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Abstract. We generalize the analysis of [12] and develop a singular pseudodifferential calculus.
The symbols that we consider do not satisfy the standard decay with respect to the frequency
variables. We thus adopt a strategy based on the Calderón-Vaillancourt Theorem. The remainders
in the symbolic calculus are bounded operators on L2, whose norm is measured with respect to some
small parameter. Our main improvement with respect to [12] consists in showing a regularization
effect for the remainders. Due to a nonstandard decay in the frequency variables, the regularization
takes place in a scale of anisotropic, and singular, Sobolev spaces. Our analysis allows to extend the
results of [12] on the existence of highly oscillatory solutions to nonlinear hyperbolic problems by
dropping the compact support condition on the data. The results are also used in our companion
work [6] to justify nonlinear geometric optics with boundary amplification, which corresponds to
a more singular regime than the one considered in [12]. The analysis is carried out with either an

additional real or periodic variable in order to cover problems for pulses or wavetrains in geometric
optics.
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1. Introduction

Nonlinear geometric optics is devoted to the construction and asymptotic analysis of highly oscil-
latory solutions to some partial differential equations. In the context of nonlinear hyperbolic partial
differential equations, one of the main issues is to prove existence of a solution to the highly os-
cillatory problem on a time interval that is independent of the (small) wavelength. Such uniform
existence results cannot follow from a naive application of a standard existence result in some func-
tional space, say a Sobolev space Hs, because the sequence of data does not remain in a fixed ball
of Hs. A now classical procedure for proving uniform existence results is to work on singular prob-
lems with additional variables and to prove uniform energy estimates with respect to the singular
parameter. This strategy was used in [10] for the hyperbolic Cauchy problem and adapted in [12]
to hyperbolic initial boundary value problems. While energy estimates in [10] relied on symmetry
assumptions and integration by parts, those in [12] are much more difficult to obtain and rely on
a suitable singular pseudodifferential calculus. The operators are pseudodifferential in the singular
derivative ∂x + β ∂θ/ε. This calculus is well-adapted to boundary value problems that satisfy a
maximal energy estimate, that is an L2 estimate with no loss derivative. In particular, remainders
in the calculus of [12] are bounded operators on L2 whose norm is controlled with respect to some
parameter γ. This calculus is adapted to the situation studied in [12] because such terms of order 0
can be absorbed in the energy estimates by choosing γ large enough.

In [7], two of the authors have studied and justified geometric optics expansions with an ampli-
fication phenomenon for a certain class of linear hyperbolic boundary value problems. For linear
problems, uniform existence is no source for concern. In the companion article [6], we extend the
result of [7] to semilinear problems. One major issue in [6] is to prove that the amplification phe-
nomenon exhibited in [7] combined with the nonlinearity of the zero order term does not rule out
existence of a solution on a fixed time interval. Our strategy in [6] is to study a singular problem for
which we need to prove uniform estimates. As in [7], the linearized problems in [6] satisfy a weak
energy estimate with a loss of one tangential derivative.1 Such estimates with a loss of derivative
were originally proved in [5] and are optimal, as proved in [7]. The amplification of oscillations is
more or less equivalent to the loss of derivatives in the estimates. Compared with [12], we now need
to control our remainders by showing that they are smoothing operators, otherwise there will be no
way to absorb these errors in the energy estimates. Moreover, since the nonlinear problems of [6]
are solved by a Nash-Moser procedure where we use smoothing operators, it is crucial to extend all
the results on the singular calculus of [12] by including the following features:

• The symbols should not be assumed to be independent of the space variables outside of a
compact set. Otherwise, we would face a lot of difficulties with the smoothing procedure in
the Nash-Moser iteration.

• The remainders in the calculus of [12] should be smoothing operators when they were merely
bounded operators on L2 with a small (O(γ−1), γ large) norm in [12]. Moreover, we desire
more systematic and easily applicable criteria than in [12] for determining the mapping
properties of remainders.

The techniques in [12] heavily use the fact that all symbols are either Fourier multipliers or they
are independent of the space variables outside of a compact set. One major goal here is to get rid
of this assumption. Furthermore our symbols do not satisfy the standard isotropic decay in the
frequency variables (basically there is one direction in frequency space in which there is no decay).
We thus adopt a different strategy that is based on the Calderón-Vaillancourt Theorem and more

1In fact, the loss in [6] is a loss of one singular derivative ∂x+β ∂θ/ε which implies a very bad control with respect
to ε.
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specifically Hwang’s proof of this Theorem [9]. Our motivation for doing so is that we shall only rely
on L∞ bounds for pseudodifferential symbols, while the classical proofs seem inapplicable when the
frequency decay fails. The situation is even worse here because some ”expected” results on adjoints
or products of singular pseudodifferential operators seem not to hold. For instance, asymptotic
expansions of symbols do not hold beyond the first term, and even the justification of the first term
in the expansion depends on the order of the operators. Our final results are thus in some ways
rather weak, but they seem to be more or less the best one can hope for in a singular calculus.
Fortunately, the calculus is strong enough to be applicable to a variety of geometric optics problems
for both wavetrains and pulses, including problems that display an amplification phenomenon.

We thus review the results of [12] by improving them along the lines described above. For
practical purposes, we have found it convenient to first prove general results on L2-boundedness
of pseudodifferential and oscillatory integral operators. This will be done in Section 3 below. The
calculus rules proved in Section 5 are then more or less “basic” applications of the general results.
We have also found it convenient to include in the same article, the results for both the whole space
and the periodic framework. Results in the case of the whole space are gathered in Sections 6, 7,
8 and will be used in a future work to deal with pulse-like solutions to hyperbolic boundary value
problems, while the companion article [6] is devoted to wavetrains.
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Part A: singular pseudodifferential calculus for wavetrains

2. Functional spaces

In all this article, functions may be valued in C, CN or even in the space of square matrices
MN(C) (or CN×N). Products have to be understood in the sense of matrices when the dimensions
agree. If M ∈ MN (C), M∗ denotes the conjugate transpose of M . The norm of a vector x ∈ CN

is |x| := (x∗ x)1/2. If x, y are two vectors in CN , we let x · y denote the quantity
∑

j xj yj , which

coincides with the usual scalar product in RN when x and y are real.

2.1. Functional spaces on Rd. The Schwartz space S (Rd) of C∞ functions with fast decay at
infinity is equipped with the family of semi-norms:

∀ J ∈ N , ‖u‖S (Rd),J := sup
α∈Nd,|α|≤J

sup
x∈Rd

(1 + |x|2)J/2
∣∣∂α

x u (x)
∣∣ .

When equipped with this topology, S (Rd) is a Fréchet space. We shall say that a sequence (uk)k∈Z

in S (Rd) has fast decay if for all polynomial P , the sequence (P (k)uk)k∈Z is bounded in S (Rd).
The Fourier transform on S (Rd) is defined by

∀ f ∈ S (Rd) , ∀ ξ ∈ Rd , f̂(ξ) :=

∫

Rd

e−i x·ξ f(x) dx .

In particular, the Fourier transform is a continuous isomorphism on S (Rd). It is extended to the
space of temperate distributions S ′(Rd) in the usual way.

For s ∈ R, we let Hs(Rd) denote the Sobolev space

Hs(Rd) :=
{
u ∈ S

′(Rd) / (1 + |ξ|2)s/2 û ∈ L2(Rd)
}
.

It is equipped with the family of norms

∀ γ ≥ 1 , ∀u ∈ Hs(Rd) , ‖u‖2s,γ :=
1

(2 π)d

∫

Rd

(γ2 + |ξ|2)s
∣∣û(ξ)

∣∣2 dξ .

The norm ‖ · ‖0,γ does not depend on γ and coincides with the usual L2-norm on Rd. We shall thus
write ‖ · ‖0 instead of ‖ · ‖0,γ for the L2-norm on Rd. For simplicity, we also write ‖ · ‖s instead of
‖ · ‖s,1 for the standard Hs-norm (when the parameter γ equals 1).

2.2. Functional spaces on Rd × T. We now extend the previous definitions to functions that
depend in a periodic way on an additional variable θ. We shall in some sense “interpolate” between
Fourier transform and Fourier series. Let us begin with the definition of the Schwartz space. The
Schwartz space S (Rd ×T) is the set of C ∞ functions f on Rd ×R, that are 1-periodic with respect
to the last variable, and with fast decay at infinity in the first variable, that is:

∀α , β ∈ Nd , ∀ j ∈ N ,
(
(x, θ) ∈ Rd × R 7→ xα ∂β

x ∂j
θ f (x, θ)

)
∈ L∞(Rd × R) .

Using the perdiocity of f with respect to its last argument θ, one can replace equivalently L∞(Rd×R)
by L∞(Rd × [0, 1]). The Schwartz space S (Rd × T) is equipped with the family of semi-norms

∀ J ∈ N , ‖f‖S (Rd×T),J := sup
(α,j)∈N

d×N

|α|+j≤J

sup
(x,θ)∈Rd×[0,1]

(1 + |x|2)J/2
∣∣∂α

x ∂j
θ f (x, θ)

∣∣ .

When equipped with this topology, S (Rd × T) is a Fréchet space. We let S ′(Rd × T) denote its
topological dual, that is the set of continuous linear forms on S (Rd × T).

The “Fourier transform” on S (Rd × T) is defined by considering Fourier series in θ and Fourier
transform in x. More precisely, we introduce the k-th Fourier coefficient:

∀ f ∈ S (Rd × T) , ∀ k ∈ Z , ∀x ∈ Rd , ck(f)(x) :=

∫ 1

0

e−2 i π k θ f(x, θ) dθ .

For all integer k, the Fourier coefficient ck(f) belongs to the standard Schwartz space S (Rd). We

can therefore define its Fourier transform ĉk(f). In all what follows, the sequence (ĉk(f))k∈Z is called
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the Fourier transform of f . When we only consider Fourier series in θ, we use the notation ck to
denote the k-th Fourier coefficient. When we only consider Fourier transform with respect to the
first variable x ∈ Rd, we use the classical “hat” notation introduced previously.

The reader can check that the Fourier transform (ĉk(f))k∈Z of a function f ∈ S (Rd × T) is a
sequence in S (Rd) with fast decay. The inverse Fourier transform is defined through the formula:

f(x, θ) =
∑

k∈Z

F
−1(ĉk(f))(x) e

2 i π k θ ,

where F−1 stands for the inverse Fourier transform in S (Rd). To summarize, the Fourier transform
is an isomorphism between S (Rd × T) and the sequences (gk)k∈Z in S (Rd) with fast decay.

Let us now extend the Fourier transform to the set of temperate distributions S ′(Rd × T). For
u ∈ S ′(Rd × T), the Fourier coefficients ck(u) ∈ S ′(Rd) are defined by the formula

∀ k ∈ Z , ∀ g ∈ S (Rd) , 〈ck(u), g〉S ′(Rd),S (Rd) :=
〈
u, g(x) e−2 i π k θ

〉
S ′(Rd×T),S (Rd×T)

.

It is straightforward to check that there exists a constant C and an integer J such that for all k ∈ Z,
there holds the continuity estimate

∀ g ∈ S (Rd) ,
∣∣〈ck(u), g〉S ′(Rd),S (Rd)

∣∣ ≤ C (1 + |k|)J ‖g‖S (Rd),J .

The Fourier transform of u is the sequence (ĉk(u))k∈Z in S ′(Rd). For an appropriate constant that
is still denoted C and a possibly larger integer that is still denoted J , there holds the continuity
estimate

∀ g ∈ S (Rd) ,
∣∣〈ĉk(u), g〉S ′(Rd),S (Rd)

∣∣ ≤ C (1 + |k|)J ‖g‖S (Rd),J . (1)

The continuity estimate (1) is uniform with respect to k ∈ Z: the constant C and the integer J are
independent of k. Moreover, the Fourier transform

u ∈ S
′(Rd × T) 7−→ (ĉk(u))k∈Z ∈ S

′(Rd)Z ,

is an isomorphism between S ′(Rd×T) and the sequences in S ′(Rd) that satisfy a uniform estimate
of the type (1). The inverse Fourier transform is defined as follows: for a given sequence (uk)k∈Z

in S ′(Rd) satisfying a uniform continuity estimate with respect to k, we define an element v of
S ′(Rd × T) by the formula

∀ f ∈ S (Rd × T) , 〈v, f〉S ′(Rd×T),S (Rd×T) :=
∑

k∈Z

〈
u−k,F

−1(ck(f))
〉

S ′(Rd),S (Rd)
,

where F−1 denotes the inverse Fourier transform in S (Rd). Indeed the reader can check first that
v is well-defined, that it is a continuous linear form with respect to the topology of S (Rd × T) and

that ĉk(v) equals uk for all k ∈ Z.

For s ∈ R, the Sobolev space Hs(Rd × T) is defined by

Hs(Rd × T) :=
{
u ∈ S

′(Rd × T) / (ck(u))k∈Z ∈ Hs(Rd)Z

and
∑

k∈Z

∫

Rd

(1 + k2 + |ξ|2)s
∣∣ĉk(u)(ξ)

∣∣2 dξ < +∞
}
.

It is equipped with the family of norms

∀ γ ≥ 1 , ∀u ∈ Hs(Rd × T) , ‖u‖2s,γ :=
1

(2 π)d

∑

k∈Z

∫

Rd

(γ2 + k2 + |ξ|2)s
∣∣ĉk(u)(ξ)

∣∣2 dξ .

The norm ‖ · ‖0,γ does not depend on γ and coincides with the usual L2-norm on Rd × T. We shall
thus write ‖ · ‖0 instead of ‖ · ‖0,γ for the L2-norm on Rd × T. More precisely, if f ∈ L2(Rd × T),
then the Fourier coefficient

ck(f)(x) :=

∫ 1

0

e−2 i π k θ f(x, θ) dθ
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is well-defined for almost every x ∈ Rd, and ck(f) belongs to L2(Rd) (use Cauchy-Schwarz inequal-
ity). The Parseval-Bessel equality and Plancherel’s Theorem give

∫

Rd×[0,1]

|f(x, θ)|2 dxdθ =
∑

k∈Z

∫

Rd

|ck(f)(x)|
2 dx = ‖f‖20 .

In what follows, we always identify the space L2(Rd×T) and Fourier series in θ ∈ R whose coefficients
belong to ℓ2(Z;L

2(Rd)). For simplicity, we also write ‖·‖s instead of ‖·‖s,1 for the standardHs-norm
on Rd × T.

Remark 1. Observe that our notation for the norm ‖ · ‖s,γ is consistent with the notation for
functions that are defined on Rd. More precisely, if u ∈ Hs(Rd), then one can also consider u as an
element of Hs(Rd × T) that does not depend on θ, meaning that only the 0-th harmonic in θ occurs
(c0(u) = u and ck(u) = 0 if k 6= 0). The norms of u in Hs(Rd) and Hs(Rd × T) coincide. This is
the reason why we omit to write the underlying space Rd or Rd × T in the definition of the norms
‖ · ‖s,γ.

We now introduce the “singular” Sobolev spaces that we shall widely use in this article. From
now on, we consider a vector β ∈ Rd \ {0} that is fixed once and for all. For s ∈ R and ε ∈ ]0, 1],
the anisotropic Sobolev space Hs,ε(Rd × T) is defined by

Hs,ε(Rd × T) :=
{
u ∈ S

′(Rd × T) / ∀ k ∈ Z , ĉk(u) ∈ L2
loc(R

d)

and
∑

k∈Z

∫

Rd

(
1 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)s ∣∣ĉk(u)(ξ)

∣∣2 dξ < +∞
}
.

It is equipped with the family of norms

∀ γ ≥ 1 , ∀u ∈ Hs,ε(Rd ×T) , ‖u‖2Hs,ε,γ :=
1

(2 π)d

∑

k∈Z

∫

Rd

(
γ2 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)s ∣∣ĉk(u)(ξ)

∣∣2 dξ .

(2)
Let us observe that the definition of the space Hs,ε depends on ε, and there is no obivous inclusion
Hs,ε1 ⊂ Hs,ε2 if ε1 ≤ ε2 or ε1 ≥ ε2. However, for a fixed ε > 0, the norms ‖ · ‖Hs,ε,γ1

and ‖ · ‖Hs,ε,γ2

are equivalent. In particular, (2) defines a norm on the space Hs,ε(Rd × T) defined above. When
m is an integer, the space Hm,ε(Rd × T) coincides with the space of functions u ∈ L2(Rd × T) such
that the derivatives, in the sense of distributions,

(
∂x1

+
β1

ε
∂θ

)α1

. . .

(
∂xd

+
βd

ε
∂θ

)αd

u , α1 + · · ·+ αd ≤ m,

belong to L2(Rd × T). In the definition of the norm ‖ · ‖Hm,ε,γ , one power of γ counts as much as
one derivative.

In what follows, we shall also make use of the spaces C k
b (R

d × T), k ∈ N: these are the spaces of
continuous and bounded functions on Rd×R that are 1-periodic with respect to their last argument,
whose derivatives up to the order k exist, are continuous and bounded.

3. The main L2 continuity results

Our goal is to develop in Section 4 a singular symbolic calculus on Rd ×T. This Section will give
the basic results to achieve this goal. As in [12], the symbols that we shall consider do not satisfy
the standard decay estimates in the frequency variable. Consequently, it will be more difficult to
show that remainders in the symbolic calculus are smoothing operators. As a matter of fact, this
property will hold only in a framework of the anisotropic Sobolev spaces defined above. A more
embarassing consequence of this non-decay is that there seems to be little hope for developing a
paradifferential version of the calculus below. More precisely, in the paradifferential calculus theory
(see e.g. [11]), symbols have a fixed, say W k,∞, regularity in x. To cope with this small regularity,
one introduces an isotropic frequency cut-off in the space variable. The regularized symbol belongs
to the class Sm

1,1 and satisfies a suitable spectral condition, which yields continuity results for the
associated pseudodifferential operator. This strategy applies when symbols are C ∞ in ξ with the
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standard decay property (each derivative in ξ yields one negative power of |ξ|). However, when this
frequency decay does not hold or when it holds only in an anisoptropic way, the smoothing procedure
yields symbols in the class Sm

0,1 where derivatives in x are not balanced anylonger by derivatives in
ξ. For such symbols, even with an appropriate spectral condition, there seems to be very little hope
for continuity results in Sobolev spaces.

The remarks above are the main reason why we base our approach on the Calderón-Vaillancourt
Theorem [2]. More precisely, we shall prove continuity results on L2(Rd×T) with symbols satisfying
L∞ bounds (no decay in the frequency variable is needed, see Theorem 1 below). This is the same
strategy as in [12]. However we shall use more elaborate tools in order to get some refined estimates.
Our goal is to get rid of the compact support assumptions in [12], and to lower the regularity required
on the symbols whenever this is possible. We refer the reader to [4, 3, 1, 9] for some background on
the Calderón-Vaillancourt Theorem and some generalizations. Here we clarify how these results can
be adapted to a mixed situation where part of the space variables lie in Rd while the other space
variables lie in the torus T. As far as we know, all previous versions were restricted to the case of
Rd or to the case of the torus. Our first continuity result is:

Theorem 1. Let σ : Rd×T×Rd×Z → CN×N be a continuous function2 that satisfies the property:

for all α, β ∈ {0, 1}d and for all j ∈ {0, 1}, the derivative (in the sense of distributions) ∂α
x ∂j

θ ∂
β
ξ σ

belongs to L∞(Rd × T× Rd × Z).
For u ∈ S (Rd × T;CN ), let us define

∀ (x, θ) ∈ Rd × T , Op(σ)u (x, θ) :=
1

(2 π)d

∑

k∈Z

∫

Rd

ei x·ξ e2 i π k θ σ(x, θ, ξ, k) ĉk(u)(ξ) dξ .

Then Op(σ) extends as a continuous operator on L2(Rd × T;CN ). More precisely, there exists a
numerical constant C, that only depends on d and N , such that for all u ∈ S (Rd × T;CN ), there
holds

‖Op(σ)u‖0 ≤ C |||σ||| ‖u‖0 , with |||σ||| := sup
α,β∈{0,1}d

sup
j∈{0,1}

∥∥∥∂α
x ∂j

θ ∂
β
ξ σ
∥∥∥
L∞(Rd×T×Rd×Z)

. (3)

The proof of Theorem 1 below is analogous to the proof of [9, Theorem 2]. We emphasize that
in the assumptions on the symbol σ, no finite difference with respect to the index k ∈ Z appears.
This is in sharp contrast with for instance the paradifferential calculus on the torus developed in [8].
The fact that we do not need to estimate finite differences in k will be helpful in Section 4 when we
consider singular pseudodifferential operators.

Proof of Theorem 1. The proof of Theorem 1 combines two ingredients. First, the main estimate
(3) holds when σ is smooth, say C ∞, with compact support in all variables. Second, it is possible to
approximate a symbol σ satisfying the assumptions of Theorem 1 by a sequence (σp)p∈N of smooth
symbols with supp |||σp||| controled by |||σ|||. The corresponding pseudodifferential operators Op(σp)
converge in a weak sense towards Op(σ).

For smooth symbols with compact support, integration by parts and derivation under the integral
show that Op(σ)u belongs to S (Rd × T) if u does. In particular, Op(σ)u belongs to L2(Rd × T).
This integrability property is not so clear under the general assumptions of Theorem 1.

Let us state more precisely our first point.

Lemma 1. Let σ ∈ C∞
0 (Rd × T× Rd × Z;CN×N ), that is:

(i) σ(·, ·, ·, k) ≡ 0 except for a finite number of integers k,
(ii) σ(·, ·, ·, k) is a C ∞ function on Rd × T × Rd for all k ∈ Z, with compact support in its first

and third variables.

Then for all u ∈ S (Rd×T;CN), Op(σ)u belongs to S (Rd×T;CN ) and the estimate (3) holds with
a numerical constant C that is independent of σ and u.

2Here and in all what follows, a function σ that is defined on O ×Z is said to be continuous if for all k ∈ Z, σ(·, k)
is continuous on O. The set O will represent either Rd, or Rd

× T or analogous sets. We adopt the same convention
for differentiability properties.
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Proof of Lemma 1. We make the proof in the case N = 1. When σ takes its values in the space
of matrices CN×N , the result applies for each component. Following [9], it is sufficient to prove an
estimate of the form ∣∣∣∣

∫

Rd×T

Op(σ)u(x, θ) v(x, θ) dxdθ

∣∣∣∣ ≤ C |||σ||| ‖u‖0 ‖v‖0 , (4)

for all u, v ∈ S (Rd × T;C). We define a function ϕ on Rd by the formula:

∀ y = (y1, . . . , yd) ∈ Rd , ϕ(y) :=
d∏

j=1

(1 + i yj)
−1 .

In particular, ϕ belongs to L2(Rd). Applying Fubini’s Theorem, we have

I :=

∫

Rd×T

Op(σ)u(x, θ) v(x, θ) dxdθ

=
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd×Rd

ei (x−y)·ξ e2 i π k θ σ(x, θ, ξ, k) ck(u)(y) v(x, θ) dxdθ dy dξ .

Starting from the relation

ei (x−y)·ξ = ϕ(x − y)

d∏

j=1

(1 + ∂ξj ) e
i (x−y)·ξ ,

and integrating by parts, we obtain

I =
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei x·ξ e2 i π k θ σ♯(x, θ, ξ, k)U(x, ξ, k) v(x, θ) dxdθ dξ , (5)

where we have used the notation

σ♯ :=
d∏

j=1

(1 − ∂ξj )σ , U(x, ξ, k) :=

∫

Rd

e−i y·ξ ϕ(x− y) ck(u)(y) dy .

We use the expression

v(x, θ) =
1

(2 π)d

∑

ℓ∈Z

∫

Rd

ei x·η e2 i π ℓ θ ĉℓ(v)(η) dη

in (5) and apply Fubini’s Theorem again. Then we use the relation

ei x·(ξ+η) e2 i π (k+ℓ) θ =
ϕ(ξ + η)

1 + 2 i π (k + ℓ)



(1 + ∂θ)

d∏

j=1

(1 + ∂xj
)



 ei x·(ξ+η) e2 i π (k+ℓ) θ ,

and integrate by parts. These operations yield

I =
∑

α∈{0,1}d,j∈{0,1}

∑

α′≤α

⋆

∑

k∈Z

∫

Rd×T×Rd

ei x·ξ e2 i π k θ ∂α−α′

x ∂j
θ σ♯ (x, θ, ξ, k) ∂

α′

x U (x, ξ, k)V (x, θ, ξ, k) dxdθ dξ , (6)

where the ⋆ coefficients denote some harmless numerical constants that only depend on α, α′, j, and
where we have used the notation

V (x, θ, ξ, k) :=
∑

ℓ∈Z

(∫

Rd

ei x·η
ϕ(ξ + η)

1 + 2 i π (k + ℓ)
ĉℓ(v)(η) dη

)
e2 i π ℓ θ .

The result of Lemma 1 follows by applying Cauchy-Schwarz inequality to each integral in (6) (here

the integral also includes the sum with respect to the index k ∈ Z). Each derivative ∂α−α′

x ∂j
θ σ♯ that

appears in the right-hand side of (6) can be estimated in L∞-norm by a harmless constant times
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the quantity |||σ||| defined in (3). We thus get (here and from now on, C denotes a positive numerical
constant that may vary from line to line)

|I|2 ≤ C |||σ|||2


 ∑

α∈{0,1}d

∑

k∈Z

∫

Rd×Rd

∣∣∂α
xU (x, ξ, k)

∣∣2 dxdξ


∑

k∈Z

∫

Rd×T×Rd

|V (x, θ, ξ, k)|2 dxdθ dξ .

Each term on the right-hand side is estimated by using the Parseval-Bessel equality and Plancherel’s
Theorem (see [9] for the case of Rd, here the incorporation of the additional periodic variable is
almost straightforward):

∑

k∈Z

∫

Rd×Rd

∣∣∂α
xU (x, ξ, k)

∣∣2 dxdξ ≤ C
∑

k∈Z

‖ck(u)‖
2
0 ≤ C ‖u‖20 ,

∑

k∈Z

∫

Rd×T×Rd

|V (x, θ, ξ, k)|2 dxdθ dξ ≤ C ‖v‖20 .

The proof of Lemma 1 is thus complete. �

To complete the proof of Theorem 1, it is sufficient to prove the following approximation result:

Lemma 2. Let σ : Rd × T × Rd × Z → CN×N satisfy the assumptions of Theorem 1. Then there
exists a sequence (σp)p∈N in C∞

0 (Rd × T× Rd × Z;CN×N ) such that:

(i) supp∈N |||σp||| ≤ C |||σ||| for some numerical constant C that does not depend on σ,

(ii) for all u, v ∈ S (Rd × T), there holds

lim
p→+∞

∫

Rd×T

Op(σp)u(x, θ) v(x, θ) dxdθ =

∫

Rd×T

Op(σ)u(x, θ) v(x, θ) dxdθ .

The proof of Lemma 2 follows by the classical truncation-convolution argument. We leave the
details to the reader. The convergence property (ii) follows from the dominated convergence Theo-
rem.

Combining Lemma 1 and Lemma 2, we obtain the main estimate (4) not only for smooth symbols
with compact support but also for the more general class of symbols that satisfy the assumptions of
Theorem 1. In particular, the Riesz Theorem shows that Op(σ)u coincides almost-everywhere with
an element of L2(Rd × T), and the conclusion of Theorem 1 follows. �

It is useful to observe that in the proof of Lemma 1 above, we do not need the symbol σ to have
compact support with respect to the space variable x. As a matter of fact, compact support with
respect to the dual variables (ξ, k) is sufficient to justify all the calculations. This observation will
be used in the proof of Lemma 3 below.

Of course, the classical version of the Calderón-Vaillancourt Theorem in Rd now appears as a
particular case of Theorem 1 (apply Theorem 1 with a symbol σ containing only the 0-harmonic and
that is independent of θ and similar test functions u), see [3, page 18] and [9]. In the proof of Theorem
1, no finite difference with respect to k appears because there is no need to gain integrability for
the function U with respect to the variable θ (because the torus has finite measure). An even more
direct explaination is that for a bounded sequence, the iterative finite differences are also bounded
so the assumption would be redundant.

Applying formally Fubini’s Theorem to the definition of Op(σ)u, we have

Op(σ)u (x, θ) =
1

(2 π)d

∑

k∈Z

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, ξ, k)u(y, ω) dξ dy dω . (7)

The latter formula is rigorous e.g. for smooth symbols with compact support in (ξ, k). In order to
prepare the results of symbolic calculus, our next goal is to obtain L2 continuity results for oscillatory
integral operators as in (7) with more general amplitudes σ; namely we should allow σ to depend on
(x, θ) but also on the additional variables (y, ω), see e.g. [12, page 144]. Our second main continuity
result is the following:
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Theorem 2. Let σ : Rd ×T×Rd ×T×Rd ×Z → CN×N be a continuous function that satisfies the
property: for all α, β ∈ {0, 1}d, for all j, l ∈ {0, 1} and for all ν ∈ {0, 1, 2}d, the derivative (in the

sense of distributions) ∂α
x ∂j

θ ∂
β
y ∂l

ω ∂ν
ξ σ belongs to L∞(Rd ×T×Rd ×T×Rd ×Z). Let χ1 ∈ C ∞

0 (R)

and χ2 ∈ C ∞
0 (Rd) satisfy χ1(0) = χ2(0) = 1.

Then for all u ∈ S (Rd × T), the sequence of functions (Tδ)δ>0 defined on Rd × T by

Tδ (x, θ) :=
1

(2 π)d

∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

χ2(δ ξ)σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω , (8)

converges in S ′(Rd × T), as δ tends to 0, towards a distribution Õp(σ)u ∈ L2(Rd × T). This limit
is independent of the truncation functions χ1, χ2. Moreover, there exists a numerical constant C,
that only depends on d and N , such that there holds
∥∥∥Õp(σ)u

∥∥∥
0
≤ C |||σ|||Amp ‖u‖0 ,

with |||σ|||Amp := sup
α,β∈{0,1}d

sup
j,l∈{0,1}

sup
ν∈{0,1,2}d

∥∥∥∂α
x ∂j

θ ∂
β
y ∂l

ω ∂ν
ξ σ
∥∥∥
L∞(Rd×T×Rd×T×Rd×Z)

. (9)

The proof of Theorem 2 splits in several steps. The first point is to show that the conclusion
holds for smooth symbols with compact support in (ξ, k). In this case, the convergence of the
oscillatory integral as δ tends to 0 follows from the dominated convergence Theorem, and the proof
of the continuity estimate (9) relies on some arguments that are similar to those used in the proof of
Lemma 1. This first part of the proof of Theorem 2 is achieved in Lemma 3 below. The end of the
proof of Theorem 2 consists in justifying the convergence of the oscillatory integral for an arbitrary
amplitude and in showing that (9) still holds. This part of the proof relies on a regularization process
as for Lemma 2.

The process used in Theorem 2 that consists in introducing cut-off functions in the frequency
variables and in passing to the limit will be systematically used in what follows in order to define
oscillatory integral operators and to show some properties on such operators. To highlight the
difference between standard pseudodifferential operators and oscillatory integral operators (for which

the integrals do not converge in a classical sense), we always use the notation Õp for oscillatory
integral operators. In that case, the representation by a convergent integral only takes place when
the amplitude is integrable with respect to the frequency variables (for instance, when it has compact
support with respect to these variables).

Proof of Theorem 2. We begin with the following generalization of Lemma 1.

Lemma 3. Let σ ∈ C∞
b (Rd × T × Rd × T × Rd × Z;CN×N ) have compact support with respect to

(ξ, k), that is, there exists an integer K0 and a positive number R0 such that σ(x, θ, y, ω, ξ, k) = 0
as long as |k| ≥ K0 or |ξ| ≥ R0.

Then all the conclusions of Theorem 2 hold and the oscillatory integral Õp(σ)u coincides with
the function

(x, θ) ∈ Rd × T 7−→
1

(2 π)d

∑

k∈Z

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω .

Proof of Lemma 3. Our strategy follows closely the proof of Lemma 1. In particular, we keep the
same notation for the function ϕ on Rd, and we make the proof in the case N = 1 for simplicity.

First of all, since σ has compact support in (ξ, k) and is bounded, the sequence (Tδ)δ>0 defined
by (8) is bounded in L∞(Rd × T). Moreover, the dominated convergence Theorem shows that Tδ

converges pointwise, as δ tends to 0, towards

T (x, θ) :=
1

(2 π)d

∑

k∈Z

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω .

There is no ambiguity in the definition of the latter integral since the function to be integrated has
compact support in ξ and fast decay at infinity in y (the sum with respect to k only involves finitely
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many terms). Applying again the dominated convergence Theorem, (Tδ)δ>0 converges towards T
not only pointwise but also in S ′(Rd × T). It thus only remains to estimate the function T in L2

in order to complete the proof of Lemma 3. We emphasize that the proof below does not assume
compact support of σ in x or y, which will be useful in Section 4.

For v ∈ S (Rd × T;C), let us define the integral

I :=

∫

Rd×T

T (x, θ) v(x, θ) dxdθ

=
1

(2 π)d

∑

k∈Z

∫

Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, y, ω, ξ, k)u(y, ω) v(x, θ) dξ dxdθ dy dω ,

where we have applied Fubini’s Theorem. We first expand v as a Fourier series in θ:

v(x, θ) =
∑

ℓ∈Z

cℓ(v)(x) e
2 i π ℓ θ ,

apply Fubini’s Theorem, and integrate by parts with respect to θ using the relation

e2 i π (k+ℓ) θ =
1

1 + 2 i π (k + ℓ)
(1 + ∂θ) e

2 i π (k+ℓ) θ .

We apply a similar manipulation for u, and we obtain the relation

I =
∑

k∈Z

∫

Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ♮(x, θ, y, ω, ξ, k) ũ(y, ω, k) ṽ(x, θ, k) dξ dxdθ dy dω ,

(10)
where we have introduced the notation

σ♮ := (1− ∂θ) (1− ∂ω)σ ,

ũ(y, ω, k) :=
∑

ℓ∈Z

cℓ(u)(y)

1 + 2 i π (ℓ − k)
e2 i π ℓ ω , ṽ(x, θ, k) :=

∑

ℓ∈Z

cℓ(v)(x)

1 + 2 i π (ℓ + k)
e2 i π ℓ θ . (11)

The latter manipulations are justified by the fact that both sequences (cℓ(u))ℓ∈Z and (cℓ(v))ℓ∈Z have
fast decay in S (Rd).

Let us now transform the expression of I in (10) by integrating by parts with respect to ξ. More
precisely, we use the relation

ei (x−y)·ξ = ϕ(x − y)2
d∏

j=1

(1 + ∂ξj )
2 ei (x−y)·ξ ,

integrate by parts with respect to ξ in (10) and obtain

I =
∑

k∈Z

∫

Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

× σ♭(x, θ, y, ω, ξ, k)ϕ(x− y) ũ(y, ω, k)ϕ(x− y) ṽ(x, θ, k) dξ dxdθ dy dω , (12)

where we have used the notation

σ♭ :=

d∏

j=1

(1 − ∂ξj )
2 σ♮ =

d∏

j=1

(1− ∂ξj )
2 (1− ∂θ) (1− ∂ω)σ .

A crucial observation for what follows is that the new term ϕ(x − y)2 in (12) yields integrability
with respect to either x or y.

Now we follow the argument already used in the proof of Lemma 1. We use Fourier’s inversion
formula, and write

ṽ(x, θ, k) =
1

(2 π)d

∫

Rd

ei x·η ̂̃v(η, θ, k) dη ,

where for each k ∈ Z, the partial Fourier transform ̂̃v(·, ·, k) with respect to x belongs to the Schwartz
space S (Rd × T). Then we apply Fubini’s Theorem in (12), and integrate by parts with respect to
x. As observed above, applying Fubini’s Theorem has been made possible thanks to the new factor
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ϕ(x− y)2 which makes the integral in x converge. We make the symmetric operation with ũ instead
of ṽ and integrate by parts with respect to y. Eventually, we obtain a formula of the form

I =
∑

α,β∈{0,1}d

∑

α′+α′′≤α

∑

β′+β′′≤β

⋆
∑

k∈Z

∫

Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

× ∂α−α′−α′′

x ∂β−β′−β′′

y σ♭(x, θ, y, ω, ξ, k)

×
(
∂α′+β′

ϕ(x − y)
)
U(y, ω, ξ, k)

(
∂α′′+β′′

ϕ(x− y)
)
V (x, θ, ξ, k) dξ dxdθ dy dω , (13)

where the ⋆ coefficients only depend on d, α, α′, α′′, β, β′, β′′, and where we have used the notation

U(y, ω, ξ, k) :=
1

(2 π)d

∫

Rd

ei y·η ϕ(η − ξ) ̂̃u(η, ω, k) dη ,

V (x, θ, ξ, k) :=
1

(2 π)d

∫

Rd

ei y·η ϕ(η + ξ) ̂̃v(η, θ, k) dη .

Let us now observe that each derivative ∂α−α′−α′′

x ∂β−β′−β′′

y σ♭ that appears in (13) can be bounded
in L∞-norm by C |||σ|||Amp, where the quantity |||σ|||Amp is defined in (9). Eventually, we apply the
Cauchy-Schwarz inequality on (Rd ×T)2 ×Rd ×Z in (13), and we thus need to estimate integrals of
the form ∑

k∈Z

∫

Rd×Rd×T×Rd×T

∣∣∂α′+β′

ϕ(x − y)
∣∣2 |U(y, ω, ξ, k)|2 dξ dxdθ dy dω ,

and symmetric expressions in V . The latter integral is computed by first integrating with respect
to (x, θ). Then we apply Plancherel’s Theorem for transforming the integral in y into an integral in
η. Applying Fubini’s Theorem, we can get rid of the integral in ξ (see the above definition of U in

terms of ̂̃u) and we are left with estimating a quantity of the form
∑

k∈Z

∫

Rd×T

∣∣ũ(y, ω, k)
∣∣2 dy dω ,

where ũ is defined by (11). The latter quantity is estimated by using Parseval-Bessel’s equality and
Fubini’s Theorem again. Eventually, we obtain

∑

k∈Z

∫

Rd×Rd×T×Rd×T

∣∣∂α′+β′

ϕ(x− y)
∣∣2 ∣∣U(y, ω, ξ, k)

∣∣2 dξ dxdθ dy dω ≤ C ‖u‖20 ,

and a similar estimate holds for V in terms of ‖v‖0. We have thus proved that there exists a
numerical constant C such that there holds

|I| ≤ C |||σ|||Amp ‖u‖0 ‖v‖0 .

In particular, this yields the bound (9) when the amplitude σ is smooth with compact support. �

Actually, the proof of Lemma 3 even shows the following stronger result which is encoded in the
formula (13).

Corollary 1. Let σ ∈ C∞
b (Rd ×T×Rd ×T×Rd ×Z;CN×N ) have compact support with respect to

(ξ, k). Let {Z1, . . . , ZM} denote the set of all derivatives ∂α
x ∂j

θ ∂
β
y ∂l

ω ∂ν
ξ that appear in the definition

(9) of the norm ||| · |||Amp.
Then there exist some continuous bilinear mappings

L1 , . . . ,LM : S (Rd × T) × S (Rd × T) −→ L1(Rd × T× Rd × T× Rd × Z) ,

which are independent of σ, that satisfy a continuity estimate of the form

∀m = 1, . . . ,M , ‖Lm(u, v)‖L1(Rd×T×Rd×T×Rd×Z) ≤ C ‖u‖0 ‖v‖0 ,

and such that for all u, v ∈ S (Rd × T), there holds
∫

Rd×T

Õp(σ)u(x, θ) v(v, θ) dxdθ =

M∑

m=1

∑

k∈Z

∫

Rd×T×Rd×T×Rd

(Zm σ)Lm(u, v) dxdθ dy dω dξ , (14)

where the expression of the function Õp(σ)u is given in Lemma 3.
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For a general amplitude σ satisfying the assumptions of Theorem 2, we need to define the limit,
as δ tends to 0, of the truncated oscillatory integrals (8). The goal is to show that formula (14),
which holds for smooth amplitudes with compact support in (ξ, k), also holds for the more general
class of amplitudes satisfying the assumptions of Theorem 2.

Let therefore σ satisfy the assumptions of Theorem 2, and let us define the truncated amplitude
σδ, δ > 0, by

σδ(x, θ, y, ω, ξ, k) := χ1(δ k)χ2(δ ξ)σ(x, θ, y, ω, ξ, k) .

The truncated amplitude σδ has as many derivatives as σ in L∞. Moreover, there exists a constant
Cχ that only depends on χ := (χ1, χ2) such that

∀ δ ∈ ]0, 1] , |||σδ |||Amp ≤ Cχ |||σ|||Amp . (15)

Let us now consider a nonnegative function ρ ∈ C∞
0 (Rd) with integral 1. We then define the

regularizing kernels
∀n ∈ N , ρn(x) := (n+ 1)d ρ((n+ 1)x) .

We also consider the Féjer kernel

Fn(θ) :=
1

n+ 1

(
sin((n+ 1)π θ)

sin(π θ)

)2

, Fn(0) := n+ 1 ,

that belongs to C∞(T) and whose integral over T equals 1. Then we define the regularized amplitude

σδ,n(x, θ, y, ω, ξ, k) :=

∫

Rd×T×Rd×T×Rd

ρn(x− x′)Fn(θ − θ′) ρn(y − y′)Fn(ω − ω′) ρn(ξ − ξ′)

σδ(x
′, θ′, y′, ω′, ξ′, k) dx′ dθ′ dy′ dω′ dξ′ . (16)

It follows from the classical Theorems of calculus that for all δ > 0 and for all integer n ∈ N, σδ,n

belongs to C ∞
b (Rd×T×Rd×T×Rd×Z;CN×N ) and has compact support in (ξ, k). Differentiating

under the integral, we also have the bound

∀n ∈ N , |||σδ,n|||Amp ≤ |||σδ|||Amp . (17)

Moreover, since σδ is continuous, the sequence (σδ,n)n∈N converges pointwise towards σδ.
For all u, v ∈ S (Rd × T), let us define the integral

Iδ :=

∫

Rd×T

Tδ(x, θ) v(x, θ) dxdθ ,

where the function Tδ is defined by (8). Applying Fubini’s Theorem, we have

Iδ =
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω) σδ(x, θ, y, ω, ξ, k)u(y, ω) v(x, θ) dxdθ dy dω dξ .

(18)
We also define the quantity Iδ,n that is the analogue of (18) with the amplitude σδ,n instead of σδ.

The sequence (σδ,n)n∈N is bounded in L∞(Rd × T × Rd × T × Rd × Z) and it is supported in a
fixed compact set with respect to (ξ, k). We can thus apply the dominated convergence Theorem
and obtain that (Iδ,n)n∈N converges towards Iδ as n tends to +∞. Moreover, we can apply Lemma
3 to the amplitude σδ,n and derive the bound

|Iδ,n| =

∣∣∣∣
∫

Rd×T

Õp(σδ,n)u(x, θ) v(x, θ) dxdθ

∣∣∣∣ ≤ C |||σδ,n|||Amp ‖u‖0 ‖v‖0 ≤ Cχ |||σ|||Amp ‖u‖0 ‖v‖0 ,

where we have used (17) and (15). Passing to the limit as n tends to +∞, we obtain the uniform
bound

|Iδ| ≤ Cχ |||σ|||Amp ‖u‖0 ‖v‖0 . (19)

If we can prove that (Iδ)δ>0 has a limit as δ tends to 0, and that this limit is independent of the
truncation function χ, then we shall have shown that the sequence of functions (Tδ)δ>0 converges in

S ′(Rd×T) towards some limit Õp(σ)u. Moreover, the estimate (19) will show that this distribution
coincides with a function in L2(Rd × T) satisfying (9). (If the limit of (Iδ)δ>0 is independent of χ,
then the constant in (9) is given by passing to the limit in (19) with one particular choice of χ.) It
therefore only remains to prove that (Iδ)δ>0 has a limit and that this limit is independent of χ.
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Since the amplitude σδ,n is smooth with compact support in (ξ, k), we can apply Corollary 1. We
obtain that Iδ,n can be written under the form

Iδ,n =
M∑

m=1

∑

k∈Z

∫

Rd×T×Rd×T×Rd

(Zm σδ,n)Lm(u, v) dxdθ dy dω dξ . (20)

We wish to pass to the limit in (20). We first observe that the derivative Zm σδ,n is obtained by
differentiating under the integral sign in (16), that is

Zm σδ,n(x, θ, y, ω, ξ, k) =

∫

Rd×T×Rd×T×Rd

ρn(x− x′)Fn(θ − θ′) ρn(y − y′)Fn(ω − ω′) ρn(ξ − ξ′)

Zm σδ(x
′, θ′, y′, ω′, ξ′, k) dx′ dθ′ dy′ dω′ dξ′ .

Consequently, the right-hand side of (20) is a finite sum of terms that all have the form
∫

Υ

(̺n ∗ h)(υ) f(υ) dυ , Υ := Rd × T× Rd × T× Rd ,

with h ∈ L∞(Υ), f ∈ L1(Υ), and ̺n is the corresponding regularizing kernel. (Recall that the sum
with respect to k in (20) involves finitely many terms, where the number of terms only depends on δ
and not on n.) Applying Fubini’s Theorem, we can make the convolution kernel ̺n act on f rather
than on h. This only replaces ̺n by ˇ̺n with

ˇ̺n(x, θ, y, ω, ξ) := ̺n(−x,−θ,−y,−ω,−ξ) .

Then we use the convergence of ˇ̺n ∗ f towards f in L1 (this is a classical result of convolution that
is unfortunately false in L∞ and this is the reason why we need to switch the regularization kernel
from one function to the other). Hence we can pass to the limit as n tends to +∞ in (20), and
obtain

lim
n→+∞

Iδ,n = Iδ =
M∑

m=1

∑

k∈Z

∫

Rd×T×Rd×T×Rd

(Zm σδ)Lm(u, v) dxdθ dy dω dξ . (21)

In other words, we have extended formula (14) to the truncated amplitude σδ.
It is now straightforward to pass to the limit as δ tends to 0. Indeed each derivative Zm σδ can

be decomposed under the form

Zm σ = χ1(δ k)χ2(δ ξ)Zm σ +

M∑

m′=1

εm,m′(δ)χ1(δ k)χ2,m,m′(δ ξ)Zm′ σ ,

where χ2,m,m′ ∈ C ∞
0 (Rd) and εm,m′(δ) tends to 0 as δ tends to 0. We can therefore apply the

dominated convergence Theorem in (21), and obtain the expression

lim
δ→0

Iδ =

M∑

m=1

∑

k∈Z

∫

Rd×T×Rd×T×Rd

(Zm σ)Lm(u, v) dxdθ dy dω dξ ,

from which it is clear that the limit is independent of χ. The proof of Theorem 2 is complete. �

The proof of Theorem 2 even shows that the formula (14) still holds under the more general

assumptions of Theorem 2, and that it actually defines the function Õp(σ)u ∈ L2(Rd × T) in a
unique way:

Corollary 2. Let σ : Rd × T × Rd × T × Rd × Z → CN×N be a continuous function satisfying
the differentiability assumptions of Theorem 2. Let the bilinear operators Lm, m = 1, . . . ,M be
defined in Corollary 1. Then for all u ∈ S (Rd ×T;CN ) and for all v ∈ S (Rd ×T;C), the function

Õp(σ)u ∈ L2(Rd × T) satisfies (14).

Remark 2. Let us assume now that in Theorem 2, the truncation functions χ1, χ2 do not necessarily
satisfy χ1(0) = χ2(0) = 1. Then the corresponding sequence of functions (Tδ)δ>0 converges in

S ′(Rd × T) towards χ1(0)χ2(0) Õp(σ)u.
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Let us observe that for an amplitude σ that only depends on (x, θ, ξ, k) and not on (y, ω), then

the oscillatory integral Õp(σ)u coincides with Op(σ)u. This can be checked directly by applying
Fubini’s Theorem and the dominated convergence Theorem. In that case, the convergence of the
sequence (Tδ)δ>0 in S ′(Rd ×T) is much easier to obtain. Since we shall use this argument in what
follows, we state the result in a precise way.

Proposition 1. Let σ : Rd×T×Rd×T×Rd×Z → CN×N be a continuous function that satisfies the
differentiability assumptions of Theorem 2 and that is independent of its third and fourth variables:

σ(x, θ, y, ω, ξ, k) = σ♯(x, θ, ξ, k). Then for all u ∈ S (Rd × T), Õp(σ)u coincides with the function
Op(σ♯)u defined in Theorem 1.

For simplicity, a function defined on Rd × T × Rd × T × Rd × Z that is independent of its third
and fourth variables is equally considered as a function on Rd × T × Rd × Z, that is we use from
now on the same notation for σ and σ♯ in Proposition 1. We hope that this does not create any
confusion. The following result is a more precise comparison between oscillatory integral operators
and pseudodifferential operators. It contains Proposition 1 as a special trivial case. It is also the
starting point for the pseudodifferential calculus developed in the following section.

Proposition 2. Let σ̃ ∈ C∞
b (Rd×T×Rd×T×Rd×Z;CN×N ) be an amplitude, and let the symbol

σ ∈ C∞
b (Rd × T× Rd × Z;CN×N ) be defined by

σ(x, θ, ξ, k) := σ̃(x, θ, x, θ, ξ, k) .

Then the operator Õp(σ̃)−Op(σ) coincides with Õp(r), where the amplitude r ∈ C∞
b (Rd×T×Rd×

T× Rd × Z;CN×N ) is decomposed as

r(x, θ, y, ω, ξ, k) = r1(x, θ, y, ω, ξ, k) +R2(x, θ, y, ω, ξ, k + 1)−R2(x, θ, y, ω, ξ, k) ,

with

r1(x, θ, y, ω, ξ, k) :=
1

i

d∑

j=1

∫ 1

0

∂yj
∂ξj σ̃

(
x, θ, (1 − t)x+ t y, ω, ξ, k

)
dt ,

R2(x, θ, y, ω, ξ, k) :=





σ̃(x, θ, x, ω, ξ, k) − σ̃(x, θ, x, θ, ξ, k)

1− e−2 i π (ω−θ)
, if ω 6= θ,

1

2 i π
∂ωσ̃(x, θ, x, θ, ξ, k) , if ω = θ.

We observe that the amplitude R2 does not depend on y but it depends on ω, so it does not enter
the framework of Proposition 1.

Proof of Proposition 2. Let us first assume that the amplitude σ̃ has also compact support in (ξ, k).
In that case, the symbol σ has compact support in (ξ, k), and we can apply Proposition 1 and
Lemma 3:

Õp(σ̃)u(x, θ) −Op(σ)u(x, θ) = Õp(σ̃ − σ)u(x, θ)

=
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)
(
σ̃(x, θ, y, ω, ξ, k)− σ̃(x, θ, x, ω, ξ, k)

)
u(y, ω) dy dω dξ

+
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)
(
σ̃(x, θ, x, ω, ξ, k)− σ̃(x, θ, x, θ, ξ, k)

)
u(y, ω) dy dω dξ .

Let us start with the first term on the right-hand side. Applying Taylor’s formula, we get

σ̃(x, θ, y, ω, ξ, k)− σ̃(x, θ, x, ω, ξ, k) = −
1

i

d∑

j=1

i (xj − yj)

∫ 1

0

∂yj
σ̃
(
x, θ, (1 − t)x+ t y, ω, ξ, k

)
dt ,

then we integrate by parts with respect to ξ and we already obtain

1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)
(
σ̃(x, θ, y, ω, ξ, k)− σ̃(x, θ, x, ω, ξ, k)

)
u(y, ω) dy dω dξ

= Õp(r1)u(x, θ) .
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All manipulations are made possible by the compact support assumption with respect to (ξ, k) and
the fact that u belongs to S (Rd × T).

Let us now study the second term in the decomposition of Õp(σ̃ − σ)u. By standard results of
calculus, the function R2 defined in Proposition 2 is 1-periodic with respect to θ and ω, and is smooth
(namely, C∞

b ) with respect to all its arguments. (The reason why we divide by 1− e−2 i π (ω−θ) and
not by ω−θ in the definition of R2 is to keep the periodicity with respect to both θ and ω. However,
this is of little consequence, and R2 basically counts as one ω-derivative of the amplitude σ̃.) We
apply Abel’s transformation and obtain

1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)
(
σ̃(x, θ, x, ω, ξ, k) − σ̃(x, θ, x, θ, ξ, k)

)
u(y, ω) dy dω dξ

=
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei (x−y)·ξ
(
e2 i π k (θ−ω) − e2 i π (k+1) (θ−ω)

)
R2(x, θ, ω, ξ, k)u(y, ω) dy dω dξ

=
1

(2 π)d

∑

k∈Z

∫

Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)
(
R2(x, θ, ω, ξ, k+1)−R2(x, θ, ω, ξ, k)

)
u(y, ω) dy dω dξ .

We have thus proved the result announced in Proposition 2 under the additional assumption that
the amplitude σ̃ has compact support in (ξ, k).

When the amplitude σ̃ does not necessarily have compact support in (ξ, k), we approximate σ̃ by
a sequence σ̃δ, δ > 0, as in Theorem 2. We leave as an exercise to the reader the verification that
for the corresponding sequence of amplitudes (rδ)δ∈ ]0,1], there holds

∀u ∈ S (Rd × T) , lim
δ→0

Õp(rδ)u = Õp(r)u ,

where the limit is understood in the sense of S ′(Rd ×T) (use Remark 2). This completes the proof
of Proposition 2. �

We have only proved Proposition 2 for very smooth amplitudes. In the following Section, we shall
extend this decomposition to amplitudes with finite regularity by the standard smoothing procedure.
At this stage, we feel free to shorten some of the arguments in the proof when they are completely
similar to what we have already explained.

4. Singular pseudodifferential calculus I. Definition of operators and action on

Sobolev spaces

4.1. Singular symbols and singular pseudodifferential operators. Following [12], we now
introduce the singular symbols and their associated operators. The classes of symbols are defined
by first considering the following sets.

Definition 1. Let q ≥ 1, and let O ⊂ Rq be an open set that contains the origin. Let m ∈ R. Then
we let Sm(O) denote the class of all functions σ : O × Rd × [1,+∞[→ CN×N such that

(i) for all γ ≥ 1, σ(·, ·, γ) is C∞ on O × Rd,
(ii) for all compact subset K of O, for all α ∈ Nq and for all ν ∈ Nd, there exists a constant

Cα,ν,K satisfying

sup
v∈K

sup
ξ∈Rd

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2
∣∣∂α

v ∂ν
ξ σ (v, ξ, γ)

∣∣ ≤ Cα,ν,K .

Let us now define the singular symbols.

Definition 2 (Singular symbols). Let m ∈ R, and let n ∈ N. Then we let Sm
n denote the set of

families of functions (aε,γ)ε∈]0,1],γ≥1 that are constructed as follows:

∀ (x, θ, ξ, k) ∈ Rd × T× Rd × Z , aε,γ(x, θ, ξ, k) = σ

(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)
, (22)

where σ ∈ Sm(O), V belongs to the space C n
b (Rd×T) and where furthermore V takes its values in a

convex compact subset K of O that contains the origin (for instance K can be a closed ball centered
round the origin).
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In Definition 2, we ask the function V to take its values in a convex compact subset K of O so
that for all ε ∈ ]0, 1], the function ε V takes its values in the same convex compact set K. This
property is used in several places below to derive uniform L∞ bounds with respect to the small
parameter ε.

For simplicity, we shall not mention that Sm
n depends on the open set O. (It will be convenient

from time to time to let O denote various possible open sets.) With a slight abuse in the terminology,
we shall refer to the elements of Sm

n as symbols rather than as families of symbols. We hope that
this does not create any confusion.

To each symbol a = (aε,γ)ε∈]0,1],γ≥1 ∈ Sm
n given by the formula (22), we associate a singular

pseudodifferential operator Opε,γ(a), with ε ∈ ]0, 1] and γ ≥ 1, whose action on a function u ∈
S (Rd × T;CN ) is defined by

Opε,γ(a)u (x, θ) :=
1

(2 π)d

∑

k∈Z

∫

Rd

ei x·ξ e2 i π k θ σ

(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)
ĉk(u)(ξ) dξ . (23)

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the corresponding singular operator
is ∂x1

+ (β1/ε) ∂θ. We now wish to describe the action of singular pseudodifferential operators on
Sobolev spaces. As can be expected from this simple example, the natural framework is provided
by the spaces Hs,ε defined in Section 2. The following result is a direct consequence of Theorem 1.

Proposition 3. Let n ≥ d + 1, and let a ∈ Sm
n with m ≤ 0. Then Opε,γ(a) in (23) defines a

bounded operator on L2(Rd × T): there exists a constant C > 0, that only depends on σ and V in
the representation (22), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)u‖0 ≤
C

γ|m|
‖u‖0 .

Let us observe that if we compare Proposition 3 with [12, Proposition 1.1], we obtain the same
result with slightly less regularity on V , and above all without the compact support assumption on
the function V . The constant C in Proposition 3 depends uniformly on the compact set in which
V takes its values and on the norm of V in C

d+1
b . Even when we do not state it so clearly, all

constants in the results below will depend uniformly on a finite number of derivatives of the symbols
(or amplitudes).

Proof of Proposition 3. We wish to apply Theorem 1, so the only thing to check is that the symbol
aε,γ defined by (22) satisfies a bound of the form

∀ ε ∈ ]0, 1] , ∀ γ ≥ 1 , |||aε,γ ||| ≤
Cσ,V

γ|m|
.

For instance, the proof of the L∞ bound follows from Definitions 1 and 2. Let us recall that for all
ε ∈ ]0, 1], ε V takes its values in a fixed convex compact subset K ⊂ O (because K has been assumed
to contain the origin, see Definition 2), so we have

∣∣∣∣σ
(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)∣∣∣∣ ≤ C0,0,K

(
γ2 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)m/2

≤
C

γ|m|
.

The L∞ bounds for the derivatives of aε,γ follow by applying the Faà di Bruno formula for the
composition of functions. We omit the details. �

Remark 3. The result of Proposition 3 does not rely on the scaling of the substitution in the
representation (22). More precisely, the same result would hold with the substitution V (x, θ) instead
of ε V (x, θ). The only important point in the proof is the fact that the function substituted in the
v-variable takes its values in a compact subset of O that is independent of ε, and that sufficiently
many of its derivatives belong to L∞. This fact will be used several times in what follows.

There is no great difficulty in extending Proposition 3 to symbols of positive degree.

Proposition 4. Let n ≥ d + 1, and let a ∈ Sm
n with m > 0. Then Opε,γ(a) defines a bounded

operator from Hm,ε(Rd × T) to L2(Rd × T) with a norm that is independent of ε, γ: there exists a
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constant C > 0, that only depends on σ and V in the representation (22), such that for all ε ∈ ]0, 1]
and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)u‖0 ≤ C ‖u‖Hm,ε,γ .

Proof of Proposition 4. It is sufficient to write the symbol aε,γ as

aε,γ(x, θ, ξ, k)

(
γ2 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)−m/2 (

γ2 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)m/2

,

to observe that the symbol

(x, θ, ξ, k) 7−→ aε,γ(x, θ, ξ, k)

(
γ2 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)−m/2

belongs to S0
n, and eventually to observe that the Fourier multiplier with symbol

(
γ2 +

∣∣∣∣ξ +
2 π k β

ε

∣∣∣∣
2
)m/2

is an isometry from Hm,ε(Rd × T) - equipped with the norm ‖ · ‖Hm,ε,γ - to L2(Rd × T). �

The result of Proposition 3 can be made more precise when the degreem of the symbol is negative.
We shall not deal with the general case m < 0 since in what follows, the case m = −1 will be our
main concern. Our result is the following.

Proposition 5. Let n ≥ d + 2, and let a ∈ S−1
n . Then Opε,γ(a) defines a bounded operator from

L2(Rd × T) to H1,ε(Rd ×T) with a norm that is independent of ε, γ: there exists a constant C > 0,
that only depends on σ and V in the representation (22), such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖0 .

Let us observe that the regularizing effect of Proposition 5 requires an additional space derivative
on the symbol compared to the L2 bound of Propositions 3 and 4. This is the first occurence in
this article of the general principle that “symbolic calculus (and not only boundedness of operators)
requires spatial regularity”. Here, we study the action of the composition

(
∂xj

+
βj

ε
∂θ

)
Opε,γ(a) .

Proof of Proposition 5. We first observe that Proposition 3 already gives the estimate

∀u ∈ S (Rd × T) , ‖Opε,γ(a)u‖0 ≤
C

γ
‖u‖0 .

Using the definition (2) of the norm ‖ · ‖H1,ε,γ , we see that it only remains to prove some bounds of
the form

∀ j = 1, . . . , d , ∀u ∈ S (Rd × T) ,

∥∥∥∥
(
∂xj

+
βj

ε
∂θ

)
Opε,γ(a)u

∥∥∥∥
0

≤ C ‖u‖0 , (24)

with a constant C that is independent of ε, γ, u. We prove such a bound in the case j = 1 (this is
only to simplify the notation).

We can differentiate under the integral sign in the definition of Opε,γ(a)u, see (23), obtaining
(
∂x1

+
β1

ε
∂θ

)
Opε,γ(a)u (x, θ) = (T1 + T2 + T3)(x, θ) ,
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where we use the notation

T1(x, θ) :=
1

(2 π)d

∑

k∈Z

∫

Rd

ei x·ξ e2 i π k θ i

(
ξ1 +

2 π k β1

ε

)
σ

(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)
ĉk(u)(ξ) dξ ,

T2(x, θ) :=
1

(2 π)d

∑

k∈Z

∫

Rd

ei x·ξ e2 i π k θ

[
∂vσ

(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)
· ε ∂x1

V (x, θ)

]
ĉk(u)(ξ) dξ ,

T3(x, θ) :=
β1

(2 π)d

∑

k∈Z

∫

Rd

ei x·ξ e2 i π k θ

[
∂vσ

(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)
· ∂θ V (x, θ)

]
ĉk(u)(ξ) dξ .

The terms T1 and T2 fall into the framework of Proposition 3. Indeed, the function

σ♭(v, ξ, γ) := i ξ1 σ(v, ξ, γ) ,

belongs to S0, since σ belongs to S−1. Consequently, the term T1 reads Opε,γ(a♭)u where the
singular symbol a♭ belongs to S0

n, n ≥ d + 2. In the same spirit, the term T2 reads Opε,γ(a♯)u

where the singular symbol a♯ belongs to S−1
n−1, n − 1 ≥ d + 1 (use the substitution (ε V, εW ) with

W := ∂x1
V in the symbol ∂vσ(v, ξ, γ) · w). We can thus apply Proposition 3 to estimate T1 and T2

in L2(Rd × T).
The remaining term T3 does not fall directly into the framework of Proposition 3 since there is

an ε missing in front of ∂θ V , so we do not exactly have a singular pseudodifferential operator as
defined in (23). However, we can still apply Theorem 1 (see Remark 3) to the symbol

(x, θ, ξ, k) 7−→ ∂vσ

(
ε V (x, θ), ξ +

2 π k β

ε
, γ

)
· ∂θ V (x, θ) .

Since V belongs to C n
b (R

d × T) with n ≥ d+ 2, the latter symbol is bounded and it has exactly as
many derivatives in L∞ as required in order to apply Theorem 1, and the L∞ bounds on the symbol
are independent of ε ∈ ]0, 1] and γ ≥ 1. We can therefore apply Theorem 1 in order to estimate T3 in
L2(Rd×T). The estimates of T1, T2 and T3 yield (24), so the proof of Proposition 5 is complete. �

Remark 4. It would be tempting to extrapolate from Propositions 3 and 5 that symbols in Sn
−m,

m ∈ N and n sufficiently large, define pseudodifferential operators that act from L2 to Hm,ε. This
is true indeed, but unfortunately the operator norm seems to blow up with ε as soon as m is larger
than 2 (as soon as m is larger than 2, one faces a derivative (∂θ/ε)

2 and the factor ε−2 is too large
when acting on the function ε V ). We thus need to pay special attention and check carefully each
result one by one in order to prove uniform bounds.

The proof of Proposition 5 can be adapted without any difficulty to show that singular pseudo-
differential operators with symbols of degree 0 act boundedly on H1,ε and not only on L2. We feel
free to omit the proof of this result which will be useful later on.

Lemma 4. Let n ≥ d + 2, and let a ∈ S0
n. Then Opε,γ(a) acts boundedly on H1,ε(Rd × T) with a

norm that is independent of ε, γ: there exists a constant C > 0, that only depends on σ and V in
the representation (22), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖H1,ε,γ .

4.2. Singular amplitudes and singular oscillatory integral operators. The result of Propo-
sition 3 can be generalized to singular amplitudes by using Theorem 2 instead of Theorem 1. More
precisely, let us first define the classes of singular amplitudes.

Definition 3 (Singular amplitudes). Let m ∈ R, and let n ∈ N. Then we let Am
n denote the set of

families of functions (ãε,γ)ε∈]0,1],γ≥1 that are constructed as follows:

∀ (x, θ, y, ω, ξ, k) ∈ Rd × T× Rd × T× Rd × Z ,

ãε,γ(x, θ, y, ω, ξ, k) := σ

(
ε V (x, θ), εW (y, ω), ξ +

2 π k β

ε
, γ

)
, (25)
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where σ ∈ Sm(O1 ×O2), V and W belong to the space C n
b (Rd ×T), and where furthermore V , resp.

W , takes its values in a convex compact subset K1, resp. K2, of O1, resp. O2, that contains the
origin.

To each amplitude ã = (ãε,γ)ε∈ ]0,1],γ≥1 ∈ Am
n given by the formula (25), we wish to associate a

singular oscillatory integral operator Õp
ε,γ

(ã), that would be defined (formally at first) by

∀ ε ∈ ]0, 1] , ∀ γ ≥ 1 , Õp
ε,γ

(ã) := Õp(ãε,γ) ,

and the oscillatory integral operator Õp is introduced in Theorem 2. The problem is that, at this

point of the analysis, the operator Õp has only been defined for bounded amplitudes that have

sufficiently many derivatives in L∞, see Theorem 2. We can therefore only define Õp
ε,γ

(ã) for
nonpositive degrees m. The following result generalizes [12, Proposition 2.2]. The proof follows
exactly that of Proposition 3 above, except that we use Theorem 2 instead of Theorem 1.

Proposition 6. Let n ≥ d+1, and let ã ∈ Am
n with m ≤ 0. Then for all ε ∈ ]0, 1] and for all γ ≥ 1,

the amplitude ãε,γ satisfies the assumptions of Theorem 2. Moreover Õp
ε,γ

(ã) defines a bounded
operator on L2(Rd × T): there exists a constant C > 0, that only depends on σ, V and W in the
representation (25), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) ,
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
0
≤

C

γ|m|
‖u‖0 .

The derivatives ∂α
x ∂j

θ ∂
ν
y ∂l

ω ∂µ
ξ ãε,γ are computed in the classical sense and all of them are continous

bounded functions on Rd × T × Rd × T × Rd × Z. These derivatives are obtained by applying the
Faà di Bruno formula.

Remark 3 still applies, meaning that the result of Proposition 6 would still hold if we had made
the substitution (v, w) → (V (x, θ),W (y, ω)) instead of (v, w) → (ε V (x, θ), εW (y, ω)). Here, the
small parameter ε is not crucial in order to derive the uniform L∞ bound on the symbol.

In the same way as we proved a regularization effect for singular pseudodifferential operators
with symbols of negative order, we are going to prove a regularization effect for singular oscillatory
integrals operators when the amplitude has negative order and is sufficiently smooth.

Proposition 7. Let n ≥ d+ 2, and let ã ∈ A−1
n . Then the oscillatory integral operator Õp

ε,γ
(ã) is

bounded from L2(Rd × T) to H1,ε(Rd × T). More precisely, there exists a constant C > 0, that only
depends on σ, V and W in the representation (25), such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S (Rd × T) ,
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0 .

Moreover, the derivatives of Õp
ε,γ

(ã)u are computed by differentiating formally under the integral
sign.

Proof of Proposition 7. In order to prove Proposition 7, we need to go back to the definition of the

oscillatory integral operator Õp in Theorem 2. Let n ≥ d + 2, ã ∈ A−1
n , and let u ∈ S (Rd × T).

Let now χ1 ∈ C ∞
0 (R) and χ2 ∈ C∞

0 (Rd) satisfy χ1(0) = χ2(0) = 1. According to Theorem 2, we

know that the function Õp
ε,γ

(ã)u ∈ L2(Rd × T) is the limit in S ′(Rd × T), as δ tends to 0, of the
sequence of functions

Tδ(x, θ) :=
1

(2 π)d

∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

χ2(δ ξ)σ

(
ε V (x, θ), εW (y, ω), ξ +

2 π k β

ε
, γ

)
u(y, ω) dξ dy dω .

Moreover, Proposition 6 already gives the estimate
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
0
≤

C

γ
‖u‖0 . (26)
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Each function Tδ is bounded. Moreover, we have shown in the proof of Theorem 2 that the
sequence (Tδ)δ∈ ]0,1] is bounded in L2(Rd × T) and converges in S ′(Rd × T). This boundedness
property follows from the relation (21), Corollary 1 and (15).

Let j ∈ {1, . . . , d}. We are going to prove that there exists a constant C, that is independent of
δ, ε, γ, u, such that ∥∥∥∥

(
∂xj

+
βj

ε
∂θ

)
Tδ

∥∥∥∥
0

≤ C ‖u‖0 . (27)

Combining (27) with (26), we shall obtain the result of Proposition 7. Indeed, the uniform bound
(27) is sufficient to show that the limit of Tδ in S ′(Rd×T) belongs toH1,ε(Rd×T). (Here, we use the
classical weak convergence argument and the uniqueness of the limit in the sense of distributions.)
We thus focus on the derivation of the bound (27) for j = 1.

Each function Tδ has C 1 regularity, and can be differentiated under the integral sign by applying
standard rules of calculus. We obtain(

∂x1
+

β1

ε
∂θ

)
Tδ = T1,δ + T2,δ + T3,δ ,

where, similarly to the proof of Proposition 5, we use the notation

T1,δ(x, θ) :=
1

(2 π)d

∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) χ2(δ ξ)

i

(
ξ1 +

2 π k β1

ε

)
σ

(
ε V (x, θ), εW (y, ω), ξ +

2 π k β

ε
, γ

)
u(y, ω) dξ dy dω ,

T2,δ(x, θ) :=
1

(2 π)d

∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) χ2(δ ξ)

[
∂v σ

(
ε V (x, θ), εW (y, ω), ξ +

2 π k β

ε
, γ

)
· ε ∂x1

V (x, θ)

]
u(y, ω) dξ dy dω ,

T3,δ(x, θ) :=
β1

(2 π)d

∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) χ2(δ ξ)

[
∂v σ

(
ε V (x, θ), εW (y, ω), ξ +

2 π k β

ε
, γ

)
· ∂θ V (x, θ)

]
u(y, ω) dξ dy dω .

The singular amplitude appearing in the first term T1,δ belongs to A0
n, so we can apply the same

argument as in Proposition 6 to estimate this term in L2(Rd × T). In the same way, the singular
amplitude appearing in the second term T2,δ belongs to A−1

n−1, so we can still apply the argument of
Proposition 6. The amplitude appearing in the third term T3,δ does not fall into a representation of
the form (25) because there is an ε missing in front of ∂θV . However, we can still apply Theorem 2
because this amplitude has sufficiently many derivatives in L∞ and the L∞ bounds are independent
of ε, γ (same argument as in Remark 3). The result of Proposition 7 follows. In particular, we have
justified that the derivative (

∂x1
+

β1

ε
∂θ

)
Õp

ε,γ
(ã)u

is computed by differentiating formally under the integral sign (meaning that the singular amplitudes
that appear after differentiation yield well-defined oscillatory integral operators). �

Extending the definition of Õp
ε,γ

(ã) to the case m > 0 does not seem so clear at first sight. The
trick of Proposition 4 does not apply anymore, and we need another argument that we detail now.
Due to the application that we have in mind (see the companion article [6]), we restrict to the case
of amplitudes of degree 1, meaning that the growth at infinity is O(|ξ| + |k|). We do not claim
that our criterion in Lemma 5 below is sharp. As a matter of fact, there is some hope that refined
methods may yield a similar result with less regularity on the amplitude, but this is not our main
concern here. We simply note that using sufficiently many derivatives to integrate by parts enables
us to justify the convergence of the truncation process without the compact support assumption of
[12].
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Lemma 5. Let ã ∈ A1
n, n ≥ 3 (d+1). Let χ1 ∈ C ∞

0 (R) and χ2 ∈ C∞
0 (Rd) satisfy χ1(0) = χ2(0) = 1.

Then for all u ∈ S (Rd × T), the sequence of functions (Tδ)δ>0 defined by (8) with the amplitude
ãε,γ converges in S ′(Rd × T), and the limit is independent of the truncation functions χ1, χ2.

As in the case ã ∈ A0
n, we let Õp

ε,γ
(ã) denote the oscillatory integral operator associated with

ã ∈ A1
n. At this stage, this operator maps S into S ′.

Proof of Lemma 5. As in the proof of Theorem 2, our goal is to show that for all u, v ∈ S (Rd ×T),
the integral Iδ defined by

Iδ :=

∫

Rd×T

Tδ(x, θ) v(x, θ) dxdθ ,

with Tδ defined by (8) (just replace the general amplitude σ in (8) by ãε,γ), has a limit as δ tends to
0, and that the limit is independent of the truncation functions χ1, χ2. Applying Fubini’s Theorem,
we have (let us ignore from now on the powers of 2 π that do not play any role):

Iδ =
∑

k∈Z

χ1(δ k)

∫

Rd×T×Rd

ei x·ξ e2 i π k θ χ2(δ ξ) v(x, θ)U(x, θ, ξ, k) dxdθ dξ ,

with

U(x, θ, ξ, k) :=

∫

Rd×T

e−i y·ξ e−2 i π k ω ãε,γ(x, θ, y, ω, ξ, k)u(y, ω) dy dω .

We claim that it is sufficient to prove an estimate of the form

|U(x, θ, ξ, k)| ≤ C(ε, γ, ã, u)
1

1 + k2

d∏

j=1

1

1 + ξ2j
,

and the convergence of Iδ will follow from the dominated convergence Theorem (the constants
may depend in a very bad way on ε but this is no concern for us since we are only interested in
the convergence of the integral for every fixed value of ε). The L∞ bound for U is obtained by
multiplying by the factor

(1 − 2 i π k)3
d∏

j=1

(1 − i ξj)
3 ,

and by integrating by parts. Observing that ã ∈ A1
n with n ≥ 3 (d+1), we claim that the amplitude

ãε,γ satisfies the following bounds for each fixed value of the parameters ε, γ:
∣∣∂β

y ∂ℓ
ω ãε,γ(x, θ, y, ω, ξ, k)

∣∣ ≤ C
(
1 + |ξ|2 + k2

)1/2
, |β|+ ℓ ≤ 3 (d+ 1) ,

and we thus get ∣∣∣∣∣∣
(1− 2 i π k)3

d∏

j=1

(1− i ξj)
3 U(x, θ, ξ, k)

∣∣∣∣∣∣
≤ C

(
1 + |ξ|2 + k2

)1/2
,

which gives the result. �

In the following paragraph, we shall see how the oscillatory integral operator defined in Lemma
5 for amplitudes in A1

n acts on singular Sobolev spaces.

4.3. Comparison between singular oscillatory integrals operators and singular pseudo-

differential operators. Theorem 3 below extends the result of [12, Proposition 2.3] to our frame-
work in the case of bounded symbols, and is the main ingredient in Section 5 to prove the symbolic
calculus results.

Theorem 3. Let ã ∈ A0
n, n ≥ 2 (d+ 1), be given by (25), and let a ∈ S0

n be defined by

∀ (x, θ, ξ, k) ∈ Rd × T× Rd × Z , aε,γ(x, θ, ξ, k) := σ

(
ε V (x, θ), εW (x, θ), ξ +

2 π k β

ε
, γ

)
.

Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) ,
∥∥∥Õp

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤

C

γ
‖u‖0 . (28)
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If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd × T) ,
∥∥∥Õp

ε,γ
(ã)u −Opε,γ(a)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0 , (29)

uniformly in ε and γ.

Proof of Theorem 3. The proof relies mainly on Proposition 2, which gives the expression of the dif-

ference Õp
ε,γ

(ã)u−Opε,γ(a)u. As a matter of fact, Proposition 2 holds for very smooth amplitudes
but using the standard regularization procedure, the result of Proposition 2 can be extended to
amplitudes for which the remainder r defined in Proposition 2 satisfies the assumptions of Theorem
2. In what follows, we are going to verify that under the assumptions of Theorem 3, the remainder
r can be estimated in the norm ||| · |||Amp and we shall feel free to apply Proposition 2 in this finite
regularity framework.

Let us recall that the remainder r can be split as r = r1 + r2 with r1 also defined in Proposition
2 and r2 is a finite difference in k (the amplitude r2 does not depend on y). Here we consider the
amplitude ãε,γ . We are first going to estimate the amplitude r1, and then r2. Eventually, we shall
prove the regularization estimate (29).

• The amplitude r1 reads

r1 =
1

i

d∑

j=1

∫ 1

0

dwσj

(
ε V (x, θ), εW ((1 − t)x+ t y, ω), ξ +

2 π k β

ε
, γ

)
· ε ∂yj

W ((1− t)x+ t y, ω) dt ,

(30)

with σj := ∂ξj σ ∈ S−1. To prove that Õp(r1) is bounded on L2, we wish to apply Theorem 2 and
we thus try to control |||r1|||Amp. For instance, the L∞ norm of r1 is estimated by using the decay of
σj with respect to the frequency variables and we obtain

|r1(x, θ, y, ω, ξ, k)| ≤
C ε

γ
.

When estimating derivatives, the worst case occurs when the derivative with respect to ω, the d
derivatives with respect to x and the d derivatives with respect to y all act on the term ∂yj

W ((1−
t)x+ t y, ω). This requires having a bound for the 2 d+ 2 first derivatives of W in L∞. Derivatives
with respect to ξ are harmless since they only add decay with respect to the frequency variables.
Under the assumption of Theorem 3, we thus get a bound of the form

|||r1|||Amp ≤
C ε

γ
,

which is even better than what we aimed at in (28).
• The estimate of the term r2 is more delicate and requires some attention. We first use the trick

that appears repeatedly in [12], namely we write

ãε,γ = σ

(
ε V (x, θ), 0, ξ +

2 π k β

ε
, γ

)
+ σ♯

(
ε V (x, θ), εW (y, ω), ξ +

2 π k β

ε
, γ

)
· εW (y, ω) ,

where σ♯ still belongs to S0. The first term on the right-hand side does not contribute to the

difference Õp
ε,γ

(ã)u−Opε,γ(a)u, see Proposition 1. We can therefore focus on the second term for
which we have an extra ε. To avoid introducing some new notation, we still use ãε,γ to denote the
second term on the right-hand side. Then we have r2 = R(·, k + 1)−R(·, k) with

R(x, θ, ω, ξ, k) :=





ãε,γ(x, θ, x, ω, ξ, k)− ãε,γ(x, θ, x, θ, ξ, k)

1− e−2 i π (ω−θ)
, if ω 6= θ,

1

2 i π
∂ωãε,γ(x, θ, x, θ, ξ, k) , if ω = θ.

Considering k as a real variable (and not only an element of Z), there holds

|r2(x, θ, ω, ξ, k)| ≤ sup
κ∈[0,1]

∣∣∂kR(x, θ, ω, ξ, k + κ)
∣∣

≤ C sup
θ,ω,κ∈[0,1]

∣∣∂ω ∂k ãε,γ(x, θ, x, ω, ξ, k + κ)
∣∣ .
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The k-derivative of ãε,γ introduces a 1/ε factor times a frequency derivative of the symbol σ♯. The
1/ε factor is compensated by the ε factor in the term εW and the frequency derivative of the symbol
yields a decay of the form

(
γ2 +

∣∣∣∣ξ +
2 (k + κ)π β

ε

∣∣∣∣
2
)−1/2

.

We thus obtain a bound

|r2(x, θ, ω, ξ, k)| ≤
C

γ
.

The estimate of the derivatives of r2 follow the same strategy. Here there is no y-derivative to control,
and the worst case occurs when we take d derivatives in x, one derivative in θ, and one derivative
in ω. This requires having d + 3 derivatives of the functions V,W in L∞. Since d + 3 ≤ 2 (d + 1),
we thus derive a bound of the form

|||r2|||Amp ≤
C

γ
.

Combining with our estimate of r1 and applying Theorem 2, we already get (28).
Before going on and proving (29), we make an important remark. In our estimate of r2, we have

taken into account the finite difference with respect to k in order to make a frequency derivative
appear, to the price of a 1/ε but gaining a 1/γ. We could have also estimated each term of r2,
meaning the terms R(·, k + 1) and R(·, k), separately. If we had adopted such strategy, we would
not have gained a 1/γ but there would have been no trouble with the 1/ε term. More precisely, the
amplitude r2 satisfies a bound of the form

|||r2|||Amp ≤ C ε .

• Our goal is now to prove (29). Following Proposition 7, the derivative
(
∂x1

+
β1

ε
∂θ

)
Õp(r1)u

is computed by differentiating under the integral sign provided that the amplitude has sufficiently
many derivatives in L∞, and similarly for r2. We show how to estimate such derivatives under the
assumption n ≥ 2 d+ 3. Let us start with the terms involving r1, which are actually easier. There
holds

(
∂x1

+
β1

ε
∂θ

)
Õp(r1)u = Õp

((
i ξ1 +

2 i k π β1

ε

)
r1

)
u+ Õp(∂x1

r1)u+ Õp

(
β1

ε
∂θr1

)
u .

We recall that the amplitude r1 is given by (30). To control ∂x1
r1 in the norm ||| · |||Amp, one just

needs an extra space derivative than in the previous step. The same argument holds for ∂θr1.
Consequently, under the assumption n ≥ 2 d+ 3, we get

∥∥∥∥Õp(∂x1
r1)u+ Õp

(
β1

ε
∂θr1

)
u

∥∥∥∥
0

≤
C

γ
‖u‖0 .

In order to estimate the amplitude
(
i ξ1 +

2 i k π β1

ε

)
r1 ,

we use the decomposition (30), where we recall that the σj ’s belong to S−1. Compared to the
previous step, this amounts to working with the symbols i ξ1 σj , which belong to S0, and we thus
get uniform L∞ bounds in O(ε). Eventually, we have obtained the bound

∥∥∥∥
(
∂x1

+
β1

ε
∂θ

)
Õp(r1)u

∥∥∥∥
0

≤ C

(
1

γ
+ ε

)
‖u‖0 .

The remaining task is to control the analogous expression with the amplitude r2 instead of r1.
To control the terms that involve ∂x1

r2 or (β1/ε) ∂θr2, we use the above remark. More precisely, we
estimate each term with R(·, k+1) and R(·, k) separately, keeping the ε factor to cancel the singular
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term β1/ε. This requires only one more derivative on the functions V,W since we take one more x1

or θ derivative of the amplitude. The most tricky term corresponds to
(
i ξ1 +

2 i k π β1

ε

)
r2 .

For this final term, we use the decomposition

(
i ξ1 +

2 i k π β1

ε

)
r2 =

(
i ξ1 +

2 i (k + 1)π β1

ε

)
R(·, k + 1)−

(
i ξ1 +

2 i k π β1

ε

)
R(·, k)

−
2 i π β1

ε
R(·, k + 1) .

The last term R(·, k + 1)/ε has already been estimated at the previous step and satisfies an O(1)
bound in the norm ||| · |||Amp. What remains is a finite difference in k which corresponds to the symbol
i ξ1 σ instead of σ (and then making the substitution with the singular frequency ξ+2 k π β/ε). We
apply the same strategy as in the previous step to make a frequency derivative appear, to the price
of a 1/ε. Since the ξ-derivatives of i ξ1 σ belong to S0 and thus satisfy uniform L∞ bounds, we end
up with the estimate ∥∥∥∥

(
∂x1

+
β1

ε
∂θ

)
Õp(r2)u

∥∥∥∥
0

≤ C ‖u‖0 ,

which completes the proof of (29). �

The following result extends Theorem 3 to the case of amplitudes with degree 1. In particular, it
will clarify the action of singular oscillatory integral operators on Sobolev spaces.

Theorem 4. Let ã ∈ A1
n, n ≥ 3 d+ 4, be given by (25), and let a ∈ S1

n be defined by

∀ (x, θ, ξ, k) ∈ Rd × T× Rd × Z , aε,γ(x, θ, ξ, k) := σ

(
ε V (x, θ), εW (x, θ), ξ +

2 π k β

ε
, γ

)
.

Then the operator Õp
ε,γ

(ã)−Opε,γ(a) is bounded on L2, namely there exists a constant C ≥ 0 such
that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) ,
∥∥∥Õp

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤ C ‖u‖0 . (31)

In particular, Õp
ε,γ

(ã) maps H1,ε into L2 and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1]
and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) ,
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
0
≤ C ‖u‖H1,ε,γ .

Proof of Theorem 4. Let u ∈ S (Rd×T). Then we know that Õp
ε,γ

(ã)u is the limit in S ′(Rd×T),
as δ tends to 0, of the sequence (Tδ), with (ignore from now on the powers of 2 π):

Tδ (x, θ) :=
∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) χ2(δ ξ) ãε,γ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω .

Using the result of Proposition 2 (with a finite regularity, which can be justified by the standard
regularization procedure), we decompose as usual

Tδ = T1,δ + Õp(r1,δ)u+ Õp(r2,δ)u ,

with

Tδ (x, θ) :=
∑

k∈Z

χ1(δ k)

∫

Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) χ2(δ ξ) ãε,γ(x, θ, x, θ, ξ, k)u(y, ω) dξ dy dω ,

and r1,δ, r2,δ are as in Proposition 2 but are obtained by considering the truncated amplitude
χ1(δ k)χ2(δ ξ) ãε,γ .
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It is easy to show that the sequence T1,δ converges in S ′ (and even in a stronger sense) towards
Opε,γ(a)u, because one can first integrate in (y, ω) and use the decay of the Fourier transform of u.
We are now going to compute the limit as δ tends to 0 of

Õp(r1,δ)u+ Õp(r2,δ)u .

Using the general formula of Proposition 2, we have

r1,δ = χ1(δ k)χ2(δ ξ) r1 +
δ

i

d∑

j=1

χ1(δ k) ∂ξjχ2(δ ξ)

∫ 1

0

∂yj
ãε,γ(x, θ, (1 − t)x+ t y, ω, ξ, k) dt ,

r1 :=
1

i

d∑

j=1

∫ 1

0

∂yj
∂ξj ãε,γ(x, θ, (1 − t)x+ t y, ω, ξ, k) dt .

Since ∂ξj ãε,γ is a bounded amplitude, we can apply Theorem 2 for the convergence of the term

Õp(χ1(δ k)χ2(δ ξ) r1)u. More precisely, we have ∂yj
∂ξj ã ∈ A0

n−1, n− 1 ≥ 3 d+ 3, and we therefore

know that the limit of this term is Õp(r1)u. Moreover, the operator Õp(r1) acts boundedly on L2,
uniformly in ε, γ.

We now deal with the remaining term in r1,δ. It is sufficient to prove that the singular oscillatory
integral associated with the amplitude

χ1(δ k) ∂ξjχ2(δ ξ)

∫ 1

0

∂yj
ãε,γ(x, θ, (1 − t)x+ t y, ω, ξ, k) dt ,

has a limit in S ′ as δ tends to 0. Since ∂yj
ã belongs to A1

n−1, n− 1 ≥ 3 d+3, we can apply Lemma

5 to this term. Together with the extra δ factor, we have shown that the limit of Õp(r1,δ)u in S ′

is Õp(r1)u, and that this term is controlled in L2 uniformly with respect to ε, γ.
The analogous term with r2,δ is dealt with in a similar way. The finite difference with respect to

k plays the role of the ξ derivative and we can prove uniform bounds of the amplitude in the norm
||| · |||Amp by using the same arguments as in the proof of Theorem 3. We feel free to skip the details.

The action of Õp
ε,γ

(ã) on H1,ε is obtained by combining (31) with the result of Proposition 4 for
Opε,γ(a). �

5. Singular pseudodifferential calculus II. Adjoints and products

5.1. Adjoints of singular pseudodifferential operators. Our results on adjoints are very easy
consequences of all the preliminary results in Section 4. Let us start with the case of bounded
symbols.

Proposition 8. Let a ∈ S0
n, n ≥ 2 (d+ 1), and let a∗ denote the conjugate transpose of the symbol

a. Then Opε,γ(a) and Opε,γ(a∗) act boundedly on L2 and there exists a constant C ≥ 0 such that
for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.

Proof of Proposition 8. As in [12, proposition 2.4], it is sufficient to observe that if aε,γ is defined by

(22), the adjoint operator Opε,γ(a)∗ coincides with the singular oscillatory integral operator Õp
ε,γ

(̃b)
associated with the amplitude

b̃ε,γ(x, θ, y, ω, ξ, k) := aε,γ(y, ω, ξ, k)
∗ = σ

(
ε V (y, ω), ξ +

2 π k β

ε
, γ

)∗

.

Then we apply Theorem 3 and the conclusion follows. �



SINGULAR PSEUDODIFFERENTIAL CALCULUS 27

Proposition 8 can be extended to symbols of degree 1 up to an additional regularity in the space
variables (this high regularity is mainly required to give a precise meaning to oscillatory integral
operators).

Proposition 9. Let a ∈ S1
n, n ≥ 3 d + 4, and let a∗ denote the conjugate transpose of the symbol

a. Then Opε,γ(a) and Opε,γ(a∗) map H1,ε into L2 and there exists a family of operators Rε,γ that
satisfies

• there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Rε,γ u‖0 ≤ C ‖u‖0 ,

• the following duality property holds

∀u, v ∈ S (Rd × T) , 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2 .

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε into L2.

Proof of Proposition 9. The proof is quite similar to that of Proposition 8. First of all, the regularity
assumption n ≥ 3 (d+1) allows to pass to the limit in the standard truncation process and to show
that the adjoint (with respect to the L2 scalar product) of the operator Opε,γ(a) coincides with the

oscillatory integral operator Õp
ε,γ

(̃b) associated with the amplitude

b̃ε,γ(x, θ, y, ω, ξ, k) := aε,γ(y, ω, ξ, k)
∗ = σ

(
ε V (y, ω), ξ +

2 π k β

ε
, γ

)∗

.

Then we apply Theorem 4 and the conclusion follows. �

Let us observe that we only have proved a symbolic calculus ”at the first order”, meaning that we
have not proved that the adjoint operator Opε,γ(a)∗ admits an asymptotic expansion with more and
more smoothing operators. Even in the case of C∞ regularity for the substituted function V , it is
not so clear that the second order expansion holds with a uniformly bounded remainder in the scale
of spaces Hk,ε. This bad behavior is more or less the same as in Remark 4 (consider for instance
the case of differential operators of order 2).

5.2. Products of singular pseudodifferential operators. We still follow [12] and begin with a
special case of products.

Proposition 10. Let a, b ∈ S0
n, n ≥ 2 (d+ 1). Then there exists a constant C ≥ 0 such that for all

ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)∗ u−Opε,γ(a b∗)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)∗ u−Opε,γ(a b∗)u‖H1,ε ,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d+ 4. Then there exists a constant C ≥ 0 such that

for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)∗ u−Opε,γ(a b∗)u‖0 ≤ C ‖u‖0 .

Proof of Proposition 10. In each of the three possible cases, the main point is to observe that the

operator Opε,γ(a)Opε,γ(b)∗ coincides with the oscillatory integral operator Õp
ε,γ

(c̃) associated with
the amplitude

c̃ε,γ(x, θ, y, ω, ξ, k) := aε,γ(x, θ, ξ, k) bε,γ(y, ω, ξ, k)
∗ .

The result is well-known for amplitudes with a sufficient decay with respect to the frequencies, and
it holds in a more general framework provided that all oscillatory integrals can be defined (which
is the case under the regularity assumptions stated in Proposition 10). The conclusion then follows
from either Theorem 3 or 4. �
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A main improvement with respect to [12] is that we can now deal with all kinds of products by the
classical ∗∗ argument. This improvement has been made possible because we have already shown a
smoothing property for some remainders in the calculus (compare with [12, Propositions 2.6, 2.7]).

Proposition 11. Let a, b ∈ S0
n, n ≥ 2 (d+ 1). Then there exists a constant C ≥ 0 such that for all

ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)u −Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d+ 4. Then there exists a constant C ≥ 0 such that

for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤ C ‖u‖0 .

Proof of Proposition 11. Let us deal for instance with the case a, b ∈ S0
n, n ≥ 2 d+3. Then we have

Opε,γ(a)Opε,γ(b) = Opε,γ(a)Opε,γ(b∗∗) = Opε,γ(a)
(
Opε,γ(b∗)∗ +Rε,γ

−1

)
,

where we have applied Theorem 3 to the symbol b∗ and denoted Rε,γ
−1 the smoothing remainder

(mapping L2 into H1,ε). Thanks to Lemma 4, we know that Opε,γ(a) acts continuously on H1,ε,
uniformly with respect to ε, γ, so the product Opε,γ(a)Rε,γ

−1 can be rewritten as a remainder of the
form Rε,γ

−1 . The product Opε,γ(a)Opε,γ(b∗)∗ is dealt with by applying Proposition 10. We end up
with

Opε,γ(a)Opε,γ(b) = Opε,γ(a b) +Rε,γ
−1 .

The only other interesting case is a ∈ S1
n, b ∈ S0

n, n ≥ 3 d+ 4. Then we write again

Opε,γ(a)Opε,γ(b) = Opε,γ(a)
(
Opε,γ(b∗)∗ +Rε,γ

−1

)
,

and we observe that the product Opε,γ(a)Rε,γ
−1 acts boundedly on L2, uniformly with respect to ε, γ

(use Theorem 4). The product Opε,γ(a)Opε,γ(b∗)∗ is dealt with by applying again Proposition 10.
We leave all remaining cases to the interested reader. �

A surprising fact is that the ∗∗ argument also applies for products of operators with degree −1 and
1. We feel free to skip the proof that is entirely similar to that of Proposition 11.

Proposition 12. Let a ∈ S−1
n , b ∈ S1

n, n ≥ 3 d + 4. Then Opε,γ(a)Opε,γ(b) defines a bounded
operator on H1,ε and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S (Rd × T) , ‖Opε,γ(a)Opε,γ(b)u −Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0 .

The analogue of Proposition 12 seems unfortunately untrue when the product is taken the other
way round, meaning when the operator of order +1 acts on the left. This can be seen for instance
by choosing for the left operator the singular derivative ∂x1

+ (β1/ε) ∂θ. We are then reduced to
showing a bound in H1,ε for the terms T2, T3 appearing in the proof of Proposition 5. Such a bound
is available for T2 but not for the last term T3. This fact gives rise to a special treatment of +1,−1
products in the companion article [6].

5.3. G̊arding’s inequality. The exact same arguments as in [12, page 155] apply to prove the
G̊arding inequality without any compact support assumption on the symbols. We just need slightly
more regularity on the symbols in order to apply Propositions 8 and 11 above.

Theorem 5. Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a compact subset K of O. Let
now a ∈ Sn

0 , n ≥ 2 d+ 2 be given by (22), where V is valued in a convex compact subset K. Then
for all δ > 0, there exists γ0 which depends uniformly on V , the constant CK and δ, such that for
all γ ≥ γ0 and all u ∈ S (Rd × T), there holds

Re 〈Opε,γ(a)u;u〉L2 ≥ (C − δ) ‖u‖20 .
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5.4. Extended singular pseudodifferential calculus. Following [12, page 153], we can extend
all the above results on boundedness/adjoints/products to the larger class eSm of functions σ :
O × Rd × R2d × [1,+∞[→ CN×N such that

(i) for all γ ≥ 1, σ(·, ·, ·, γ) is C ∞ on O × Rd × R2d,
(ii) for all compact subset K of O, for all α ∈ Nq and for all ν ∈ N3d, there exists a constant

Cα,ν,K satisfying

sup
v∈K

sup
(ξ,ζ)∈Rd×R2d,|ξ|≤|ζ|

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2
∣∣∂α

v ∂ν
ξ,ζ σ (v, ξ, ζ, γ)

∣∣ ≤ Cα,ν,K .

For such symbols, we use the substitution v → ε V (x, θ), ξ → ξ+2 π k β/ε, ζ → (ξ, 2 π k β/ε), which
gives rise to extended singular pseudodifferential operators of the form

eOpε,γ(a)u (x, θ) :=
1

(2 π)d

∑

k∈Z

∫

Rd

ei x·ξ e2 i π k θ σ

(
ε V (x, θ), ξ +

2 π k β

ε
, ξ,

2 π k β

ε
, γ

)
ĉk(u)(ξ) dξ .

We can also define extended singular amplitudes and compare the extended oscillatory integral
operators with the above extended pseudodifferential operator. All results in Sections 4 and 5 are
proved in the same way for this extended class because we have always relied on general boundedness
result such as Theorem 1 or Theorem 2 and these results can handle symbols or amplitudes in the
extended class.

The main interest of defining this extended class is to be able to consider pseudodifferential
cut-offs of the form

χ

(
ε V (x, θ), Dx,

β Dθ

ε
, γ

)
,

where χ is supported in the region |ζ1| ≪ |ζ2| (here ζ1 is the placeholder for ξ and ζ2 is the placeholder
for 2 π k β/ε). Such cut-offs are useful to microlocalize near the specific frequency β. We again refer
to [6] for further applications of these techniques.
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Part B: singular pseudodifferential calculus for pulses

In this second part, we briefly explain why all the results of the first part also give continuity
and symbolic calculus results in the case where the additional space variable and associated singular
frequency lie in R. There are some slight technical differences in the proofs and we pay specific
attention to those terms that have the worst behavior with respect to the singular parameter ε.
As far as the notation is concerned, we feel free to use the same notation to denote new classes of
symbols, amplitudes and so on, in order to highlight the similarities between Part A and Part B.
We hope that this will not create any confusion.

The variable in Rd+1 is denoted (x, θ), x ∈ Rd, θ ∈ R, and the associated frequency is denoted
(ξ, k). In this new context, the singular Sobolev spaces are defined as follows. We still consider a
vector β ∈ Rd \ {0}. Then for s ∈ R and ε ∈ ]0, 1], the anisotropic Sobolev space Hs,ε(Rd+1) is
defined by

Hs,ε(Rd+1) :=
{
u ∈ S

′(Rd+1) / û ∈ L2
loc(R

d+1)

and

∫

Rd+1

(
1 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣
2
)s ∣∣û(ξ, k)

∣∣2 dξ dk < +∞
}
.

Here û denotes the Fourier transform of u on Rd+1. The space Hs,ε(Rd+1) is equipped with the
family of norms

∀ γ ≥ 1 , ∀u ∈ Hs,ε(Rd+1) , ‖u‖2Hs,ε,γ :=
1

(2 π)d+1

∫

Rd+1

(
γ2 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣
2
)s ∣∣û(ξ, k)

∣∣2 dξ dk .

When m is an integer, the space Hm,ε(Rd+1) coincides with the space of functions u ∈ L2(Rd+1)
such that the derivatives, in the sense of distributions,

(
∂x1

+
β1

ε
∂θ

)α1

. . .

(
∂xd

+
βd

ε
∂θ

)αd

u , α1 + · · ·+ αd ≤ m,

belong to L2(Rd+1). In the definition of the norm ‖ · ‖Hm,ε,γ , one power of γ counts as much as one
derivative.

6. The main L2 continuity results

We adapt the Calderón-Vaillancourt Theorems to our framework where symbols will enjoy a
suitable decay property in the additional space variable θ. The decay will allow us to avoid requiring
a control of k-derivatives to prove L2-boundedness.

Theorem 6. Let σ : Rd+1 × Rd+1 → CN×N be a continuous function that satisfies the property:

for all α, β ∈ {0, 1}d and for all j ∈ {0, 1}, 〈θ〉 ∂α
x ∂j

θ ∂
β
ξ σ belongs to L∞(Rd+1 × Rd+1), where the

derivative is understood in the sense of distributions and 〈·〉 denotes the Japanese bracket.
For u ∈ S (Rd+1;CN ), let us define

∀ (x, θ) ∈ Rd+1 , Op(σ)u (x, θ) :=
1

(2 π)d+1

∫

Rd+1

ei (ξ·x+k θ) σ(x, θ, ξ, k) û(ξ, k) dξ dk .

Then Op(σ) extends as a continuous operator on L2(Rd+1;CN ). More precisely, there exists a
numerical constant C, that only depends on d and N , such that for all u ∈ S (Rd+1;CN), there
holds

‖Op(σ)u‖0 ≤ C |||σ||| ‖u‖0 , with |||σ||| := sup
α,β∈{0,1}d

sup
j∈{0,1}

∥∥∥〈θ〉 ∂α
x ∂j

θ ∂
β
ξ σ
∥∥∥
L∞(Rd+1×Rd+1)

.

There is very little to change compared to the proof of Theorem 1. More precisely, we can
reproduce the proof of Theorem 1 by making the following modifications: first of all, we consider
d+1 space variables instead of d, and forget about the additional periodic variable. Then we perform
all integration by parts except the one with respect to the last frequency variables (which would
be aimed at gaining a decaying factor in θ). In the end, we add a 〈θ〉 weight to the derivatives
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of the symbol σ and use the square integrable 〈θ〉−1 weight on ∂α′

x U(x, ξ, k). The final estimates
(Cauchy-Schwarz and so on) are unchanged.

The main point to keep in mind is that, in contrast with the standard Calderón-Vaillancourt
Theorem which requires controlling one k-derivative in L∞, we can use instead a decay property in
θ for the symbol and still prove L2 boundedness of the associated pseudodifferential operator. As
we have already seen in the case of wavetrains, avoiding a control of k-derivatives is crucial if we
wish to prove some bounds that are uniform with respect to the singular parameter ε.

We now turn to the case of oscillatory integral operators associated with amplitudes defined on
Rd+1 ×Rd+1 ×Rd+1. We feel free to skip the proof of the following Theorem which is again a slight
adaptation (with similar modifications as described just above) of Theorem 2.

Theorem 7. Let σ : Rd+1 × Rd+1 × Rd+1 → CN×N be a continuous function that satisfies
the property: for all α, β ∈ {0, 1}d+1, for all j ∈ {0, 1} and for all ν ∈ {0, 1, 2}d, there holds

〈ω〉 ∂α
x,θ ∂

β
y,ω ∂ν

ξ ∂j
kσ belongs to L∞(Rd+1 × Rd+1 × Rd+1). Let χ ∈ C ∞

0 (Rd+1) satisfy χ(0) = 1.

Then for all u ∈ S (Rd+1), the sequence of functions (Tδ)δ>0 defined on Rd+1 by

Tδ (x, θ) :=
1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω)) χ(δ ξ, δ k)σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dk dy dω ,

converges in S ′(Rd+1), as δ tends to 0, towards a distribution Õp(σ)u ∈ L2(Rd+1). This limit is
independent of the truncation function χ. Moreover, there exists a numerical constant C, that only
depends on d and N , such that there holds
∥∥∥Õp(σ)u

∥∥∥
0
≤ C |||σ|||Amp ‖u‖0 ,

with |||σ|||Amp := sup
α,β∈{0,1}d+1

sup
j∈{0,1}

sup
ν∈{0,1,2}d

∥∥∥〈ω〉 ∂α
x,θ ∂

β
y,ω ∂ν

ξ ∂j
k σ
∥∥∥
L∞(Rd+1×Rd+1×Rd+1)

.

In Theorem 7, one exchanges a k-derivative for a decay in ω. Using a decay in θ is also possible
but it does not seem to be useful for our purpose. However, it will be useful below to have a version
of Theorem 7 that combines both decay in ω and θ and thus gets rid of all k-derivatives.

Theorem 8. Let σ : Rd+1 × Rd+1 × Rd+1 → CN×N be a continuous function that satisfies the
property: for all α, β ∈ {0, 1}d+1 and for all ν ∈ {0, 1, 2}d, there holds 〈θ〉 〈ω〉 ∂α

x,θ ∂
β
y,ω ∂ν

ξ σ belongs

to L∞(Rd+1 × Rd+1 × Rd+1). Let χ ∈ C∞
0 (Rd+1) satisfy χ(0) = 1.

Then for all u ∈ S (Rd+1), the sequence of functions (Tδ)δ>0 defined on Rd+1 by

Tδ (x, θ) :=
1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω)) χ(δ ξ, δ k)σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dk dy dω ,

converges in S ′(Rd+1), as δ tends to 0, towards a distribution Õp(σ)u ∈ L2(Rd+1). This limit is
independent of the truncation function χ. Moreover, there exists a numerical constant C, that only
depends on d and N , such that there holds
∥∥∥Õp(σ)u

∥∥∥
0
≤ C |||σ|||Amp ‖u‖0 ,

with |||σ|||Amp := sup
α,β∈{0,1}d+1

sup
ν∈{0,1,2}d

∥∥〈θ〉 〈ω〉 ∂α
x,θ ∂

β
y,ω ∂ν

ξ σ
∥∥
L∞(Rd+1×Rd+1×Rd+1)

.

Of course, when the amplitude σ in Theorems 7 and 8 does not depend on its third and fourth
variables, we are reduced to the case of pseudodifferential operators.

7. Singular pseudodifferential calculus I. Definition of operators and action on

Sobolev spaces

Let us first define the singular symbols.

Definition 4 (Singular symbols). Let m ∈ R, and let n ∈ N. Then we let Sm
n denote the set of

families of functions (aε,γ)ε∈]0,1],γ≥1 that are constructed as follows:

∀ (x, θ, ξ, k) ∈ Rd+1 × Rd+1 , aε,γ(x, θ, ξ, k) = σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
, (32)
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where σ ∈ Sm(O), 〈θ〉V belongs to the space C n
b (Rd+1) and where furthermore V takes its values

in a convex compact subset K of O that contains the origin (for instance K can be a closed ball
centered round the origin).

To each symbol a = (aε,γ)ε∈]0,1],γ≥1 ∈ Sm
n given by the formula (32), we associate a singular

pseudodifferential operator Opε,γ(a), with ε ∈ ]0, 1] and γ ≥ 1, whose action on a function u ∈
S (Rd+1;CN) is defined by

Opε,γ(a)u (x, θ) :=
1

(2 π)d+1

∫

Rd+1

ei (ξ·x+k θ) σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
û(ξ, k) dξ dk . (33)

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the corresponding singular oper-
ator is ∂x1

+ (β1/ε) ∂θ. The main difference with respect to (23) is that now the singular frequency
k/ε lies in all R and not only in a discrete set. This modification will not be negligeable in some
places, especially when we compare the difference between oscillatory integral operators and pseudo-
differential operators. Following Part A, we wish to describe the action of singular pseudodifferential
operators on Sobolev spaces. The following result is a rather direct consequence of Theorem 6.

Proposition 13. Let n ≥ d + 1, and let a ∈ Sm
n with m ≤ 0. Then Opε,γ(a) in (33) defines a

bounded operator on L2(Rd+1): there exists a constant C > 0, that only depends on σ and V in the
representation (32), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)u‖0 ≤
C

γ|m|
‖u‖0 .

The constant C in Proposition 13 depends uniformly on the compact set in which V takes its
values and on the norm of V in C

d+1
b .

Proof of Proposition 13. The situation is more or less the same as in Proposition 3. The only thing
to observe is that if the symbol σ were independent of V , then we could not use Theorem 6 because
〈θ〉 aε,γ would not be bounded (except in the trivial case a ≡ 0). We thus use the same trick as in
[12] and write

ãε,γ = σ

(
0, ξ +

k β

ε
, γ

)
+ σ♯

(
ε V (x, θ), ξ +

k β

ε
, γ

)
· ε V (x, θ) .

Boundedness on L2 for the Fourier multiplier is trivial, and as far as the second part is concerned,
we can apply Theorem 3 (we could even apply the classical Calderón-Vaillancourt Theorem because
taking only one k-derivative is harmless for the second term since it contains an ε factor). We obtain
a bound of the form

∀ ε ∈ ]0, 1] , ∀ γ ≥ 1 , |||aε,γ − σ

(
0, ξ +

k β

ε
, γ

)
||| ≤

Cσ,V ε

γ|m|
.

�

Let us again observe that the scaling ε V is not crucial here to obtain a uniform L2 bound, as
in the case of wavetrains. This is because we still do not need to control any k-derivative. The
analogue of Proposition 4 works in exactly the same way.

Proposition 14. Let n ≥ d + 1, and let a ∈ Sm
n with m > 0. Then Opε,γ(a) in (33) defines a

bounded operator from Hm,ε(Rd+1) to L2(Rd+1): there exists a constant C > 0, that only depends
on σ and V in the representation (32), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)u‖0 ≤ C ‖u‖Hm,ε,γ .

There is also a smoothing effect in the case m < 0 that is analogous to the one proved in Proposition
5 for wavetrains.

Proposition 15. Let n ≥ d+2, and let a ∈ S−1
n . Then Opε,γ(a) in (33) defines a bounded operator

from L2(Rd+1) to H1,ε(Rd+1): there exists a constant C > 0, that only depends on σ and V in the
representation (32), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖0 .
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If one compares with the proof of Proposition 5, the analogue of the term T3 does not have an
additional ε factor but depends linearly on ∂θV . Hence it falls into the framework of Theorem 6,
uniformly in ε and γ (we use the decay in θ rather than controlling one k-derivative).

We can extend the above results to singular amplitudes which are defined in the following way.

Definition 5 (Singular amplitudes). Let m ∈ R, and let n ∈ N. Then we let Am
n denote the set of

families of functions (ãε,γ)ε∈]0,1],γ≥1 that are constructed as follows:

∀ (x, θ, y, ω, ξ, k) ∈ Rd+1 × Rd+1 × Rd+1 ,

ãε,γ(x, θ, y, ω, ξ, k) := σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
, (34)

where σ ∈ Sm(O1 ×O2), 〈θ〉V and 〈ω〉W belong to the space C n
b (R

d+1), and where furthermore V ,
resp. W , takes its values in a convex compact subset K1, resp. K2, of O1, resp. O2, that contains
the origin.

Our continuity results of Propositions 6 and 7 extend to the case of pulses. For ã ∈ Am
n , our goal

is to define, whenever the formula makes sense, the singular oscillatory integral operator acting on
functions u ∈ S (Rd+1) as follows:

Õp
ε,γ

(ã)u(x, θ) :=
1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω)) σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)

u(y, ω) dξ dk dy dω . (35)

We have the following result for bounded amplitudes. (The integral in (35) has to be understood as
the limit in S ′(Rd+1) of a truncation process in (ξ, k).)

Proposition 16. Let n ≥ d + 1, and let ã ∈ Am
n with m ≤ 0. Then Õp

ε,γ
(ã) in (35) defines a

bounded operator on L2(Rd+1): there exists a constant C > 0, that only depends on σ, V and W in
the representation (34), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) ,
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
0
≤

C

γ|m|
‖u‖0 .

Proof of Proposition 16. We use the decomposition

ãε,γ = σ

(
ε V (x, θ), 0, ξ +

k β

ε
, γ

)
+ σ♯

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· εW (y, ω) .

Boundedness on L2 for the first term follows from Proposition 13 since we deal here with a singular
pseudodifferential operator. As far as the second term is concerned, we can apply Theorem 7 because
we have gained some decay in ω and taking one k-derivative is harmless due to the ε factor. �

The smoothing effect for amplitudes of degree −1 is more subtle.

Proposition 17. Let n ≥ d+2, and let ã ∈ A−1
n . Then Õp

ε,γ
(ã) in (35) defines a bounded operator

from L2(Rd+1) into H1,ε(Rd+1): there exists a constant C > 0, that only depends on σ, V and W
in the representation (34), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) ,
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0 .

Proof of Proposition 17. Proposition 16 already gives a control of γ times the L2 norm so it only
remains to estimate the derivatives. Applying similar arguments as in the proof of Proposition 7,

the derivative (∂x1
+ β1/ε ∂θ) Õp

ε,γ
(ã)u is computed by differentiating formally under the integral

sign as long as the amplitude obtained by such differentiation defines a bounded operator onL2. We
compute (

∂x1
+

β1

ε
∂θ

)
Õp

ε,γ
(ã)u = T1 + T2 + T3 ,
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where we use the notation

T1(x, θ) :=
1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))

i

(
ξ1 +

k β1

ε

)
σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
u(y, ω) dξ dk dy dω ,

T2(x, θ) :=
1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))

[
∂v σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· ε ∂x1

V (x, θ)

]
u(y, ω) dξ dk dy dω ,

T3(x, θ) :=
β1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))

[
∂v σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· ∂θ V (x, θ)

]
u(y, ω) dξ dk dy dω .

The L2 bound of the terms T1, T2 follows from Propositions 16 since we deal with bounded amplitudes
of sufficient smoothness. The only term to consider with care is T3. We decompose its amplitude as
follows:

∂v σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· ∂θ V (x, θ) = ∂v σ

(
ε V (x, θ), 0, ξ +

k β

ε
, γ

)
· ∂θ V (x, θ)

+ σ♭

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· [εW (y, ω), ∂θ V (x, θ)] ,

where σ♭(v, w, ξ, γ) acts bilinearly on its arguments. The first term in the decomposition is a pseu-
dodifferential symbol that has decay in θ and for which we can use Theorem 6 (the decay in θ implies
that we do not need to control k-derivatives). The second term in the decomposition has decay in
both θ and ω and it even has an ε factor. We can thus apply either Theorem 7 or 8 and derive an
L2 bound that is uniform in the parameters ε, γ. �

The argument of Lemma 5 based on integration by parts still works for amplitudes of degree 1,
and we have

Lemma 6. Let ã ∈ A1
n, n ≥ 3 (d + 1). Then Õp

ε,γ
(ã) in (35) is well-defined from S (Rd+1) into

S ′(Rd+1) as the limit of the operators associated with the amplitude χ(δ ξ, δ k) ã, χ ∈ C ∞
0 (Rd+1).

Singular oscillatory integral operators and singular pseudodifferential operators are closely linked.
The results below are the direct extensions of Theorems 3 and 4. There is a new technical difficulty
which arises because the set of θ-frequencies is no longer discrete and we thus really need to take
derivatives while we had to deal with finite differences in Part A. However, the general ideas in the
proof are quite similar.

Theorem 9. Let ã ∈ A0
n, n ≥ 2 (d+ 1), be given by (34), and let a ∈ S0

n be defined by

∀ (x, θ, ξ, k) ∈ Rd+1 × Rd+1 , aε,γ(x, θ, ξ, k) := σ

(
ε V (x, θ), εW (x, θ), ξ +

k β

ε
, γ

)
.

Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) ,
∥∥∥Õp

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤

C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd+1) ,
∥∥∥Õp

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0 ,

uniformly in ε and γ.

The reason why we need 3 d+ 3 derivatives on the symbol for the smoothing effect (rather than
2 d+ 3 as in Theorem 3) will be explained in the proof below.
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Proof of Theorem 9. Let us first observe that when the amplitude ã does not depend on (y, ω), there

is no error in the difference Õp
ε,γ

(ã)u − Opε,γ(a)u, so we can restrict to the case where ã has the
form

ãε,γ(x, θ, y, ω, ξ, k) := σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· εW (y, ω) ,

where σ(v, w1, ξ, γ) · w2 acts linearly on w2.

• Following the ideas of Proposition 2, we can decompose the difference Õp
ε,γ

(ã) − Opε,γ(a) as

Õp
ε,γ

(r1) + Õp
ε,γ

(r2), with r1 as in Proposition 2, and

r2 :=
1

i

∫ 1

0

∂ω ∂kãε,γ
(
x, θ, x, (1 − t) θ + t ω, ξ, k

)
dt .

The amplitude r1 reads

r1 =
1

i

d∑

j=1

∫ 1

0

σj

(
ε V (x, θ), εW ((1 − t)x+ t y, ω), ξ +

k β

ε
, γ

)
· ε ∂yj

W ((1 − t)x+ t y, ω) dt

+
1

i

d∑

j=1

∫ 1

0

dwσj

(
ε V (x, θ), εW ((1 − t)x+ t y, ω), ξ +

k β

ε
, γ

)
· [ε ∂yj

W, εW ]((1−t)x+t y, ω) dt ,

with σj := ∂ξj σ ∈ S−1. To prove that Õp(r1) is bounded on L2, we wish to apply Theorem 7 and
we thus try to control |||r1|||Amp. Since we can use some decay in ω, it is sufficient to control one
derivative in k, 2 d derivatives in ξ, d derivatives in x, d derivatives in y, one derivative in θ and one
derivatives in ω. The worst case occurs when d derivatives in x and d derivatives in y act on the
term ∂yj

W (. . . ) and we thus need W to have 2 d + 2 derivatives in L∞ with the weight 〈ω〉. The
factor ε allows for a uniform control of the k-derivative, and we thus get a bound of the form

|||r1|||Amp ≤
C

γ
,

with the quantity |||r1|||Amp defined in Theorem 7.

• Let us now look at the operator Õp
ε,γ

(r2), which is more complicated. We compute

r2 =
1

i

d∑

j=1

∫ 1

0

βj σj

(
ε V (x, θ), εW (x, (1 − t) θ + t ω), ξ +

k β

ε
, γ

)
· ∂ωW (x, (1 − t) θ + t ω) dt

+
1

i

d∑

j=1

∫ 1

0

βj dwσj

(
ε V (x, θ), εW (x, (1 − t) θ + t ω), ξ +

k β

ε
, γ

)
·[ε ∂ωW,W ](x, (1−t) θ+t ω) dt ,

with again σj := ∂ξj σ ∈ S−1. The ”leading” part of the amplitude r2 is

r3 :=
1

i

d∑

j=1

∫ 1

0

βj σj

(
ε V (x, θ), 0, ξ +

k β

ε
, γ

)
· ∂ωW (x, (1 − t) θ + t ω) dt

=
1

i

d∑

j=1

βj σj

(
ε V (x, θ), 0, ξ +

k β

ε
, γ

)
·
W (x, θ) −W (x, ω)

θ − ω
,

for θ 6= ω. Using separate estimates for |θ − ω| ≤ 1 or |θ − ω| ≥ 1, we obtain

sup
α,β∈{0,1}d+1

sup
ν∈{0,1,2}d

∥∥〈θ − ω〉 (〈θ〉−1 + 〈ω〉−1)−1 ∂α
x,θ ∂

β
y,ω ∂ν

ξ r3
∥∥
L∞(Rd+1×Rd+1×Rd+1)

≤
C

γ
,

uniformly in the parameters ε and γ. (Observe that we cannot take any k-derivative because there
is no ε factor in the amplitude r3, but we have decay in two directions of R2 that are either (θ−ω, θ)
or (θ − ω, ω).) We are not exactly in the framework of Theorem 8 (where the decay takes place
in the (θ, ω) directions) but we claim that the continuity result of Theorem 8 still holds if one
replaces the weight 〈θ〉 〈ω〉 by the above weight. The only important point is to have a weight in two
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independent directions of the (θ, ω)-plane. We can therefore conclude that the oscillatory integral

operator Õp(r3) is bounded on L2 with an operator norm controlled by 1/γ.

• It remains to prove a bound in L2 for the operator Õp(r2 − r3), and r2 − r3 has the form

1

i

d∑

j=1

∫ 1

0

βj

(
σj

(
ε V (x, θ), εW (x, (1 − t) θ + t ω), ξ +

k β

ε
, γ

)
− σj

(
ε V (x, θ), 0, ξ +

k β

ε
, γ

))

· ∂ωW (x, (1 − t) θ + t ω) dt

+
1

i

d∑

j=1

∫ 1

0

βj dwσj

(
ε V (x, θ), εW (x, (1 − t) θ + t ω), ξ +

k β

ε
, γ

)
·[ε ∂ωW,W ](x, (1−t) θ+t ω) dt .

The L∞ norm of this quantity is uniformly controlled by

C

γ
ε

∫ 1

0

〈θ + t (ω − θ)〉−2 dt ≤
C

γ
ε 〈ω − θ〉−1 .

The 1/γ factor comes from the fact that σj belongs to S−1, and the exponent −2 in the integrand
comes from the fact that we have two functions that both have decay in their ”fast” variable. Since
we have an ε factor available in the amplitude r2 − r3, we can control one k-derivative in L∞ just
using the weight 〈ω − θ〉. Observe that we really need to control one k-derivative because this term
has decay in one single direction of the (θ, ω)-plane so we are not able to use the same argument as
for the amplitude r3.

At this stage, we have seen that each piece in the decomposition of the oscillatory integral operator

Õp
ε,γ

(ã) − Opε,γ(a) gives rise to a bounded operator on L2 with operator norm O(1/γ). We thus
obtain the first part of Theorem 9.

• In order to prove the smoothing effect, we need to control the first order singular derivatives

of the difference Õp
ε,γ

(ã)u − Opε,γ(a)u. If we stick to the above decomposition r1 + r2, the piece
r3 will be differentiated with respect to θ and multiplied by 1/ε. There will then be little chance
to obtain a uniform control of this piece since we had no ε factor there. We therefore use another
decomposition of the amplitude and write

Õp
ε,γ

(ã)u−Opε,γ(a)u = Õp
ε,γ

(r1)u+ Õp
ε,γ

(r2,♯)u ,

where r1 is the same amplitude as above, and r2,♯ denotes the amplitude

r2,♯ := σ

(
ε V (x, θ), εW (x, ω), ξ +

k β

ε
, γ

)
·εW (x, ω)−σ

(
ε V (x, θ), εW (x, θ), ξ +

k β

ε
, γ

)
·εW (x, θ) ,

(36)
which each expression on the right-hand side has degree 0 with respect to the frequencies (observe
that here we have not applied Taylor’s formula and integration by parts to get some decay in the
frequency variables).

The singular derivatives of the term Õp
ε,γ

(r1)u are computed according to the formula
(
∂x1

+
β1

ε

)
Õp

ε,γ
(r1)u = Õp

ε,γ
(
i

(
ξ1 +

k β1

ε

)
r1

)
u+ Õp

ε,γ
(∂x1

r1)u+
β1

ε
Õp

ε,γ
(∂θr1)u .

Estimating each term in the above decomposition follows from arguments that were already used
above. In particular, there is no problem here with the ε factors since the θ derivative on r1 yields
an additional ε factor, and it also yields some decay in the θ-direction. We can therefore prove

a uniform L2 bound for the singular derivatives of Õp
ε,γ

(r1)u as long as the regularity n of the
functions V,W in the amplitude satisfies n ≥ 2 d+ 3 (compare with Theorem 3).

Let us now look at the singular derivative of the term Õp
ε,γ

(r2,♯)u:
(
∂x1

+
β1

ε

)
Õp

ε,γ
(r2,♯)u = Õp

ε,γ
(
i

(
ξ1 +

k β1

ε

)
r2,♯

)
u+ Õp

ε,γ
(∂x1

r2,♯)u+
β1

ε
Õp

ε,γ
(∂θr2,♯)u .

There is a subtletly here because the first amplitude on the right-hand side has degree +1 with
repect to the frequencies, and this is the reason why we need n ≥ 3 d + 3 in Theorem 9 (in order



SINGULAR PSEUDODIFFERENTIAL CALCULUS 37

to give a meaning to this quantity). For this first term, we use the Taylor formula and integrate by
parts to get

Õp
ε,γ
(
i

(
ξ1 +

k β1

ε

)
r2,♯

)
u =

1

(2 π)d+1

∫

Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))

(∫ 1

0

∂ω ∂k bε,γ(x, θ, x, (1 − t) θ + t ω, ξ, k) dt

)
u(y, ω) dξ dk dy dω ,

with

bε,γ(x, θ, y, ω, ξ, k) := i

(
ξ1 +

k β1

ε

)
σ

(
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

)
· εW (y, ω) .

Since bε,γ has degree +1, its k-derivative has degree 0. More precisely, we can check that all terms
arising when computing the derivative ∂ω ∂k bε,γ yield an oscillatory integral operator that is bounded
on L2 for n ≥ 3 d+ 3.

The terms Õp
ε,γ

(∂x1
r2,♯)u and β1/ε Õp

ε,γ
(∂θr2,♯)u are estimated by using the expression (36).

Let us observe that the second term in the right-hand side of (36) is independent of (y, ω) so it
gives rise to a genuine pseudodifferential operator (for which the continuity criterion of Theorem
6 is less restrictive than the analogous result for oscillatory integral operators). Eventually, the
interested reader can check that, using either Theorem 6 or Theorem 8, all amplitudes arising when
computing ∂x1

r2,♯ and β1/ε ∂θr2,♯ define oscillatory integral operators that are bounded on L2 and
whose operator norm is O(1) uniformly in ε, γ. We feel free at this stage to shorten the details that
are very similar to many of the above arguments. �

In the same spirit as Theorem 4, we have the following result in the case of pulses.

Theorem 10. Let ã ∈ A1
n, n ≥ 3 d+ 4, be given by (34), and let a ∈ S1

n be defined by

∀ (x, θ, ξ, k) ∈ Rd+1 × Rd+1 , aε,γ(x, θ, ξ, k) := σ

(
ε V (x, θ), εW (x, θ), ξ +

k β

ε
, γ

)
.

Then the operator Õp
ε,γ

(ã)−Opε,γ(a) is bounded on L2, namely there exists a constant C ≥ 0 such
that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) ,
∥∥∥Õp

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤ C ‖u‖0 .

In particular, Õp
ε,γ

(ã) maps H1,ε into L2 and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1]
and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) ,
∥∥∥Õp

ε,γ
(ã)u

∥∥∥
0
≤ C ‖u‖H1,ε,γ .

The proof is very similar to that of Theorem 4, with suitable modifications as in Theorem 9 in order
to get some decay in the fast variables θ and/or ω.

8. Singular pseudodifferential calculus II. Adjoints and products

The same results as in Section 5 hold in the context of pulses. We just state the corresponding
results without proof in view of a future application to nonlinear geometric optics problems. The
two first results deal with adjoints of singular pseudodifferential operators while the last two deal
with products.

Proposition 18. Let a ∈ S0
n, n ≥ 2 (d+1), and let a∗ denote the conjugate transpose of the symbol

a. Then Opε,γ(a) and Opε,γ(a∗) act boundedly on L2 and there exists a constant C ≥ 0 such that
for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
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Proposition 19. Let a ∈ S1
n, n ≥ 3 d+ 4, and let a∗ denote the conjugate transpose of the symbol

a. Then Opε,γ(a) and Opε,γ(a∗) map H1,ε into L2 and there exists a family of operators Rε,γ that
satisfies

• there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Rε,γ u‖0 ≤ C ‖u‖0 ,

• the following duality property holds

∀u, v ∈ S (Rd+1) , 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2 .

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε into L2.

Proposition 20. Let a, b ∈ S0
n, n ≥ 2 (d+ 1). Then there exists a constant C ≥ 0 such that for all

ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε ,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d+ 4. Then there exists a constant C ≥ 0 such that

for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤ C ‖u‖0 .

Proposition 21. Let a ∈ S−1
n , b ∈ S1

n, n ≥ 3 d + 4. Then Opε,γ(a)Opε,γ(b) defines a bounded
operator on H1, ε and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S (Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε ,γ ≤ C ‖u‖0 .

Our final result is G̊arding’s inequality.

Theorem 11. Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a compact subset K of O. Let
now a ∈ Sn

0 , n ≥ 2 d+ 2 be given by (32), where V is valued in a convex compact subset K. Then
for all δ > 0, there exists γ0 which depends uniformly on V , the constant CK and δ, such that for
all γ ≥ γ0 and all u ∈ S (Rd+1), there holds

Re 〈Opε,γ(a)u;u〉L2 ≥ (C − δ) ‖u‖20 .

There is of course an extended version of the singular calculus that allows for pseudodifferential
cut-offs just as in the wavetrains case.
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