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Performance analysis of LRT/GLRT-based array

receivers for the detection of a known real-valued

signal corrupted by noncircular interferences
Abdelkader Oukaci, Jean-Pierre Delmas and Pascal Chevalier

Abstract

A performance analysis of likelihood ratio test (LRT)-based and generalized likelihood ratio test (GLRT)-

based array receivers for the detection of a known real-valued signal corrupted by a potentially noncircular

interference is considered in this paper. The distribution of the decision statistics associated with the LRT and

GLRT is studied. This allows us to give exact closed-form expressions of the probability of detection (PD) and

false alarm (PFA) for two LRT-based receivers. Then, asymptotic (with respect to the data length) closed-form

expressions are given for PD and PFA for four GLRT-based receivers. Finally, in order to strengthen the obtained

results, some illustrative examples are presented.

Index Terms

Detection, likelihood ratio test (LRT), generalized likelihood ratio test (GLRT), receiver operating charac-

teristics (ROC), noncircular, rectilinear, interference, widely linear.
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I. INTRODUCTION

These last decades, the problem of the detection of a known signal with unknown parameters in the presence of

noise plus interference (called total noise) whose covariance matrix is unknown has been an important problem

which has received much attention. This occurs in applications such as radar, satellite localization or time

acquisition in radio communications. Most of the proposed detectors available in the literature assume implicitly

or explicitly a second order (SO) circular (or proper) total noise. However, in the aforementioned applications,
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SO noncircular (or improper) sources of interference may be potentially omnipresent1. Consequently, those

detectors become suboptimal.

In SO noncircular context, note that some detectors have been introduced in the literature for this reason.

However these detectors have been built under the restrictive condition of either a known signal with known

parameters (e.g., [1], [2]) or a random signal [3]. Furthermore, the practical issue consisting to detect a known

signal with unknown parameters in the presence of an arbitrary unknown SO noncircular total noise has been

investigated to the best of our knowledge only in [4], [5] for completely and partially unknown propagation

channels respectively. In these works, no comprehensive theoretical performance analysis of these GLRT

detectors has been investigated. For example, only a Monte Carlo simulation exhibiting the non detection

probability for a specific false alarm and signal to interference plus noise ratio (SINR) was presented in [5].

Note that most of the GLRT-based array receivers presented in [5] have been patented in [6] and [7] and some

results of this paper have been presented in [8].

The purpose of this paper is to complement the list of the GLRT receivers presented in [5] and to present

a comprehensive performance analysis of some of these detectors. The paper is organized as follows. The

observation model and the statement of the problem are given in Section II. A review of the LRT and some

GLRT detectors introduced in [5] and a new GLRT detector are given in Section III. A performance analysis of

these detectors is presented and illustrated in Sections IV and V respectively. Note that this performance analysis

applies to conventional LRT-based and GLRT-based array receivers for the detection of a known real-valued

signal corrupted by a circular interference as well, which has never been reported in the literature.

II. HYPOTHESES AND PROBLEM FORMULATION

A. Hypotheses

Let us consider an array of N narrow-band sensors. Each sensor is assumed to receive a known linearly

modulated digital signal2 composed of K real-valued3 known symbols ak. This signal is corrupted by a

potentially zero-mean noncircular total noise composed of interference and background noise. The pulse shape

of this known signal is assumed to be a square root Nyquist filter. Under these assumptions, after matched

filtering and sampling at the symbol rate4 the vector of complex amplitudes of the signals at the output of these

1Note that the noncircular assumption is usual in communication systems but not in radar systems. However, with new generation of
active digital radar, there is a renewal of waveform generation and processing approaches that includes noncircular waveforms.

2This signal may either correspond to a training sequence in a radio communication link, a binary coding signal over the coherent
processing interval in radar applications, or a PN code over a symbol period for DS-CDMA networks or GPS systems.

3Note that this assumption is not so restrictive since rectilinear signals such as DS-BPSK signals in particular, are currently used
in a large domain of practical applications. Extension to complex-valued symbols leads to more involved derivations for some GLRT
receivers. Furthermore the performance gain of the optimal LRT and GLRT receivers with respect to the conventional ones are not so
attractive compared to real-valued known symbols. But the analysis of Section IV extends straightforwardly.

4Note that the samples xk are sufficient statistics for the detection problem when the total noise is whitely Gaussian distributed only.
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sensors, (xk)k=1,...K can be written as follows

xk = ρse
iφsaks + nk, (1)

where s is the directional vector of the known signal, such that its first component is equal to one. ρs and φs

control the amplitude and the phase of the known signal on the first sensor respectively, and nk are the samples

of the zero-mean total noise at the output of the matched filter.

B. Second order statistics of the data

The SO statistics of the potentially noncircular data xk are defined by

Rx(k) def= E(xkxH
k ) = πs(k)ssH + Rn(k),

Cx(k) def= E(xkxT
k ) = πs(k)e2iφsssT + Cn(k),

where πs(k) def= ρ2
sa

2
k since ak is deterministic and Rn(k) def= E(nknH

k ),Cn(k) def= E(nknT
k ).

C. Problem formulation

The problem addressed in this paper is the detection problem with two hypotheses H0 and H1, respectively

associated with the presence of total noise nk only and signal plus total noise in the data (xk)k=1,...,K based

on the LRT/GLRT.
H0 : xk = nk, k = 1, .., K

H1 : xk = ρse
iφsaks + nk, k = 1, .., K.

(2)

To derive GLRT-based receivers, we need the following theoretical assumptions5 which are not necessarily

verified or required in practice.

A.1: the matrices Rn(k) and Cn(k) do not depend on k

A.2: the samples (nk)k=1,..K are independent zero-mean Gaussian and possibly noncircular.

Under these conditions, the deterministic parameters of the distribution of (xk)k=1,..K are (ρs, φs), s or ψs

(if s is totally unknown or parameterized by the direction of arrival (DOA) ψs respectively), and (Rn,Cn). As

each of these parameters may be either known or unknown, depending on the application, different GLRT-based

receivers have been derived in [5].

Note that the GLRT receivers introduced and analyzed by Kelly [9] suppose that under the assumption H1,

free of signal components, called secondary data are available. This is in contrast to our binary hypothesis

testing problem (2). So, the GLRT receivers introduced in [5] are not simple extensions of the GLRT receivers

5These assumptions are not critical in the sense that the GLRT-based receivers derived under these assumptions still provide good
decision performance even if most of the latter are not verified in practice. For example, we will see in Section IV-A that the derived
LRT receiver have similar performance with Gaussian and a BPSK interferer with the same second-order statistics.
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by Kelly [9] to augmented vectors of observations. Consequently our performance analysis are not simple

extensions of those presented in [9] either.

III. REVIEW OF THE LRT AND GLRT RECEIVERS

A. Clairvoyant receivers

We first consider the unrealistic case of completely known parameters. According to the statistical theory of

detection [10, Ch. 3], the optimal detector is the LRT receiver that consists in comparing to a threshold, the

likelihood ratio LR(x,K) defined by

LR(x,K) def=
p[(xk)k=1,..K/H1]
p[(xk)k=1,..K/H0]

.

With assumptions A.1 and A.2, it is straightforward to prove [5], that the LRT receiver decides H1 if the

statistic OPT(x,K) defined by

OPT(x,K) def= w̃H
o r̂x̃,a (3)

is greater than a specific threshold, where w̃o
def= R−1

ñ s̃φ is the so-called widely linear spatial matched filter

(SMF) [11], s̃φ
def= [eiφssT , e−iφssH ]T , Rñ

def= E[ñkñH
k ] with ñk

def= [nT
k ,nH

k ]T and r̂x̃,a
def= 1

K

∑K
k=1 x̃kak

where x̃k
def= [xT

k ,xH
k ]T . In the particular case of an SO circular total noise (Cn = 0), the statistic OPT(x, K)

(3) reduces to the conventional one defined by

CONV(x,K) def= 2<[wH
c r̂x,a]. (4)

with wc
def= eiφsR−1

n s and r̂x,a
def= 1

K

∑K
k=1 xkak.

B. GLRT receivers

In most situations of practical interest, the parameters (ρs, φs) and (Rn,Cn) are unknown, while for some

applications the directional vector s is known, parameterized6 or totally unknown (see applications given in

[5]). Thereby, we resort to GLRT approach where we maximize p[(xk)k=1,..K ; θ1] and p[(xk)k=1,..K ; θ0] with

respect to the unknown parameters θ1 and θ0 under H1 and H0 respectively. We use the resulting LR (denoted

GLR(x,K)) as a decision statistic. Depending on the unknown parameters θ1 and θ0, different expressions of

LG(x,K) def= 2 ln[GLR(x,K)] have been derived in [5] for s known or totally unknown.

For s known, (ρs, φs) unknown only (case C1), θ1 = (ρs, φs) and θ0 = ∅, LG(x,K) is given by

LG1(x,K) = Kr̂H
x̃,aR

−1
ñ S(SHR−1

ñ S)−1SHR−1
ñ r̂x̃,a (5)

6In this case, the array is assumed to be perfectly calibrated. We suppose here that the directional vector s depends only on a
scalar-valued DOA ψs, as the extension to a multidimensional-valued DOA is straightforward.
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with S def=


 s 0

0 s∗


, whereas for (ρs, φs) and (Rn,Cn) unknown (case C2), θ1 = (ρs, φs,Rn,Cn) and

θ0 = (Rn,Cn), we get

LG2(x,K) =
Kr̂H

x̃,aR̂
−1
x̃ S

(
SHR̂−1

x̃ S
)−1

SHR̂−1
x̃ r̂x̃,a

1− r̂H
x̃,aR̂

−1
x̃ r̂x̃,a

, (6)

with R̂x̃
def= 1

K

∑K
k=1 x̃kx̃H

k .

For s totally unknown, (ρs, φs) unknown only (case C3), θ1 = (ρs, φs, s) and θ0 = ∅, we get

LG3(x,K) = Kr̂H
x̃,aR

−1
ñ r̂x̃,a,

whereas for (ρs, φs) and (Rn,Cn) unknown (case C4), θ1 = (ρs, φs, s,Rn,Cn) and θ0 = (Rn,Cn), LG(x, K)

is given by

LG4(x,K) = Kr̂H
x̃,aR̂

−1
x̃ r̂x̃,a.

Finally in the case where s is parameterized by an unknown DOA ψs with arbitrary model of parametrization,

it is straightforward to derive the GRLT from GLRT (5) and (6) for s totally known. We obtain for (Rn,Cn)

known (case C5) or unknown (case C6) respectively, θ1 = (ρs, φs, ψs) and θ0 = ∅ or θ1 = (ρs, φs, ψs,Rn,Cn)

and θ0 = (Rn,Cn), the following expressions of LG(x,K) by maximization over ψ

LG5(x,K) = max
ψ

(
Kr̂H

x̃,aR
−1
ñ S(ψ)

(
SH(ψ)R−1

ñ S(ψ)
)−1

SH(ψ)R−1
ñ r̂x̃,a

)

LG6(x,K) =
maxψ

(
Kr̂H

x̃,aR̂
−1
x̃ S(ψ)

(
SH(ψ)R̂−1

x̃ S(ψ)
)−1

SH(ψ)R̂−1
x̃ r̂x̃,a

)

1− r̂H
x̃,aR̂

−1
x̃ r̂x̃,a

,

with S(ψ) def=


 s(ψ) 0

0 s∗(ψ)


.

These six GLRT receivers are summarized in the following table for the reader convenience.

Cases directional vector s source parameters noise parameters

C1 s known ρs, φs unknown Rn,Cn known

C2 s known ρs, φs unknown Rn,Cn unknown

C3 s totally unknown ρs, φs unknown Rn,Cn known

C4 s totally unknown ρs, φs unknown Rn,Cn unknown

C5 s parameterized ρs, φs unknown Rn,Cn known

C6 s parameterized ρs, φs unknown Rn,Cn unknown

Table.1 Six analyzed GLRT receivers.
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IV. THEORETICAL PERFORMANCE ANALYSIS

We present in this section a theoretical performance analysis of the aforementioned detectors where the

domain of validity of our approximations are specified if necessary.

A. Clairvoyant receivers

To be able to quantify and to compare the performance of the previous clairvoyant receivers, we assume

in this subsection that the total noise nk is composed of a BPSK interference with independent equiprobable

symbols bk ∈ {−1,+1}, plus background noise n′k uncorrelated with each other. Under these assumptions nk

is written as

nk = ρ1e
iφ1bk j1 + n′k,

where j1 is the steering vector of the interference whose first component is equal to one. ρ1 and φ1 control the

amplitude and the phase of the interference on the first sensor, and (n′k)k=1,..,K are spatially white zero-mean

circularly Gaussian independent distributed random variables (RV) with E(n′kn
′H
k ) = η2I.

The probability of detection and false alarm associated with the threshold λ are given respectively by

PD = P [OPT(x,K) > λ/H1] = P [ρs(
1
K

K∑

k=1

a2
k)w̃

H
o s̃φ + ρ1w̃H

o j̃φ
1
K

K∑

k=1

akbk +
1
K

K∑

k=1

akw̃H
o ñ′k > λ]

= P [β + α(
K∑

k=1

a2
k)
−1/2

K∑

k=1

akbk + n′K > λ] (7)

PFA = P [OPT(x, K) > λ/H0] = P [ρ1w̃H
o j̃φ

1
K

K∑

k=1

akbk +
1
K

K∑

k=1

akw̃H
o ñ′k > λ]

= P [α(
K∑

k=1

a2
k)
−1/2

K∑

k=1

akbk + n′K > λ] (8)

with j̃φ
def= [eiφ1jT1 , e−iφ1jH1 ]T , α

def= ρ1

K (
∑K

k=1 a2
k)

1/2w̃H
o j̃φ (real-valued), β

def= ρs( 1
K

∑K
k=1 a2

k)w̃
H
o s̃φ =

ρs( 1
K

∑K
k=1 a2

k)s̃
H
φ R−1

ñ s̃φ > 0 and n′K
def= 1

K

∑K
k=1 akw̃H

o ñ′k which is a real-valued zero-mean Gaussian RV

with variance σ2 = η2

K2 (
∑K

k=1 a2
k)‖w̃o‖2. For known interference symbols (b1, ..., bK), PD (7) and PFA (8) are

given by

PD = Q

(
λ− β − α(

∑K
k=1 a2

k)
−1/2

∑K
k=1 akbk

σ

)
and PFA = Q

(
λ− α(

∑K
k=1 a2

k)
−1/2

∑K
k=1 akbk

σ

)

where Q(x) def=
∫ +∞
x

1√
2π

e−u2/2du. Conditioning these probabilities PD and PFA on the different equiprobable
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symbols (b1, ..., bK), we obtain by the total probability formula

PD =
1

2K

2K∑

i=1

Q

(
λ− β − α(

∑K
k=1 a2

k)
−1/2

∑K
k=1 akb

(i)
k

σ

)
, (9)

PFA =
1

2K

2K∑

i=1

Q

(
λ− α(

∑K
k=1 a2

k)
−1/2

∑K
k=1 akb

(i)
k

σ

)
, (10)

where
(
b
(i)
1 , ..., b

(i)
K

)
i=1,...,2K

denote the 2K different K-uplets of binary symbols (b1, ..., bK).

Expressions (9) and (10) of PD and PFA are valid for the conventional receiver (4) as well, with now

α
def= 2ρ1

K (
∑K

k=1 a2
k)

1/2<(eiφ1wH
c j1), β

def= 2ρs( 1
K

∑K
k=1 a2

k) <(eiφswH
c s) = 2ρs( 1

K

∑K
k=1 a2

k)s
HR−1

n s > 0 and

n′K
def= 2

K<(
∑K

k=1 akwH
c n′k) which is a zero-mean Gaussian RV with variance σ2 = 2η2

K2 (
∑K

k=1 a2
k)‖wc‖2.

Numerical computation of (9) and (10) are computationally costly for large values of K. For these values,

note that Chernoff-Stein’s Lemma [12, Th. 11.8.1] which gives general expressions of false alarm, miss and

error probabilities associated with the LRT as the number K of observations becomes large cannot be applied

because the LRT is derived under the Gaussian distribution but is studied under the true distribution, which is

a mixture of Gaussian distributions.

But hopefully the RV (
∑K

k=1 a2
k)
−1/2

∑K
k=1 akbk, where ak and bk are deterministic and random variables

respectively, that appears (7) and (8) is a sum of independent RV. Consequently that allows us to apply central

limit theorems. For BPSK symbols ak, (
∑K

k=1 a2
k)
−1/2

∑K
k=1 akbk = K−1/2

∑K
k=1 akbk is a sum of independent

identically distributed RV and the classical central limit theorem applies. And for arbitrary real-valued symbols

ak, the RV akbk are no longer identically distributed. But the sequence (
∑K

k=1 a2
k)
−1/2

∑K
k=1 akbk converges

also in distribution to the zero-mean and unit variance Gaussian distribution because Liapounov’s theorem [13,

Th. 2.7.3] can be applied as the following condition is satisfied7

(
K∑

k=1

|ak|3)2 = o[(
K∑

k=1

a2
k)

3] when K →∞. (11)

Consequently for large values of K, the distribution of the RV (
∑K

k=1 a2
k)
−1/2

∑K
k=1 akbk can be approximated

by a zero-mean and unit variance Gaussian distribution. In this case, the RV α(
∑K

k=1 a2
k)
−1/2

∑K
k=1 akbk +n′K

that appear in (7) and (8) is approximately Gaussian distributed with zero-mean and variance α2+σ2 because α

is deterministic and n′K is a zero-mean Gaussian RV with variance σ2 independent of the RV bk. Consequently

7Condition (11) is clearly satisfied if we assume the mild assumption that the limit limk→∞ 1
K

∑K
k=1 a2

k exists and is finite non-zero
and the limit limk→∞ 1

K

∑K
k=1 |a3

k| exists.
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from (7) and (8), PD and PFA become respectively8

PD ≈ Q
(

λ− β√
α2 + σ2

)
(12)

PFA ≈ Q
(

λ√
α2 + σ2

)
. (13)

Noting that the Q function is monotonically decreasing, Q has an inverse that we denote as Q−1 and we obtain

the following closed-form expression of the ROC of clairvoyant receivers (3) and (4) by elimination of the

threshold λ =
√

α2 + σ2 Q−1(PFA)

PD ≈ Q
(
Q−1(PFA)−

√
SINR

)
(14)

where SINR = β2

α2+σ2 represents the ratio between the square of the known signal part and the expected value

of the square of the total noise part of the statistics OPT(x, K) (3) and CONV(x, K) (4) for the optimal and

conventional clairvoyant receivers. We note that this SINR is Ktimes the mean SINR (with respect to ak) given

by
ρ2

s(
1
K

∑K
k=1 a2

k)|w̃H
o s̃φ|2

ρ2
1|w̃H

o j̃φ|2 + η2‖w̃o‖2
and

ρ2
s(

1
K

∑K
k=1 a2

k)(<(eiφswH
c s))2

ρ2
1(<(eiφ1wH

c j1))2 + η2

2 ‖wc‖2

at the output of the widely linear SMF w̃o and of the linear SMF wc, respectively. Computation and comparison

of these SINR are done in [11] for BPSK signal of interest and not reported here for want of space.

B. GLRT receivers

The exact distribution of GLR(x,K) under H0 and H1 for the true distribution of the data appears to

be challenging to derive. For example, the derivation of the distribution of simplest statistics (5) (w.r.t. the

R.V. (xk)k=1,..K) after conditioning on the symbols (b1, .., bK), comes down to derive the distribution of the

Hermitian form zHΩz where z is a zero-mean circular Gaussian RV. Unfortunately, matrix Ω is not related

to the covariance matrix of z. Thus, there is no known closed-form expression9 of the distribution of zHΩz.

But asymptotically with respect to K and under the assumptions for which the GLRT has been derived, i.e.,

according to a noncircular Gaussian distribution of the data, some general statistical results can be applied,

without having to know the exact form of GLR(x,K).

Depending on the unknown parameters θ among (ρs, φs), s, ψs and (Rn,Cn), six practical cases has been

defined in Section III-B, for which we note that the PDF of (xk)k=1,..K under H0 and H1 is the same, except

8Note that approximation (13) can be questionable because the probabilities of the tails of the distributions are generally ill
approximated by central limit theorems. But in practice, approximation (13) is satisfactory as it is shown in section V.

9We note that closed-form expressions of the cumulative function of the Hermitian form
∑K

k=1 a|z1,k|2 + b|z2,k|2 + cz1,kz∗2,k +
c∗z∗1,kz2,k where (z1,k, z2,k)k=1,..,K are K independent couples of correlated circular Gaussian variables z1,k and z2,k, have been
given in the literature, see e.g., [14]. But our generic Hermitian form zHΩz does not reduce to this one.
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that the value of the unknown parameter vector θ is different. Decompose this general unknown parameter10

θ in θs and θr that collects the unknown parameters among (ρs, φs, ψs, s) and (Rn,Cn), respectively. s and

r represent the dimensions of the real-valued vectors θs and θr. Note that (Rn,Cn) is sometimes referred to

as a nuisance parameter. For identifiability reasons, we must use reparameterizations, to get the parameters θs

and θr that are given for each case by

θs = [ρs cos(φs), ρs sin(φs)]T with s = 2 for C1 and C2,

θs = [<(ρse
iφss)T ,=(ρse

iφss)T ]T with s = 2N for C3 and C4.

θs = [ρs cos(φs), ρs sin(φs), ψs]T with s = 3 for C5 and C6,

There is no nuisance parameter for C1, C3 or C5 and

θr = [(Rn)i,i,<((Rn)i,j),=((Rn)i,j) for 1 ≤ i < j ≤ N,<((Cn)i,j),=((Cn)i,j) for 1 ≤ i ≤ j ≤ N ]T with

r = N(2N + 1) for C2, C4 and C6.

In the cases11 C1, C2, C3 and C4, detection problem (2) can be recast as the following composite hypothesis

testing problem [15], [10, Ch. 6], which is a parameter test of the PDF p[(xk)k=1,..K ; θs, θr], where we wish

to test if θs = 0 as opposed to θs 6= 0

H0 : p[(xk)k=1,..K ; θs = 0, θr]

H1 : p[(xk)k=1,..K ; θs 6= 0, θr].
(15)

With these notations, GLR(x,K) becomes

GLR(x,K) =
p[(xk)k=1,..K ; θ̂s1 , θ̂r1 ]

p[(xk)k=1,..K ; θs0 , θ̂r0 ]
,

with θs0 = 0 and (θ̂s1 , θ̂r1) and θ̂r0 are the maximum likelihood estimates of (θs,θr) and θr under H1 and

H0, respectively.

Wilk’s theorem with nuisance parameters [16, p.132] can be applied without having to know the exact form

of GLR(x,K). Thus the following convergence in distribution follows:

LGi
(x,K) L→ χ2(s) under H0 for cases (Ci)i=1,2,3,4 (16)

where χ2(s) denotes the chi-squared distribution with s degrees of freedom associated with Ci. Under H1,

the derivation of the asymptotic distribution of LGi
(x,K) is much more involved. Using a theoretical result

by Stroud [17], Stuart et al [18, Ch. 23.7] have stated that when θs can take values12 near 0, LGi
(x,K) is

10We use here a vector-valued parameter, with a slight difference under H0 with respect to the definition given in Subsection III-B.
11In the cases C5 and C6, detection problem (2) cannot be recast to the parameter test (15) because of the third component ψs of

θs that could take the value 0 under H1.
12The following more formal condition is given in [17], θs is embedded in an adequate sequence indexed by K that converges to

zero at the rate K−1/2 or faster, i.e., ‖θs‖ = Op(1/K1/2). Note the simplified condition given by Kay [10, A. 6A]: ‖θs‖ = c/
√

K
for some constant c, that is reduced to the rough assumption of weak SINR (i.e., Kρ2

s/(ρ2
1 + η2) ¿ 1) [10, Section 6.5].

March 28, 2011 DRAFT



10

approximately distributed13 as

LGi
(x,K) a∼ χ2(s, µK) under H1 for cases (Ci)i=1,2,3,4 (17)

where χ2(s, µK) denotes the noncentral chi-squared distribution with s degrees of freedom and noncentrality

parameter µK associated with Ci. The dependance on K in µK is emphasized to specify that (17) is an

approximation and not a convergence in distribution. We will see in (19) that µK is in fact proportional to K.

µK is a measure of discrimination between the two hypotheses, given by [15] and [10, Ch. 6]

µK = θT
s1

[
Is,s(0, θr)− Is,r(0, θr)I−1

r,r (0, θr)Ir,s(0, θr)
]
θs1 , (18)

where θs1 is true values of θs under H1, θr is the true value of the parameter (which is the same under H0

and H1), and the terms in the brackets are given by partitioning the Fisher information matrix (FIM) IK(θ) of

(xk)k=1,..K for θ = (θT
s , θT

r )T as

IK(θ) =


 Is,s(θs, θr) Is,r(θs, θr)

Ir,s(θs, θr) Ir,r(θs, θr)


 .

The derivation of µK for each case (Ci)i=1,...,6 are given in the Appendix. It is proved that µK takes the

following common value for cases C1, C2, C3 and C4

µK = K

(
1
K

K∑

k=1

a2
k

)
ρ2

s s̃
H
φ R−1

ñ s̃φ. (19)

This shows that under the validity conditions of our analysis (i.e., weak SINR Kρ2
s/(ρ2

1 + η2) and large data

length K),

• under both H0 under H1, the asymptotic distributions of LG(x,K) are identical in the cases C1 and

C2, and also in the cases C3 and C4. In other word this proves that the knowledge of the nuisance

parameters (Rn,Cn) does not improve the performance for "large" data records. This can be interpreted

by the accuracy of the maximum likelihood (ML) estimation of the nuisance parameter (Rn,Cn) that is

relatively independent of the SINR in contrast to the ML estimation of the parameters (ρs, φs, s). Naturally,

this property does not hold for "small" data records, as it has been shown in [5];

• comparing the cases (C1, C2) with (C3, C4), the distributions of LG(x,K) under H0, and under H1, differ

only by the degree s of freedom of the chi-squared distributions, that goes from 2 to 2N . Observing the

spreading of these distributions, we see that they more overlap for (C3, C4) cases, than for (C1, C2) cases.

Consequently, the performance improves when the steering vector is known;

13The accurate formulation is limK→∞ {P (2 ln[GLR(x, K)] < t)− P (VK < t)} = 0 ∀t, where VK has a noncentral chi-squared
distribution with s degrees of freedom and noncentrality parameter µK that depends on the data length K.
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• the proportionality of µK to K (for fixed mean energy by symbol) implies that the distribution of LG(x, K)

under H1 moves to the right and consequently the performance improves when K increases.

Naturally, the first two properties hold only under these validity conditions.

Since the asymptotic distribution of 2 ln[GLR(x,K)] under H0 does not depend on any unknown parameter,

the threshold required to maintain a constant PFA can be a priori found. These detectors are constant false

alarm rate (CFAR) detectors. But in general this CFAR property holds only for large data length (K À 1).

Similarly to the LRT receiver, the following asymptotic ROC is deduced from (15) and (16).

PD ≈ Qχ2
s,µK

(
Q−1

χ2
s,0

(PFA)
)

, (20)

where Qχ2
s,0

(.) and Qχ2
s,µK

(.) denote the complementary cumulative distribution functions of the non-central chi-

squared distribution with s degrees of freedom and respectively noncentrality parameters 0 and µK associated

with (Ci)i=1,2,3,4.

Finally, note that this performance analysis could be applied to conventional GLRT-based array receivers

for the detection of a known signal corrupted by a circular interference and used with circular interference. In

contrast, our analysis cannot be applied to these receivers used with noncircular interference, because in this

latter case, the derived receivers are no longer GLRT-based receivers.

V. ILLUSTRATIONS

To illustrate the performance analysis of Section IV, we consider a linear array of N omnidirectional sensors

equispaced half a wavelength apart. The phase and the direction of arrival with respect to broadside, of both

the BPSK signal of interest and the BPSK interference are assumed constant over a burst of K symbols. They

take the following values: φs = 0, θs = 0, φ1 = π/4 and θ1 = π/9. The input SNR and interference to noise

ratio (INR) are defined by SNR = ρ2
s/η2 and INR = ρ2

1/η2, respectively and fixed to satisfy the constraint INR

= SNR +20dB.

Figs.1 and 2 show the empirical (Monte Carlo), the exact (issued from (9) and (10)), approximate (issued from

(12) and (13)) theoretical ROCs of the optimal (3) and conventional (4) clairvoyant receivers for SNR= −15dB

and INR= 5dB. In Fig.1, the number of sensors is fixed N = 2 with K = 4 and 64, whereas for Fig.2 the data

length is fixed K = 16 with N = 1, 2, 4 and 8.

We see in Fig.1 that the optimal receiver largely outperforms conventional one and that the two theoretical

(exact and approximate) ROCs coincide for both values of K. In fact, in many scenarios of INR = ρ2
1/η2,

numerical computations of approximations (12) and (13) of respectively (9) and (10), remain very accurate (to

two significant digits) for K = 4. This is due to the spatial matched filters w̃o and wc which mitigate the power

of the BPSK interference with respect to the power of the Gaussian background noise. Thus at the output of

the detector, the ratio α2/σ2 remains relatively low with respect to 1 (For example, α2/σ2 ≈ 0.003 in case

March 28, 2011 DRAFT



12

of Fig.1). The same conclusion can be drawn from Fig.2. Furthermore, we note the poor performance of the

conventional receiver for N = 1 due to its incapability to reject the strong interference,. This contrasts with

the optimal receiver which exploits the SO noncircularity of both BPSK signal of interest and interference.

Furthermore, we see that the gain in performance of the optimal receiver with respect to the conventional one

decreases when the number of N of sensors increases.
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Fig.1 Exact and approximate theoretical, and empirical ROCs for SNR = −15dB and INR = 5dB with N = 2.
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Fig.2 Exact and approximate theoretical, and empirical ROCs for SNR = −15dB and INR = 5dB with K = 16.

Considering now the domain of validity of the distribution’s approximations. For the different GLRT under

H0 and H1, it is much more involved than for the LRT. This is due to the fact that it does not only depend
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on K and SINR = Kρ2
s/(ρ2

1 + η2), but also on the concerned domain of PD and PFA. For example, Figs.3

and 4 show the relative error14 on probability of detection PD given by the GLRT receiver obtained when

only (ρs, φs) are unknown (C1) for fixed PFA = 0.001 with N = 2, as a function of the data length

K for SNR = −20dB, and as a function of the SNR for the fixed data length K = 128, respectively.

We see that the approximation of PD is relatively good15 for small data length K and not to low SINR.
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Fig.3 Relative error on probability of detection PD for PFA = 0.001 for N = 2, SNR = −20dB and INR = 0dB for the case C1.
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Fig.4 Relative error on probability of detection PD for PFA = 0.001 for N = 2, K = 128 and INR = SNR +20dB for the case C1.

14i.e., P
(2)
D −P

(1)
D

P
(2)
D

where P
(2)
D is deduced from approximative distribution (17) and P

(1)
D is deduced from 10000 Monte Carlo runs

15Note that from K > 120 in Fig.3 and for SNR > −10dB in Fig.4, P
(1)
D ≈ P

(2)
D ≈ 1 and the detection is perfect.
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Fig.5 shows the empirical and the asymptotic theoretical ROCs (20) of the analyzed GLRT receivers compared

to the exact theoretical ROC of the optimal clairvoyant receiver described in Section III for N = 2.
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Fig.5 Asymptotic theoretical and empirical ROC for SNR = −25dB, INR = 0dB and K = 128.

Comparing these ROCs, we see that the clairvoyant receiver outperforms all the GLRT receivers. The

performance improves with the knowledge of the directional vector s, i.e., the (C1, C2) GLRT receivers slightly

outperform the (C5, C6) GLRT receivers, which outperform the (C3, C4) GLRT receivers. We note that the

performances of the (C5, C6) GLRT receivers are very close to those of (C1, C2) GLRT receivers. This was not

predicted by our theoretical asymptotic analysis (see footnote 10). For the validity conditions of our analysis

(i.e., large size of data and very weak SINR), the knowledge of (Rn,Cn) does not improve the performance

in the C1, C2, C3 and C4 GLRT receivers as predicted by our theoretical asymptotic analysis.

Furthermore, we observe that the empirical ROCs fit the asymptotic theoretical ones for not very weak SINR

(Kρ2
s/(ρ2

1 + η2) = 0.40) and not too large data length (K = 128). Finally, note that extensive experiments that

are not presented in this paper, show that these conclusions depend on the scenario.

VI. CONCLUSION

A performance analysis of LRT/GLRT-based array receivers for the detection of a known real-valued signal

corrupted by a potentially noncircular interference has been considered in this paper. The exact distributions of

the decision statistics associated with two LRT-based array receivers have been given. Then, using central limit

theorems, asymptotic (with respect to the data length) Gaussian distributions of these decision statistics allow

us to give closed-form expressions of the associated ROC. These expressions prove that taking into account

the potential noncircularity of the interference, may dramatically improve the performance of both mono and

multi-channels receivers. Concerning the six studied GLRT-based array receivers, asymptotic (for large data
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length and weak SINR) distributions of decision statistics associated with four GLRT-based array receivers have

been given. They prove that in these conditions, the knowledge of the steering vector dramatically improves

the performance in contrast to the knowledge of the nuisance parameters (Rn,Cn). For parameterized steering

vectors with unknown DOA, numerical illustrations show a slight degradation of performance with respect to

known steering vectors. Finally, some illustrations show that the empirical ROCs fit the asymptotic theoretical

ones for not too large data length and not too weak SINR.

VII. APPENDIX

Expression of µK

The FIM corresponding to the non-singular and non-circular complex Gaussian distribution of (xk)k=1,..K

is deduced from the extended Slepian-Bangs formula [19] that gives elementwise

(IK(θ))i,j =
K∑

k=1

a2
k

(
∂m̃
∂θi

)H

R−1
ñ

∂m̃
∂θj

+
K

2
Tr

[
∂Rñ

∂θi
R−1

ñ

∂Rñ

∂θj
R−1

ñ

]
, (21)

where m̃ = ρss̃φ. We note that m̃ and Rñ depend only on the parameters θs and θr, respectively. Consequently

these parameters are decoupled in the FIM, i.e., Is,r(θs, θr) = 0, and thus expression (18) of µK reduces to

θT
s1
Is,s(0, θr)θs1 , that gives from (21) µK =

(∑K
k=1 a2

k

)
θT

s1

(
∂m̃
∂θs1

)H
R−1

ñ
∂m̃
∂θs1

θs1 , where

∂m̃
∂θs1

=


 s is

s∗ −is∗


 in cases C1 and C2,


resp.,


 I iI

I −iI


 in cases C3 and C4




So ∂m̃
∂θs1

θs1 = m̃ = ρss̃φ in cases C1, C2, C3 and C4, which proves (19).
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