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ISS Lyapunov functions for time-varying hyperbolic partial differential
equations

Christophe Prieur and Frédéric Mazenc

Abstract— A family of time-varying hyperbolic systems of
balance laws is considered. The partial differential equations
of this family can be stabilized by selecting suitable boundary
conditions. For the stabilized systems, the classical technique
of construction of Lyapunov functions provides with a function
which is a weak Lyapunov function in some cases, but is not
in others. We transform this function through a strictification
approach which gives a time-varying strict Lyapunov function
which allows us to establish asymptotic stability in the gen-
eral case and a robustness property with respect to additive
disturbances of Input-to-State Stability (ISS) type.

I. INTRODUCTION

Lyapunov function based techniques are central in the
study of dynamical systems. This is especially true for those
having an infinite number of dynamics. These systems are
usually modelled by time-delay systems or partial differential
equations (PDEs). For the latter family of systems, Lyapunov
functions are useful for the analysis of many different types
of problems, such as the existence of solutions for the heat
equation [1], or the controllability of the semilinear wave
equation [2]. The present paper focuses on a class of one-
dimensional hyperbolic equations like those written as a
system of conservation laws. The study of this class of PDEs
is crucial when considering a wide range physical networks
having an engineering relevance. Among the potential ap-
plications we have in mind, there are for instance hydraulic
networks (for irrigation or navigation), electric line networks,
road traffic networks [3] or gas flow in pipeline networks
[4], [5]. The importance of these applications motivates a
lot of theoretical questions on hyperbolic systems which
for instance pertain to optimal control and controllability as
considered in [6], [7], [8].

The stabilizability of such systems is often proved by
means of a Lyapunov function as illustrated by the con-
tributions [5], [9], [10] where different control problems
are solved for particular hyperbolic equations (see also
[11]for the use of Riemann coordinates techniques). For more
general nonlinear hyperbolic equations, the knowledge of
Lyapunov functions can be useful for the stability analysis
of a system of conservation laws (see [12]), or even for the
design for these systems of stabilizing boundary controls (see
the recent work [13]).

To demonstrate asymptotic stability through the knowl-
edge of a weak Lyapunov function i.e. a Lyapunov function
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whose derivative, along the trajectories of the system which
is considered, is nonpositive, the celebrated Lasalle invari-
ance principle has to be invoked (see e.g. [1], [14], [15]). It
requires to state a precompactness property for the solutions,
which may be difficult to prove (and is not even always
satisfied, as illustrated by the hyperbolic systems considered
in [12]). This technical step is not needed when is available
a strict Lyapunov function i.e. a Lyapunov function whose
derivative, along the trajectories of the system which is con-
sidered, is negative definite. Thus designing such a Lyapunov
function is a way to overcome this technical difficulty, as
done for example in [12]. These remarks motivate the present
paper which is devoted to new Lyapunov techniques for
the study of stability and robustness properties of Input-to-
State-Stable (ISS) type for a family of time-varying linear
hyperbolic PDEs with disturbances. By first applying the
classical technique of construction of Lyapunov functions
available in the literature, we will obtain a function which
is a weak Lyapunov function for some of the systems we
consider, but not for the others. Next, we will transform
this function through a strictification approach, which owes
a great deal to the one presented in [16], (see also [17], [18])
and obtain that way a strict Lyapunov function which allows
us to estimate the robustness of the stability of the systems
with respect to the presence of uncertainties and or external
disturbances. The function we shall construct is given by an
explicit expression.

It is worth mentioning that although the ISS notion is
very popular in the area of the dynamical systems of finite
dimension (see e.g. the recent survey [19]), or for systems
with delay (see for instance [20]), the present work is, to the
best of our knowledge, the first one which uses it to charac-
terize a robustness property for hyperbolic PDEs. This work
parallels what has been done in [21] where ISS-Lyapunov
functions for semilinear time-invariant parabolic PDEs are
derived using strictification techniques (see also [22] where
ISS properties are compared for a reaction-diffusion system
with its finite dimensional counterpart without diffusion).
On the other hand, the construction we shall present is
significantly disconnected from the one in [21] because the
family of systems we will study is very different from the
one considered in [21]. In particular the systems studied in
[21] are time-invariant whereas the systems considered in the
present work are time-varying.

The paper is organized as follows. Basic definitions and
notations are introduced in Section II. In Section III the
analysis of the robustness of a linear time-varying hyperbolic
PDE with uncertainties is carried out by means of the design



of an ISS Lyapunov function. In Section IV, the main result
is illustrated by an example. Concluding remarks in Section
V end the work.

Notation. Throughout the paper, the argument of the func-
tions will be omitted or simplified when no confusion can
arise from the context. A function α is said to be of
class K∞ if it is continuous, zero at zero, increasing and
unbounded. For any integer n, we let Id denote the identity
matrix of dimension n. Given a continuously differentiable
function A : Rn → R, ∂A

∂Ξ (Ξ) stands for the vector
( ∂A∂ξ1 (Ξ)..... ∂A∂ξn (Ξ)) ∈ Rn. The norm induced from the
Euclidean inner product of two vectors will be denoted by
| · |. Given a matrix A, its induced matrix norm will be
denoted by ||A||, and Sym(A) = 1

2 (A + A>) stands for the
symmetric part of A. We denote the set of diagonal positive
definite matrices by Dn,+. The norm |•|L2(0,L) is defined by:

|φ|L2(0,L) =
√∫ L

0
|φ(z)|2dz. Finally, given two topological

spaces X and Y , we denote by C0(X;Y ) (resp. C1(X;Y ))
the set of the continuous (resp. continuously differentiable)
functions from X to Y . Following [13], we introduce the
notation, for all matrices M ∈ Rn×n,

ρ1(M) = inf{‖∆M∆−1‖, ∆ ∈ Dn,+} . (1)

II. BASIC DEFINITIONS AND NOTIONS

Throughout our work, we will consider partial differential
equations of the form

∂X

∂t
(z, t)+Λ(z, t)

∂X

∂z
(z, t) = F (z, t)X(z, t)+δ(z, t) , (2)

where z ∈ [0, L], t ∈ [0,+∞), and Λ(z, t) is a diagonal
matrix in Rn×n whose m first diagonal terms are nonnegative
and the n − m last terms are nonpositive. We assume that
the function δ(z, t) is a disturbance of class C1, F (z, t) is a
periodic function with respect to t of class C1, Λ(z, t) is of
class C2, periodic with respect to t of period T .

The boundary conditions are written as(
X+(0, t)
X−(L, t)

)
= K

(
X+(L, t)
X−(0, t)

)
(3)

where X =
(
X+

X−

)
, X+ ∈ Rm, X− ∈ Rn−m, and K ∈

Rn×n is a constant matrix.
The initial condition is

X(z, 0) = X0(z) , ∀z ∈ (0, L) , (4)

where X0 is a function in L2(0, L)).
When the functions Λ, and F do not depend on z and

t, and when Λ is invertible, the Cauchy problem (2), (3)
and (4) is well-posed (see e.g. [23, Section 2.1 and Section
2.3]). This means that for any initial condition X0 in
L2((0, L),Rn), for any T > 0, and any δ in L2((0, L) ×
(0, T ); Rn), there exists C(T ) > 0 such that a solution
X ∈ C0([0,+∞);L2((0, L); Rn)) exists, is unique and
satisfies, for all t ∈ [0, T ],

|X(., t)|L2((0,L);Rn) ≤ C(T )|X0|L2((0,L);Rn) .

Now we introduce the notions of weak, strict and ISS
Lyapunov functions that we consider in this paper (see for
instance [15, Def. 3.62] for the notion of Lyapunov functions
and [21] for the notion of ISS Lyapunov functions in an
infinite dimensional context).

Definition 2.1: Let ν : L2(0, L) × R → R be a con-
tinuously differentiable function, periodic with respect to t.
The function ν is said to be a weak Lyapunov function for
(2) with (3), if there are two functions κS and κM of class
K∞ such that, for all functions φ ∈ L2(0, L) and for all
t ∈ [0,+∞),

κS
(
|φ|L2(0,L)

)
≤ ν(φ, t) ≤

∫ L

0

κM (|φ(z)|) dz (5)

and, in the absence of δ, for all solutions of (2) satisfying
(3), and all t ≥ 0,

dν(X(., t), t)
dt

≤ 0 .

The function ν is said to be a strict Lyapunov function for
(2) with (3) if, in the absence of δ, there exits a real number
λ1 > 0 such that, for all solutions of (2) satisfying (3), and
for all t ≥ 0,

dν(X(., t), t)
dt

≤ −λ1ν(X(., t), t) .

The function ν is said to be an ISS Lyapunov function for
(2) with (3) if there exit a positive real number λ1 > 0 and a
function λ2 of class K such that, for all continuous functions
δ, for all solutions of (2) satisfying (3), and for all t ≥ 0,

dν(X(., t), t)
dt

≤ −λ1ν(X(., t), t) +
∫ L

0

λ2(|δ(z, t)|)dz .
Remark 1: 1. For conciseness, we will often use the

notation ν̇ instead of dν(X(.,t),t)
dt .

2. Let us recall that, when is known a weak Lyapunov
function, asymptotic stability can be often established via
the celebrated LaSalle invariance principle applies (see [15,
Theorem 3.64] among other references).

3. When a strict Lyapunov function ν exists for (2) with (3)
and δ is not present, then the value of ν along the solutions of
(2) satisfying (3) exponentially decays to zero and therefore
each solution X(z, t) satisfies lim

t→+∞
|X(., t)|L2(0,L) = 0.

When in addition, there exists a function κL of class K∞,
such that, for all functions φ ∈ L2(0, L) and for all t ≥ 0,

ν(φ, t) ≤ κL
(
|φ|L2(0,L)

)
, (6)

then the system (2) is globally asymptotically stable for the
topology of the norm L2.

4. When the system (2) with (3) admits an ISS Lyapunov
function ν, then, one can check through elementary calcula-
tions1 that, for all solutions of (2) satisfying (3) and for all

1For instance the next inequality follows from the fact that we have, for
all κ of class K, and for all positive values a and b,

κ(a+ b) ≤ κ(2a) + κ(2b) ,

and from the fact that the function κ−1
S is zero at zero and nondecreasing.



instants t ≥ t0, the inequality

|X(., t)|L2(0,L) ≤ κ−1
S (ϕ1(t, t0, X)) + κ−1

S (ϕ2(t, t0))

with

ϕ1(t, t0, X) = 2e−λ1(t−t0)

∫ L

0

κM (|X(z, t0)|)dz

and

ϕ2(t, t0) =
2
λ1

sup
`∈[t0,t]

(∫ L

0

λ2(|δ(z, `)|)dz

)
holds. This inequality is the analogue for the PDEs (2) with
(3) of the ISS inequalities for ordinary differential equations.
It gives an estimation of the influence of the disturbance δ
on the solutions of the system (2) with (3). ◦

III. ISS LYAPUNOV FUNCTIONS FOR LINEAR
HYPERBOLIC SYSTEMS

Before stating the main theoretical result of the work,
some comments are needed. Since, in the case where the
system (2) is such that m < n, one can replace X(z, t) by(

X+(z, t)
X−(L− z, t)

)
and obtain that way a new PDE whose

corresponding diagonal matrix function Λ has only nonnega-
tive entries, we may assume without loss of generality that Λ
is diagonal with nonnegative entries and then the boundary
conditions (3) are the boundary condition

X(0, t) = KX(L, t) . (7)

Next, we recall an important result given in [13] because it
sheds light on the problem we consider and, more precisely,
on the assumptions we introduce below. If Λ is constant,
positive, and ρ1(K) < 1, where the ρ1 is the function defined
in (1), then the system (2), when F (z, t) = 0 and δ(z, t) = 0
for all z ∈ [0, L], t ≥ 0, with the boundary conditions (3)
is exponential stable in H2-norm. Moreover there exist a
diagonal positive definite matrix 2 Q ∈ Rn×n and a positive
constant ε > 0 such that

Sym(QΛ−K>QΛK) ≥ εId . (8)

Furthermore, following what has been assumed for the
parabolic equation in [21], it might seem natural to consider
the case where F (z, t) possesses some stability properties.
On the other hand, there is no reason to believe that this
property is always needed.

These remarks lead us to introduce the following assump-
tion:

Assumption 1: For all t ≥ 0 and for all z ∈ [0, L], all the
entries of Λ(z, t) are nonnegative. There exist a symmetric
positive definite matrix Q, a real number α ∈ (0, 1), a
continuous real-valued function r, periodic of period T > 0
with a positive mean value, i.e. such that the constant

B =
∫ T

0

r(m)dm (9)

2such a matrix Q may be obtained by selecting a diagonal positive matrix
∆ such that ∆K∆−1 < I . Then selecting Q = ∆2Λ−1 and ε > 0
sufficiently small we have (8).

is positive, satisfying, for all t ≥ 0 and for all z ∈ [0, L],
the following inequalities:

Sym
(
αQΛ(L, t)−K>QΛ(L, t)K

)
≥ 0 , (10)

Sym (QΛ(z, t)) ≥ r(t)Id , (11)
Sym

(
Q∂Λ
∂z (z, t) + 2QF (z, t)

)
≤ 0 . (12)

We are ready to state and prove the main result of the paper.
Theorem 1: Assume the system (2) with the boundary

conditions (7) satisfies Assumption 1. Let µ be any real
number such that

0 < µ ≤ − 1
L

ln(α) . (13)

Then the function U : L2(0, L) × R → R defined, for all
φ ∈ L2(0, L) and t ∈ R, by

U(φ, t) = e
1
T

R t
t−T

R t
`
q(m)dmd`

∫ L

0

φ(z)>Qφ(z)e−µzdz ,

(14)
with

q(t) =
µ

||Q||

(
r(t)− B

2T

)
, (15)

where Q and r are the matrix and the function in Assumption
1, is an ISS Lyapunov function for the system (2) with (7).

Remark 2: 1. Assumption 1 does not imply that for all
fixed z ∈ [0, L], the ordinary differential equation Ẋ =
F (z, t)X is stable. In Section IV, we will study an example
where this system is exponentially unstable.

2. The fact that Q is symmetric positive definite and all
the entries of Λ(z, t) are nonnegative does not imply that
Sym (QΛ(z, t)) is positive definite. That is the reason why
we do not assume that r is a nonnegative function.

3. Assumption 1 holds when, in the system (2), Λ(z, t) is
constant, F (z, t) is constant and diagonal, δ(z, t) = 0 for all
z ∈ [0, L] and t ≥ 0 and the boundary condition (3) satisfies

Sym
(
QΛ−K>QΛK

)
≥ 0 , Sym (QF ) ≤ 0

for a suitable symmetric positive definite matrix Q. Therefore
Theorem 1 generalizes the sufficient conditions of [24] for
the exponential stability of linear hyperbolic systems of
balance laws to the time-varying case and to the perturbed
case.

4. The Lyapunov function U defined in (14) is a time-
varying function, periodic of period T . In the case where the
system is time-invariant, one can chose a constant function
q(t), which results with a time-invariant function (14). This
function is a quite usual Lyapunov function candidate in the
context of the stability analysis of PDEs (see e.g., [13], [25],
[26]). ◦

Proof. We begin the proof by showing that the function

V (φ) =
∫ L

0

φ(z)>Qφ(z)e−µzdz ,

is a weak Lyapunov function for the system (2) with (7) when
Assumption 1 and (13) are satisfied and δ is identically equal
to zero.



We note for later use that, for all φ ∈ L2(0, L),

1
β

∫ L

0

|φ(z)|2 dz ≤ V (φ) ≤ β
∫ L

0

|φ(z)|2 dz (16)

with β = max
{
||Q||, e

µL

λQ

}
, where λQ is the smallest

eigenvalue of Q. Now, we compute the time-derivative of
V along the solutions of (2) with (7):

V̇ = 2
∫ L

0

X(z, t)>Q
∂X

∂t
(z, t)e−µzdz

= 2
∫ L

0

X(z, t)>Q

×
[
−Λ(z, t)

∂X

∂z
(z, t) + F (z, t)X(z, t) + δ(z, t)

]
×e−µzdz

= −R1(X(., t), t) +R2(X(., t), t)
+R3(X(., t), t) , (17)

with

R1(φ, t) = 2
∫ L

0

φ(z)>QΛ(z, t)
∂φ

∂z
(z)e−µzdz ,

R2(φ, t) = 2
∫ L

0

φ(z)>QF (z, t)φ(z)e−µzdz ,

R3(φ, t) = 2
∫ L

0

φ(z)>Qδ(z, t)e−µzdz .

Now, observe that

R1(φ, t) =
∫ L

0

∂(φ(z)>QΛ(z, t)φ(z))
∂z

e−µzdz

−
∫ L

0

φ(z)>Q
∂Λ
∂z

(z, t)φ(z)e−µzdz .

Performing an integration by part on the first integral and
using (7), we get

R1(φ, t) = φ(L)>QΛ(L, t)φ(L)e−µL

−φ(0)>QΛ(0, t)φ(0)

+µ
∫ L

0

φ(z)>QΛ(z, t)φ(z)e−µzdz

−
∫ L

0

φ(z)>Q
∂Λ
∂z

(z, t)φ(z)e−µzdz .

(18)
Combining (17) and (18), we obtain

V̇ = −X(L, t)>QΛ(L, t)X(L, t)e−µL

+X(0, t)>QΛ(0, t)X(0, t)
+R4(X(., t), t)

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz ,

with

R4(φ, t) = −µ
∫ L

0

φ(z)>QΛ(z, t)φ(z)e−µzdz

+
∫ L

0

φ(z)>Q
∂Λ
∂z

(z, t)φ(z)e−µzdz

+2
∫ L

0

φ(z)>QF (z, t)φ(z)e−µzdz .

Using (7), we obtain

V̇ = −X(L, t)>QΛ(L, t)X(L, t)e−µL

+X(L, t)>K>QΛ(L, t)KX(L, t)
+R4(X(., t), t)

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz .

By grouping the terms and using the notation

N(t) = K>QΛ(L, t)K

we obtain
V̇ = X(L, t)>

[
N(t)− e−µLQΛ(L, t)

]
X(L, t)

+R4(X(., t), t)

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz .

Grouping the terms in R4(X(., t), t), we obtain

V̇ = X(L, t)>
[
N(t)− e−µLQΛ(L, t)

]
X(L, t)

−
∫ L

0

X(z, t)>QM(z, t)X(z, t)e−µzdz

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz ,

with

M(z, t) = µΛ(z, t)− ∂Λ
∂z

(z, t)− 2F (z, t) .

The inequalities (10) and (13) imply that

V̇ ≤ −
∫ L

0

X(z, t)>QM(z, t)X(z, t)e−µzdz

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz .

It follows from (12) that

V̇ ≤ −µ
∫ L

0

X(z, t)>QΛ(z, t)X(z, t)e−µzdz

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz .

Using (11), we deduce that

V̇ ≤ −µr(t)
∫ L

0

|X(z, t)|2e−µzdz

+2
∫ L

0

X(z, t)>Qδ(z, t)e−µzdz .

From (16), we deduce that

V̇ ≤ − µ
||Q||r(t)V (X(., t))

+2||Q||
∫ L

0

|X(z, t)||δ(z, t)|e−µzdz .
(19)

It follows that, for all κ > 0,

V̇ ≤ − µ
||Q||r(t)V (X(., t))

+2||Q||κ
∫ L

0

|X(z, t)|2e−µzdz

+ ||Q||2κ

∫ L

0

|δ(z, t)|2e−µzdz

≤ −qκ(t)V (X(., t)) + ||Q||
2κ

∫ L

0

|δ(z, t)|2dz ,



with qκ(t) = µ
||Q||r(t)−

2||Q||κ
λQ

.
The inequality (19) implies that when r(t) is nonneg-

ative and δ is identically equal to zero, the function V
is a weak Lyapunov function for the system (2) with the
initial conditions (7). However, we did not assume that the
function r is nonnegative and we aim at establishing that
the system is ISS with respect to δ. This leads us to apply
a strictification technique which transforms V into a strict
Lyapunov function. The technique of [16, Chapter 11] leads
us to consider the time-varying candidate Lyapunov function

Uκ(t, φ) = esκ(t)V (φ) ,

with sκ(t) = 1
T

∫ t

t−T

∫ t

`

qκ(m)dmd`. Through elementary

calculations, one can prove that the time-derivative of Uκ
along the solutions of (2) with the initial conditions (7)
satisfies:

U̇κ ≤ −esκ(t)qκ(t)V (X(., t))

+ ||Q||2κ e
sκ(t)

∫ L

0

|δ(z, t)|2dz

+esκ(t)

[
qκ(t)− 1

T

∫ t

t−T
qκ(m)dm

]
V (X(., t))

≤ ||Q||
2κ e

sκ(t)

∫ L

0

|δ(z, t)|2dz

−esκ(t) 1
T

∫ t

t−T
qκ(m)dmV (X(., t)) .

Since r is periodic of period T , we have∫ t

t−T
qκ(m)dm =

∫ t

t−T

µ

||Q||
r(m)dm− 2T ||Q||κ

λQ
= µ

||Q||B −
2T ||Q||κ
λQ

,

where B is the constant defined in (9). We deduce that the
value

κ =
µBλQ

4T ||Q||2
, (20)

which is positive because B is positive, gives

U̇ ≤ − µ
2||Q||BU(X(., t), t)

+ ||Q||2κ e
sκ(t)

∫ L

0

|δ(z, t)|2dz

≤ − µ
2||Q||BU(X(., t), t) + c1

∫ L

0

|δ(z, t)|2dz ,

with c1 = T ||Q||
3

µBλQ
eT

µrM
||Q|| , rM = sup

{m∈[0,T ]}
{r(m)} and U =

Uκ for κ defined in (20). Moreover, (16) ensures that, for all
t ∈ R and φ ∈ L2(0, L),

c2

∫ L

0

|φ(z)|2 dz ≤ U(t, φ) ≤ c3
∫ L

0

|φ(z)|2 dz ,

with c2 = 1
β e

µ
4||Q|| (2TrS−B), rS = inf

{m∈[0,T ]}
{r(m)} and

c3 = exp
(
TµrM
||Q||

)
β. Therefore inequalities of the type (5)

are satisfied. We deduce that U is an ISS Lyapunov function,
as introduced in Definition 2.1.

This concludes the proof of Theorem 1. •

IV. BENCHMARK EXAMPLE

In this section we consider the system (2) and the bound-
ary condition (3) with the following data, for all z in (0, 1)
and for all t ≥ 0,

X(z, t) ∈ R , L = 1 ,
Λ(z, t) = cos2(t) + 1− z, F (z, t) = sin2(t)

5 ,
K = 1

2 .

A remarkable feature of this system if that the system ξ̇ =
F (z, t)ξ, which rewrites as ξ̇ = sin2(t)

5 ξ is exponentially
unstable. Now, we show that Theorem 1 applies to it. Let Q
be any positive real number. Then we have, for all t ≥ 0,
N(t) = Q

4 cos2(t) and QΛ(L, t) = Q cos2(t) and thus (10)
is satisfied with α = 1

4 . It is clear that (11) holds with r(t) =
cos2(t). Finally, for all z ∈ [0, L], t ≥ 0,

Sym
(
Q∂Λ
∂z (z, t) + 2QF (z, t)

)
= −Q+ 2Q sin2(t)

5

≤ − 3Q
5 .

Therefore (12) holds and Assumption 1 is satisfied. We
conclude that Theorem 1 applies. It follows that the system

∂X

∂t
(z, t) + (cos2(t) + 1− z)∂X

∂z
(z, t) =

sin2(t)
5

X(z, t)

+δ(z, t)

for all z in (0, 1) and for all t ≥ 0, with the boundary
condition X(0, t) = 1

2X(1, t) is asymptotically stable and
the function (14) is an ISS Lyapunov function (with respect
to δ).

V. CONCLUSIONS

For time-varying hyperbolic PDEs, we have designed
ISS-Lyapunov functions. These functions are time-varying
and periodic. They make it possible to derive robustness
properties of the ISS type.

This work leaves many questions open. The problem of
designing ISS Lyapunov functions for nonlinear hyperbolic
equations will be considered in future works, possibly with
the help of Lyapunov functions considered in [13]. In addi-
tion, it would be of interest to use an experimental channel
to validate experimentally the prediction of the offset that is
inferred from the ISS-Lyapunov function in a similar way as
what is done in [27].
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