Jean De 
  
Dieu Zabsonré 
email: jzabsonre@gmail.com
  
Carine Lucas 
email: carine.lucas@univ-orleans.fr
  
Adama Ouedraogo 
email: adam_ouedraogo3@yahoo.fr
  
  
  
  
Strong solutions for a 1D viscous bilayer Shallow Water model
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In this paper, we consider a viscous bilayer shallow water model in one space dimension that represents two superposed immiscible fluids. For this model, we prove the existence of strong solutions in a periodic domain. The initial heights are required to be bounded above and below away from zero and we get the same bounds for every time. Our analysis is based on the construction of approximate systems which satisfy the BD entropy and on the method developed by A. Mellet and A. Vasseur to obtain the existence of global strong solutions for the one dimensional Navier-Stokes equations.

Introduction.

In this paper, we study the global existence in time of strong solutions to the following viscous bilayer shallow water model:

@ t h 1 + @ x (h 1 v 1 ) = 0, ( 1 
) @ t (h 1 v 1 ) + @ x (h 1 v 2 1 ) + gh 1 @ x h 1 + rgh 1 @ x h 2 ⌫ 1 @ x (h 1 @ x v 1 ) = 0, ( 2 
) @ t h 2 + @ x (h 2 v 2 ) = 0, ( 3 
) @ t (h 2 v 2 ) + @ x (h 2 v 2 2 ) + gh 2 @ x h 2 + gh 2 @ x h 1 ⌫ 2 @ x (h 2 @ x v 2 ) = 0. ( 4 
)
where (t, x) 2 (0, T ) ⇥ ⌦, and ⌦ is a periodic domain in one dimension. These equations represent a system composed of two layers of immiscible fluids. Index 1 refers to the deeper layer and index 2 to the upper layer, see Figure 1. We denote by ⇢ 1 and ⇢ 2 the densities of each layer of fluid, and r is their ratio r = ⇢ 2 /⇢ 1 < 1. The quantities ⌫ 1 and ⌫ 2 are the respective kinematic viscosity, that is ⌫ i = µ i /⇢ i where µ i is the dynamic viscosity. This model is formally derived in [START_REF] Narbona-Reina | Derivation of a Bilayer Model for Shallow Water Equations with Viscosity[END_REF] in the two dimensional case. Such a model appears naturally in geophysical flows, see for example [START_REF] Audusse | A multilayer Saint-Venant model: Derivation and numerical validation[END_REF][START_REF] Castro | A two-layer finite volume model for flows through channels with irregular geometry: Computation of maximal exchange solutions: Applications to the Strait of Gibraltar[END_REF].

Let us give a non-exhaustive list of the results on the existence of solutions to equations describing the motion of fluid substances. The existence of solutions to the one dimensional Navier-Stokes equations (which includes the shallow water equations) has been studied by many authors. In the case of a constant viscosity, the existence of weak solutions was first studied in [START_REF] Kazhikhov | Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, (translated from[END_REF] with smooth initial data close to equilibrium. The case of discontinuous data was solved in [START_REF] Hoff | Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data[END_REF][START_REF] Hoff | Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data[END_REF][START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with di↵ering end states[END_REF][START_REF] Serre | Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible[END_REF]. In particular, in [START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with di↵ering end states[END_REF], D. Hoff proved the existence of weak solutions with large discontinuous initial data that can have di↵erent limits at x = ±1. This theorem requires the initial data to be bounded away from zero. The first global existence result for initial density which can vanish was shown in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]. This result was extended later in [START_REF] Feireisl | On the motion of a viscous, compressible, and heat conducting fluid[END_REF] to the full compressible Navier-Stokes equations.

More recently, in [START_REF] Bresch | On Some Compressible Fluids Models: Korteweg, Lubrication and Shallow Water Systems[END_REF][START_REF] Bresch | Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model[END_REF][START_REF] Bresch | On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models[END_REF], D. Bresch and B. Desjardins obtained the existence of a global weak solution for a 2D shallow water and a Korteweg systems with a di↵usion term of the form div(hD(u)). The key point that gave them this result is an entropy inequality namely BD entropy. This BD entropy has been extended in [START_REF] Bresch | On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF] to more general Navier-Stokes equations with an algebraic relation between the shear and the bulk viscosity coecients. The authors used quadratic friction terms and capillary e↵ects to get the stability of the system. In [START_REF] Mellet | Existence and Uniqueness of Global Strong Solutions for One-Dimensional Compressible Navier-Stokes Equations[END_REF], using this inequality again, A. Mellet and A. Vasseur obtained the stability of global weak solutions for the compressible isentropic Navier-Stokes equations without any regularizing term. Another consequence of this BD entropy is that it gives control on some negative power of the density in one dimension. This nice control was shown in [START_REF] Mellet | On the Barotropic Compressible Navier-Stokes Equations[END_REF] and led the authors to prove that vacuum cannot arise if there is no vacuum at the initial time. With this result, they obtained the existence of strong solutions for the one dimensional viscous compressible Navier-Stokes equations. However, the admissible viscosity must be some power of the density, which does not take the shallow water system into account.

Let us go back to the shallow water equations, and more precisely to bilayer systems. An existence result on a one dimensional bilayer shallow water model was studied in [START_REF] Muñoz-Ruiz | On an onedimensional bi-layer shallow-water problem[END_REF]. The authors obtained the existence, uniqueness and some smoothness of weak solutions under the assumption that the data are su ciently small. However the bilayer shallow water they considered is not exactly the one we study here. In this paper, we are interested in another system of bilayer immiscible fluid obtained by derivation in [START_REF] Narbona-Reina | Derivation of a Bilayer Model for Shallow Water Equations with Viscosity[END_REF]. These equations have been studied in [START_REF] Narbona-Reina | Existence of global weak solutions for a viscous 2D bilayer Shallow Water model[END_REF][START_REF] Zabsonré | Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model[END_REF]; the authors proved the existence of a global weak solution for viscous bilayer Shallow Water models with the BD inequality (but in two dimensions).

This paper deals with strong solutions, in one dimension. The main existence result is stated in Section 2. To prove this statement, we construct approximate solutions in Section 3 following the work performed in [START_REF] Li | Vanishing of Vacuum States and Blowup Phenomena of the Compressible Navier-Stokes Equations[END_REF][START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF], based on [START_REF] Jiang | Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity[END_REF]. Indeed in [START_REF] Li | Vanishing of Vacuum States and Blowup Phenomena of the Compressible Navier-Stokes Equations[END_REF], the authors obtained the existence of strong so-lutions for the one dimensional compressible Navier-Stokes equations, which include the case of shallow water. They proved that there exists some time after which the density is bounded from below by a positive constant and the weak solution becomes a strong one. Here, we prove that our approximate system verifies the BD entropy, which gives the lower bound for the water heights. Next, in Section 4, we obtain the existence of strong solutions for the approximate system by using the regularity theorem for smooth data given in [START_REF] Ladyzenskaja | Linear and quasilinear equations of parabolic type, translated from the Russian by S. Smith[END_REF], and we pass to the limit. The last part (Appendix A) is dedicated to the proofs of the classical energy and BD entropy inequalities.

Main result Theorem 2.1. Let the initial data

h i 0 = h i|t=0 and v i 0 = v i|t=0 satisfy the conditions 0 < c 0  h i 0  c 0 , h i 0 2 H 1 (⌦), v i 0 2 H 1 (⌦), (5) 
where c 0 and c 0 are some positive constants. Assume that the viscosities ⌫ 1 and ⌫ 2 verify the relation

⌫ 1 > r(⌫ 1 + ⌫ 2 ) 2 (2 ↵), ⌫ 2 > ⌫ 1 + ⌫ 2 2 (2 ↵)
with 1 > ↵ > 2r/(1 + r). Then the problem (1)-( 4) admits a strong solution

(h 1 , h 2 , v 1 , v 2 ) such that h i 2 L 1 (0, T ; H 1 (⌦)), v i 2 L 1 (0, T ; H 1 (⌦)) \ L 2 (0, T ; H 2 (⌦)) and @ t v i 2 L 2 (0, T ; L 2 (⌦)).
To prove this theorem, we construct approximate smooth solutions in the next section, following the work performed in [START_REF] Li | Vanishing of Vacuum States and Blowup Phenomena of the Compressible Navier-Stokes Equations[END_REF].

Approximate smooth solutions

In this section, we consider the approximate system defined as follows:

@ t h 1," + @ x (h 1," v 1," ) = 0, ( 6 
) @ t (h 1," v 1," ) + @ x (h 1," v 2 1," ) + gh 1," @ x h 1," +rgh 1," @ x h 2," ⌫ 1 @ x ( " (h 1," )@ x v 1," ) = 0, ( 7 
) @ t h 2," + @ x (h 2," v 2," ) = 0, (8) @ t (h 2," v 2," ) + @ x (h 2," v 2 2," ) + gh 2," @ x h 2," +gh 2," @ x h 1," ⌫ 2 @ x ( " (h 2," )@ x v 2," ) = 0. ( 9 
)
where " (h i," ) = h i," + "h i," (for i = 1, 2), " is a small parameter satisfying

" < 1 r 1 + r , (10) 
belongs to (0, 1/2). We also assume the following relation on the viscosities:

⌫ 1 > r(⌫ 1 + ⌫ 2 ) 2 (1 + "), ⌫ 2 > ⌫ 1 + ⌫ 2 2 (1 + "). (11) 
This type of approximate systems can be constructed by a mollifying process as in [START_REF] Guo | Spherically Symmetric Isentropic Compressible Flows with Density Dependent Viscosity Coe cients[END_REF][START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with di↵ering end states[END_REF]. We suppose that the initial data 5) and that:

h i," |t=0 = h i 0 ," , h i," v i," |t=0 = h i 0 ," v i 0 ," 2 C(⌦) satisfy (
h i 0 ," ! h i 0 in L 1 (⌦), h 1/2 i 0 ," ! h 1/2 i 0 in H 1 (⌦), h i 0 ," v 2 i 0 ," ! h i 0 v 2 i 0 in L 1 (⌦). ( 12 
) Remark 3.1. Let us define ' " (h i," ) = h i," + " h i," . Then we have h i," ' 0 " (h i," ) = " (h i," ). ( 13 
)
This relation will be used to get the BD entropy, see Appendix A.

We assume that the initial energy associated to the approximate system (6)-( 9) is taken such that

E 0 = 1 2 Z ⌦ h 1 0 ," |v 1 0 ," | 2 + r 2 Z ⌦ h 2 0 ," |v 2 0 ," | 2 + g(1 r) 2 Z ⌦ |h 1 0 ," | 2 + rg 2 Z ⌦ |h 1 0 ," + h 2 0 ," | 2  C" 2  C (14) 
and

F 0 = 1 2 Z ⌦ ⌫ 1 @ x ' " (h 1 0 ," ) p h 1 0 ," 2 + 1 2 Z ⌦ ⌫ 2 @ x ' " (h 2 0 ," ) p h 2 0 ,"

Energy inequalities

In this section, we give the classical energy inequality and the BD entropy for the solution of System ( 6)- [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF].

Proposition 3.2. If (h 1," , h 2," , v 1," , v 2,"
) is a smooth solution of System (6)-( 9), then the following classical inequality holds:

1 2 d dt Z ⌦ h 1," |v 1," | 2 + r 2 d dt Z ⌦ h 2," |v 2," | 2 +⌫ 1 Z ⌦ " (h 1," )(@ x v 1," ) 2 dx + r⌫ 2 Z ⌦ " (h 2," )(@ x v 2," ) 2 dx (16) + g(1 r) 2 d dt Z ⌦ |h 1," | 2 + rg 2 d dt Z ⌦ |h 1," + h 2," | 2  0.
Corollary 3.3. The classical energy estimate gives the following uniform bounds:

k p h i," v i," k L 1 (0,T ;L 2 (⌦))  C(T ); kh i," k L 1 (0,T ;L 2 (⌦))  C(T ); q " (h i," )@ x v i," L 2 (0,T ;L 2 (⌦))  C(T ). (17) 
As these bounds are not informative enough to get the existence of solutions, we write the BD entropy to have more information on the solution.

Proposition 3.4. Let (h 1," , h 2," , v 1," , v 2," ) be a smooth solution of (6)-( 9), then the following mathematical BD entropy inequality holds:

1 2 d dt Z ⌦ h 1," v 1," + ⌫ 1 @ x ' " (h 1," ) h 1," 2 + r 2 d dt Z ⌦ h 2," v 2," + ⌫ 2 @ x ' " (h 2," ) h 2," 2 + g(1 r) 2 d dt Z ⌦ |h 1," | 2 + rg 2 d dt Z ⌦ |h 1," + h 2," | 2 +⌫ 1 g Z ⌦ ' 0 " (h 1," )(@ x h 1," ) 2 + ⌫ 2 rg Z ⌦ ' 0 " (h 2," )(@ x h 2," ) 2 (18) +⌫ 1 rg Z ⌦ @ x h 2," @ x ' " (h 1," ) + ⌫ 2 rg Z ⌦ @ x h 1," @ x ' " (h 2," )  0.
Corollary 3.5. Equation ( 18) can be integrated over [0, t], for t 2 [0, T ].

Then we get:

1 2 Z ⌦ h 1," v 1," + ⌫ 1 @ x ' " (h 1," ) h 1," 2 + r 2 Z ⌦ h 2," v 2," + ⌫ 2 @ x ' " (h 2," ) h 2," 2 + g(1 r) 2 Z ⌦ |h 1," | 2 + rg 2 Z ⌦ |h 1," + h 2," | 2 +⌫ 1 g Z t 0 Z ⌦ ' 0 " (h 1," )(@ x h 1," ) 2 + ⌫ 2 rg Z t 0 Z ⌦ ' 0 " (h 2," )(@ x h 2," ) 2 +⌫ 1 rg Z t 0 Z ⌦ @ x h 2," @ x ' " (h 1," ) + ⌫ 2 rg Z t 0 Z ⌦ @ x h 1," @ x ' " (h 2," )  1 2 Z ⌦ h 1 0 ," v 1 0 ," + ⌫ 1 @ x ' " (h 1 0 ," ) h 1 0 ," 2 + r 2 Z ⌦ h 2 0 ," v 2 0 ," + ⌫ 2 @ x ' " (h 2 0 ," ) h 2 0 ," 2 + g(1 r) 2 Z ⌦ |h 1 0 ," | 2 + rg 2 Z ⌦ |h 1 0 ," + h 2 0 ," | 2
With the two relations ( 14) and (15), we can write:

1 2 Z ⌦ h 1," v 1," + ⌫ 1 @ x ' " (h 1," ) h 1," 2 + r 2 Z ⌦ h 2," v 2," + ⌫ 2 @ x ' " (h 2," ) h 2," 2 + g(1 r) 2 Z ⌦ |h 1," | 2 + rg 2 Z ⌦ |h 1," + h 2," | 2 +⌫ 1 g Z t 0 Z ⌦ ' 0 " (h 1," )(@ x h 1," ) 2 + ⌫ 2 rg Z t 0 Z ⌦ ' 0 " (h 2," )(@ x h 2," ) 2 (19) 
+⌫ 1 rg

Z t 0 Z ⌦ @ x h 2," @ x ' " (h 1," ) + ⌫ 2 rg Z t 0 Z ⌦ @ x h 1," @ x ' " (h 2," )  c(E 0 + F 0 )  C" 2 .
Propositions 3.2 and 3.4 are proved in Appendix A.

To obtain new bounds thanks to the BD entropy (in order to complete Corollary 3.3), it remains to control the last two terms of the left hand side of Equation [START_REF] Narbona-Reina | Existence of global weak solutions for a viscous 2D bilayer Shallow Water model[END_REF]. Since ' 0 " (h i," ) > 1 (for i = 1, 2), one can write:

Q = ⌫ 1 rg Z ⌦ |@ x h 2," @ x ' " (h 1," )| + ⌫ 2 rg Z ⌦ |@ x h 1," @ x ' " (h 2," )|  ⌫ 1 rg Z ⌦ |@ x ' " (h 2," )@ x ' " (h 1," )| + ⌫ 2 rg Z ⌦ |@ x ' " (h 1," )@ x ' " (h 2," )|,
and consequently

Q  ⌫ 1 rg + ⌫ 2 rg 2 Z ⌦ |@ x ' " (h 1," )| 2 + ⌫ 1 rg + ⌫ 2 rg 2 Z ⌦ |@ x ' " (h 2," )| 2 .
Next, we split the two integrals by using the sets {h i,"  1} and {h i," > 1}, with i = 1 for the first integral and i = 2 for the second one. Since < 1 2 , ' 0 " (h i," )  1 + " in the set {h i," > 1}. Then, we have

Q  ⌫ 1 rg + ⌫ 2 rg 2 Z {h 1," 1} @ x ' " (h 1," ) p h 1," 2 
+ ⌫ 1 rg + ⌫ 2 rg 2 Z {h 1," >1} (1 + ")' 0 " (h 1," )(@ x (h 1," )) 2 + ⌫ 1 rg + ⌫ 2 rg 2 Z {h 2," 1} @ x ' " (h 2," ) p h 2," 2 + ⌫ 1 rg + ⌫ 2 rg 2 Z {h 2," >1} (1 + ")' 0 " (h 2," )(@ x (h 2," )) 2 .
The two quantities

⌫ 1 rg + ⌫ 2 rg 2 Z {h 1," >1}
(1 + ")' 0 " (h 1," )(@ x (h 1," )) 2 and

⌫ 1 rg + ⌫ 2 rg 2 Z {h 2," >1}
(1 + ")' 0 " (h 2," )(@ x (h 2," )) 2 can be merged with the left hand side of Equation [START_REF] Narbona-Reina | Existence of global weak solutions for a viscous 2D bilayer Shallow Water model[END_REF]. Due to conditions [START_REF] Bresch | On Some Compressible Fluids Models: Korteweg, Lubrication and Shallow Water Systems[END_REF] on the viscosities and (10) on ", the quantities (⌫

1 r⌫ 1 + r⌫ 2 2 )g Z ⌦ (1 + ")' 0 " (h 1," )(@ x (h 1," )) 2 and (r⌫ 2 r⌫ 1 + r⌫ 2 2 )g Z ⌦ (1 + ")' 0 " (h 2," )(@ x (h 2,"
)) 2 are indeed positive. The last step is to develop the first two terms on the left hand side of Equation [START_REF] Zabsonré | Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model[END_REF] and to use the fact that 2ab  ✓a 2 + 1 ✓ b 2 for all ✓ > 0. So, thanks to Gronwall's lemma, the two quantities

r⌫ 1 g + r⌫ 2 g 2 Z {h i," 1} @ x ' " (h i," ) p h i," 2 can be controlled, for i = 1, 2.
More precisely, we proved the following result:

Corollary 3.6. The BD mathematical entropy inequality (Equation (19))

implies the following bounds:

@ x ' " (h i," ) p h i," L 1 (0,T ;L 2 (⌦)) = 2 " (h i," )@ x (h 1/2 i," ) L 1 (0,T ;L 2 (⌦))  C(T )", k' 0 " (h i," )@ x h i," k L 2 (0,T ;L 2 (⌦))  C(T ). (20) 

Uniform bounds for the heights and velocities

Proposition 3.7. Let (h 1," , h 2," , v 1," , v 2," ) be a smooth solution of (6)-( 9); then for all T > 0, there exist some constants c(T ) > 0 and c(T

) > 0 such that c(T )  h i," (x, t)  c(T ), 8x 2 ⌦, t 2 [0, T ], i = 1, 2. ( 21 
)
The proof of the lower bound relies on two main results. The first one is the following remark: Remark 3.8. For hi," between fixed reference heights (0

< h i < hi," < h + i ) for i = 1, 2, there exists a constant K such that h i," + h 2 i,"  K(1 + (h i," hi," ) 2 ), (22) 
lim inf

h i," !0 (h i," hi," ) 2 K 1 , i = 1, 2. ( 23 
)
The proof is also related to the following lemma derived in [START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with di↵ering end states[END_REF] and [START_REF] Mellet | Existence and Uniqueness of Global Strong Solutions for One-Dimensional Compressible Navier-Stokes Equations[END_REF].

Lemma 3.9. For every T > 0, there exist > 0 and R(T ) such that for every x 0 2 R and t 0 > 0, there exists

x 1 2 [x 0 R(T ), x 0 + R(T )] with h i," (x 1 , t 0 ) > .
Let us now detail the proof of Proposition 3.7.

Proof. Let us define `i," = inf(h i," , 1). We have @ x `i," = @ x h i," 1 {h i," 1} . Due to inequality [START_REF] Li | Vanishing of Vacuum States and Blowup Phenomena of the Compressible Navier-Stokes Equations[END_REF], the following bound holds:

" (`i ," )@ x (` 1/2 i," ) L 1 (0,T ;L 2 (⌦))
 C(T )".

Since " (`i ," ) = h i," + " h i," " h i," = " ` i," in the set where {h i,"  1}, we deduce that " @ x `

1/2 i," L 1 (0,T ;L 2 (⌦))
 " (`i ," )@ x (`

1/2 i," ) L 1 (0,T ;L 2 (⌦))  C(T )". ( 24 
)
Hence by using the Sobolev-Poincaré inequality, Lemma 3.9 and Equation (24) imply that `

1/2 i,"
is bounded in L 1 (0, T ; L 1 (⌦)). More precisely, we obtain a lower bound for `i," (and for h i," ): `i," ( C(T ))

2 1 2 .
Next, we want to get a bound for p h i," in L 1 (0, T ; W 1,1 (⌦)). First, we remark that:

Z ⌦ @ x h 1/2 i," dx = 1 2 Z ⌦ h 1/2 i," @ x h i," dx  ✓Z ⌦ |h i," | ◆ 1/2 ✓Z ⌦ @ x h i," h i," 2 ◆ 1/2  1 2 ✓Z ⌦ p h i," 2 dx ◆ 1/2 ✓Z ⌦ h i," @ x h i," p h i," 2 ' 0 " (h i," ) " (h i," ) 2 dx ◆ 1/2  1 2 1 p c(T ) ✓Z ⌦ | p h i," | 2 dx ◆ 1/2 ✓Z ⌦ @ x ' " (h i," ) p h i,"
2 ◆ 1/2 , as i," h i," and h i," has a lower bound denoted by c(T ). Thanks to Equation [START_REF] Li | Vanishing of Vacuum States and Blowup Phenomena of the Compressible Navier-Stokes Equations[END_REF], we obtain:

Z ⌦ @ x h 1/2 i," dx  c(T ).
Finally, we have @ x p h i," 2 L 1 (0, T ; L 1 (⌦)) and p h i," 2 L 1 (0, T ; L 2 (⌦)); this means that p h i," 2 L 1 (0, T ; W 1,1 (⌦)). To conclude, we use Sobolev embeddings to get the upper bound for h i," . Proposition 3.10. For all T > 0, there exist some constants k 1 (T ), k 2 (T ) > 0 such that

kv i," k L 2 (0,T ;H 2 (⌦))  k 1 (T ), k@ t v i," k L 2 (0,T ;L 2 (⌦))  k 2 (T ). ( 25 
)
Proof. Relations ( 17) and ( 21) imply that

kv i," k L 1 (0,T ;L 2 (⌦))  C 1 (T ) and k@ x v i," k L 2 (0,T ;L 2 (⌦))  C 2 (T )
for some positive constants C 1 (T ), C 2 (T ). Moreover, since v i," belongs to L 1 (0, T ; H 1 (⌦)), thanks to Sobolev embeddings, we get:

@ t h i," = @ x (h i," v i," ) 2 L 2 (0, T ; L 2 (⌦)).
Now let us write the two momentum equations in the following form:

@ t v i," @ x ✓ " (h i," ) h i," @ x v i," ◆ = g@ x (h i," + r i h j," ) v i," @ x v i," + ⌫ i @ x h i," h 2 i," " (h i," )@ x v i," (26) 
where i, j = 1, 2, i 6 = j, r 1 = r and r 2 = 1. It remains to control the right hand side of this equation to deduce a better bound for the velocities v i," .

The first term g@ x (h i," + r i h j," ) is bounded in L 2 (0, T ; L 2 (⌦)). Next, we have

Z ⌦ (@ x h i," ) 2 = Z ⌦ (' 0 " (h i," )) 2 (@ x h i," ) 2 (' 0 " (h i," )) 2  Z ⌦ h i," (@ x (' " (h i," ))) 2 ⇣ "h 1/2 i," ⌘ 2 .
Due to the BD entropy [START_REF] Li | Vanishing of Vacuum States and Blowup Phenomena of the Compressible Navier-Stokes Equations[END_REF] and relation [START_REF] Jiang | Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity[END_REF], the last term is bounded. So,

@ x h i," is bounded in L 1 (0, T ; L 2 (⌦)).
Finally, by using Holder and interpolation inequalities, we get:

✓ v i," ⌫ i @ x h i," h 2 i," " (h i," ) ◆ @ x v i," L 2 (0,T ;L 4/3 (⌦))  v i," ⌫ i @ x h i," h 2 i," " (h i," ) L 1 (0,T ;L 2 (⌦)) k@ x v i," k L 2 (0,T ;L 4 (⌦)) ,  v i," ⌫ i @ x h i," h 2 i," " (h i," ) L 1 (0,T ;L 2 (⌦)) k@ x v i," k 1/3 L 2 (0,T ;L 2 (⌦)) k@ x v i," k 2/3 L 2 (0,T ;W 1,4/3 (⌦)) ,  C(T )k@ x v i," k 2/3 L 2 (0,T ;W 1,4/3 (⌦)) .
Hence, thanks to standard regularity results for linear parabolic equations (see [START_REF] Ladyzenskaja | Linear and quasilinear equations of parabolic type, translated from the Russian by S. Smith[END_REF] for example), we obtain that

k@ x v i," k 1/3 L 2 (0,T ;W 1,4/3 (⌦))  C(T ).
As a consequence of this bound, we get that the second member of (26) is bounded in L 2 (0, T ; L 2 (⌦)). So v i," is bounded in L 2 (0, T ; H 2 (⌦)) and @ t v i," is bounded in L 2 (0, T ; L 2 (⌦)).

Proof of the existence result

Proposition 4.1. (Solonnikov). Let the functions " (h i," ) be lower bounded:

" (h i," ) , ( 27 
)
where is some positive constant, and ⌫ 1 , ⌫ 2 satisfying relation [START_REF] Bresch | On Some Compressible Fluids Models: Korteweg, Lubrication and Shallow Water Systems[END_REF]. Assume that the initial conditions h i 0 ," and v i 0 ," satisfy (5), with " verifying condition [START_REF] Feireisl | On the motion of a viscous, compressible, and heat conducting fluid[END_REF]. Then there exists T 0 > 0 depending on c 0 , c 0 , kh i 0 ," k H 1 (⌦) and kv i 0 ," k H 1 (⌦) such that system (6)-( 9) has a unique solution (h 1," , h 2," , v 1," , v 2," )

on (0, T 0 ) satisfying h i," 2 L 1 (0, T 1 ; H 1 (⌦)), v i," 2 L 2 (0, T 1 ; H 2 (⌦)), @ t v i," 2 L 2 (0, T 1 ; L 2 (⌦)), @ t h i," 2 L 2 (0, T 1 ; L 2 (⌦)),
for all T 1 < T 0 . Moreover, there exist some positive constants c(T ) and c(T ) such that c(T )  h i," (t, x)  c(T ), 8t 2 (0, T 0 ).

Proposition 4.2. Let h i 0 ," and v i 0 ," satisfy (5); then the approximate system (6)-( 9) admits a strong solution satisfying the energy and entropy inequalities.

Proof. Let us define ",n (h i," ) = max( " (h i," ), 1/n) for n 1; we have  ",n  + 1. Moreover, for all n 2 N ⇤ , ",n 1 n > 0. Using Proposition 4.1, we can consider (h n 1," , h n 2," , v n 1," , v n 2," ) the strong solution of ( 6)-( 9) where the functions " (h i," ) are replaced by ",n (h i," ); this solution exists at least for small time T 0 . Due to Proposition 3.7, h n i," is uniformly bounded in n from below, and then we can take T 0 = 1. Assume that n > 1/c(T ); then (h n 1," , h n 2," , v n 1," , v n 2," ) is the solution of ( 6)-( 9) with ",n (h i," ) = " (h i," ).

Proposition 4.3. Let us define the velocities:

v i," = p h i," v i," p h i," , 
which is possible thanks to the lower bound on the heights. The strong solution of the approximate problem (6)-( 9) converges to some expected strong solution (h 1 , h 2 , v 1 , v 2 ) of the problem (1)-(4) as " ! 0 + in the sense:

h i," ! h i in C([0, T ] ⇥ ⌦) v i," ! v i in C([0, T ] ⇥ ⌦) " (h i," ) ! h i in C([0, T ] ⇥ ⌦) p h i," v i," ! p h i v i in L 2+✓ 0, T ; ⌦ ,
✓ being some positive constant.

Proof. Since we have c(T )  h i,"  c(T ) uniformly with respect to ", the limit h i is bounded and bounded away from zero. The limit system can then be divided by h i and becomes parabolic with respect to the velocities v i . Finally standard regularity results for parabolic systems can be used again to obtain that

h i 2 L 1 (0, T 1 ; H 1 (⌦)), v i 2 L 2 (0, T 1 ; H 2 (⌦)), @ t v i 2 L 2 (0, T 1 ; L 2 (⌦)), @ t h i 2 L 2 (0, T 1 ; L 2 (⌦)).
Appendix A. Proofs of Propositions 3.2 and 3.4

This section is devoted to the proofs of the energy and entropy inequalities used in Section 3. For the classical energy, as usual, the idea is to multiply the momentum equation by the velocity. More precisely, we multiply the momentum equations ( 7) and ( 9) by v 1," and v 2," respectively, and we integrate by parts. For i = 1, 2, we obtain:

Z ⌦ @ t (h 1," v 1," ) + @ x (h 1," v 2 1," ) v 1," dx + g Z ⌦ (h 1," @ x h 1," + rh 1," @ x h 2," ) v 1," dx ⌫ 1 Z ⌦ @ x ( " (h 1," )@ x (v 1," )) v 1," dx = 0, (A.1) and Z ⌦ @ t (h 2," v 2," ) + @ x (h 2," v 2 2," ) v 2," dx + g Z ⌦ (h 2," @ x h 2," + h 2," @ x h 1," ) v 2," dx ⌫ 2 Z ⌦ @ x ( " (h 2," )@ x (v 2," )) v 2," dx = 0. (A.2)
We can reformulate some terms, namely (for i = 1, 2)

Z ⌦ @ t (h i," v i," ) + @ x (h i," v 2 i," ) v i," dx = 1 2 d dt Z ⌦ h i," |v i," | 2 dx, (A.3) ⌫ i Z ⌦ @
x ( " (h i," )@ x (v i," )) v i," dx = ⌫ i Z ⌦ " (h i," ) (@ x (v i," )) 2 dx. (A.4)

To obtain the energy inequality, we add (A.1) to (A.2) multiplied by r. We remark that: g Z ⌦ h 1," @ x h 1," v 1," dx + rg Z ⌦ h 1," @ x h 2," v 1," dx + rg Z ⌦ h 2," @ x h 2," v 2," dx

+ rg Z ⌦ h 2," @ x h 1," v 2," dx = g(1 r) 2 d dt Z ⌦ |h 1," | 2 + rg 2 d dt Z ⌦ |h 1," + h 2," | 2 .
Thanks to this simplification, we obtain the classical energy estimate [START_REF] Mellet | On the Barotropic Compressible Navier-Stokes Equations[END_REF].

The second proof of this section is that for the BD entropy estimate [START_REF] Narbona-Reina | Existence of global weak solutions for a viscous 2D bilayer Shallow Water model[END_REF]. Multiplying the mass equations by ' 0 " (h i," ) (for i = 1, 2), we get @ t ' " (h i," ) + @ x (' " (h i," ))v i," + ' 0 " (h i," )h i," @ x v i," = 0. Thanks to Equation [START_REF] Bresch | On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models[END_REF], this relation reads @ t ' " (h i," ) + @ x (' " (h i," ))v i," + " (h i," )@ x v i," = 0.

We di↵erentiate this equation with respect to x and introduce the corresponding viscosity coe cient to get @ t ✓ h i," ⌫ i @ x (' " (h i," )) h i,"

◆ + @ x ✓ h i," ⌫ i @ x (' " (h i," )) h i," v i," ◆ + ⌫ i @ x ( " (h i," )@ x (v i," )) = 0.

We add the momentum equation (Equation [START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with di↵ering end states[END_REF] for i = 1 and Equation ( 9) for i = 2) to the previous equality and we get @ t ✓ h 1," v 1," + h 1," ⌫ 1 @ x ' " (h 1," ) h 1," ◆ + @ x ✓ h 1," v 2 1," + h 1," ⌫ 1 @ x ' " (h 1," ) h 1," v 1," ◆ + gh 1," @ x h 1," + rgh 1," @ x h 2," = 0, (A.5) @ t ✓ h 2," v 2," + h 2," ⌫ 2 @ x ' " (h 2," ) h 2," ◆ + @ x ✓ h 2," v 2 2," + h 2," ⌫ 2 @ x ' " (h 2," ) h 2," v 2," ◆ + gh 2," @ x h 2," + gh 2," @ x h 1," = 0. (A.6)

We add Equation (A.5) multiplied by ✓ v 1," + ⌫ 1 @ x (' " (h 
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 C" 2  C(15)for " > 0 small enough.