -Ṡm )(ab)∇u) -Ṡm (b∇a) • ∇u -(Id -Ṡm )(b∇a) • ∇u.
Now, using the infimum bound for Ṡm (ab) and arguing as for proving (3.5), we get

u j L ∞ t (L p ) + c p α2 2j u j L 1 t (L p ) ≤ u 0,j L p + f j L 1 t (L p ) + t 0 ∆j div ((Id -Ṡm )(ab)∇u) L p dτ + t 0 ∆j ( Ṡm (b∇a) • ∇u) L p + ∆j ((Id -Ṡm )(b∇a) • ∇u) L p + div ([ Ṡm (ab), ∆j ]∇u) L p dτ.
The idea is to apply the procedure of the "smooth" case for the low frequency part of the coefficients (that is the part containing Ṡm ) and the "perturbation" approach for the other part. More precisely, appealing to Lemmas 4 and 5, we get under Condition (3.11) and for some sequence (c j ) j∈Z with c ℓ 1 (Z) = 1: .

∆j div ((Id -Ṡm )(ab)∇u) L p c j 2 -
Let us plug those four inequalities in the above inequality for u j . After multiplying by 2 js and summing up over j, we get

u L ∞ t ( Ḃs p,1 ) + c p α u L 1 t ( Ḃs+2 p,1 ) ≤ u 0 Ḃs p,1 + f L 1 t ( Ḃs p,1 ) +C (Id -Ṡm )(ab) L ∞ t ( Ḃn/p p,1 ) + (Id -Ṡm )(b∇a) L ∞ t ( Ḃn/p-1 p,1 ) u L 1 t ( Ḃs+2 p,1 ) +C t 0 Ṡm (a∇b, b∇a) Ḃn/p p,1 ∇u Ḃs p,1 dτ.
It is clear that, under Condition (3.10), the second line may be absorbed by the left-hand side.

Hence the desired inequality follows from the interpolation inequality (3.8), exactly as in the smooth case.

We now look at the following Lamé system with nonconstant coefficients:

(3.13) ∂ t u -2adiv (µD(u)) -b∇(λdiv u) = f.
Note that u and f are valued in R n . We assume throughout that the following uniform ellipticity condition is satisfied:

(3.14) α := min inf (t,x)∈[0,T ]×R n (aµ)(t, x), inf (t,x)∈[0,T ]×R n (2aµ + bλ)(t, x) > 0.
Let us first study the "smooth case": Proposition 4. Assume that a, b, λ and µ are bounded functions satisfying (3.14) and such that a∇µ, b∇λ, µ∇a and λ∇b are in L 2 (0, T ; Ḃn/p p,1 ) for some 1 < p < ∞. There exists a constant C such that the solutions to (3.13) satisfy for all t ∈ [0, T ], Proof. We introduce the following functions:

u L ∞ t ( Ḃs p,1 ) + α u L 1 t ( Ḃs+2 p,1 ) ≤ C u 0 Ḃs p,1 + f L 1 t ( Ḃs
d := |D| -1 div u and Ω := |D| -1 curl u with (curl u) ij := ∂ i u j -∂ j u i .
Owing to the use of homogeneous Besov space, and because the Fourier multipliers A(D) := |D| -1 div and B(D) := |D| -1 curl are of degree 0, it is equivalent to estimate u or (d, Ω) in

L ∞ T ( Ḃs p,1 ) ∩ L 1 T ( Ḃs+2 p,1
). So the basic idea is to show that d and Ω satisfy heat equations similar to (3.3). More precisely, applying A(D) to (3.13) yields

(3.15) ∂ t d -(2aµ + bλ)∆d = A(D)(f + 2a∇µ • D(u) + b∇λ div u) + [A(D), aµ]∆u + [A(D), aµ + bλ]∇div u.
Given Condition (3.14), we see that arguing exactly as for proving (3.7) and because A(D) maps Ḃs p,1 in itself, Similarly, the vorticity part Ω of u satisfies

d L ∞ t ( Ḃs p,1 ) + κα d L 1 t ( Ḃs+2 p,1 ) ≤ d 0 Ḃs p,1 + A(D)f L 1 t ( Ḃs p,1 ) + C t 0 2a∇µ • D(u) + b∇λdiv u Ḃs
∂ t Ω -aµ∆Ω = B(D)(f + 2a∇µ • D(u) + b∇λdiv u) + [B(D), aµ]∆u + [B(D), aµ + bλ]∇div u.
So arguing exactly as for bounding d, and resorting to the interpolation inequality (3.8) and to Gronwall lemma, we easily get the desired inequality. It is just a matter of following the proof for the case of the heat equation.

Let us finally focus on the "rough case" where the coefficients of (3.13) are only in L ∞ T ( Ḃn/p p,1 ).

Proposition 5. Let a, b, λ and µ be bounded functions satisfying (3.14). Assume that a∇µ, b∇λ, µ∇a and λ∇b are in L ∞ (0, T ; Ḃn/p-1 p,1

) for some 1 < p < ∞. There exist two constants η and κ such that if for some m ∈ Z we have

min inf (t,x)∈[0,T ]×R n Ṡm (2aµ + bλ)(t, x), inf (t,x)∈[0,T ]×R n Ṡm (aµ)(t, x) ≥ α 2 , (3.16) (Id -Ṡm )(µ∇a, a∇µ, λ∇b, b∇λ) L ∞ T ( Ḃn/p-1 p,1
) ≤ ηα (3.17) then the solutions to (3.13) satisfy for all t ∈ [0, T ],

u L ∞ t ( Ḃs p,1 ) + α u L 1 t ( Ḃs+2 p,1 ) ≤ C u 0 Ḃs p,1 + f L 1 t ( Ḃs p,1 ) exp C α t 0 Ṡm (µ∇a, a∇µ, λ∇b, b∇λ) 2 Ḃn/p p,1 dτ whenever -min(n/p, n/p ′ ) < s ≤ n/p -1.
Proof. As for the heat equation, we split the coefficients of the system into a smooth (but large) low frequency part and a rough (but small) high frequency part. It turns out to be more convenient to work directly on the equations for d and Ω. More precisely, as regards d, we write (starting from (3.15) and denoting c := 2aµ + bλ) that , ∆j ((Id -Ṡm )∇c • ∇d)

∂ t d -div (c∇d) = -∇c • ∇d + A(D)(f + 2a∇µ • D(u) + b∇λ div u) +[A(D), aµ]∆u + [A(D), aµ + bλ]∇div u, whence, denoting d j := ∆j d, ∂ t d j -div ( Ṡm c∇d j ) = div ([ ∆j , Ṡm c]∇d) + ∆j div ((Id -Ṡm )c∇d) -Ṡm ∇c • ∇d -(Id -Ṡm )∇c • ∇d + ∆j A(D) f + 2 Ṡm (a∇µ) • D(u) + 2(Id -Ṡm )(a∇µ) • D(u) + Ṡm (b∇λ) div u + (Id -Ṡm )(b∇λ) div u + ∆j [A(D), Ṡm (aµ)]∆u + 
c j 2 -js (Id -Ṡm )∇c Ḃn/p-1 p,1 ∇d Ḃs+1 p,1 , ∆j [A(D), Ṡm (aµ)]∆u L p c j 2 -js ∇ Ṡm (aµ) Ḃn/p p,1 ∆u Ḃs-1 p,1 , ∆j [A(D), (Id -Ṡm )(aµ)]∆u L p c j 2 -js ∇(Id -Ṡm )(aµ) Ḃn/p-1 p,1 ∆u Ḃs p,1
, and similar estimates for ∆j

A(D)( Ṡm (a∇µ) • D(u)), ∆j A(D)((Id -Ṡm )(a∇µ) • D(u)), ∆j A(D)( Ṡm (b∇λ) div u), ∆j A(D)((Id -Ṡm )(b∇λ) div u), ∆j [A(D), Ṡm (aµ + bλ)]∇div u, ∆j [A(D), (Id -Ṡm )(aµ + bλ)]∇div u.
The curl part Ω of the velocity may be treated in the same way. Therefore we get

u L ∞ t ( Ḃs p,1 ) + α u L 1 t ( Ḃs+2 p,1 ) u 0 Ḃs p,1 + f L 1 t ( Ḃs p,1 ) + t 0 Ṡm (a∇µ, µ∇a, b∇λ, λ∇b) Ḃn/p p,1 u Ḃs+1 p,1 dτ + t 0 (Id -Ṡm )(a∇µ, µ∇a, b∇λ, λ∇b) Ḃn/p-1 p,1 u Ḃs+2 p,1
dτ.

Obviously the last term may be absorbed by the left-hand side if η is small enough in (3.17) and the last-but-one term may be handled by interpolation according to (3.8). So applying Gronwall lemma yields the desired inequality.

For the sake of completeness, we still have to justify the existence of a solution to (3.13). More precisely, we want to establish the following result: Proposition 6. Let p be in (1, +∞). Let a, b, λ and µ be bounded functions satisfying (3.14). Assume in addition that there exist some constants ā, b, λ and μ such that (3.18) 2āμ + bλ > 0 and āμ > 0,

and such that a -ā, b -b, µ -μ and λ -λ are in C([0, T ]; Ḃn/p p,1 ). Finally, suppose that

(3.19) lim m→+∞ (Id -Ṡm )(a -ā, b -b, λ -λ, µ -μ) L ∞ T ( Ḃn/p
p,1 ) = 0. Then for any data u 0 ∈ Ḃs p,1 and f ∈ L 1 (0, T ; Ḃs p,1 ) with s satisfying (3.11), System (3.13) admits a unique solution u ∈ C([0, T ]; Ḃs p,1 ) ∩ L 1 (0, T ; Ḃs+2 2,1 ). Besides, the estimates of Proposition 5 are fulfilled for all large enough m ∈ Z.

Proof. The proof is based on the continuity method as explained in e.g. [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF] (and used in [START_REF] Danchin | On the solvability of the compressible Navier-Stokes system in bounded domains[END_REF] in a similar context as ours). For θ ∈ [0, 1], we introduce the following second order operator P θ acting on vector-fields u as follows:

P θ u := -2a θ div (µ θ D(u)) -b θ ∇(λ θ div u),
where a θ := (1 -θ)ā + θa, b θ := (1 -θ) b + θb, and so on. We claim that one may find some m ∈ Z independent of θ such that for all θ ∈ [0, 1], the conditions (3.16) and (3.17) are satisfied by a θ , b θ , µ θ and λ θ . Indeed, we notice that

a θ -ā = θ(a -ā).
Hence, for all θ ∈ [0, 1],

(Id -Ṡm )(a θ -ā) L ∞ T ( Ḃn/p p,1 ) ≤ (Id -Ṡm )(a -ā) L ∞ T ( Ḃn/p p,1
) , and similar properties hold for b θ , λ θ and µ θ . In particular, owing to the continuous embedding of Ḃn/p p,1 in the set of continuous bounded functions, and to (3.19), we deduce that there exists some m ∈ Z so that the ellipticity condition (3.16) is satisfied by operator P θ for all θ ∈ [0, 1].

Likewise, we have for instance

µ θ ∇a θ = θ(1 -θ)μ∇a + θ 2 µ∇a
and similar relations for the other coefficients. Hence one may find some large enough m so that (3.17) is satisfied for all θ ∈ [0, 1]. In addition, the above relation shows that Ṡm (µ θ ∇a θ ) Ḃn/p .

Hence all the terms appearing in the exponential term of the estimate in Proposition 5 may be bounded by a constant depending only on m and on the coefficients a, b, λ and µ. As a conclusion, one may thus find some constant C independent of θ such that any solution w of

∂ t w -P θ w = g, w| t=0 = w 0 satisfies (3.20) w L ∞ T ( Ḃs p,1 ) + α w L 1 T ( Ḃs+2 p,1 ) ≤ C w 0 Ḃs p,1 + g L 1 T ( Ḃs p,1
) . After this preliminary work, one may start with the proof of existence (uniqueness follows from the estimates of Proposition 5). Let E be the set of those θ in [0, 1] such that for every data u 0 and f (as in the statement of the theorem), System Note that according to Proposition 1, the set E contains 0 hence is nonempty. So it suffices to find a fixed ε > 0 such that for all θ 0 ∈ E, we have (3.22) [θ 0 -ε, θ 0

+ ε] ∩ [0, 1] ⊂ E.
So let us fix some θ 0 ∈ E, u 0 ∈ Ḃs p,1 , f ∈ L 1 (0, T ; Ḃs p,1 ) and v ∈ F s p (T ) and consider the solution u to the system ∂ t u -P θ 0 u = f + (P θ -P θ 0 )v with θ ∈ [0, 1] such that |θ -θ 0 | ≤ ε. Given that θ 0 is in E, the existence of u in F s p (T ) is granted if (P θ -P θ 0 )v ∈ L 1 (0, T ; Ḃs p,1 ). So let us first check this: we have

(P θ -P θ 0 )v = (θ -θ 0 ) 2a θ 0 div (μ -µ)D(v) + 2(ā -a)div (µ θ D(v)) +b θ 0 ∇ ( λ -λ)div v + ( b -b)∇ λ θ div v .
Under Condition (3.11), one may thus conclude thanks to product estimates in Besov spaces (see Lemma 4) that (P θ -P θ 0 )v ∈ L 1 (0, T ; Ḃs p,1 ). Furthermore

(P θ -P θ 0 )v Ḃs p,1 ≤ Cε (ā + a θ 0 -ā Ḃn/p p,1
) µ -μ Ḃn/p p,1

+ (μ + µ θ -μ Ḃn/p p,1
) a -ā Ḃn/p p,1

+( b + b θ 0 -b Ḃn/p p,1
) λ -λ Ḃn/p p,1

+ ( λ + λ θ -λ Ḃn/p p,1
) a -ā Ḃn/p p,1

Dv Ḃs+1 p,1
.

The coefficients may be bounded in terms of the initial coefficients a, b, λ and µ. Hence, applying (3.20) we get for some constant independent of θ 0 and of θ,

u L ∞ T ( Ḃs p,1 ) + α u L 1 T ( Ḃs+2 p,1 ) ≤ C ε v L 1 T ( Ḃs+2 p,1 ) + w 0 Ḃs p,1 + f L 1 T ( Ḃs p,1
) . Taking ε small enough, it becomes clear that the linear map Ψ θ : v → u is contractive on the Banach space F s p (T ). Hence it has a (unique) fixed point u ∈ F s p (T ). In other words, u satisfies (3.21).

Given that E is nonempty and that ε is independent of θ 0 , one may now conclude that 1 is in E. Therefore, there exists a solution u ∈ F s p (T ) to (3.13). Remark 1. Under the assumptions of the above proposition, the constructed solution u satisfies ∂ t u ∈ L 1 (0, T ; Ḃs p,1 ). Indeed, it suffices to notice that

∂ t u = f + (ā + (a -ā))div (μ + (µ -μ)D(u)) + ( b + (b -b))∇( λ + (λ -λ)div u),
and to use Lemma 4 together with the facts that ∇u is in L 1 (0, T ; Ḃs+1 p,1 ). Moreover we have where C may depend also on the norm of a -ā, b -b, λ -λ and µ -μ in L ∞ (0, T ; Ḃn/p p,1 ). 3.2. Proof of Theorem 1. As we want to consider (possibly) large velocities, we introduce, as in the almost homogeneous case the free solution to the Lamé system corresponding to ρ ≡ 1, that is the vector-field u L in E p (T ), given by Proposition 1, satisfying2 L 1 u L = 0, u| t=0 = u 0 .

∂ t u L 1 T ( Ḃs p,1 ) ≤ C u 0 Ḃs p,1 + f L 1 t ( Ḃs
We claim that the Banach fixed point theorem applies to the map Φ defined in (3.2) in some closed ball BEp(T ) (u L , R) with suitably small T and R. Denoting u := u -u L , we see that u has to satisfy

(3.23) L ρ 0 u = ρ -1 0 div I 1 (v, v) + I 2 (v, v) + I 3 (v, v) + I 4 (v) + (L 1 -L ρ 0 )u L , u| t=0 = 0. If the right-hand side is in L 1 (0, T ; Ḃn/p-1 p,1
) and if there exists some m ∈ Z so that (3.16) and (3.17) are fulfilled then Proposition 6 and Remark 1 ensure the existence of u in E p (T ). Now, the existence of m so that min inf

x Ṡm 2

µ(ρ 0 ) ρ 0 + λ(ρ 0 ) ρ 0 , inf x Ṡm µ(ρ 0 ) ρ 0 > α 2 and (Id -Ṡm ) µ(ρ 0 ) ρ 2 0 ∇ρ 0 , µ ′ (ρ 0 ) ρ 0 ∇ρ 0 , λ(ρ 0 ) ρ 2 0 ∇ρ 0 , λ ′ (ρ 0 ) ρ 0 ∇ρ 0 Ḃn/p-1 p,1 ≤ ηα.
is ensured by the fact that all the coefficients (minus some constant) belong to the space Ḃn/p p,1

which is defined in terms of a convergent series and embeds continuously in the set of bounded continuous functions. The study of the right-hand side of (3.23) will be carried out below. ) ensure that

(3.24) u Ep(T ) ≤ Ce Cρ 0 ,mT (L 1 -L ρ 0 )u L L 1 T ( Ḃn/p-1 p,1 ) + ρ -1 0 M( Ḃn/p-1 p,1 ) I 1 (v, v) L 1 T ( Ḃn/p p,1 ) + I 2 (v, v) L 1 T ( Ḃn/p p,1 ) + I 3 (v, v) L 1 T ( Ḃn/p p,1 ) + I 4 (v) L 1 T ( Ḃn/p p,1 )
for some constant C ρ 0 ,m depending only on ρ 0 and on m.

In what follows, we assume that T and R have been chosen so that (2.7) is satisfied by v. Using the decomposition ) and

(L 1 -L ρ 0 )u L = (ρ -1 0 -1)div 2µ(ρ 0 )D(u L ) + λ(ρ 0 )div u L Id +div 2(µ(ρ 0 ) -µ(1))D(u) + (λ(ρ 0 ) -λ( 1 
(3.25) (L 1 -L ρ 0 )u L L 1 T ( Ḃn/p-1 p,1
) a 0 Ḃn/p 

v into v + u L : u Ep(T ) ≤ Ce Cρ 0 ,mT (1 + a 0 Ḃn/p p,1 ) 2 (T + a 0 Ḃn/p p,1 Du L L 1 T ( Ḃn/p p,1 ) ) + Du L 2 L 1 T ( Ḃn/p p,1 ) + Du L L 1 T ( Ḃn/p p,1 ) + D v L 1 T ( Ḃn/p p,1 ) D v L 1 T ( Ḃn/p p,1 ) . So, because v ∈ B Ep(T ) (u L , R), u Ep(T ) ≤ Ce Cρ 0 ,mT (1 + a 0 Ḃn/p p,1 ) 2 (T + a 0 Ḃn/p p,1 Du L L 1 T ( Ḃn/p p,1 ) ) +(R + Du L L 1 T ( Ḃn/p p,1 ) ) Du L L 1 T ( Ḃn/p p,1 ) + R 2 .
Therefore, if we first choose R so that for a small enough constant η, (3.28)

(1 + a 0 Ḃn/p p,1

) 2 R ≤ η and then take T so that

(3.29) C ρ 0 ,m T ≤ log 2, T ≤ R 2 , a 0 Ḃn/p p,1 Du L L 1 T ( Ḃn/p p,1 ) ≤ R 2 , Du L L 1 T ( Ḃn/p p,1 )
≤ R, then we may conclude that Φ maps BEp(T ) (u L , R) into itself.

Second step: contraction estimates. Let us now establish that, under Condition (3.29), the map Φ is contractive. We consider two vector-fields v 1 and v 2 in BEp(T ) (u L , R), and set u 1 := Φ(v 1 ) and u 2 := Φ(v 2 ). Let δu := u 2 -u 1 and δv := v 2 -v 1 . In order to prove that Φ is contractive, it is mainly a matter of applying Proposition 5 to 

L ρ 0 δu = ρ -1 0 div (I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1 )) +(I 2 (v 2 , v 2 ) -I 2 (v 1 , v 1 )) + (I 3 (v 2 , v 2 ) -I 3 (v 1 , v 1 
I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1 ) = λ(J -1 v 2 ρ 0 ) T A v 2 : ∇v 2 adj(DX v 2 )
-adj(DX v 1 ) + adj(DX v 1 ) -Id λ(J -1 v 2 ρ 0 ) -λ(J -1 v 1 ρ 0 ) T A v 2 : ∇v 2 + adj(DX v 1 ) -Id λ(J -1 v 1 ρ 0 ) ( T A v 2 -T A v 1 ) : ∇v 1 + T A v 2 : ∇δv + terms pertaining to µ.

Taking advantage of product laws in Besov spaces, of composition estimates (1.5) and (1.6), and of the flow estimates in the appendix, we deduce that for some constant C ρ 0 depending only on ρ 0 : Given that v 1 and v 2 are in BEp(T ) (u L , R), our hypotheses over T and R (with smaller η in (3.28) if need be) thus ensure that, say, δu Ep(T ) ≤ 1 2 δv Ep(T ) .

I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1
One can thus conclude that Φ admits a unique fixed point in BEp(T ) (u L , R). .

Proof. The result relies on Bony decomposition (A.21). The standard continuity results for the paraproduct and remainder operators ensure that (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], Chap. 2): There exists a constant C depending only on ν, p, σ and n such that for all k ∈ {1, • • • , n}, we have for some sequence (c j ) j∈Z with c ℓ 1 (Z) = 1: Arguing as in the proof of Lemma 6 in [START_REF] Danchin | On the well-posedness of the incompressible density-dependent Euler equations in the L p framework[END_REF], we get

T f g Ḃσ p,1 f Ḃ-ν ∞,
∂ k [a, ∆j ]w L p ≤ Cc
R 1 j L p ≤ C |j ′ -j|≤4 ∇ Ṡj ′ -1 a L ∞ ∆j ′ w L p .
Now, for ν ≥ 0, we have

∇ Ṡj ′ -1 a L ∞ ≤ C2 j ′ ν ∇a Ḃ-ν ∞,1
.

Therefore, for some sequence (c j ) j∈Z in the unit sphere of ℓ 1 (Z),

(A.24) R 1 j L p ≤ Cc j 2 -jσ ∇a Ḃ-ν ∞,1 w Ḃσ+ν p,1
.

To deal with R 2 j , we use the fact that, owing to the localization properties of the Littlewood-Paley decomposition, we have

R 2 j = j ′ ≥j-2
∂ k S j ′ +2 ∆j w ∆j ′ a .

Hence, using the Bernstein and Hölder inequalities,

R 2 j L p ≤ C j ′ ≥j-2 S j ′ +2 ∆j w L ∞ ∆j ′ ∇a L p , ≤ C2 -jσ j ′ ≥j-2 2 (j-j ′ )( n p -ν) 2 j(σ+ν-n p ) ∆j w L ∞ 2 j ′ ( n p -ν) ∆j ′ ∇a L p .

( 1 . 2 ) 1 )

 121 has a unique local solution (ρ, ū) with (ā, ū) ∈ C([0, T ]; Ḃn/p p,1 ) × E p (T ). Moreover, the flow map (a 0 , u 0 ) -→ (ā, ū) is Lipschitz continuous from B × E p (T ).In Eulerian coordinates, this result recasts in: Theorem 4. Under the above assumptions with in addition n ≥ 2 and p < 2n, System (0.1) has a unique local solution (ρ, u) with density bounded away from vacuum and a ∈ C([0, T ]; Ḃn/p-1 p,1

p, 1

 1 ) exp C α t 0 (b∇a, a∇b) 2 Ḃn/p p,1 dτ whenever -min(n/p, n/p ′ ) < s ≤ n/p.

dτ

  whenever -min(n/p, n/p ′ ) < s ≤ n/p.

1 ≤ 1 ,

 11 D), aµ]∆u + [A(D), aµ + bλ]∇div u Ḃs Note that applying Lemma 6 with σ = s -1, ν = 0 and Lemma 4 with σ = s and ν = 0 yields [A(D), aµ]∆u Ḃs p,C ∇(aµ) Ḃn/p and analogous estimates for [A(D), aµ + bλ]∇div u and b∇λdiv u.

1 , 1 ,

 11 [A(D), Ṡm (aµ + bλ)]∇div u + [A(D), (Id -Ṡm )(aµ)]∆u + [A(D), (Id -Ṡm )(aµ + bλ)]∇div u . Under Condition (3.11), Lemmas 4, 5 and 6 imply that div ([ ∆j , Ṡm c]∇d) L p c j 2 -js Ṡm ∇c Ḃn/p ∆j div ((Id -Ṡm )c∇d) L p c j 2 -js (Id -Ṡm )c Ḃn/p ∆j ( Ṡm ∇c • ∇d) L p c j 2 -js Ṡm ∇c Ḃn/p

( 3

 3 .21) ∂ t u -P θ u = f, u| t=0 = u 0 has a solution u in the set F s p (T ) := C([0, T ]; Ḃs p,1 ) ∩ L 1 (0, T ; Ḃs+2 p,1 ).

First step:

  Stability of BEp(T ) (u L , R) for small enough R and T . Proposition 5 and the definition of the multiplier space M( Ḃn/p-1 p,1

  ))div u Id , and composition inequalities (1.5) and (1.6), we see that (L 1 -L ρ 0 )u L ∈ L 1 (0, T ; Ḃn/p-1 p,1

1 )

 1 )) + (I 4 (v 2 ) -I 4 (v 1 )) • So we have, given that C ρ 0 ,m T ≤ log 2, (3.30) δu Ep(T ) ≤ C(1 + a 0 Ḃn/p p,I 1 (v 2 , v 2 ) -I 1 (v 1 , v 1 ) L 1 T ( Ḃn/p p,1 ) + I 2 (v 2 , v 2 )-I 2 (v 1 , v 1 ) L 1 T ( Ḃn/p p,1 ) + I 3 (v 2 , v 2 )-I 3 (v 1 , v 1 ) L 1 T ( Ḃn/p p,1 ) + I 4 (v 2 )-I 4 (v 1 ) L 1 T ( Ḃn/p p,1 )• In order to deal with the first term of the right-hand side, we use the decomposition

p, 1 )

 1 ≤ C ρ 0 (Dv 1 , Dv 2 ) L 1 T ( Ḃn/p p,1 ) Dδv L 1 T ( Ḃn/p p,1) . Similar estimates may be proved for the next two terms of the right-hand side of (3.30). Concerning the last one, we use the decompositionI 4 (v 2 ) -I 4 (v 1 ) = adj(DX v 1 ) -adj(DX v 2 ) P (J -1 v 2 ρ 0 ) -adj(DX v 1 ) P (J -1 v 2 ρ 0 ) -P (J -1 v 1 ρ 0 ) . Hence I 4 (v 2 ) -I 4 (v 1 )We end up with δu Ep(T ) ≤ C(1 + a 0 Ḃn/p p,1

) 2 T

 2 + (Dv 1 , Dv 2 )

Lemma 4 .

 4 Let p be in[1, +∞] and the real numbers ν and σ satisfy ν ≥ 0 and -Then the following estimate holds true for all tempered distributions f and g over R n :

j 2 - 1 w B σ+ν p, 1 for 1 j+ ∂ k T ′ ∆j w a R 2 j-∂ k ∆j T ′ w a R 3 j

 211123 jσ ∇a B n/p-ν p,all j ∈ Z. Proof. Taking advantage of the Bony decomposition (A.21), we rewrite the commutator as 3 (A.23) ∂ k ([a, ∆j ]w) = ∂ k ([T a , ∆j ]w) R .

  and (A.19), and product laws in Besov space yields

	(2.16)	δf 2 L ∞ T (	Ḃn/p p,1 )	T (1 + a 0 Ḃn/p p,1

  js b∇a Ḃn/p

										p,1	+ a∇b Ḃn/p p,1	∇u Ḃs p,1
						p,1	+ f L 1 t ( Ḃs p,1 )
										t
										+ C	0	(b∇a, a∇b) Ḃn/p p,1	u Ḃs+1 p,1	dτ.
	From the interpolation inequality							
	(3.8)	u Ḃs+1 p,1	≤ u	1/2 Ḃs p,1	u	1/2 p,1 Ḃs+2	,
	we gather that								
	C (b∇a, a∇b) Ḃn/p p,1	u Ḃs+1 p,1	≤	αc p 2	u Ḃs+2 p,1	+	C 2 2αc p	(b∇a, a∇b) 2 Ḃn/p p,1	u Ḃs p,1

.

Then inserting

(3.6

) in (3.5), multiplying by 2 js and summing up over j yields

(3.7) u L ∞ t ( Ḃs p,1 ) + c p α u L 1 t ( Ḃs+2 p,1 ) ≤ u 0 Ḃs

  L p + R j L p ≤ Cc j 2 -js b∇a Ḃn/p-1

	whenever			
	(3.11) -min(n/p, n/p Proof. Given the new assumptions, it is natural to replace (3.6) by the inequality
	(3.12)	∆j (b∇a • ∇u) p,1	+ a∇b Ḃn/p-1 p,1	∇u Ḃs+1 p,1
				2 Ḃn/p p,1	dτ

′ ) < s ≤ n/p -1.

  1 if σ > -min(n/p, n/p ′ ).Lemma 5. Assume that σ, ν and p are such that

		T g f Ḃσ p,1 R(f, g) Ḃσ p,1	g Ḃσ+ν p,1 g Ḃσ+ν-n/p ∞,1 f Ḃn/p-ν p,1 f Ḃn/p-ν p,1 g Ḃσ+ν p,1	if ν ≥ 0, if σ + ν -n/p ≤ 0,
	So the result follows once noticed that Ḃs p,1 ֒→	Ḃs-n/p			
	(A.22)	1 ≤ p ≤ +∞, 0 ≤ ν ≤	n p	and -min	n p	,	n p ′ -1 < σ ≤	n p	-ν.

∞,1

for any s ∈ R.

See (3.1) for the definition of operator L1.

Here we use the notation T ′ u v := Tuv + R(u, v).

Third step: Regularity of the density. Granted with the above velocity field u in E p (T ), we set ρ := J -1 u ρ 0 . By construction, the couple (ρ, u) satisfies (1.2). Let us now prove that a := ρ -1 is in C([0, T ]; Ḃn/p p,1 ). We have a = (J -1 u -1)a 0 + a 0 . Given (A.11) and using the fact that Du ∈ L 1 (0, T ; Ḃn/p p,1 ), it is clear that J -1 u -1 belongs to C([0, T ]; Ḃn/p p,1 ). Hence a belongs to C([0, T ]; Ḃn/p p,1 ), too. Because Ḃn/p p,1 is continuously embedded in L ∞ , Condition (1.7) is fulfilled on [0, T ] (taking T smaller if needed).

Last step: Uniqueness and continuity of the flow map. We now consider two couples (ρ 1 0 , u 1 0 ) and (ρ 2 0 , u 2 0 ) of data fulfilling the assumptions of Theorem 1 and we denote by (ρ 1 , u 1 ) and (ρ 2 , u 2 ) two solutions in E p (T ) corresponding to those data. Setting δu := u 2 -u 1 , we see that

((I 2 j -I 1 j )(u 1 , u 1 ) + (I 2 4 -I 1 4 )(u 1 ) ,

where I i 1 , I i 2 , I i 3 and I i 4 correspond to the quantities that have been defined just above (3.2), with density ρ i 0 . Note that those terms may be bounded exactly as in the second step. So the only definitely new terms are (L ρ 1 0 -L ρ 2 0 )(u 2 ) and the last line. As regards (L

Id . Hence, combining composition, flow and product estimates, we get for t ≤ T,

Du 2

) . It is not difficult to show that the other "new" terms satisfy analogous estimates. Hence, applying Proposition 5 to the system that is satisfied by δu, we discover that for t ≤ T, 

) . An obvious bootstrap argument thus shows that if t, δu 0 and δρ 0 are small enough then

As regards the density, we have So we eventually get uniqueness and continuity of the flow map on a small enough time interval. Then iterating the proof yields uniqueness on the initial time interval [0, T ]. Note that it also yields Lipschitz continuity of the flow map for the velocity as for fixed data (ρ 1 0 , u 1 0 ), one may find some neighborhood and common time interval on which all the solutions constructed in the previous steps exist. and ρ 0 ∈ (1 + Ḃn/p p,1 ), the local existence for (0.1) may be proved directly (see [START_REF] Chen | Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities[END_REF][START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF]) but only under the assumption that p ≤ n in the case of nonconstant viscosity coefficients. Here we get the result (including uniqueness) from Theorem 1, and under the sole assumption that p < 2n. This is a mere corollary of the following proposition which states the equivalence of the systems (0.1) and (1.2) in our functional setting.

Proposition 7. Assume that the couple (ρ, u) with (ρ -1) ∈ C([0, T ]; Ḃn/p p,1 ) and u ∈ E p (T ) (with 1 ≤ p < 2n) is a solution to (0.1) such that

Let X be the flow of u defined in (1.1). Then the couple (ρ, ū) := (ρ • X, u • X) belongs to the same functional space as (ρ, u), and satisfies (1.2).

Ḃn/p p,1 ) × E p (T ) and (ρ, ū) satisfies (1.2) and, for a small enough constant c,

and in fact a locally

Ḃn/p+1 p,1

) diffeomorphism over R n and the couple (ρ, u) := (ρ • X -1 , ū • X -1 ) satisfies (0.1) and has the same regularity as (ρ, ū).

Proof. Let us first consider a solution (ρ, u) to (0.1) with the above properties. Then, the definition of X implies that DX -Id is in C([0, T ]; Ḃn/p p,1 ). In addition, Proposition 8 ensures that (ρ, ū) := (ρ • X, u • X) belongs to the same functional space as (ρ, u), and (A.9), (A.10), (A.11) below imply that A -Id, adj(DX) -Id and J -1 -1 are in C([0, T ]; Ḃn/p p,1 ). Therefore the product laws for Besov spaces enable us to use the algebraic relations (A.5), (A.6), (A.7) and (A.8) whenever p < 2n. Therefore (ρ, ū) fulfills (1.2).

Conversely, if we are given some solution (ρ, ū) in C([0, T ]; (1 + Ḃn/p p,1 )) × E p (T ) to (1.2) then one may check (see the appendix of [START_REF] Danchin | Fourier analysis methods for compressible flows, topics on compressible Navier-Stokes equations, états de la recherche SMF[END_REF]) that, under condition (2.7), the "flow" X(t, •) of ū defined by

). Hence one may construct the Eulerian vector-field u and Eulerian density by setting

As above, the algebraic relations (A.5), (A.6), (A.7) and (A.8) hold whenever p < 2n. Hence (ρ, u) is a solution to (0.1). That (ρ, u) has the desired regularity stems from Proposition 8.

Proof of Theorem 2. We consider data (ρ 0 , u 0 ) with ρ 0 bounded away from 0, (ρ 0 -1) ∈ Ḃn/p p,1 and u 0 ∈ Ḃn/p-1

Then Theorem 1 provides a local solution (ρ, ū) to System (1.2) in

) is a solution of (0.1) in the desired functional space.

In order to prove uniqueness, we consider two solutions (ρ 1 , u 1 ) and (ρ 2 , u 2 ) corresponding to the same data (ρ 0 , u 0 ), and perform the Lagrangian change of variable (pertaining to the flow of u 1 and u 2 respectively). The obtained vector-fields ū1 and ū2 are in E p (T ) and both satisfy (1.2) with the same ρ 0 and u 0 . Hence they coincide, as a consequence of the uniqueness part of Theorem 1.

Appendix A

A.1. Change of coordinates. Here we establish a result of regularity concerning changes of variables in Besov spaces. Even though this is somewhat classical (at least in nonhomogeneous Besov spaces), we did not find any reference in the literature of the estimates that we need. We here give a result in general Besov spaces Ḃs p,q , the definition of which may be found in e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF].

Proposition 8. Let X be a globally bi-Lipschitz diffeomorphism of R n and (s, p, q) with 1 ≤ p < ∞ and -n/p ′ < s < n/p (or just -n/p ′ < s ≤ n/p if q = 1 and just

Then a → a • X is a self-map over Ḃs p,q in the following cases: (1) s ∈ (0, 1), (2) s ∈ (-1, 0] and J X -1 is in the multiplier space M( Ḃ-s p ′ ,q ′ ) defined in (2.9), (3) s ≥ 1 and (DX -Id) ∈ Ḃn/p p,1 . Proof: Let us first assume that s ∈ (0, 1) and q = p. Then one may use the classical characterization of the norm of Ḃs p,p in terms of finite differences (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) so as to write:

• Hence performing the change of variable x ′ = X(x) and y ′ = X(y), we get

. The condition that s < n/p ensures in addition that u belongs to some Lebesgue space L p * (R n ) with p * < ∞ (or in the set of continuous functions going to 0 at infinity if q = 1 and s = n/p). Hence u • X ∈ L p * (R n ) too and one may thus conclude that u • X ∈ Ḃs p,p (R n ). An interpolation argument then yields the desired result for any s ∈ (0, 1) and q ∈ [1, +∞].

The result for negative s may be achieved by duality: we have

. So the definition of the multiplier space and the first part of the lemma allows to conclude.

Finally, let us examine the cases of larger values of s. If 1 < s < 2 then one may write

As 0 < s -1 < 1, the first part of the proof ensures that Du • X ∈ Ḃs-1 p,q . As moreover (DX -Id) ∈ Ḃn/p p,1 , the standard product laws in Besov spaces give the result. If 2 < s < 3 then we use the algebraic relation,

Hence the result follows from product laws and the previous result applied with s -1 or s -2.

The higher values of s may be achieved by induction, and the remaining cases (s an integer) follow by interpolation. The details are left to the reader. A.2. Some properties of Lagrangian coordinates. Let us first derive a few algebraic relations involving changes of coordinates. We are given a C 1 -diffeomorphism X over R n . For H : R n → R m , we agree that H(y) = H(x) with x = X(y). With this convention, the chain rule writes

Hence we have

Lemma 1. Let K be a C 1 scalar function over R n and H, a C 1 vector-field. Let X be a C 1 diffeomorphism such that J := det(D y X) > 0. Then the following relations hold true:

where adj(D y X) stands for the adjugate of D y X.

Proof: The first item stems from the following series of computations (based on integrations by parts, changes of variable and (A.2)) which hold for any vector-field φ with coefficients in

Proving the second item is similar. Combining (A.2), (A.4) and (A.3), we deduce that if u : R n → R n and P : R n → R then ∆ x u = J -1 div y (adj(D y X)∇ x u) = J -1 div y (adj(D y X) T A∇ y ū), (A.5)

Note that we will use the above relations in the case where X is the flow of some time-dependent vector field u, defined by the relation

Hence we will also have

Let us now establish some estimates for the flow X v of some given "Lagrangian" vector field (that is X v is defined by (3.33)).

Lemma 2. Let p ∈ [1, +∞) and v be in E p (T ) satisfying (2.7). Let X v be defined by (3.33). Then we have for all t ∈ [0, T ],

Dv L 1 t ( Ḃn/p p,1 ) , (A.10)

Furthermore, if w is a vector field such that D w ∈ L 1 (0, T ; Ḃn/p p,1 ) then

Proof: Recall that (see e.g. the appendix of [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF]) for any n × n matrix C we have

where the entries of the matrix P 2 (C) are at least quadratic polynomials. Applying this relation to the matrix DX(t), and using the fact that (A. Given that Ḃn/p p,1 is a Banach algebra and that (2.7) holds, we readily get (A.9). In order to prove (A.10), we just use the fact that, under assumption (2.7), we have

Dv dτ, and that Ḃn/p p,1 is a Banach algebra. As regards (A.11), we write (A.17)

Hence, if Condition (2.7) holds then we have (A.11) for J v . In order to get the inequality for J -1 v , it suffices to use the fact that

For proving (A.12), we use the decomposition

Hence the desired inequality stems from (A.9) and (A.10), and from the fact that Ḃn/p p,1 is a Banach algebra. Inequality (A.13) is similar. This completes the proof of the lemma. Lemma 3. Let v1 and v2 be two vector-fields satisfying (2.7), and δv := v2 -v1 . Then we have for all p ∈ [1, +∞) and all t ∈ [0, T ] (with obvious notation): ) . Proof: In order to prove the first inequality, we use the fact that, for i = 1, 2, we have

So using the fact that Ḃn/p p,1 is a Banach algebra, it is easy to conclude to (A.18). The second inequality is a consequence of the decomposition (A.14) and of the Taylor formula which ensures that, denoting δC :

where the coefficients of P 2 are polynomials of degree n -1. As the sum is finite and Ḃn/p p,1 is a Banach algebra, we get (A. [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF].

Proving the third inequality relies on similar arguments. It is only a matter of using (A.17). The details are left to the reader. A.3. Commutator and product estimates. This last paragraph is devoted to the proof of commutator and product estimates that have been used for investigating the Lamé system. Those proofs rely on the following Bony decomposition (first introduced in [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]) for the product of two functions:

The paraproduct and remainder operators T and R are defined by Proof. Taking advantage once again of Bony's decomposition, we decompose the commutator into (A.27) [A(D), q]w = [A(D), T q ]w + A(D)T ′ w q -T ′ A(D)w q. According to Lemma 2.99 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], we have for ν ≥ 0, [A(D), T q ]w Ḃσ+1 Next, given that A(D) is a homogeneous multiplier of degree 0, it maps any homogeneous Besov space in itself. Therefore the last two terms of (A.27) may be just bounded according to standard continuity results for the paraproduct and remainder operators.