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Abstract

This paper addresses the problem of the location and identification of vibration

excitations from the measurement of the displacement field of a vibrating structure.

It constitutes an improvement of the Force Analysis Technique published several

years ago. The development is based on the use of the motion equation which is

discretized by finite difference schemes approximating spatial derivatives of the dis-

placement. In a first instance, the error due to this approximation is analytically

calculated in the case of beams and the low-pass filtering effect of the finite difference

schemes in the wavenumber domain is shown. This filter also contains singularities

implying systematic errors, especially if the spacing between sensors is chosen in

order to regularize the problem. In a second instance, a corrected value is applied

to the classic schemes used in the Force Analysis Technique, which suppresses com-

pletely the singularities of the filter. After the complete description of the Corrected

Force Analysis Technique on beams, the extension to plates is described, where sim-

ulations with noisy data show the very good accuracy one can obtain without the
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requirement of an added regularization for the excitation identification.

Key words: Fuzzy cyclostationarity, synchronous average, angular sampling,

instantaneous rotation speed, diesel engine diagnosis, diesel engine noise

1 Introduction

The identification of sources acting on structures from operating measure-

ments is a problem that has been widely addressed in the literature, since the

pioneer works published in the early eighties [1,2]. The most important part

of this literature concerns the quantification of a priori localized forces, using

the structure’s itself as a multi-dimensional force sensor [3]. This approach is

also the basis of Transfer Path Analysis [4,5].

The Force Analysis Technique (FAT) is an alternative experimental method

which localizes and quantifies vibration sources from the knowledge of the

displacement field of a structure and from a local analytical description of the

structure’s behavior. This method is also known by its acronym RIFF coming

from the French language: Résolution Inverse Filtrée Fenêtrée, which means

Windowed and Filtered Inverse Resolution. The principle of the FAT is based

on the verification of the equation of motion, which describes the equilibrium

of internal and external forces applied locally to a little part of the structure.

In practice, it consists in injecting measured displacements in the discretized

equation of motion, where the spatial derivatives are approximated by finite

differences. Because derivatives have the particularity to amplify the noise in
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data, the FAT contains a regularization step, which consists in filtering the

informations located in the high wavenumber domain. This filtering is realized

by a discrete convolution with a finite response of a low-pass wavenumber fil-

ter. During the last decade, the FAT was developed for beams [6], plates [7]

and shells [8].

The problem of source localization on thin structures is also addressed in the

domain of structural intensity [9,10]. The intensity is assessed using either

Finite Differences [10,11] or the spatial Finite Fourier Transform [11,12]. The

second approach using FFT is generally preferred because of potential errors

when using finite difference approximations, and because the measurement

noise can be efficiently removed by filtering high wavenumber components.

The spatial FFT has been used also for works dealing with source localization

on beams [13]. The drawback of using this kind of wavenumber projection is

that the response of the structure has to be measured at a large number of

points over a wide spatial aperture, even if one wants to assess the load at

only few points of the structure.

The principal strength of the FAT is the constitution of an inverse problem

using little information from the studied system. Indeed, the verification of

the equation of motion is a local view, so it does not require the knowledge

of the boundary conditions or the knowledge of the possible sources located

outside the studied area, even if they generate vibrations in the whole struc-

ture area. The FAT is also particularly appreciated, because it identifies the

force distribution, which allows the method to analyze any kind of excitations

(forces, moments, pressures, etc. [7,14]). Today, industrial applications of the

FAT concerns essentially the structure-borne noise characterization [15].

Of course, the easiness of the FAT comes from the use of non contact measure-

ment devices, like the scanning laser vibrometer. The recent study coupling
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it with acoustic holography [16] also gives an interesting approach, since the

vibration sources can be identified from acoustic measurements. In spite of

these advances, the main restraint of the FAT is certainly the uncertain num-

ber of measurement it requires. This number is clear when one considers only

the finite difference scheme (generally developed at the first order), because

it depends only on the order of the spatial derivatives to approximate. How-

ever, the use of the low-pass wavenumber filter requires more points and the

number of points depends on the cutoff wavenumber to adjust. Then the idea

of the required number of points becomes uncertain, because the optimum

cutoff wavenumber depends on the frequency and on the level of uncertainties

in data [6,7].

This paper proposes an improvement of the FAT, where the use of the filter-

ing by a convolution product is completely suppressed. The idea is to take

the advantage of the finite difference scheme which constitutes also a low-pass

wavenumber filtering. It is then shown that the use of larger spacing between

points is possible and the number of measurements can then be considerably

reduced. The paper also gives the required corrections that must be added in

the derivative assessments. This new development of FAT is described here

for beams (1D structure) and for plates (2D structure).
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2 Identification of load distributions on beams

2.1 Classic FAT for flexural beams

The equation of motion for flexural beams at the angular frequency ω is

EI
∂4w

∂x4
− ρSω2w(x) = p(x), (1)

where p(x) is the force distribution in N/m, w(x) is the displacement in m, E

is the complex Young’s modulus and I is the flexural moment of inertia. The

principle of FAT is to directly assess the right hand side member of equation

(1), p(x) , from the experimental estimation of the left hand side member. To

do this, a finite difference approximation is used to approximate the fourth

derivative of the displacement:

∂4w

∂x4
≈ δ4x

∆ =
w(x− 2∆)− 4w(x−∆) + 6w(x)− 4w(x + ∆) + w(x + 2∆)

∆4
,

(2)

where ∆ is the spacing between two consecutive points of the experimental

mesh.

The FAT estimation of the force distribution at a point located at x is thus

obtained using eq. (2) in eq. (1):

pFAT (x) = EIδ4x
∆ − ρSω2w(x). (3)

2.2 Wavenumber response of FAT for flexural beams

The Fourier transform of equation (1) is

(
EIk4 − ρSω2

)
ŵ(k) = p̂(k), (4)
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where ŵ(k) and p̂(k) indicates the Fourier Transforms of w(x) and p(x). The

Fourier Transform of equation (2) is:

ˆδ4x
∆ (k) =

1

∆4
ŵ(k)

(
e−2jk∆ − 4e−jk∆ + 6− 4ejk∆ + e2jk∆

)

= ŵ(k) (2 cos(2k∆)− 8 cos(k∆) + 6) /∆4

= ŵ(k)κ4
1D, (5)

where ˆδ4x
∆ (k) is the Fourier Transform of δ4x

∆ , defined in eq. 2. The FAT esti-

mation of the force distribution in the wavenumber domain is thus:

p̂FAT (k) = ŵ(k)
(
EIκ4

1D − ρSω2
)
. (6)

It is now possible to express the ratio between the exact and the identified

force distributions in the wavenumber domain:

E1D(ω, ∆, k) =
p̂FAT (k)

p̂(k)
=

κ4
1D − k4

N

k4 − k4
N

, (7)

where kN is the flexural wavenumber of the beam:

kN =
4

√
ρS

EI
ω2.

The term expressed in eq. (7) can be considered as the response of FAT in

the wavenumber domain. It can also be seen as the systematic error between

identified and exact input forces. Considering n the number of points per

natural (flexural) wavelength:

n =
λN

∆
=

2π

kN∆
,

the systematic error can be written with respect to the non-dimensional pa-

rameter α = k/kN :

E1D(α, n) =

(
n
2π

)4 (
2 cos(4π

n
α)− 8 cos(2π

n
α) + 6

)
− 1

α4 − 1
. (8)
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In figure 1, E1D(α, n) is plotted for different values of n (for a given experi-

mental case, n is a continuous variable decreasing with the frequency). It is a

low pass filter, with a cut-off wavenumber at k = kN and a cut-off slope in-

creasing when n decreases. The filter is also characterized by two singularities

at k = kN and k = κ1D, corresponding to roots of the denominator and nu-

merator of equation (7). These singularities overestimate and underestimate

strongly the result in narrow wavenumber bands.

The low-pass effect is in fact a real advantage for FAT: the load distribution

is identified at discrete points of the structure, and this effect is a welcomed

anti-aliasing filter. The Shannon’s sampling criterion is written as follows:

λ > 2∆, or k <
π

∆

This leads to the following relation between n and α:

α < n/2

The cut-off wavenumber of ideal anti-aliasing filters are also indicated in figure

1 (the Nyquist wavenumber). The value of FAT responses at these wavenum-

bers is between -20 and -15dB for n varying between 3 and 6.

2.3 Correction of FAT for flexural beams

The roots of the numerator of E1D are solutions of:

(2 cos(2kr∆)− 8 cos(kr∆) + 6) /∆4 − k4
N = 0, (9)

or, using X = cos(kr∆):

(
4X2 − 8X + 4

)
/∆4 − k4

N = 0.
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Fig. 1. Response of the classic FAT identification in the wavenumber domain. Ver-

tical lines indicate the Nyquist wavenumbers of the the spatial samplings.

This polynomial function has only one root lower than the unity:

X = 1− ∆2k2
N

2
. (10)

The solutions of eq. (9) are thus:

kr =
1

∆

(
± arccos

(
1− ∆2k2

N

2

)
+ p2π

)
, p ∈ Z.

Moreover, the existence of these roots is conditioned by

(
1− ∆2k2

N

2

)
> −1,

which corresponds to the condition:

n > π.

This condition can be observed in figure 1, where E1D presents a zero only for

the values of n above π.

In order to delete singularities effects, it is proposed to introduce a correcting

factor to κ4
1D. This factor, noted µ4, is defined by:

κ̃4
1D = µ4κ4

1D.
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Replacing κ4
1D by κ̃4

1D in equation (7), the roots of the modified Ẽ1D numerator

satisfy the relationship:

cos(kr∆) = 1− ∆2k2
N

2µ2
.

The value of µ allowing kr to be equal to kN is:

µ =
∆kN√

2− 2 cos(kN∆)
. (11)

The roots of the modified Ẽ1D numerator are then:

kr = ±kN +
p2π

∆
, p ∈ Z,

or, with respect to αr = kr/kN :

αr = ±1 + n p, p ∈ Z. (12)

The corrected FAT (CFAT) estimation of the force distribution is finally given

by:

pCFAT (x) = EIµ4δ4x
∆ (x)− ρSω2w(x). (13)

The wavenumber response Ẽ1D of this CFAT scheme is drawn in figure 2. The
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Fig. 2. Response of the corrected FAT identification in the wavenumber domain.

Vertical lines indicate the Nyquist wavenumbers of the spatial sampling.
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low-pass filter is preserved, and the singularities are efficiently removed. It can

be noted that secondary roots of Ẽ1D, given by equation (12) are also visible,

at α = 2 for n = 3 and α = 3 for n = 4. The cut-off wavenumber of ideal

anti-aliasing filters are also drawn for each value of n. The value of the CFAT

responses at these wavenumbers is about −15dB.

2.4 High frequency limitation of the CFAT (Corrected FAT)

The values of n less than 3 points by natural wavelength correspond to the high

frequency domain. The wavenumber responses of the CFAT in this domain

are drawn in figure 3. A classic high frequency limit of FAT is based on the

Shannon’s sampling criterion for the natural wavelength of the beam (at least

2 points by natural wavelength). This is indeed the extreme limit if we are

interested in the response of the beam. But this limitation does not concern

the force distribution itself, whose wavenumber distribution is not depending

on the structure.

It is interesting in observing figure 3 that decreasing the value of n has two

effects: the decrease of the cut-off wavenumber, and the increase of the energy

of an out-of-phase secondary lobe in higher frequencies. This second effect

induces aliasing which is dramatic because the energy of high wavenumber

components (higher than the Nyquist limit, materialized by vertical lines in

figure 3) is aliased on the identified load distribution. In this work, the limit

is adjusted to keep this secondary lobe lower than -10dB, which corresponds

to n > 1.85 (plain curve in figure 3). It can be noted that this limit is not

acceptable when one considers the problem of the identification of the spatial

response of the beam, because the Shannon’s criterion is not satisfied for the
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natural wavenumber (n > 2). However, the force distribution can be studied

up to a frequency corresponding to n = 1.85, thanks to the anti-aliasing filter

provided by the CFAT approach. n being inversely proportional to the square

root of the frequency, the high frequency limit can be increased by about 17%,

in comparison with the Shannon’s criterion for the beam’s response.
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Fig. 3. Response of the corrected FAT identification in the wavenumber domain in

high frequency (low values of n). Vertical lines indicate the Nyquist wavenumbers

of the spatial sampling.

2.5 Numerical illustrations for flexural beams

Let us consider the analytic model of a simply supported beam. The displace-

ment of the beam at the angular frequency ω excited by a 1N (peak) force at

xe is computed by the modal expansion:

w(x) =
2

EIL

∑

i≥1

sin(kixe) sin(kix)

k4
i − k4

N

, with ki =
iπ

L
, (14)

and L standing for the beam’s length. Numerical values are written in table

1.

The high frequency limit of the simulation is fixed to 1.85 points by natural
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Young’s modulus E = 210e9 Pa density ρ = 7800 kg/m3

Damping η = 1% Length L = 1m

thickness h = 5mm Force position xe =0.61m

space resolution ∆ = 5 cm Noise level SNR = 30 dB

Table 1

Numerical values of the beam used for the simulations.

wavelength (following the theoretical discussion in section 2.4), which corre-

sponds to approximately 5.5kHz. The modal truncation of the expansion (14)

is chosen to keep modes with eigen frequencies up to 10 times the high fre-

quency limit. For each measurement point, a white noise is added to computed

velocities in order to satisfy a given signal to noise ratio equals to 30 dB. The

total number of simulated measurement points is 19, from 0m to 1m with a

sampling step of 0.05m.

Each point of the identified force distribution results from a centered difference

scheme. That’s why the force cannot be assessed at the two extreme points

on both sides of the measurement mesh. The resulting force distribution is

consequently assessed from 0.10m to 0.9m (called ”identified force interval” in

the following).

The results of FAT and CFAT are drawn in figure 4 with respect to the fre-

quency, where force values are deduced from integrations over 2 points sur-

rounding the input force location (at x = 0.6 and 0.65 m). It can be seen that

the FAT and CFAT behaves similarly in low frequency (< 400Hz, n > 8), with

strongly overestimated loads: this is the frequency range in which FAT needs

to be regularized because of the noise amplification (see [6]). Between 400 and

1500Hz(8 > n > 3.5), results are slightly different, but the result of classic
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FAT remains acceptable (error lower than 2dB). Above 1500 Hz (n < 3.5), the

CFAT error is still very small (less than 0.5dB) while the classic FAT error can

reach 5 to 10 dB. It can be noted that the CFAT result is still very good for

2 > n > 1.85 (above the vertical black line), following theoretical expectations

given in section 2.4.

The reconstructed force distributions averaged between 500Hz and 5.5kHz are
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Fig. 4. Simulation results: identified force spectrum integrated over x = 0.60m and

x = 0.65m using FAT (solid black) and FAT corrected (dotted red) . The injected

value is 1N (0dB) at each frequency step. The vertical black line corresponds to the

resolution n = 2 (the maximum frequency 5.5 kHz corresponds to n = 1.85).

plotted in figure 5. It is clear that the CFAT result is really good, the identified

load is distributed exclusively over the two points of the grid surrounding the

real input location (x = 0.6 and 0.65 m). The result of the classic FAT is not

so satisfying: The load is almost localized, but slightly overestimated, and a

residual load distribution is identified over the whole length of the beam.

A second simulation is carried out to assess the robustness of the method to

changes in boundary conditions, and to more complex input force distribu-

tions. The same beam (same parameters than in table 1, same measurement

mesh) is now considered as clamped at x = 0 and free at x = L. The following
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Fig. 5. Simulation results: identified force distributions using FAT (solid black) and

CFAT (dotted red), averaged between 0.5 and 5.5kHz. Vertical arrow : input force

location (1N dirac at x = 0.61m)

modal decomposition is adopted to simulate measurements (from [17]):

w(x) =
1

EI

∑

i≥1

1

||fi(x)||2
fi(xe)fi(x)

k4
i − k4

N

, (15)

with fi(x) =
ch(kix)− cos(kix)

ch(kiL) + cos(kiL)
− sh(kix)− sin(kix)

sh(kiL) + sin(kiL)
,

and k1L = 1.875, k2L = 4.694, kiL = −π/2 + iπ for i ≥ 3.

The same force (1N) is injected at the same location x = 0.61m, but two

other ones (also 1N) are also injected, the first one at x = 0.15m (inside the

identified force interval 0.10 to 0.90m), and the second one at x = 1m, i.e. at

the beam’s free end (outside the identified force interval).

The identified force spectrum integrated over the two points surrounding the

force location (x = 0.60m and x = 0.65m) is drawn in figure 6. The same

observations than for the simply supported case can be made : the identified

force spectrum using CFAT is satisfying upon 500Hz, while the FAT results is

very flawed above 1500Hz.

The results are drawn in the space domain in figure 7, averaged between 0.5
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and 5.5kHz. The CFAT results allows clearly the localization of input forces

that are in the identified force interval. The force injected at the free end of

the beam does not prevent neither the localization nor the quantification of

other forces. Results using FAT are very noisy, input forces cannot be clearly

localized in figure 7.
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Fig. 6. Clamped-free simulation. Identified force spectrum integrated over x = 0.60m

and x = 0.65m using FAT (solid black) and FAT corrected (dotted red). The injected

value is 1N (0dB) at each frequency step. The vertical black line corresponds to the

resolution n = 2 (the maximum frequency 5.5 kHz corresponds to n = 1.85).

3 Identification of load distributions on plates

3.1 Classic FAT for flexural plates

The motion equation of flexural plates at the angular frequency ω is:

D

(
∂4w

∂x4
+

∂4w

∂y4
+ 2

∂4w

∂x2∂y2

)
− ρhω2w(x, y) = p(x, y), (16)
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Fig. 7. Clamped-free simulation. Identified force distributions using FAT (solid

black) and CFAT (dotted red), averaged between 0.5 and 5.5kHz. Vertical arrows :

input force locations (1N diracs at x = 0.61m, x = 0.15m and x = 1m)

where D = Eh3(12(1 − ν2))−1 is the flexural stiffness per unit length, ρh is

the mass per unit area, p(x, y) is the load distribution in N/m2 and w(x, y) is

the displacement in m.

A finite difference approximation with 13 points is used to assess the fourth

derivatives of the displacement. (∂4w/∂x4) and (∂4w/∂y4) are approximated

as in eq. 2, whereas (∂4w/∂x2∂y2) is computed as follows :

∂4w

∂x2∂y2
≈ δ2x2y

∆ ,

≈ 1

∆4

1∑

p=−1

1∑

q=−1

ψpqw(x + p∆, y + q∆), (17)

with ψ00 = 4,

ψ−10 = ψ10 = ψ0−1 = ψ01 = −2,

ψ−1−1 = ψ11 = ψ1−1 = ψ−11 = 1.

The FAT estimation of the load distribution at the point coordinates (x, y) is
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pFAT (x, y) = DΦ∆(x, y)− ρSω2w(x, y), (18)

with Φ∆(x, y) = δ4x
∆ + δ4y

∆ + 2δ2x2y
∆ .

3.2 2D wavenumber response of FAT for flexural plates

The 2D Fourier transform of equation (16) is:

(
D(k2

x + k2
y)

2 − ρhω2
)
ŵ(kx, ky) = p̂(kx, ky). (19)

The 2D Fourier transform of the finite difference approximation Φ∆(x, y) in

eq. (18) is:

Φ̂∆(kx, ky) =
ŵ(kx, ky)

∆4
[ 2 cos(2kx∆)− 8 cos(kx∆) + 6

+2 cos(2ky∆)− 8 cos(ky∆) + 6

+ cos((kx + ky)∆) + cos((kx − ky)∆)

+4− 4 cos(kx∆)− 4 cos(ky∆) ], (20)

that can be simplified by:

Φ̂∆(kx, ky) = ŵ(kx, ky)κ
4
2D,

with κ4
2D =

4(1−X)2 + 4(1− Y )2 + 8(1−X)(1− Y )

∆4
,

X = cos(kx∆) , Y = cos(ky∆).

The FAT estimation of the load distribution in the 2D wavenumber domain

is thus:

p̂FAT (kx, ky) = ŵ(kx, ky)
(
Dκ4

2D − ρhω2
)
. (21)

The response of FAT is the ratio between real and identified load distributions:

E2D(ω, ∆, kx, ky) =
p̂FAT (kx, ky)

p̂(kx, ky)
=

κ4
2D − k4

N

(k2
x + k2

y)
2 − k4

N

, (22)
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where kN is the natural flexural wavenumber of the plate

kN =
4

√
ρh

D
ω2.

3.3 Correction of FAT for flexural plates

The response of FAT, defined in eq. (22), has a singularity for k2
x + k2

y = k2
N ,

which corresponds to a circle equation in the wavenumber domain. As for the

1D case, it is proposed to modify the finite difference approximation by the

introduction of two constants µ and ν, as follows:

Φ̃∆(x, y) = µ4(δ4x
∆ + δ4y

∆ ) + 2ν4δ2x2y
∆ . (23)

The 2D Fourier Transform of eq. (23) gives:

ˆ̃Φ∆(kx, ky) = ŵ(kx, ky)κ̃
4
2D,

with κ̃4
2D =

4µ4(1−X)2 + 4µ4(1− Y )2 + 8ν4(1−X)(1− Y )

∆4

X = cos(kx∆) , Y = cos(ky∆).

The value of µ is chosen to equalize the roots of the numerator and the de-

nominator of equation (22) (replacing κ4
2D by κ̃4

2D) for kx = 0 (X = 1 and

ky = kN ) or ky = 0 (Y = 1 and kx = kN ). The result is:

µ4 =
∆4k4

N

4[1− cos(kN∆)]2
,

which corresponds exactly to the correction for the 1D case.

The value of ν is determined by equalizing roots of the numerator and denom-

inator of equation (22) for kx = ky = kN/
√

2 which leads to:
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ν4 =
∆4k4

N

8
[
1− cos(kN∆√

2
)
]2 − µ4.

The CFAT estimation of the load is finally expressed as follows:

pCFAT (x, y) = D
(
µ4δ4x

∆ + µ4δ4y
∆ + 2ν4δ2x2y

∆

)
− ρSω2w(x, y). (24)

The wavenumber responses of the classical and corrected FAT are drawn in

figure 8 for n = 5 and n = 3 (n being the number of points by natural wave-

length). The Nyquist circle of the spatial sampling is materialized (dashed

line), representing the cutoff wavenumber of an ideal anti-aliasing filter for

the load sampling. Both FAT and CFAT keep their inherent low-pass filtering

effect. The singularity circle is clearly observed on the classic FAT response

at k2
x + k2

y = k2
N . The correction attenuates efficiently this singularity, but

contrary to the 1D correction, the singularity is not completely deleted. For

n = 3, the response is continuous only on the points of the singularity circle

corresponding to |kx| = 0 , |ky| = 0 ,kx = ky = kN/
√

2, which is imposed

by the correction terms. However, a short singularity is still observed outside

these points. This singularity is also present for higher values of n, but is

smaller and is not visible on the 2D representations, as it is the case for n = 5.

3.4 High frequency limitation of the corrected FAT for flexural plates

In order to study the high frequency limit of the method, it is proposed here

to see what is the acceptable smallest values of n. For the beam the limit was

fixed to n = 1.85 (secondary lobe of the wavenumber response lower than -10
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Fig. 8. Wavenumber responses of FAT (left) and CFAT (right) for n = 5 (top) and

n = 3 (bottom) (n is the ratio λN/∆). Dashed black line: Nyquist circle of the

spatial sampling.

dB). The 2D wavenumber response of the CFAT for plates is drawn in figure 9

for n = 2 and for n = 1.85. The singularity is not efficiently smoothed for low

values of n. For the case n = 1.85, this remaining singularity induces sharp

and strong amplifications, at wavenumbers upon the Nyquist circle. Thus the

limit for the 2D case should be kept for n > 2.
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black line: Nyquist circle of the spatial sampling.
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3.5 Numerical illustration for flexural plates

The analytic model for the simply supported flexural rectangular plate is con-

sidered here. The displacement of the plate excited by a unitary point force

at the coordinates (xe, ye), for the angular frequency ω, is computed by the

modal expansion:

w(x, y) =
4

DLxLy

∑

i,j≥1

sin(kixe) sin(kjye) sin(kix) sin(kjy)

(k2
i + k2

j )
2 − k4

N

, (25)

with ki =
iπ

Lx
, kj =

jπ

Ly
,

Lx and Ly standing for the plate’s dimensions. Numerical values used for the

simulations are given in table 2.

Young’s modulus E = 72e9Pa density ρ = 2700kg/m3

Damping η = 1% Dimensions Lx × Ly = 0.7× 0.5 m2

thickness h = 5mm Force location (xe, ye) = (0.31, 0.21)m

space resolution ∆ = 3 cm Noise level SNR = 30dB

Table 2

Numerical values for the plate simulation.

The high frequency limit of the simulation is fixed to ensure a minimum of 2

points by natural wavelength, which corresponds to 8kHz in this simulation.

The modal summation in equation (25) is truncated to keep modes with eigen

frequencies up to 10 times the high frequency limit. Some noise is also added

to simulate uncertainties in the measurements. This is made by the addition

of a white noise to satisfy a signal to noise ratio of 30dB.
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Results of FAT and CFAT are drawn in figure 10 with respect to the frequency.

The result is integrated over 4 points surrounding the input force location.

Below 500Hz (n > 8), noise dominates because the spacing is small and the

finite difference schemes cannot regularize the problem (no filtering effect).

Between 500Hz and 1300Hz (5 < n < 8), FAT and CFAT give results with

errors less than 5dB. Above 1300Hz, CFAT becomes highly accurate, the errors

are less than 1dB, whereas FAT results are strongly biased with errors that

can reach more than 10dB.

0 2000 4000 6000 8000
−20

−15

−10

−5

0

5

10

15

20

Frequency (Hz)

Id
en

tif
ie

d 
fo

rc
e 

(0
dB

 =
 1

N
)

Fig. 10. Simulation results: identified force spectrum using FAT (black) and FAT

corrected (dotted red)

Results of FAT and CFAT are drawn in figure 11 with respect to x and y, where

the force levels are integrated between 1 and 8kHz. The input force is correctly

localized with FAT or CFAT, but the level of erroneous loads identified on the

whole surface of the plate is much lower with CFAT (≈ −25dB) than with

FAT (≈ −5dB).

23



x (m)

y 
(m

)

 

 

0.2 0.4 0.6
0.1

0.2

0.3

0.4

x (m)

y 
(m

)

 

 

0.2 0.4 0.6
0.1

0.2

0.3

0.4

−30

−20

−10

dB

Fig. 11. Simulation results: identified force distributions using FAT (left) and CFAT

(right) overall levels between 1 and 8 kHz. Both maps are drawn using a 25dB

dynamic range.

4 Conclusion

The main role of the finite difference schemes in FAT is to approximate the

displacement derivatives in the equation of motion. Usually, in the classic FAT,

the spacing between sensors is chosen to be small in order to have a good

assessment of the derivatives and a wavenumber filter is used to eliminate

noises intrinsically amplified by the derivatives. In this study, it is shown that

the schemes also constitute low-pass wavenumber filters, which may be used for

the regularisation of FAT if larger spacings are chosen. To do so, a correction

must be made and amplification terms are proposed in this paper. Simulations

on beams and plates show that it is possible to use the FAT with only the

required number of points for the finite difference schemes, i.e. five or thirteen

points for the beam or the plate, respectively.
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