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A LAGRANGIAN APPROACH FOR THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

RAPHAEL DANCHIN

ABSTRACT. Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations
in R™, in the critical Besov spaces setting. We improve recent results (see [4, 8, 9]) as regards
the uniqueness condition: initial velocities in critical Besov spaces with (not too) negative in-
dices generate a unique local solution. Apart from (critical) regularity, the initial density just
has to be bounded away from 0 and to tend to some positive constant at infinity. Density-
dependent viscosity coefficients may be considered. Using Lagrangian coordinates is the key
to our statements as it enables us to solve the system by means of the basic contraction map-
ping theorem. As a consequence, conditions for uniqueness are the same as for existence, and
Lipschitz continuity of the flow map (in Lagrangian coordinates) is established.

INTRODUCTION

We address the well-posedness issue for the barotropic compressible Navier-Stokes equations
with variable density in the whole space R™ (n > 2):
Op + div (pu) = 0,
(0.1) O (pu) + div (pu @ u) — 2div (u(p)D(u)) — V(A(p)divu) + V(P(p)) =0,
P||t=0 = P0, U|\t=o = Uo-
Above p = p(t,x) € Ry stands for the density, u = u(t,z) € R™, for the velocity field. The

space variable = belongs to the whole R™. The notation D(u) designates the deformation tensor

which is defined by
1 , ,
D(u) :== §(Du +Vu) with (Du);; :==0;u' and (Vu);j := Oju’.

The pressure function P and the viscosity coefficients A and p are given suitably smooth
functions of the density. With no loss of generality, one may assume that P is defined over R
and vanishes at 0. As we focus on wviscous fluids, we suppose that

(0.2) = min(i0f (A(p) + 20(p)). inf u(p) ) > 0.

which ensures the second order operator in the velocity equation of (0.1) to be uniformly elliptic.

We supplement System (0.1) with the condition at infinity that u tends to 0 and p, to
some positive constant (that may be taken equal to 1 after suitable normalization). The exact
meaning of those boundary conditions will be given by the functional framework in which we
shall consider the system.

In the present paper, we aim at solving (0.1) in critical functional spaces, that is in spaces
which have the same invariance with respect to time and space dilation as the system itself (see
e.g. [8] for more explanations about this nowadays classical approach). In this framework, it
has been stated [8, 9] in the constant coefficients case that, for data (pg,up) such that

ap = (po— 1) € BIP(R™),  wp € BIYP (R
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2 R. DANCHIN

and that, for a small enough constant c,
. n <
(0 3) HGOHpr/lp(Rn) =6

we have for any p € [1,2n):

e existence of a local solution (p,u) such that a := (p — 1) € Cb([O,T];Bn/p

Pl
Co([0,T); BYAP™") and u, V2u € L0, T; B

e uniqueness in the above space if in addition p < n.

), u €

If p < n then the viscosity coefficients may depend (smoothly) on p and the smallness condition
(0.3) may be replaced by the following positivity condition (see [4, 10]):

(0.4) inf po(z) > 0.
z€R™

Those results have been somewhat extended in [16] where it has been noticed that ap may be
taken in a larger Besov space, with another Lebesgue exponent.

The above results are based on maximal regularity estimates in Besov spaces for the evo-
lutionary Lamé system, and on the Schauder-Tychonoff fixed point theorem. In effect, owing
to the hyperbolicity of the density equation, there is a loss of one derivative in the stability
estimates thus precluding the use of the contraction mapping (or Banach fixed point) theorem.
As a consequence, with this method it is found that the conditions for uniqueness are stronger
than those for existence.

Following our recent paper [13] dedicated to the incompressible density-dependent Navier-
Stokes equation, and older works concerning the compressible Navier-Stokes equations (see [20,
21, 22]), we here aim at solving System (0.1) in the Lagrangian coordinates. The main motivation
is that the mass is constant along the flow hence, to some extent, only the (parabolic type)
equation for the velocity has to be considered. After performing this change of coordinates, we
shall see that solving (0.1) may be done by means of the Banach fixed point theorem. Hence,
the condition for uniqueness is the same as that for the existence, and the flow map is Lipschitz
continuous. In addition, in the case of fully nonhomogeneous fluids with variable viscosity
coefficients, the analysis turns out to be simpler than in [4, 10] even for density-dependent
viscosity coefficients and in the case where the density is not close to a constant. Indeed, our
proof relies essentially on a priori estimates for a parabolic system (a suitable linearization of
the momentum equation in Lagrangian coordinates) with rough constant depending only on the
initial density hence time-independent. In contrast, in [4, 10] tracking the time-dependency of
the coefficients was quite technical.

We now come to the plan of the paper. In the next section, we introduce the compressible
Navier-Stokes equations in Lagrangian coordinates and present our main results. Section 2 is
devoted to the proof of our main existence and uniqueness result in the simpler case where
the density is close to a constant and the coefficients, density independent. In Section 3, we
treat the general fully nonhomogeneous case with nonconstant coefficients. A great deal of the
analysis is contained in the study of the linearized momentum equation for (0.1) (see Subsection
3.1) which turns out to be a Lamé type system with variable rough coefficients. This will
enable us to define a self-map ® on a suitably small ball of some Banach space E,(T) and to
apply the contraction mapping theorem so as to solve the compressible Navier-Stokes equations
in Lagrangian coordinates. In the Appendix we prove several technical results concerning the
Lagrangian coordinates and Besov spaces.

Notation: Throughout, the notation C' stands for a generic constant (the meaning of which
depends on the context), and we sometimes write X < Y instead of X < CY. For X a
Banach space, p € [1,4o00] and T > 0, the notation LP(0,T;X) or L%.(X) designates the set of
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measurable functions f:[0,7] — X with ¢ — || f(¢)||x in LP(0,T). We agree that C([0,T7]; X)
denotes the set of continuous functions from [0,7] to X.

1. MAIN RESULTS

Before deriving the Lagrangian equations corresponding to (0.1), let us introduce more nota-
tion. We agree that for a C! function F : R” — R” x R™ then div F : R® — R™ with

(div F)! := ZaiFij for 1 <j<m,

and that for A = (A4;j)1<ij<n and B = (Byj)1<ij<n two n X n matrices, we denote

A:B=TrAB = ZAZ]B]Z
0,J

The notation adj(A) designates the adjugate matrix that is the transposed cofactor matrix. Of
course if A is invertible then we have adj(A) = (det A) A~!. Finally, given some matrix A, we
define the “twisted” deformation tensor and divergence operator (acting on vector fields z) by
the formulae

1
Da(z) := §(Dz CA+TAL Vz) and divgz:= TA: V2.
Let X be the flow associated to the vector-field u, that is the solution to

(1.1) X(t,y) = y—l—/o u(r, X (1,y)) dr.

Denoting
p(t,y) = p(t, X(t,y)) and a(t,y) = u(t, X(t,y))
with (p,u) a solution of (0.1), and using the chain rule and Lemma 1 from the Appendix, we
gather that (p,u) satisfies
9(Jp) =0
(1.2)
Jpodyi — div <adj(DX) (20(p) Da(@) + A(p) diva a1d + P(p)ld)) ~0

with J := det DX and A := (D,X)~!. Note that one may forget any reference to the initial
Eulerian vector-field u by defining directly the “flow” X of @ by the formula

(1.3) X(t,y) :y—i-/o a(r,y)dr.

We want to solve the above system in critical homogeneous Besov spaces. Let us recall that,
for 1 <p < oo and s < n/p, a tempered distribution u over R™ belongs to the homogeneous
Besov space B, {(R") if

u= ZAju in S'(R")

JEL
and
(14) ||uHB;’1(R”) = Z2js‘|Aju||Lp(Rn) < Q.
JEL

Here (A;)jez denotes a homogeneous dyadic resolution of unity in Fourier variables —the so-
called Littlewood-Paley decomposition (see e.g. [1], Chap. 2 for more details on the Littlewood-
Paley decomposition and Besov spaces).

Loosely speaking, a function belongs to B;l(R”) if it has s derivatives in LP(R™). In the
present paper, we shall mainly use the following classical properties:
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e the Besov space BZ /1p (R™) is a Banach algebra embedded in the set of continuous func-
tions going to 0 at infinity, whenever 1 < p < o0;

e the usual product maps BZ /1p _1(R") X BZ /1p (R™) in BZ /1p _1(R”) whenever 1 <p < 2n;

e Let F : I — R be a smooth function (with I an open interval of R containing 0)
vanishing at 0. Then for any s > 0, 1 < p < oo and interval J compactly supported in
I there exists a constant C' such that

(1.5) 1 (@)l s @ny = Cllallps | @ny

for any a € B;l(]R") with values in J. In addition, if a; and ag are two such functions
and s = n/p then we have

(1.6) 1F(az) — F(a1) < Cllag — all

i eny AP (R’

From now on, we shall omit R™ in the notation for Besov spaces. We shall obtain the existence

and uniqueness of a local-in-time solution (p,u) for (1.2), with a := p—1 in C([0,T7; B;L/lp ) and
u in the space

EP(T) = {U € C([O,T],Bg/lp_l)’ atU,VQ’U c Ll(O,T, B;/lp—l)}.

That space will be endowed with the norm
— 2
ol = 10l o1y + 1900, 920l g,

Let us now state our main result.

n

Theorem 1. Let 1 <p < 2n and n > 2. Let uy be a vector-field in Bp/lp_l. Assume that the
initial density po satisfies ag = (po — 1) € B;/lp and
(1.7) inf po(z) > 0.

x

Then System (1.2) has a unique local solution (p,u) with (a,u) € C([O,T];Bg/lp) x Eu(T).

Moreover, the flow map (ag,up) — (a,u) is Lipschitz continuous from B;/lp X B;L’/lp_l to
C([0,T); BIY) x Ep(T).
In Eulerian coordinates, this result recasts in:

Theorem 2. Under the above assumptions, System (0.1) has a unique local solution (p,u)
with w € E,(T), p bounded away from 0 and (p — 1) € C([0,T7; BZ/lp).

Let us make a few comments concerning the above assumptions.

e We expect the Lagrangian method to improve the uniqueness conditions given in e.g. [8]
for the full Navier-Stokes equations. We here consider the barotropic case for simplicity.

e The condition 1 < p < 2n is a consequence of the product laws in Besov spaces. It
implies that the regularity exponent for the velocity has to be greater than —1/2 (to
be compared with —1 for the homogeneous incompressible Navier-Stokes equations). It
would be interesting to see whether introducing a modified velocity as in B. Haspot’s
works [15, 16] allows to consider different Lebesgue exponents for the Besov spaces
pertaining to the density and the velocity so as to go beyond p = 2n for the velocity.

e The regularity condition over the density is stronger than that for density-dependent
incompressible fluids (see [13]). In particular, in contrast with incompressible fluids, it is
not clear that combining Lagrangian coordinates and critical regularity approach allows
to consider discontinuous densities.
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e Owing to the fact that the density satisfies a transport equation, we do not expect
Lipschitz continuity of the flow map in high norm for the Eulerian formulation to be
true.

e It is worth comparing our results with those of P. Germain in [14], and D. Hoff in [17]
concerning the weak-strong uniqueness problem. In both papers, the idea is to show
that a finite energy weak solution coincides with a strong one under some additional
assumptions. The weak solution turns out to have less regularity as in Theorem 2. At
the same time, the assumptions on the strong solution (p,u) are much stronger. In both
papers, Vu has to be in L'(0,T; L°°), and to satisfy additional conditions: roughly V?u
or dyu have to be in L2(0,T; L%) in Germain’s work, while v#D?u € L7(0,T; L*) with
r=4/3 if n =2, and r =8/5 if n = 3 in Hofl’s paper. Some regularity conditions are
required on the density but they are, to some extent, weaker than ours.

2. THE SIMPLE CASE OF ALMOST HOMOGENEOUS COMPRESSIBLE FLUIDS

As a warm up and for the reader convenience, we here explain how local well-posedness may
be proved for the system in Lagrangian coordinates in the simple case where:

(1) The viscosity coefficients are constant,
(2) The density is very close to one.

Let ¢ := X\ + pu. Keeping in mind the above two conditions and using the fact that the first
equation of (1.2) implies that

(2.1) J(t,)p(t,) = po,
with J := |det DX| and

t
2:2) X(ty) =y+ [ alry)dr
0
we rewrite the equation for the Lagrangian velocity as (recall that A := (DX)™!):

(2.3) Oy — pAu — p/'Vdiva = (1 — poJ)d + 2pdiv (adj(DX)Da(u) — D(a))
+ Adiv (adj(DX) diva @ — diva Id) — div (adj(DX)P(J " po)).
The left-hand side of the above equation is the linear Lamé system with constant coefficients,

the solvability of which may be easily deduced from that of the heat equation in the whole space
(see e.g. [1], Chap. 2). We get:

Proposition 1. Let the viscosity coefficients (u, ') € R? satisfy p > 0 and p+ p' > 0. Let
p€[l,o0] and s € R. Let ug € By, and f € LY(0,T; By ). Then the Lamé system

(2.4) { Ou — pAu — p/'Vdivu = f in (0,T) x R"

u|t=t0 = Ug on R"™

has a unique solution u in C([0,T); B,
estimate is valid:

) such that Oyu, V?u € L1(0,T; B;’l) and the following
(2.5) HUHL%’(B;J) + min(p, p + ,L/)HVQUHUT(B;I) < C(HfHLlT(B;’I) + HUOHB;LI)
where C' is an absolute constant with no dependence on u, ' and T.

In the rest of this section, we drop the bars on the Lagrangian velocity field. Granted with
the above proposition, we define a map @ : v +— u on E,(T) where u stands for the solution to

(2.6) Ou — pAu — p'Vdivu = I (v,v) + 2udiv I (v,v) + Adiv I3(v,v) — div I4(v)
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with
L(v,w) = (1= pody)opw, Iy(v,w) = adj(DX,)Da,(w)— D(w),
I3(v,w) = divg,wadj(DX,)—divwId,  I4(v) = adj(DX,)P(J,  po).

Note that any fixed point of ® is a solution in E,(T") to (2.6). We claim that the existence of
such points is a consequence of the standard Banach fixed point theorem in a suitable closed
ball of E,(T).

First step: estimates for Iy, Is, I3 and Iy. Throughout we assume that for a small enough
constant c,

T
(2.7 JR
0 Pl
In order to bound I;(v,w), we decompose it into
Li(v,w) =(1—Jy)0w — ap(1 + (Jy, — 1))0pw  with ag := po — 1.
Taking advantage of the product law BZ /1p ~x B;L’/lp — BZ /1p - (if 1 <p < 2n) and of the fact
that BZ/lp is an algebra (if 1 <p < 00), of (A.11), (2.7) and of (1.5), we readily get

(2.8) ||Il(v’w)‘|L;(B;’/1P*1) < C(HQOHM(BZ’QZFI) + ||Dv||L%(BZ’/IP))||atw||L%(B;’€P*1)'

Above we introduced the multiplier norm M(B;l) for B2, that is defined by

p,1>
(2.9) 1l = sup el

where the supremum is taken over those functions 1 in B;,l with norm 1.

Next, thanks to product laws, to (A.12), (A.13) and to (2.7), we have
2.1 I on I onpy < C|D n/on || D o/ -
( O) H 2(1}7“})“[/%(32)’/11’) + ” 3(U7w)“L%(Bp’€P) — CH UHL%(BP’/IP)H wHL%(Bp’/lp)

As regards the pressure term (that is I4(v)), we use the fact that under assumption (2.7), we
have, by virtue of the composition inequality (1.5) and of flow estimates (see (A.9) and (A.11)),

(2.11) HI4(U)HL§9(B;/1P) < C(l + HDUHLlT(B;/l")) (1 + HGOHBZ/IP)-

Second step: © maps a suitable closed ball in itself. At this stage, one may assert that if
v € E,(T) satisfies (2.7) then the right-hand side of (2.6) belongs to L!(0,T; B;’/lpfl). Hence
Proposition 1 implies that ®(v) is well defined and maps E,(T") to itself. However it is not clear
that it is contractive over the whole set E,(T). So we introduce u, the “free solution” to

dyur — pAug, — p'Vdivug =0, ur|i=0 = uo-

Of course, Proposition 1 guarantees that wy belongs to E,(T") for all T > 0. Hence, if 7" and
R are small enough then any vector-field in B B,(1)(uL, R) satisfies (2.7).

We claim that if 7" is small enough (a condition which will be expressed in terms of the free
solution wy ) and if R is small enough (a condition which will depend only on the viscosity
coefficients and on p, n and P) then

S BEP(T)(UL?R) — u c BEP(T)(UL?R)'
Indeed u := u — uy, satisfies
{ O — pAu — p/'Vdivu = I (v,v) + 2udiv I (v, v) + Adiv I3(v,v) — div I4(v),

li—o = 0.



COMPRESSIBLE NAVIER-STOKES EQUATIONS 7

So Proposition 1 yields!
”a”Ep(T) S ”Il(uv)HL;(B;’/lP—l) + HIQ(%U)HL;(B;’/IP) + |’I3(U7U)HL;(B;’/1P) + T”I4(U)”L%O(B;’/1P)'

Inserting inequalities (2.8), (2.10) and (2.11), we thus get:

P,

~ 2
[y S DD, g+ (ool gy + 1000 o) 1000y sy + T+ ol g
That is, keeping in mind that v is in BEP(T) (ur, R),
lullg, () < C((HQOHM(BQ/IP*I) + ”DuLHLlT(BZ,/f) + R) (R+ HatuLHLIT(B%FI))
2 2
HIDULIE, gy + B+ T(1+ faoll o)
So we see that, and if T satisfies
(2.12) CT(1+ HaOHB;’/lp) < R/2 and HDULHL%(BZ/IP) + HatuLHLlT(B;’/lp_l) <R

then we have

[Ell g,y < 2C( +2R)R +2CR? + R/2.

HCLOHM(B;’/lpfl)

Hence there exists a small constant 1 = n(n,p) such that if
2.1 on/p—1y <
( 3) ||a’OHM(Bp’/IP 1) — 777

and if R has been chosen small enough then w is in BEP(T) (ur, R). Of course, taking R and T
even smaller ensures that (2.7) is satisfied for all vector-field of Bg, (r)(ur, R).

Third step: contraction properties. We claim that under Conditions (2.13) and (2.12) (with a
smaller R if needed), the map ® is 1/2-Lipschitz over Bg (ry(ur, R). So we are given v and

vy in B, (ry(ur, R) and denote
up = ®(vy) and wug:= P(vg).

Let X; and X, be the flows associated to v; and vs. Set A; = (DX;)~! and J; := det DX;
for ¢ = 1,2. The equation satisfied by du := uy — u; reads

Odu — pAdu — /' Vdivdu = &f = 5f1 + 9fz + div ifz + 2udiv 6f4 + Adiv i
with dfy := (1 — poJ2)Osdu, Ofz := —po(Jo — J1)0suq,
ofs := adj(DX1)P(poJ; ') — adj(DXa) P(poJy '),
5f4 = adj(DXQ)DA2 (UQ) — adj(DXl)DAl (ul) — D(&u),
Ofs := adj(DX2) Ay : Vuy — adj(DX1)TA; : Vuy — divéuld.
Once again, bounding du in E,(T) stems from Proposition 1, which ensures that
2 5

(2

In order to bound ¢§f; and dfs, we just have to use the definition of the multiplier space

M(B;,/lpil)’ and (A.11),(A.20). We get
(2.15) H5f1HL1T(B;L’/Ip—1) < (HGOHM(B;’QP*) + CHDUQHLlT(BZ,/f’))”at&L”LIT(Bg/f—ly
(2.16) 1821l o=y < Clleoll yyggmrm1y DBy g 1Beuall o=y

Ifor simplicity, we do not track the dependency of the coefficients with respect to p and u'.
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Next, using the decomposition
ofs = (adj(DX1) = adj(DX2)) P(poJy ') + adi(DX1)(P(po 1) = Plpo Ty ),
together with composition inequalities (1.5), (1.6) and (A.19), and product laws in Besov space
yields
.17 10l ety S T+ ol g 1Dy e
Finally, we have
dfs = (adj(DX2)—adj(DX1)) As : Vug+adj(DX1) (A3 — A1) : Vuo+(adj(DX1)" A1 —1d) : Véu,
whence, by virtue of (A.9), (A.10), (A.18) and (A.19),
(2'18) ”5f4HL;(B;7/1P) S ”D&}”LIT(B;AP) HDU’QHLIT(B;L/IP) + HD&L”LIT(B;%P) HDvluL;(B;/lp)'

Bounding df4 works exactly the same. So we see that if Conditions (2.13) and (2.12) are satisfied
(with smaller 7 and larger C' if need be) then we have

1
16ull,(r) < 5 100]| 5, (7)-

Hence, the map @ : BEP(T) (ur,R) — B B,(1)(uL, R) is 1/2-Lipschitz. Therefore, Banach’ fixed
point theorem ensures that ® admits a unique fixed point in Bg, (1) (ur, R). This completes the
proof of existence of a solution in E,(T") for System (1.2).

A tiny variation over the proof of the contraction properties yields uniqueness and Lipschitz
continuity of the flow map. We eventually get:

Theorem 3. Let p € [1,2n) (with n > 1) and ug be a vector-field in B;/lp_l. Assume that the

initial density po satisfies ag :== (pg — 1) € B;/lp. There exists a constant ¢ depending only on

p and on n such that if

(2.19) <ec

HG’OHM(B;’/IP—l)

then System (1.2) has a unique local solution (p,u) with (a,u) € C([O,T];Bg/lp) X Eu(T).

Moreover, the flow map (ag,up) — (a,u) is Lipschitz continuous from B;/lp X B;/lp_l to
C([0,T); BIY) x Ep(T).
In Eulerian coordinates, this result recasts in:

Theorem 4. Under the above assumptions, System (0.1) has a unique local solution (p,w) with

density bounded away from vacuum and a € C([0,T]; B;i/lp_l) and u € Ey(T).

We do not give here more details on how to complete the proof of Theorem 3 and its Eulerian
counterpart, Theorem 4 as it will done in the next section under much more general assumptions.

3. THE FULLY NONHOMOGENEOUS CASE

For treating the general case where pg need not satisfy (2.19), just resorting to Proposition 1
is not enough because the term I (v,v) in the r.h.s of (2.6) need not be small. One has first to
establish a similar statement for a Lamé system with nonconstant coefficients. More precisely,
keeping in mind that p = J, !py (we still drop the bars for notational simplicity), we recast the
velocity equation of (1.2) in:

Lo (u) = I1 (u,u) + py tdiv (I2(u, w) + I3 (u, u) + Iy (u, u) + I5(u))
with

(3.1) Lo (u) := dpu — py div (2p(po) D(u) + Apo)divuId)
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and
Li(v,w) = (1= Jy)0w
L(v,w) := (adj(DX,) — Id) (u(J, 1 po)(Dw A, + TA, Vw) + A(J;  po) (TA, - Vw)Id)
Iz(v,w) == (u(J; po) — p(po))(Dw Ay + TA, Vw) + (A(J,  p0) — o)) (FA, : Vw)ld
Ti(o,w) = o) (Duw(A, — Td) + (A, — d)Var) + Apo)((Ay — 1d) : Vuld
I;(v) = —adj(DX,)P(poJ, ).

Therefore, in order to solve (1.2) locally, it suffices to show that the map
(3.2) d:vr—u
with u the solution to
Ly (u) = I1(v,v) + py *div (Iz(v,v) + I3(v,v) + Ls(v,v) + I5(v)),
{ uli—0 = uo
has a fixed point in E,(7T") for small enough 7'

As a first step, we have to study the properties of the linear Lamé operator L,,. This is done
in the following subsection.

3.1. Linear parabolic systems with rough coefficients. As a warm up, we consider the
following scalar heat equation with variable coeflicients:

(3.3) Oyu — adiv (bVu) = f.
We assume that
(3.4) = inf (ab)(t,z) > 0.

(t,x)€[0,T|xR™
Let us first consider the smooth case.

Proposition 2. Assume that a and b are bounded functions satisfying (3.4) and such that bVa

and aVb are in L*(0,T; B;/lp) for some 1 < p < oo. There exist two constants k = k(p) and
C = C(s,n,p) such that the solutions to (3.3) satisfy for all t € [0,T],

el s ) + el g gy < (luollzs , + 171l )exp< / |(bVa aVb)\|2n/pdT>

whenever —min(n/p,n/p’) < s < n/p.
Proof. We first rewrite the equation for w as follows:
Owu — div (abVu) = f —bVa - Vu,
then localize the equation in the Fourier space, according to Littlewood-Paley decomposition:
Oruj — div (abVu;) = fj — Aj(bVa - Vu) + R;
with uj := Aju, f;:=A;f and R; := div ([A;, ab]Vu).

Next, we multiply the above equation by uj|uj|p_2 and integrate over R". Taking advantage
of Lemma 8 in the appendix of [12] (here 1 < p < oo comes into play) and of Hélder inequality,
we get for some constant ¢, depending only on p:

1d

pdtHuyH v+ 002 gl < Nlugl72" (1f5lle + 1145 (0Va - Vu) e + IRy 20),
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which, after time integration, leads to

(35)  llujllze (o) + pa2* ugll ) < o jlie

t
g+ [ (18,09 Vol + 1Ryl i

According to Lemmas 4 and 5 in Appendix, there exists a positive constant C' and some sequence
(¢j)jez with |lc[lp(z) =1, satisfying

(3.6) 14;(bVa - Vu)l[e + || Rj]l e < CCjTjs(HbVaHB;/f + \|aVbHB;/1p)\|V“||Bg,1'
Then inserting (3.6) in (3.5), multiplying by 2/ and summing up over j yields

B1) Nl s )+ collullyssizy < luollgs +1Fyess

t
+C [ 10VaaVe)l gl o
From the interpolation inequality

. 1/2
(3.8) lell g < llull g el

we gather that
2

acC,
CI67a,aV) ool gogs < T2l g2 + 5, aV) [l g
’ ’ ’ p; !

20y
So plugging this in (3.7) and applying Gronwall lemma completes the proof of the proposition.
O

Bn/p

In the rough case where the coefficients are only in B,

modified as follows:

the above proposition has to be

Proposition 3. Let a and b be bounded positive and satisfy (3.4). Assume that bVa and aVb
are in L>(0,T; BZ/lpfl) with 1 < p < oco. There exist three constants n, k and C such that if
for some m € Z we have

(3.9) inf (4 20,71 xrn Sm(ab)(t, ) > a/2,

(3.10) |(Id = S,,)(bVa, aVb)|| < na

G )
then the solution to (3.3) satisfies for all t € [0,T],

c [t 9
||UHL;;<>(B;71) + O‘”HUHLg(B;f) < (HUOHJ_';;’1 + ||f||Lt1(Bg’l)) eXP<a/O [Sm (bVa, aVb)HBg’/lp d7'>
whenever
(3.11) —min(n/p,n/p’) < s <n/p-—1.
Proof. Given the new assumptions, it is natural to replace (3.6) by the inequality
(3.12) |A;(bVa - Vu)|rr + || Rjll e < chTjs(HbVaHB;/lp_l + HCLVbHBZ/f_l) ”VUHB;#,

which may be obtained by taking ¢ = 1 and v = 1 in Lemmas 4 and 5. However, when
bounding R;, in addition to (3.11), one has to assume that p < n. Also, as it involves the
highest regularity of u, we cannot expect to absorb this “remainder term” any longer, unless
aVb and bVa are small in B;L’/lp - (which would correspond to the case that has been treated
in the previous section). So we rather rewrite the heat equation as follows:

dyu — div (Sp,(ab)Vu) = f + div ((Id — S,,)(ab)Vu) — S, (bVa) - Vu — (Id — S,,,) (bVa) - V.
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Now, using the infimum bound for S'm(ab) and arguing as for proving (3.5), we get
t
lujll oo ey + 0022 lugll gy oy < llwollze + 115l L3 2ey +/0 [A;div ((Id — S )(ab)Vu)||r» dT

+/0 (\\Aj(sm(bw) Vu)|zr + [|A;((Id = S) (bVa) - V)|l Lo + Hdiv([Sm(ab),Aj]Vu)HLp) dr.

The idea is to apply the procedure of the “smooth” case for the low frequency part of the
coefficients (that is the part containing Sm) and the “perturbation” approach for the other
part. More precisely, appealing to Lemmas 4 and 5, we get under Condition (3.11) and for some
sequence (cj)jez With |cllpz) = 1:

1A;div ((Td = $,,)(ab)Vu) || zo < ;2795 (1d — Sm)(ab)ngg/lp IVl gsia,

1A;(Sn (0Va) - V)| < Cj2_j8||5m(bva)”B;/1PHVUHB;J’

145((Id = Sm)(6Va) - V) o S ;27 [1(1d = i) 5V a) | gVl g

||div ([Sm (ab), A;]Vu)| rr S Cj27jsHSmV(ab)HB;/lpHVUHB;J'
Let us plug those four inequalities in the above inequality for u;. After multiplying by 27¢ and
summing up over j, we get
lull e 5y + collullpgsrzy < luollgs | + 1 ppss

O = Sim) (@) e ey + 11D = SOV e gy Nl iy

t
+C /O 1@ V0.0V 0)] o o[Vl 5,

It is clear that, under Condition (3.10), the second line may be absorbed by the left-hand side.
Hence the desired inequality follows from the interpolation inequality (3.8), exactly as in the
smooth case. O

We now look at the following Lamé system with nonconstant coefficients:
(3.13) Oyu — 2adiv (uD(u)) — bV (Adivu) = f.

Note that v and f are valued in R"™. We assume throughout that the following uniform ellipticity
condition is satisfied:

3.14 = mi inf t inf 2 b (t 0.
(3.14) o mln((m)égﬂw(am(,x>, ol ot )(t,2)) >

Let us first study the “smooth case”:

Proposition 4. Assume that a, b, X\ and p are bounded functions satisfying (3.14) and such

that aVu, bV, pVa and AVb are in L>=(0,T; B;L,/lp) for some 1 < p < oo. There exists a
constant C such that the solutions to (3.13) satisfy for all t € [0,T],

el e s ) + el ey

¢
< Cllulsy, + Wy ) ep( S [ NVeaTieAT8 0901, r)
whenever —min(n/p,n/p’) < s < n/p.
Proof. We introduce the following functions:
d:=|D|"*dive and Q:=|D|eurlu with (curlu); := 0w/ — dju’.

Owing to the use of homogeneous Besov space, and because the Fourier multipliers A(D) :=
|D|=!div and B(D) := |D| lcurl are of degree 0, it is equivalent to estimate u or (d,) in
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L%O(B;”l) N LlT(B;jz). So the basic idea is to show that d and € satisfy heat equations similar
to (3.3). More precisely, applying A(D) to (3.13) yields
(3.15) Oyd — (2ap + bAN)Ad = A(D)(f +2aV - D(u) + bV divu)

+ [A(D), ap]Au + [A(D), ap + bA|Vdiv u.

Given Condition (3.14), we see that arguing exactly as for proving (3.7) and because A(D) maps
Bj , in itself,

t
llll oo s )+ melldlygoiey <lldoll s +IADF Ny s )+ c/o |20V D(w) + bV Adivul 5. dr

t t
+C/ I[A(D), ap]Au + [A(D),a,u—|—b)\]VdiquB;1 dT+C/ ||V(2a,u—|—b)\)HBn/pHVu||B;1 dr.
0 > 0 p,1 s

Note that applying Lemma 6 with ¢ = s—1, ¥ =0 and Lemma 4 with ¢ = s and v = 0 yields
IAD). apldulzy < ClIT(@n) gl At
oV DWlgy, < ClaVulyiVuls, |

and analogous estimates for [A(D),ap + bA]Vdivu and bV Adivu.
Similarly, the vorticity part 2 of u satisfies

QY — apAQ = B(D)(f +2aVyu - D(u) + bVAdivu) + [B(D), au|Au + [B(D), ap 4+ bA]Vdiv u.

So arguing exactly as for bounding d, and resorting to the interpolation inequality (3.8) and to
Gronwall lemma, we easily get the desired inequality. It is just a matter of following the proof
for the case of the heat equation. O

Let us finally focus on the “rough case” where the coefficients of (3.13) are only in L%O(B;/lp ).

Proposition 5. Let a, b, A and p be bounded functions satisfying (3.14). Assume that aVp,

bV, uVa and AVb are in L*°(0,T} B;/lp_l) for some 1 < p < oo. There exist two constants
n and Kk such that if for some m € Z we have

.. . . . «
(3.16)  min (infoayeporycmn Sim(2ap + WA (E ), infpycio r1mn Smla)(t,2)) = 3,

(3.17) 1(1d = Spn) (4Va, aV i, AVD, bV N | <na

L (BpAh
then the solutions to (3.13) satisfy for all t € [0,T],

||UHL;><>(B;’1) + O‘H“H@(B;f)
c [t
< Cllwollgs, + 11y ss,)) eXp<g/o [1Sm(uVa,aVp, AVD, bV}\)H%g’/lp dT>

whenever (3.11) is satisfied.

Proof. As for the heat equation, we split the coefficients of the system into a smooth (but
large) low frequency part and a rough (but small) high frequency part. It turns out to be more
convenient to work directly on the equations for d and 2. More precisely, as regards d, we write
(starting from (3.15) and denoting ¢ := 2au + bA) that

dyd — div (¢Vd) = —Ve - Vd + AD)(f 4+ 2aVu - D(u) + bVAdiv )
+[A(D), au]Au + [A(D), ap + bA|Vdivu,
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whence, denoting d; := Ajd,
dydj — div (SpcVd;) = div ([A;, S Vd)
+A, <div ((1d = $,,)eVd) — S Ve - Vd — (Id — $) Ve - Vd)
+A;AD)(f +28m(aVp) - D(u) + 2(Id — S )(aw) D(u)
48 (BVN) divu + (Id — $,,)(BVA) diva) + A, <[A( ), S (ap)] Au
+[A(D), Spulap + bN)]Vdivu + [A(D), (Id — S,,) (ap)]Au + [A(D), (Id — S,,)(ap + bA)]Vdiv u)
Under Condition (3.11), Lemmas 4, 5 and 6 imply that
Idiv ([A;, Smc]Va) | s < 278w Vel srelVls,
1A;div ((1d = S)eVd)| 2o < 27 (1d -8 el n/pHVdHBS+1
1A;(SmVe- Vd)|| Lo < 278w Vel n/pHVdHBs )
1A;((1d — 84) Ve - V) < ¢27(1d -8 )VCH Bl 1!!le!3;3%
IA,AD) Snlaldals S 2T (] gy (Bl
1A;[A(D), (1d = Sp)(ap)|Aullrr S ¢;277°|V(1d — Sm)(ap)ll gnro-sll Bl -
and similar estimates for
AAD) (3 (aVh)- D), A .
AjAD)(Sm(BVA) diva), A AD)((Id — Spn)(BVA) div ),
AG[A(D), S (ap + bX)|Vdivu,  A[A(D),(Id — Sy)(ap + 0N Vdiv .

Of course the curl part Q of the velocity may be treated in the same way. Therefore we get

A(D)((1d = Sp)(aVp) - D(w)),

lull o sy + @llull gy o2y S luollps | + 1l Lyes )

t
+ / 180m (@, 12, YA ATO)| o 1] 1
0 p,1 p,1

t
+/ [(dd = Sp)(@V i, pVa, VA, AVD) || gnyp-1 [|ul| gs+2 dr.
0 p,1 p,1

Obviously the last term may be absorbed by the left-hand side if 7 is small enough in (3.17) and
the last-but-one term may be handled by interpolation according to (3.8). So applying Gronwall
lemma yields the desired inequality. O

For the sake of completeness, we still have to justify the existence of a solution to (3.13).
More precisely, we want to establish the following result:

Proposition 6. Let p be in (1,+00). Let a, b, X and p be bounded functions satisfying (3.14).
Assume in addition that there exist some constants a, b, A and [ such that

(3.18) 2aji + b\ >0 and aj >0,
and such that a —a, b—b, yu— i and A\ — X are in C([0,T7; Bn/p) Finally, suppose that
(3.19) lim H(Id—Sm)(a—(z,b—b,)\—)\,u—/})HLw(Bn/p) =0.

T p,1

m—+00

Then for any data uy € le and f € L'(0,T; B;l) with s satisfying (3.11), System (3.13)
admits a unique solution u € C([0,T]; B]‘; )NLY0,T; B;IQ) That solution satisfies the estimates
of Proposition 5 for all large enough m € Z. are fulfilled.
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Proof. The proof is based on the continuity method as explained in e.g. [18] (and used in [11]
in a similar context as ours). For 6 € [0,1], we introduce the following second order operator
Py acting on vector-fields u as follows:

Pou := —2apdiv (ugD(u)) — by V (Ngdiv u),
where ag := (1 — 0)a + 0a, by := (1 — )b+ 6b, and so on. We claim that one may find some
m € Z independent of 6 such that for all 6 € [0, 1], the conditions (3.16) and (3.17) are satisfied
by ag, by, pg and Ag. Indeed, we notice that
ag —a =6(a—a).
Hence, for all 6 € [0,1],

1(1d — ) (ag — @) < [|(1d = Sm)(a — a)

i apm) I sy

and similar properties hold for by, Ay and py. In particular, owing to the continuous embedding
of BZ/lp in the set of continuous bounded functions, and to (3.19), we deduce that there exists

some m € 7 so that the ellipticity condition (3.16) is satisfied by operator Py for all 6 € [0, 1].
Likewise, we have for instance

peVag = 0(1 — 0)iVa + 6?uVa

and similar relations for the other coeflicients. Hence one may find some large enough m so
that (3.17) is satisfied for all 6 € [0,1]. In addition, the above relation shows that

S0V a0) o/ < 1SVl s + 1S (V) o1
P, P, P,

Hence all the terms appearing in the exponential term of the estimate in Proposition 5 may
be bounded by a constant depending only on m and on the coefficients a, b, A and u. As a
conclusion, one may thus find some constant C' independent of 6 such that any solution w of

Ofw —Pow =g,  wl—g = wp
satisfies
(3.20) ol e s ) + @l sesny < Clllwolle , + 19l s )

After this preliminary work, one may start with the proof of existence (uniqueness follows from
the estimates of Proposition 5). Let & be the set of those 6 in [0, 1] such that for every data
ug and f (as in the statement of the theorem), System

(321) &gu - Pgu = f, u|t:0 = Up

has a solution u in the set F;(T) := C([0,77; B;’l) N LY(0,T; B;jz)
Note that according to Proposition 1, the set £ contains 0 hence is nonempty. So it suffices
to find a fized € > 0 such that for all 6y € £, we have

(3.22) [00 —e,00+ 8] N [O, 1] cé.

So let us fix some 6y € &, ug € B;J, feLYo,T; B;’,l) and v € F;(T) and consider the solution
u to the system

Ou — Po,uw = f 4 (Pg — Py, )v
with 6 € [0,1] such that |6 — 6| < e. Given that Oy is in &, the existence of u in FJ(T) is
granted if (Py — Py, )v € LY(0,T; B;l). So let us first check this: we have

(P — Poy)v = (0 — bo) <2aeodiV ((& = 1)D(v)) + 2(a — a)div (ueD(v))

+bgy V(A = A)dive) + (b — b)V (Agdiv v)).
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Under Condition (3.11), one may thus conclude thanks to product estimates in Besov spaces
(see Lemma 4) that (Py — Py,)v € L'(0,T; By ;). Furthermore

(P = PogJoll g, < C=((@-+ llaa, = all )it = Al + G2+ o = ll goy)lla = all o
0+ b, = Bl )IA = Mg + O+ 0 = Xl o) lla = all o ) 1Dl g
The coefficients may be bounded in terms of the initial coefficients a, b, A and p. Hence,
applying (3.20) we get for some constant independent of 6y and of 6,
ull pge s ) + llully, g2y < Cellvllpy ssv2)-

Taking e small enough, it becomes clear that the linear map Wy : v — wu is contractive on the
Banach space F;(T'). Hence it has a (unique) fixed point u € F;(T). In other words, u satisfies
(3.21).

Given that £ is nonempty and that ¢ is independent of 6y, one may now conclude that 1 is
in £. Therefore, there exists a solution u € F,;(T') to (3.13). O

Remark 1. Under the assumptions of the above proposition, the constructed solution u satisfies
Oy € LY(0,T; B;J). Indeed, it suffices to notice that

Ou=f+(@a+ (a—a))div(a+ (u—g)Du) + b+ (b —>0)VA+ (A= Ndivu),

and to use Lemma j together with the facts that Vu is in L'(0,T; B;ng) Moreover we have

c [t
100l g sy < Clllwoll g, + 111 s ,)) eXp(g/o [1Sm (1Va, aVp, AVD, bV}\)H%;/lp dT>

where C may depend also on the norm of a —a, b—b, A\ — X and p— fi in L°°(0,T; BZ/lp).

3.2. Proof of Theorem 1. As we want to consider (possibly) large velocities, we introduce, as
in the almost homogeneous case the free solution to the Lamé system corresponding to p = 1,
that is the vector-field uy, in E,(T'), given by Proposition 1), satisfying?

LluL == 0, u|t:0 = Uup.
We claim that the Banach fixed point theorem applies to the map ® defined in (3.2) in some

closed ball BEP(T) (ur, R) with suitably small 7" and R. Denoting @ := u — uy, we see that u
has to satisfy

(3.23) { Lp,u=I(v,v) + paldiv (Ig(v,v) + I3(v,v) + Iy(v,v) + I5(v)) + (L1 — Ly )ur,

li—o = 0.

If the right-hand side is in L'(0, T} B;{pil) and if there exists some m € Z so that (3.16) and
(3.17) are fulfilled then Proposition 6 and Remark 1 ensure the existence of @ in E,(T"). Now,
the existence of m so that

min( inf S,, <2Lpo) + M),inf Sm<ﬂ(p0)> S a
* Po Po x Po 2

.\ (H(po) 1’ (po) A(po) N (po) ‘
— 7 < .
and || (1d — $,) ( ol e e Vo) g S0

is ensured by the fact that all the coefficients (minus some suitable constant) belong to the space

B; /lp the definition of which is given by a convergent series. The study of the right-hand side of
(3.23) will be carried out below.

2See (3.1) for the definition of operator L.
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First step: Stability of BEP(T) (ur, R) for small enough R and T . Proposition 5 and the defini-

. . . _1
tion of the multiplier space M(B;,/lp )

ensure that
~ CornmT
(3.24) ”uHEp(T) < Ce~ror (Hll(vvv)”LIT(Bg’/lp—l) + H(Ll - LPO)uLHL%(B;’/IP—l)

+HPOHM(B;L’/IP—1)(HIQ(U7U)“L%(B;’/lp)+|’13(v7U)HL%“(B;L’/IP)"FHLI(U’U)HLIT(B;L’/IP)+HI5(U)HL1T(B;’/1P)))
for some constant C), ,, depending only on pg and on m.

In what follows, we assume that 7" and R have been chosen so that (2.7) is satisfied by wv.
From (A.11) and product estimates, we have I1(v,w) € L*(0,T; B;/lpfl) if also w is in E,(T),
and
(3.25) I11 (v, w)

| Dol O]l

<
. _1 . . 1.
Hll(B;L’/lp ) ~ ‘ ll(B;L,/lp)’ [1(32’/11’ )

Next, using the decomposition
(L1 = Lyo)ur = (pg " — D)div (2u(po) D(ur) + A(po)div uy, 1d)
+div (2(u(po) — #(1))D(w) + (A(po) — A(1))divuld),
and composition inequalities (1.5) and (1.6), we see that (Li — L, )ur, € L*(0,T; Bg,/lp_l) and
(3.26) (L1 — Lpo)uLHLlT(B;L’/lp—l) S HGOHB%@(l + HaOHB;’/lp)HDULHL%F(B%P)-

Likewise, flow and composition estimates ensure (under assumption (2.7)) that

B21) (o)l sy S (U ool o 1Dy o 1Dl o, Tox 6= 2,3,
and that
(3-28) ||I5(U)HL1T(B;’/1P) S T(l + HaOHBg’/lp)(l + HDUHLlT(B;’/lp))'

So plugging the above inequalities in (3.24) and keeping in mind that v to satisfies (2.7), we get
after decomposing u into u + ur:

[ll5,(2) < CCom™ (14 flaoll o) (7 + aoll g 1 DLy )
+(19uely gy + 1DuL ]y gormy)”
1y ey + 10Ty ) (10T oy #1070 ) )
So, because v € By, (1)(ur, R),
[ll5,(z) < CCom™ 1+ flaoll o) (T + aoll g 1 DLy o)

2
+(R + HatULHL%F(Bg/lpfl) + HDuLHLlT(B;”/lP))(HatuLHLlT(Bg’/f’l) + HDULHL%F(BZ/IP)) + R >
Therefore, if we first choose R so that for a small enough constant 7,
(3.29) (1+ HGOHBn/lp)QR <
p,

and then take T so that

CoomT <log2, T < R2, laoll guo || Duc| < R?
P,

1 B"/P
(3.30) o (Fnt)
HatuLHLlT(BZ’/IP*l) + HDULHLlT(B;’/lp) <R,

then we may conclude that ® maps B £, (T)(uL, R) into itself.
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Second step: contraction estimates. Let us now establish that, under Condition (3.30) @ is
contractive. We consider two vector-fields v! and v? in Bg,r)(ur, R) and set ul == ®(v!) and

u? == ®(v?). Let du = u? —u! and & :=v?> — v’ In order to prove that ® is contractive, it is
mainly a matter of applying Proposition 5 to

Lot = I (0", 80) + (Jy1 — Jy2)02 + pg div <(12(v2,v2) — L(v',vY))
FI3(0%,02) = B, 0h)) + (L%, 0?) = (', 0))) + (I5(0%) = (1)) )

So we have, given that C, ,»,T" < log?2,

1 2
(3:31) ul,(r) < OO+ llaoll ) (110" 8y ooty + [r = Ji2)0% ooy

+ HIQ(U2702) _ IQ(Ul’Ul)HLIT(B;/lp) + “13(1)2’1)2) _ Ig(vl’vl)HLlT(Bg’/lp)

+ [[14(v*,v%) — I (v, ") )T 115 (v*) — I5(v")

”L%(BZA%) '
The first term of the right-hand side may be bounded by means of (3.25). As for the second
term, product estimates and (A.20) imply that

Iy oy

2 2
|71 = J2)ore?] S CIDB g 190271,

o o
LL(BIP By

In order to deal with the next term, we use the decomposition

L(v?,v?) — L(vl, ') = )\(nglpo)(Tsz : Vo?) (adj(DX,2) — adj(DX,1))

+ (adj(DXy1) —1d) (M(J5' po) — A(T o)) (FA,e = Vo?)

+ (adj(DX 1) = I) AT o) (FAye — TA,) « Vol + T4z - Viv)
+ terms pertaining to pu.

Taking advantage of product laws in Besov spaces, of composition estimates (1.5) and (1.6), and
of the flow estimates in the appendix, we deduce that for some constant C,;, depending only on
Po:

|12 (v?, v%) = Ir(vt, o)

1 2
HL%(B;AP) S CPOH(DU 7DU )HL%(B;L’QP)HD&UHL%(B;’/J’)

Similar estimates may be proved for the next two terms of the right-hand side of (3.31). Con-
cerning the last one, we use the decomposition

I;0%) = I5(0") = (adj(DX,1) — adj(DX,2)) P(J3 0) — adj(DX,0) (P(J3 po) — P(J5"p0))
Hence
I56%) = Il gy < O+ ol o) TIDS Ny o
We end up with
|8l 2y < C(1+ laoll o (T + (D0, D)y gy + 10607 o)) IDB
+HDU1HL%F(B;/lp)Hat(sUHL%F(B;L’/lp—I)-

Given that v! and v? are in B £,(1)(uL, R), our hypotheses over 7" and R (with smaller 7 in
(3.29)) thus ensure that, say,

1
loullz, ) < sllovll e, (7)-

One can thus conclude that ® admits a unique fixed point in B B, (1) (UL, R).
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Third step: Regularity of the density. Granted with the above velocity field u in E,(T"), we set
p = J; 'po. By construction, the couple (p,u) satisfies (1.2). Let us now prove that a :=p — 1

isin C([0,7); B n/p) We have
a=(J; ' —1)ag + ag.
Given (A.11) and using the fact that Du € L'(0,T; Bn/p), it is clear that J,!~! belongs to

C([0,T7; Bn/ ). Hence a belongs to C([0,T7; Bn/ "), too. Because B / " is continuously embedded
in L, Condition (1.7) is fulfilled on [0, T] (takmg T smaller if needed)

Last step: Uniqueness and continuity of the flow map. We now consider two couples (p(l),u(l))
and (po,uo) of data fulfilling the assumptions of Theorem 1 and we denote by (p!,u!) and

(p?,u?) two solutions in E,(T) corresponding to those data. Setting du := u* —u!, we see that
Lpé(éu):(Lpl — L 2)(u2)—{—( )at&H—( ul —Jz)&tu
)~ Ldiv <Z4: I2 (u?, u? I2(u u')) + (I3 (u®) — Ig(ul))>
Jj=2 \
(o) Maiv (D ((12 = )t ut) + (1 - B (uh)),
j=2

where I}, I%, Ii and It correspond to the quantities that have been defined just above (3.2),
with density pf. Note that those terms and also (1 — J,1)0:0u and (J, — Jy2)0u? may be
bounded exactly as in the second step. So the only definitely new terms are (L — L2 )(u?)

and the last line. As regards (L o — L pg)(u2), it may be decomposed into

(Lpy = L) (w?) = ((p5)~" = () ~")div (2u(pg) D(u?) + A(pp)div u’1d)
()~ div (2(1(pp) — 1(pp)) D (u?) + (M(pg) — A(pp))div u’1d).

Hence, combining composition, flow and product estimates, we get for ¢t < T

Loy = L)@y ity < Cop 0l g 1D

pheh LhE

It is not difficult to show that the other “new” terms satisfy analogous estimates. Hence,
applying Proposition 5 to the system that is satisfied by du, we discover that for ¢t < T

6l < Cop g (¢ ICDUL DUy gy + 100021y g DGl

HIDu | 1 s 1 Oedi

LY (B LEBMPY + H&LOH /v + H‘SPOH n/P(t"‘ [(Du', Du )HLl(B;L’/lp)))'

Let us emphasize that the constant C b0 depends only on pZ through its norm for the integer

m used in Proposition 5 corresponds to pé only. Hence if dpg is small enough then the above
inequality recasts in

16y < Gl (24 1Dy gy + 1008 sy + 1l ) il
ol + 190l g ¢+ 1Dy o)
An obvious bootstrap argument thus shows that if ¢, dug and Jdpg are small enough then
[6ull g, @) < QCpo(H&LOHBQ/IP + H5P0||Bg’/lp)-
As regards the density, we notice that

= J 5 ag + (J ' — T3 )ag.

wl



COMPRESSIBLE NAVIER-STOKES EQUATIONS 19

Hence for all ¢ € [0, 7],

5T < 1 ST SN SN .
680l < O DUy oo 0l [ Dl

So we eventually get uniqueness and continuity of the flow map on a small enough time interval.
Then iterating the proof yields uniqueness on the initial time interval [0,7]. Note that it also
yields Lipschitz continuity of the flow map for the velocity as for fixed data (p},u}), one may
find some neighborhood and common time interval on which all the solutions constructed in the
previous steps exist.

3.3. Proof of Theorem 2. For uy € Bn/ P~ and po € (1 + Bn/ "), the local existence for
(0.1) may be proved directly (see [4, 8]) but only under the assumptzon that p < n in the case of
nonconstant viscosity coefficients. Here we get the result (including uniqueness) from Theorem 1,
and under the sole assumption that p < 2n. This is a mere corollary of the following proposition
which states the equivalence of the systems (0.1) and (1.2) in our functional setting.

Proposition 7. Assume that the couple (p,u) with (p —1) € C([0,T]; Bn/p) and u € E,(T)
(with 1 < p < 2n) is a solution to (0.1) such that

T
(3.32) / IVull s dt < c.
0 p,1

Let X be the flow of u defined in (1.1). Then the couple (p,u) := (po X,uo X) belongs to the
same functional space as (p,u), and satisfies (1.2).

Conversely, if (p—1,u) belongs to C([0,T7; B"/p) x Ep(T) and (p,u) satisfies (1.2) and, for
a small enough constant c,

T
(3.33) / IV e dt <
0 Pl

then the map X defined in (1.3) is a C' (and in fact a locally Bg/lpﬂ) diffeomorphism over R™
and the couple (p,u) = (po X1 o X~1) satisfies (0.1) and has the same regularity as (p, ).

Proof. Let us first consider a solution (p,u) to (0.1) with the above properties. Then, the
definition of X implies that DX —1d is in C([0,T7; B"/ ). In addition, Proposition 8 ensures
that (p,u) := (po X,uo X) belongs to the same functlonal space as (p,u), and (A.9), (A.10),
(A.11) below imply that A —Id, adj(DX) —Id and J~! — 1 are in C([0,T]; Bn/p) Therefore
the product laws for Besov spaces enable us to use the algebraic relations (A. 5) (A.6), (A.7)
and (A.8) whenever p < 2n. Therefore (p,u) fulfills (1.2).

Conversely, if we are given some solution (p,w) in C([0,T7; (1 + B;/lp)) x E,(T) to (1.2) then
one may check (see the appendix of [13]) that, under condition (2.7), the “flow” X(¢,-) of @
defined by

(3.34) X(t,y) =y+ /0 o(r,y)dr

is a C! diffeomorphism over R", and satisfies DX — Id € C([0,T]; Bn/ ). Hence one may
construct the Eulerian vector-field v and Eulerian density by setting

p(t,):==po X 1t,-) and wult,"):=wuoX (t,-).

As above, the algebraic relations (A.5), (A.6), (A.7) and (A.8) whenever p < 2n, hence (p,u)
is a solution to (0.1). That (p,u) has the desired regularity stems from Proposition 8. O
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Proof of Theorem 2. We consider data (pg,up) with py bounded away from 0, (pg — 1) €

B;/lp and ug € B;/lp ~! Then Theorem 1 provides a local solution (p,u) to System (1.2) in

C([0,T); (1 + B;/lp)) x E,(T). If T is small enough then (3.33) is satisfied so Proposition 7
ensures that (po X1 4o X 1) is a solution of (0.1) in the desired functional space.

In order to prove uniqueness, we consider two solutions (p!,u!') and (p?,u?) corresponding
to the same data (pg,up), and perform the Lagrangian change of variable (pertaining to the
flow of u! and u? respectively). The obtained vector-fields 4! and 4? are in E,(T) and both
satisfy (1.2) with the same py and ug. Hence they coincide, as a consequence of the uniqueness
part of Theorem 1. O

APPENDIX A. APPENDIX

A.1. Change of coordinates. Here we establish a result of regularity concerning changes of
variables in Besov spaces. Even though this kind of result is somewhat classical (at least in
nonhomogeneous Besov spaces), we did not find any reference in the literature of the estimates
that we need. We here give a result in general Besov spaces B;q, the definition of which may
be found in e.g. [1].

Proposition 8. Let X be a globally bi-Lipschitz diffeomorphism of R™ and (s,p,q) with 1 <
p<oo and —n/p' < s <n/p (orjust —n/p' < s<n/pif g=1 and just —n/p’ < s <n/p if
q=00). :

Then a > ao X is a self-map over By . in the following cases:

(1) s€(0,1),

(2) s € (—1,0] and Jx-1 is in the multiplier space M(B};fq,) defined in (2.9),

(8) s>1 and (DX —1d) € B;/lp.

Proof: Let us first assume that s € (0,1) and ¢ = p. Then one may use the classical charac-
terization of the norm of By , in terms of finite differences (see e.g. [1]) so as to write:

Juo Xllg, gny = (/n/n IU(X(|yy))_;|zi(+);(x))lp dydw>;

Hence performing the change of variable 2/ = X (z) and ' = X(y), we get

=

u(y') — u(z")|P
Hu ¢ X”Bg’p(R”) = <\/Rn\/Rn ‘Xl‘(y(/) )_ X(l(x).l)’nJrSp Jx—1 (y/)JX—l (m’) dy’ dxl)

whence
: s
[|luo XHB;’I(Rn) < [Jx— HLOO(Rn)HDXHLOO(Rn)||UHB;’1(Rn)-
The condition that s < n/p ensures in addition that u belongs to some Lebesgue space Ly« (R"™)
with p* < oo (or in the set of continuous functions going to 0 at infinity if ¢ = 1 and s = n/p).
Hence uo X € Ly«(R"™) too and one may thus conclude that uo X € B;p(R"). An interpolation
argument then yields the desired result for any s € (0,1) and ¢ € [1, +infty].

The result for negative s may be achieved by duality: we have

fuo X gy oy = s [ elu(x()ds

V|| H— <1
” IIBp’fq’ (R) =
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Now, setting x = X(z), we have
/nv(z)u(X(z))dz = /nu(x)v(X_l(x))dx,
= f;u(x)v(X_l(x))Jxl(x)dw,

n

IN

HU”B;’Q(W) lvo X~ Ty HB;,;/(R”)'
So the definition of the multiplier space and the first part of the lemma allows to conclude.
Finally, let us examine the cases of larger values of s. If 1 < s < 2 then one may write
D(uo X)=(Duo X)-DX.
As 0 < s —1 < 1, the first part of the proof ensures that Duo X € B;;l. As moreover

(DX —1d) € BZ /1p , the standard product laws in Besov spaces give the result.
If 2 < s < 3 then we use the algebraic relation,

D*(uoX) = (D*uo X)(DX,DX) + D*X - (Duo X).

Hence the result follows from product laws and the previous result applied with s — 1 or s — 2.
The higher values of s may be achieved by induction, and the remaining cases (s an integer)
follow by interpolation. The details are left to the reader. [ |

A.2. Some properties of Lagrangian coordinates. Let us first derive a few algebraic re-
lations involving changes of coordinates. We are given a C'!-diffeomorphism X over R"™. For
H :R" — R™, we agree that H(y) = H(x) with x = X(y). With this convention, the chain
rule writes

(A1) DyH(y) = DoH(X(y) - DyX(y) with (DyH)y =0, H' and (DyX)i; = 0, X'.
or, denoting V, = TDy and V, =TD,,
VyH(y) = (VyX(y) - Vo H (X (y)).
Hence we have
(A.2) D H(z) = DyH(y)- A(y) with A(y) = (DyX(y))"' = DX "' (2).

Lemma 1. Let K be a C' scalar function over R™ and H, a C' vector-field. Let X be a C*
diffeomorphism such that J := det(DyX) > 0. Then the following relations hold true:

(A.3) V.K = J ' div, (adj(D, X)K),

(A.4) div, H = J ' div, (adj(D,X)H),
where adj(DyX) stands for the adjugate of DyX.

Proof: The first item stems from the following series of computations (based on integrations
by parts changes of variable and (A.2)) which hold for any vector-field ¢ with coefficients in

/V K(z) - ¢(x)dz = —/K(x)divgctb(x)dx,
K(y) div, ¢(y)J (y) dy
J() K (y) Dyo(y) - Aly) dy,

(y) - divy (adj(Dy X)K)(y) dy,

(2) - divy (adj(Dy X)K) (X~ (2))J~H(X ™ (2)) da.

| |
—_——
& Sw \\
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Proving the second item is similar. [ |
Combining (A.2), (A.4) and (A.3), we deduce that if w: R™ — R" and P :R"™ — R then

(A.5) Ayu = J Vdiv, (adj(Dy, X)V,u) = J 1 div, (adj(Dy X)TAV,,a),

(A.6) V. divyu = J div, (adj(Dy X) divy u) = J = div, (adj(Dy X)TA : V),

(A7) V. P = J !div, (adj(D,X)P).

Note that we will use the above relations in the case where X is the flow of some time-dependent
vector field u, defined by the relation

¢
X(t,y):y—i—/ u(r, X (7,y))dr for all te[0,T].
0

Hence we will also have
(A.8) Op + div (pu) = 9(Jp) and O (pu) + div (pu @ u) = O (Jpu).

Let us now establish some estimates for the flow X, of some given “Lagrangian” vector field

(that is X, is defined by (3.34)).

Lemma 2. Let p € [1,+00) and v be in E,(T) satisfying (2.7). Let X, be defined by (3.34).
Then we have for all t € [0,T],

(A.9) 1 = adj(DXy ()l gnre S 1D mry,
Ly (Bp17)

(A.10) 1 = A () g < IIDUH (Brly

(A.11) 15 (E) = 1l oo S 1DV i)

Furthermore, if w is a vector field such that Dw € Ll(O,T; Bn/lp) then

(A.12) I(adj(DXv)Da, (@) = D@) (O grrp S 1DV g i) IPD g vy
b1 ) ¢t (Bp1)

(A.13)  ||(adj(DX,)div 4, (w) — divw Id)(t )H snie S < || Dv]|

LI(BZ/{’)”Dw”L%(BZ/f’)‘

Proof: Recall that (see e.g. the appendix of [13]) for any n x n matrix C' we have
(A.14) Id — adj(Id + C) = (C — (Tr O)Id) + P (C),

where the entries of the matrix P(C) are at least quadratic polynomials of degree n — 1.
Applying this relation to the matrix DX (t), and using the fact that

t
(A.15) DX,(t,y) —Id = / Duv(r,y) dr,
0
we deduce that
t t
Id — adj(DX,(t)) = / (Dv —divol1d) dr + P <</ Dv d7)>.
0 0

Given that B; /lp is a Banach algebra and that (2.7) holds, we readily get (A.9).

In order to prove (A.10), we just use the fact that, under assumption (2.7), we have

(A.16) A,(t) = (14 + Cy(1) " = S (DF (O with O / Dy dr,
keN

and that B; /lp is a Banach algebra.
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As regards (A.11), we write

(A.17) Ju(t,y) =1 —i—/o divo(r, Xy (1,y)) Ju(1,y)dr =1 —i—/o (Do : adj(DX,))(7,y) dT.

Hence, if Condition (2.7) holds then we have (A.11) for J. In order to get the inequality for
J~1, it suffices to use the fact that

T ty) 1= 1+ (Lty) —1) " —1=> (-1)F /t Do : adj(DX,) dr.
E>1 0
For proving (A.12), we use the decomposition
2(adj(DX,)Da, (@) - D(w)) = (adj(DX,) — 1d)(D + Vo)
+(Id + (adj(DX,) — 1)) (Dw - (A = 1d) + (TA - 1d) - V).

Hence the desired inequality stems from (A.9) and (A.10), and from the fact that BZ/lp is a
Banach algebra. Inequality (A.13) is similar. This completes the proof of the lemma. [ |

Lemma 3. Let 11 and U9 be two vector-fields satisfying (2.7), and v := vo — 1. Then we have
for all p € [1,400) and all t € [0,T] (with obvious notation):

(A18) 42(0) = 410 gy S NPy g
(A.19) ladj(DX3(t)) — adj(DX1 (D) gnse S (1D L1 sy
Bp,l Lt (Bp,l )
+1 +1
(A.20) 40 = Ol g S 1555 g

Proof: In order to prove the first inequality, we use the fact that, for i = 1,2, we have

t
Ai=(1d+C)7 =3 (-)FCF with Cit) :/ Do dr.
k>0 0

Hence

k—1
Ay — Ay = 2(05 - C{“) - </OtD50dT> NS cics,

k>1 k>1 5=0

So using the fact that B;/lp is a Banach algebra, it is easy to conclude to (A.18).

The second inequality is a consequence of the decomposition (A.14) and of the Taylor formula
which ensures that, denoting & := Cy — C1,

adi(DXs) — adj(DX1) = (Te(60))Id — &C + dPy(C1)(&C) + %dng(Cl, C)(6C,&C) + -

where the coefficients of P, are polynomials of degree n — 1. As the sum is finite and B;/lp is a
Banach algebra, we get (A.19).

Proving the third inequality relies on similar arguments. It is only a matter of using (A.17).
The details are left to the reader.
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A.3. Commutator and product estimates. This last paragraph is devoted to the proof of
commutator and product estimates that have been used for investigating the Lamé system.
Those proofs rely on the following Bony decomposition (first introduced in [2]) for the product
of two functions:

(A.21) f9=Trg+ R(f,9) +Tyf.

The paraproduct and remainder operators 1" and R are defined by

Trg:= Y ApfAjg and R(f.g):= Y  A;fAg,
J'<j—2 3 —j1<1

where (A]) jez stands for some homogeneous Littlewood-Paley decomposition.

Lemma 4. Let p € [1,+00]| and the real numbers v and o satisfy

. (nn
v>0 and —mln( ><O'<——V
p' p

Then the following estimate holds true for all tempered distributions f and g over R™:
Ifall g, < MW gnrm— gl e

Proof. The result relies on Bony decomposition (A.21). The standard continuity results for the
paraproduct and remainder operators ensure that (see e.g. [1], Chap. 2):

1Trgllge, SHFIs lgllpe e it v >0,
1Tofllzs,  Sllallgore- n/pllfll ytp—v i o +v—n/p<0,
s P

IR(f 9l gs, SIFIl n/p olgll o+ if o> —min(n/p,n/p).
So the result follows once noticed that BS 1< B2 / P for any s € R. O
Lemma 5. Assume that o, v and p are such that
(A.22) 1 <p< +oo, OSVSB and —mm(2 2)—1<0§E—1/.

p py p

There exists a constant C' depending only on v, p, o and n such that for all k € {1,--- ,n},

we have for some sequence (cj)jez with ||c|pzy = 1:

10k [a, AjJwl|r < CCj27jo||vaHBn/1p7u||w||BgTD for all j € Z.
P, £l

Proof. Taking advantage of the Bony decomposition (A.21), we rewrite the commutator as®
(A.23) O ([a, AjJw) = O ([Tu, AjJw) + akT/Ajwa — AT a.
1 — 3
B R? B

J

Arguing as in the proof of Lemma 6 in [12], we get
IR <C D IVSyaalpe | Ajw]po.
lj/—j1<4
Now, for v > 0, we have
HVSj/,laHLoo < c2 VHVG,HBO—Oul.
Therefore, for some sequence (c;);ez in the unit sphere of ¢*(Z),

(A.24) 1R} e < Cej2797|[Vallp—v, [lw] gosv-

3Here we use the notation Thv := Tv + R(u,v).
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To deal with R;, we use the fact that, owing to the localization properties of the Littlewood-
Paley decomposition, we have

RJ2: Z 8k(S]/+2AJU)A]/a)
§>j—2

Hence, using the Bernstein and Hélder inequalities,

IR < C D (1S40l jwlli=]|A;Val s,
>j-2 o , .
< Q2790 Z oi=3")(5-v) (2](U+”_F)HAijLoo) (27 (E_V)HAj/VaHLp).
J>j-2
Therefore, by virtue of convolution inequalities for series and because n/p — v > 0,
(A.25) 1R} e < CCjTj"HVaHB;/lwIIWI!Bo+»—%-
’ 0,1

Next, from standard continuity results, we know that the paraproduct and the remainder map
BT x Bg/lp_yﬂ in ngl whenever 0 +v —n/p <0 and 0 +1 > —min(n/p,n/p’). We thus

p,1
have

(A.26) 1Blzr < Ocj2777 [ Vall s [0 g

Putting Inequalities (A.24), (A.25) and (A.26) together, and using classical embedding completes
the proof of the lemma. O

Lemma 6. Let A(D) be a Fourier multiplier of degree 0. Then the following estimate holds
IIAD). dhwll g < Cllall ool gy

whenever

n n n
v>0 and —min(—,—/) —1l<o<——v.
pp p
Proof. Taking advantage once again of Bony’s decomposition, we decompose the commutator
into

(A.27) [A(D), qlw = [A(D), Tglw + A(D)Ty,q = Ty, q-
According to Lemma 2.99 in [1], we have for v > 0,
IA(D). TyJull o < CIVallos, 0] oo

Next, given that A(D) is a homogeneous multiplier of degree 0, it maps any homogeneous
Besov space in itself. Therefore the last two terms of (A.27) may be just bounded according to
standard continuity results for the paraproduct and remainder operators. O

REFERENCES

[1] H. Bahouri, J.-Y. Chemin and R. Danchin: Fourier Analysis and Nonlinear Partial Differential Equations,
Grundlehren der mathematischen Wissenschaften, 343, Springer (2011).

[2] J.-M. Bony: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non
linéaires, Annales Scientifiques de I’Ecole Normale Supérieure, 14, 209-246 (1981).

[3] F. Charve and R. Danchin: A global existence result for the compressible Navier-Stokes equations in the
critical LP framework, Archive for Rational Mechanics and Analysis, 198(1), pages 233-271 (2010).

[4] Q. Chen, C. Miao and Z. Zhang: Well-posedness in critical spaces for the compressible Navier-Stokes equa-
tions with density dependent viscosities, Revista Matemdtica Iberoamericana, 26(3), pages 915-946 (2010).

[5] Q. Chen, C. Miao and Z. Zhang: Global well-posedness for the compressible Navier-Stokes equations with the
highly oscillating initial velocity, Communications on Pure and Applied Mathematics, 63(9), pages 1173-1224
(2010).



26

R. DANCHIN

[6] Y. Cho, H.J. Choe and H. Kim: Unique solvability of the initial boundary value problems for compressible

viscous fluids, Journal de Mathématiques Pures et Appliquées, 83(2), pages 243-275 (2004).

[7] R. Danchin: Global existence in critical spaces for compressible Navier-Stokes equations, Inventiones Math-

ematicae, 141(3), pages 579-614 (2000).

[8] R. Danchin: Local theory in critical spaces for compressible viscous and heat-conductive gases, Communica-

tions in Partial Differential Equations, 26, 1183-1233 (2001).

[9] R.Danchin: On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear

Differential Equations Appl., 12(1), 111-128 (2005).

[10] R. Danchin: Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density,

Communications in Partial Differential Equations, 32, 1373-1397 (2007).

[11] R. Danchin: On the solvability of the compressible Navier-Stokes system in bounded domains, Nonlinearity,

23, pages 383-407 (2010).

[12] R. Danchin: On the well-posedness of the incompressible density-dependent Euler equations in the LP

framework, Journal of Differential Equations, 248, 2130-2170 (2010).

[13] R. Danchin and P. B. Mucha: A Lagrangian approach for the incompressible Navier-Stokes equations with

variable density, to appear in Communications on Pure and Applied Mathematics.

[14] P. Germain: Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid

Mech., 13(1), pages 137-146 (2011).

[15] B. Haspot: Existence of global strong solutions in critical spaces for barotropic viscous fluids, Archive for

Rational Mechanics and Analysis, 202, pages 427-460 (2011).

[16] B. Haspot: Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces,

Journal of Differential Equations, 251, pages 2262-2295 (2011).

[17] D. Hoff: Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow,

SIAM Journal on Mathematical Analysis, 37(6), pages 1742-1760 (2006).

[18] N. Krylov: Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate studies in Mathematics,

96, American Mathematical Society, 2008.

[19] P.-L. Lions: Mathematical Topics in Fluid Dynamics, Vol. 2 Compressible Models, Ozford University Press

(1998).

[20] P. Mucha: The Cauchy problem for the compressible Navier-Stokes equations in the L?-framework, Nonlinear

Analysis, 52(4), pages 1379-1392 (2003).

[21] A. Valli: An existence theorem for compressible viscous fluids, Annali di Matematica Pura ed Applicata, 130

(4), pages 197213 (1982).

[22] A. Valli and W. Zajaczkowski: Navier-Stokes equations for compressible fluids: global existence and qualita-

tive properties of the solutions in the general case, Communications in Mathematical Physics, 103(2), pages
259-296 (1986).

(R. Danchin) UNIVERSITE PARIS-EsT, LAMA, UMR 8050 AND INSTITUT UNIVERSITAIRE DE FRANCE, 61

AVENUE DU GENERAL DE GAULLE, 94010 CRETEIL CEDEX, FRANCE.

E-mail address: danchin@univ-parisi2.fr



