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Enumeration and asymptotics of restricted compositions having the same

number of parts

Cyril Banderier∗ and Pawe l Hitczenko†‡§

January 30, 2012
Dedicated to the memory of Philippe Flajolet.

Abstract: We study pairs and m–tuples of compositions of a positive integer n with parts restricted to a subset P of
positive integers. We obtain some exact enumeration results for the number of tuples of such compositions having the same
number of parts. Under the uniform probability model, we obtain the asymptotics for the probability that two or, more
generally, m randomly and independently chosen compositions of n have the same number of parts. For a large class of
compositions, we show how a nice interplay between complex analysis and probability theory allows to get full asymptotics
for this probability. Our results extend an earlier work of Bóna and Knopfmacher. While we restrict our attention to
compositions, our approach is also of interest for tuples of other combinatorial structures having the same number of parts.

Keywords: integer composition, pairs of combinatorial structures, local limit theorem, asymptotics of D-finite sequences,
diagonal of algebraic generating function.

1 Introduction

In this note, we study tuples of compositions of positive integers having the same number of parts, and the asymptotics of
related generating functions satisfying some differential equations. Let us recall that a composition of a positive integer n
is any k–tuple (κ1, . . . , κk), k ≥ 1, of positive integers that sum up to n. The κj ’s are called the parts (or summands) of a
composition. It is elementary and well–known (see, e.g. [1]) that there are

(
n−1
k−1
)

compositions of n with k parts, and thus

there are 2n−1 compositions of n. By restricted compositions we mean compositions whose parts are confined to be in a
fixed subset P of N.

The main motivation for this work is a recent paper [6] in which the authors studied pairs of compositions with the
same number of parts. Our extension of this work is directly connected to the question of obtaining the asymptotics of
coefficients of functions satisfying a linear differential equation which, despite the deep work by Fabry, Frobenius, Fuchs,
Picard and other analysts more than one century ago, remains open and is conjectured to be undecidable. We present
here a new way to use probability theory in addition to complex analysis in order to solve this problem for a large class of
functions.

In their paper [6], Bóna and Knopfmacher studied the asymptotic probability that two randomly and independently
chosen compositions of n have the same number of parts. Furthermore, relying on the generating function approach, for
a few specific subsets P they addressed the same question for pairs of restricted compositions. In each of these cases this
probability is asymptotic to C/

√
n with C depending on P. Our main aim here is to extend these results. First, we

show that this asymptotics is universal. That is, we show that for an arbitrary subset P containing two relatively prime
elements the probability that two independently chosen random compositions of n with parts restricted to P have the same
number of parts is asymptotic to C/

√
n. The value of C depends, generally, on P and is explicit. (See our Theorem 5.1

and subsequent remarks, which include e.g. a correction of a constant appearing in [6].) Secondly, we consider the same

question for m > 2 and we show that in this case the sought probability is asymptotic to C/
√
nm−1 for an explicitly given

constant C whose value depends on P and m only. (See our Theorem 5.3.)
Bóna and Knopfmacher’s approach relied on complex analysis; the universality of using a more probabilistic technique

was then noticed by Bóna and Flajolet [5], where certain types of random trees were studied. Our approach is in one sense
a mixture of complex analysis (which gives the full asymptotics expansion, up to a multiplicative constant, and with the
price of heavy computations), and probability theory (a local limit theorem which gives without any heavy computation

∗Laboratoire d’Informatique de Paris Nord, UMR CNRS 7030, Institut Galilée, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430
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the first asymptotic term, and therefore gives access to the multiplicative constant, but intrinsically no access to further
asymptotic terms). Bóna and Flajolet obtained, in particular, a general statement indicating how local limit theorem can
help in evaluating probabilities that two independently chosen random structures of the same size have the same number
of components (this is their Lemma 6 in [5], which corresponds to our Lemma 5.2 for Gaussian density with a slightly
different proof. Our Lemma 5.2 was obtained independently, but later). As we will see, these statements remain true if one
considers more than two random structures.

In Section 2, we present our model. We proceed in Section 3 with some examples (and en passant, some nice questions
in computer algebra) and argue on the intrinsic limitations of an approach relying only on complex analysis. This serves as
a motivation for introducing the local limit law result in Section 4, which finds application in Section 5, thus solving the
initial problem of the asymptotic evaluation of the probability that tuples of compositions have the same number of parts.
We conclude with some perspectives in Section 6.

2 Generating functions for pairs of compositions having the same number
of parts

Let us consider compositions with parts in a set P (a fixed subset of N). To avoid trivial complications caused by the fact
that there may be no compositions of a given n with all parts from P, we assume that P has at least two elements that are
relatively prime (except when explicitly stated otherwise).

We introduce the generating function of the parts p(z) =
∑
j∈P pjz

j , (pj is not necessarily 0 or 1, it can then be
seen as the possible colors or the weight of part j). We thus assume that the pj ’s are non–negative real numbers such
that

∑
j∈P pj > 1. This last condition is to ensure supercriticality of our scheme (see Section 4 below for more details). In

the classical situation when pj is 0 or 1, this condition holds automatically. Denote by

P (z, u) =
∑

n≥0,k≥0

Pn,ku
kzn =

1

1− up(z)
(1)

the bivariate generating function of compositions of n where k encodes its number of parts, and where the “size” of the
composition is n.

With a slight abuse of notation, the corresponding univariate generating function is

P (z) =
∑
n≥0

Pnz
n =

1

1− p(z)
. (2)

This terminology is classical. For example, here are all the compositions of 5 with 3 parts from the set P = {1, 2, 3, 4, 10}:
5 = 1 + 1 + 3 = 1 + 3 + 1 = 3 + 1 + 1 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. Accordingly, P5,3 = 6.

Let XPn be the random variable giving the number of parts in a random composition of n with parts belonging to P.
Random means that we consider the uniform distribution among all compositions of n with parts belonging to P.

Given two subsets P1 and P2 of N, we consider the probability πn := Pr(XP1
n = XP2

n ) that a random composition
of n with parts in P1 has the same number of parts as a random composition with parts in P2. We assume throughout
that, whenever two such compositions are chosen, they are chosen independently and from now on we will not be explicitly
mentioning it. We then introduce the generating function D(z) of the number of pairs of compositions (the first one with
parts in P1, the second one with parts in P2) having the same size and the same number of parts. (D stands for “double”
or “diagonal”, as D(z) can be obtained as a diagonal of multivariate function.)

That is, we consider all k-tuples of elements of P1 and all k-tuples of elements of P2 such that their sum is n. For a
fixed n, let Dn be the total number of such configurations (i.e., we sum over all k).

In the next section, we deal with some interesting examples for which we get explicit formulas.

3 Some closed-form formulas

3.1 An example on tuples of domino tilings

Consider the classical combinatorial problem of tiling a 2×n strip by dominoes. Any tiling is thus a sequence of either one
horizontal domino or 2 vertical dominoes. The generating function of domino tilings is thus P (z) = Seq(z + z2) = 1

1−z−z2 ,
which is the generating function of Pn = Fn+1, where Fn is the Fibonacci number Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.
(Equivalently, the Fibonacci recurrence reflects the fact that removing a horizontal domino on the top of an existing 2× n
tiling leads to a 2× (n− 1) tiling, while removing 2 vertical dominoes on the top leads to a 2× (n− 2) tiling.) Let us now
consider a less trivial question, which is archetypal of the problem we consider in this article (note that it has a closed-form
solution but we will address later in this article similar problems having no such nice closed-form solution):
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Puzzle 3.1 Each of m children makes a tiling of a 2× n strip. What is the probability πn that these m tilings all have the
same number of vertical dominoes, when n gets large?

For m = 2, the number of pairs is given by D(z) = [t0]
∑
k≥0 p

k(zt)pk(1/t), where p(z) = z+z2, and the Cauchy formula
gives

D(z) =
1

2iπ

∮
1

1− p(zt)p(1/t)
dt

t
=

1

2iπ

∮
Num(z, t)

Den(z, t)
dt , (3)

where Num and Den are polynomials in z, t. Let Z(z) be any root of Den, i.e. Den(z, Z) = 0, such that Z is inside the
contour of integration for z ∼ 0. Then, a residue computation gives:

D(z) =
∑
Z

Num(z, Z)

∂tDen(z, Z)
=

1√
z4 − 2z3 − z2 − 2z + 1

= 1 + z + 2z2 + 5z3 + 11z4 + 26z5 + 63z6 + 153z7 + 376z8 + 931z9 +O(z10) .

This is the sequence A051286 from [12] Dn =
∑n
k=0

(
n−k
k

)2
, Bóna and Knopfmacher [6] gives a bijective proof that it is also

the Whitney number of level n of the lattice of the ideals of the fence of order 2n. The probability that 2 tilings of a 2× n
strip have the same number of vertical dominoes is therefore (via singularity analysis, which can be done automatically with
some computer algebra systems, e.g. via the equivalent command of Bruno Salvy, in the Algolib Maple package available
at http://algo.inria.fr/libraries):

πn = Dn/P
2
n ∼

53/4

2
√
π
√
n

+
51/4( 11

32 −
√
5
4 )

√
πn3/2

+O(
1√
n5

) ≈ .9432407854√
n

. (4)

Note that this is consistent with the constant C given in Equation (2.10) in [6]. Our computations are available on-line in
a Maple session1. Note that as Maple does not always simplify algebraic numbers like humans would do (some denesting
options are missing), we used here some of our own denesting recipes so that these nested radicals become more readable
for human eyes.

For m = 3, it is possible to compute the diagonal D(z) via creative telescoping (as automated in Maple via the MGfun
package of Frédéric Chyzak or in Mathematica via the package HolonomicFunctions of Christoph Koutschan). This leads
to the following differential equation:

0 =
(
4z7 + 7z6 + 7z5 + 15z4 + 41z2 + z + 1

)
D (z)

+
(
5z8 + 12z7 + 7z6 + 62z5 + 88z3 + z2 + 6z − 1

) d
dz
D (z)

+z
(
z2 + 1

) (
z4 − z3 + 5z2 + z + 1

) (
z2 + 4z − 1

) d2
dz2

D (z) .

Here, the so-called Frobenius method gives the basis of the vector space of solutions of this ODE, under the form of
local formal solutions around any singularity, by using the associated indicial polynomial (see [9, Chapter VII.9]). In full
generality, the dominating singularity of D(z) is z = ρm, where ρ is the radius of convergence of 1/(1− P (z)); this can be
proven via our Theorem 5.3. In our case, the Frobenius method gives around the dominating singularity ζ :=

√
5− 2:

D(z) = λ1

(
80 + 41

√
5

90
ln(z − ζ) +

8 + 5
√

5

9
ln(z − ζ) +O((z − ζ)2)

)

+ λ2

(
1− 8 + 5

√
5

9
(z − ζ) +

207 + 89
√

5

81
(z − ζ)2 +O((z − ζ)3)

)

for some unknown coefficients λ1, λ2 (related to the so-called Stokes constants or connection constants)2. However, only
the first summand contributes to the asymptotics of Dn and a numerical scheme of our own allows to determine (with the
help of the heuristic LLL algorithm) the value of λ1. Using singularity analysis then leads to

πn ∼
5
√

15

6

1

πn
+

5(10
√

3− 9
√

15)

54

1

πn2
+O(1/n3) ≈ 1.027340740

n
.

1See http://www-lipn.univ-paris13.fr/∼banderier/Pawel/Maple/.
2Note that, as typical with the Frobenius method (or also with the Birkhoff-Tritjinski method, see [14]), it is not always possible to decide

the connection constant(s); in the next sections, we give a rigorous probabilistic approach which allows to get this constant, and therefore full
asymptotics by coupling it with the Frobenius method!
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This asymptotics also proves that D(z) is not an algebraic function (the local basis of the differential equation involves
a logarithmic term).
For m = 4, creative telescoping leads to the following differential equation:

2
(
132z

16 − 3563z
15

+ · · · + 110
)
D (z) + 2

(
209474z

14
+ · · · − 1581z

) d

dz
D (z)

+
(
704z

18
+ · · · − 10143z

2
) d2

dz2
D(z) + z

(
165z

18
+ · · · − 55

) d3

dz3
D (z)

+z
2

(z − 1) (z + 1)
(
z
2

+ z + 1
) (
z
2 − 7z + 1

) (
z
2 − z + 1

) (
z
4

+ · · · + 1
) (

11z
6

+ · · · + 11
) d4

dz4
D (z) .

Using the Frobenius method and a numerical scheme of ours, this leads to

πn ∼
25

8

51/4
√

2√
πn3

+
5

256

51/4
√

2(47
√

5− 240)√
π3n5

+O(
1√
n7

) ≈ 1.186814138√
n3

.

It is noteworthy that this asymptotics is compatible with the fact that D(z) could be an algebraic function. However, a guess
based on Padé approximants fails to find any algebraic equation. What is more, the index of nilpotence mod 2, 3, 5, 7, 11
of D(z) is 3 (i.e. the smallest i such that (d/dz)i = L mod p is i = 3 for primes p = 2, 3, 5, 7, 11... and L is the above
irreducible unreadable linear differential operator cancelling D(z)). Therefore, according to a conjecture of Grothendieck
on the p-curvature (see [7]), the function is not algebraic.

For m = 5, D(z) is a non algebraic function satisfying a differential equation of order 6 and of degree 38, which leads to

πn ∼
25
√

5

4

1

π2n2
≈ 1.416006588

n2
.

The closed form of the coefficients is Dn(m) =
∑n
k=0

(
n−k
k

)m
, as can also be obtained via a bijective proof approach. It

is possible to get their asymptotics via the Laplace method or our Theorem 5.3, this leads to πn ∼ Cm/
√

(πn)m−1 with

Cm = (53/4)m−1/
√

2m−1m. This allows us to give a proof of the following claim (which was a conjecture by Paul D. Hanna,
see [12, A181545]):

Proposition 3.1 Dn+1(m)/Dn(m) ∼ (Fm
√

5 + Lm)/2, where Lm are the Lucas numbers, defined by the same recurrence
as the Fibonacci numbers Fm, but with different initial conditions, namely L0 = 2 and L1 = 1.

Proof.
Dn+1(m)

Dn(m)
=
πn+1(m)Pmn+1

πn(m)Pmn
=
Cm/

√
(π(n+ 1))m−1Pmn+1

Cm/
√

(πn)m−1Pmn

=

(
n

n− 1

)m−1
2
(
Pn+1

Pn

)m
∼
(

1 + (1/2−m/2)
1

n
+O(

1

n2
)

)(
1

ρ
(1 +O(εn))

)m
∼ 1

ρm

where ρ = p−1(1) and the asymptotics for Pn is explained in detail in the next section (Equation 6). In the case of
p(z) = z + z2, the claim then follows from ρ = 1/φ and the exact formula φm = (Fm

√
5 + Lm)/2. �

Note that for all odd values of m > 2, the presence of an integer power of π in the asymptotics of Dn(m) implies that
the function D(z) can not be algebraic, whereas for all even values of m > 2, the asymptotics match the patterns appearing
in the asymptotics of coefficients of algebraic functions. However, we expect the following conjectures to be true.

Conjecture 3.1 For any rational function p(z) ∈ N(z) (with p(1) > 1), the generating function D(z) is not algebraic for
m > 2.

It includes the specific case D(z) =
∑
n≥0Dnz

n with Dn =
∑n
k=0

(
n−k
k

)m
(non algebraicity of our initial puzzle) or

Dn =
∑n
k=0

(
n
k

)m
(non algebraicity of Franel numbers of order m). Nota bene: We gave here several ways to prove the

non-algebraicity for some value of m, and we proved it for all odd m > 2, we are however unaware of any way of proving
this for all even m > 2 at once, except, in some cases, an evaluation at some z leading to a transcendental number, or the
Christol–Kamae–Mendès-France–Rauzy theorem on automatic sequences.

Definition 3.2 (Closed-form sequence) A sequence of integers Dn is said to have a closed-form expression if it can be
expressed as nested sums of hypergeometric terms, with natural boundaries (i.e. the intervals of summation are 0 and n).
N.b: the number of nested sums has to be independent of n.

Typical examples of closed-form expression are nested sums of binomials; without loss (or win!) of generality, it is
possible to allow more general intervals of summation or internal summands.
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Conjecture 3.2 Let D(z) be like in equation 5 below (for any rational functions pi(z) ∈ N(z)), then its coefficients Dn can
be expressed in closed form.

An effective way of finding this nested sum could be called a ”reverse Zeilberger algorithm”. It then makes sense to give
the following broader conjecture:

Conjecture 3.3 The coefficients of any D-finite function (i.e. a solution of a linear differential equation with polynomial
coefficients) can be expressed in closed form.

Note that it follows from the theory of G-series that this does not hold for closed-forms of the type ”one sum of hypergeo-
metric terms” [10]. The formulas we will give in the rest of this section are somehow illustrating these conjectures.

3.2 Other nice explicit formulas

It is clear from the previous subsection that we could play the same game for any m-tuple of compositions with parts
restricted to m different sets, encoded by p1(z), . . . , pm(z).

Proposition 3.3 The generating function for the number of m-tuples of compositions having the same number of parts is
given by

D(z) =
1

(2iπ)m−1

∮
1

1− p1(zt2 . . . tm)p2(1/t2) . . . pm(1/tm)

dt2
t2

. . .
dtm
tm

. (5)

Therefore, one should not expect any nice closed-form solution for D(z) whenever m > 2; while for m = 2, whenever all
the pi(z)’s are polynomials or rational functions, D(z) will be an algebraic function whose coefficients can be expressed by
nested sums of binomial coefficients (using Lagrange inversion).

For example, if p1(z) = p2(z) = 2z + z2 (which can be considered as tilings with bicolored horizontal dominoes), one

gets Dn+1(2) =
∑n
k=0

∑k
j=0

(
k
j

)(
k+j
j

)
.

If pi(z) = z
1−z (i.e., we consider compositions with any parts), then Dn is the sequence of Franel numbers of order m:

Dn+1(m) =
∑n
k=0

(
n
k

)m
, and we will see in Section 5 that the probability that m unrestricted compositions of n have the

same number of parts is thus πn ∼ Cm/
√

(πn)m−1 , with Cm =
√

2m−1/m.
Note that if we replace pi(z) (for i > 1) by (1 + pi(z)) in the integral formula of Proposition 3.3, then this gives the

generating function of tuples of compositions such that the number of parts is in decreasing order.
Let us add a few examples for which parts are in two different sets P1 and P2. If p1(z) = z + z2 and p2(z) = z + 2z2,

then one gets an interesting case as we have here

πn ∼
√

72 + 42
√

3(
√

5− 5)(
√

2− 2)

12
√
πn

(
1−
√

2−
√

5 +
√

10

2(2−
√

3)

)n
≈ 1.62

.95n√
πn

,

which is therefore exponentially smaller that the order of magnitude of our previous examples. We will comment later on
this fact.

Going to a slightly more general case pi(z) = αiz + βiz
2, one has for m = 2:

D(z) =
1√

1− 2α1α2z + (α2
1α

2
2 − 2β1β2)z2 − 2α1α2β1β2z3 + β2

1β
2
2z

4
.

Therefore the generating function only depends on the products α1α2 and β1β2. This implies e.g. that p1(z) = 2z+ 3z2

and p2(z) = 3z + 5z2 will lead to the same D(z) as p1(z) = 6z + z2 and p2(z) = z + 15z2.
Note that D(z) factors nicely when β1 = β2 = 1:

D(z) = 1/
√

(α1α2z − 1− 2z − z2)(α1α2z − 1 + 2z − z2) .

If, additionally, α1α2 = ±4 this gives the sum of central Delannoy numbers [4]:

D(z) = 1/(1− z)× 1/
√

1 + (2 + |α1α2|)z + z2 .

When the allowed parts are only a and b, i.e. Pi(z) = αiz
a + βiz

b, then all the compositions in the constrained tuples
have necessarily the same number of parts ”a” (this also holds for the number of parts ”b”). Choosing the order of the n1
parts ”a” and the n2 parts ”b” leads to the formula

Dn(m) =
∑

n1a+n2b=n

(
n1 + n2
n1

)m
(α1 . . . αm)n1(β1 . . . βm)n2 .

5



There is no longer such a simple formula as soon as one has more than two allowed parts, because the parts can then
compensate each other in many ways, e.g., assume that the allowed parts contain 3 integers 0 < a < b < c, then one can
always create a composition P1 having n1 ”a”, n2 ”b”, n3 ”c” and a composition P2 having m1 ”a”, m2 ”b” and m3 ”c”
such they have the same number of parts n1 + n2 + n3 = m1 +m2 +m3, but (n1, n2, n3) 6= (m1,m2,m3). To achieve this,
consider n1 = c− b, n3 = b− a, n2 = n1 + n3, m2 = 0, m1 = 2n1, m3 = 2n3, thus one gets two different compositions of n:
n = n1a+ n2b+ n3c = m1a+m2b+m3c.

If p1(z) = αz + βz2 and p2(z) = z2/(1− z2), then D2n = βn, while if p1(z) = αz + βz2 and p2(z) = z/(1− z), then

D(z) =
1

2
+

1

2

1 + αz√
1− 2αz + z2(α2 − 4β)

.

So, a nice surprise is given by p1(z) = z+z2 and p2(z) = z/(1−z) , for which we get D(z) = 1/2+1/2
√

1+z
1−3z , which is known

to be the generating function of directed animals [12, A005773]. This sequence also counts numerous other combinatorial
structures: variants of Dyck paths, pattern avoiding permutations, base 3 n-digit numbers with digit sum n, . . . It also
counts prefixes of Motzkin paths and this leads to an alternative formula Dn+1 = Mn = 3n −

∑n−1
k=0 3n−k−1Ek, where Mn

and En stand for meanders and excursions of length n, following the definitions and notations from [2].
We leave to the reader the pleasure of finding a bijective proof of all of this. (Some of them go via a bijection with

lattice paths, as done in [6], and then via the bijection between heaps of pieces and directed animals, see Fig. 1.) Note that
some of the bijections can lead to efficient uniform random generation algorithms.

Figure 1: Pairs of compositions
having the same number of parts
(e.g. (1,2,2,1,2,1,2,2,2,2,2) and
(3,1,1,1,3,2,1,1,4,1,1)) are in bijection
with several combinatorial objects,
e.g. lattice paths (left) and directed
animals (right).

In summary, it may seem possible to compute everything in all cases; however, for a generic P, in order to compute
the constant Cm involved in πn ∼ Cm

1√
(πn)m−1

, we need heavier computations if the degrees of the pi(z)’s get large or

if m is large. Current state of the art algorithms will take more than one day for m = 6, and gigabytes of memory, so
this “computer algebra” approach (may it be via guessing or via holonomy theory) has some intrinsic limitations. What is
more, for a given P, it remains a nice challenge to get a rigorous (Zeilbergerian computer algebra) proof for all m at once.

In the next sections, we show that the technical conditions to get a local limit law hold, and that this allows to get the
constant C, for any P, for all m.

We conclude this section with Tables 1 and 2 (see next page) summarizing our main closed-form formulas.

4 Local limit theorem for the number of parts in restricted compositions

The discussion in this section pretty much gathers what has been developed in various parts of the compendium on Analytic
Combinatorics by Flajolet & Sedgewick [9].

Our main generating function (see Equation (1)) is a particular case of a more general composition3 scheme considered in
Flajolet and Sedgewick, namely F (z, u) = g(uh(z)). In our case g(y) = 1/(1−y) and h(z) = p(z). According to terminology
used in [9, Definition IX.2, p. 629, Sec. IX.3], under our assumption that

∑
j∈P pj > 1 the scheme is supercritical (i.e., when

z increases, one meets the singularity y = 1 of g(y) before any other potential singularity of p(z)). As a consequence, the
number of parts XPn is asymptotically normal as n→∞, with both the mean and the variance linear in n. We now briefly
recapitulate the statements from [9]. The equation p(z) = 1 has a unique positive root ρ ∈ (0, 1). As a consequence, F (z, 1)
has a dominant simple pole as its singularity and thus the number Pn of compositions of n with all parts in P is

[zn]F (z, 1) ∼ 1

ρp′(ρ)
ρ−n(1 +O(εn)) , (6)

where ε is a positive number less than 1, see [9, Theorem V.1, p. 294]. The probability generating function of XPn is given
by

fn(u) =
[zn]F (z, u)

[zn]F (z, 1)
.

3We cannot escape this polysemy: Compositions are enumerated by a composition!
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allowed number of tuples (P1, . . . ,Pm) Sloane’s On-line encyclopedia of integer sequences
parts in Pi of compositions of n having alternative description

the same number of parts

The notation aαi means that the part a is considered

{aαi , bβi} Dn(m) =

n/b∑
k=0

(
n+k(a−b)

a

k

)m
(α1 . . . αm)(n−kb)/a(β1 . . . βm)k with weight (or multiplicity) αi in the compositions of Pi.

(Binomials with fractional entries are considered as zero).

{1, 2} Dn(m) =

n∑
k=0

(
n− k
k

)m
m = 2, A051286: Whitney number of level n of the lattice

of the ideals of the fence of order 2n.

m = 2, A089165: partial sums of the central Delannoy numbers,

{1, 1, 2} Dn(2) =

n−1∑
k=0

k∑
j=0

(
k

j

)(
k + j

j

)
= 4n

n∑
k=0

(
n− k
k

)2

/16k resistance between two nodes of an infinite lattice of unit resistors,

# of peaks of odd level in Schroeder path.

Franel numbers

dN Ddn(m) =

n∑
k=0

(
n

k

)m
( m = 2 simplifies to the central binomial numbers

(
2n
n

)
, A000984,

m = 3, 4, 5, 6: A000172, A005260 , A005261, A069865).

2N− 1 Dn+1(m) =

n∑
k=0

(
n− k
k

)m
Same as pairs of compositions of n− 1 with parts in {1,2}

(m = 2, 3, 4, 5: A051286, A181545, A181546, A181547).

{n > 1} Dn+2(m) =

n∑
k=0

(
n− k
k

)m

Table 1: Summary of the main closed-form formulas (for any m) of our Section 3.

allowed allowed number of pairs (P1,P2) of OEIS alternative
parts parts compositions of n having reference OEIS description [12]
in P1 in P2 the same number of parts

{1, 2} {1, 2, 2}
n∑
k=0

(
n− k
k

)2

2k A108488 Expansion of 1/
√

1− 2x− 3x3 − 4x3 + 4x4.

N N ∪ {0}
n∑
k=0

(
n− 1

k

)(
n+ k

k

)
=

n−1∑
k=0

n− k
n

(
n

k

)2

2n−k−1 A047781 Convolution of central Delannoy numbers

and Schroeder numbers.

Chebyshev transform of the central

{1, 2} {1, 1, 2} 1

2n

n∑
k=0

(−1)k
(

2k

k

)
n−2k∑
j=0

(
n− 2k

j

)2

3k A101500 binomial numbers (the formulas

in this OEIS entry are not correct).

Some coefficients are 0, as gcd(parts) 6= 1.

N dN Ddn =

(
(d+ 1)n+ d− 1

n

)
A045721 For d = 2, related to

lattice paths, trees, standard tableaux...

A000079

{1α, 2β} 2N D2n = βn A000244 The notation ”2β” means that the part 2
A000302... comes with a weight (or multiplicity) β.

{1, 2} N Dn =

n∑
k=0

(
n− 1

k

)(
n− k
k

)
A005773 directed animals (and numerous avatars

of Motzkin paths, constrained matrices...).

Table 2: Summary of the main closed-form formulas (for m = 2) of our Section 3.
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In a sufficiently small neighborhood of u = 1, as a function of z, F (z, u) given in (1) has a dominant singularity ρ(u) which
is the unique positive solution of the equation

up(ρ(u)) = 1.

Consequently,

fn(u) =
[zn]F (z, u)

[zn]F (z, 1)
∼ p′(ρ(1))

p′(ρ(u))
·
(
ρ(u)

ρ(1)

)−n−1
.

It follows from the analysis of supercritical sequences given in [9, Proposition IX.7, p. 652] that the number of parts XPn
satisfies

XPn − EXPn√
var(XPn )

d−→ N(0, 1),

where N(0, 1) denotes a standard normal random variable whose distribution function is given by

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt,

and where the symbol “
d−→” denotes the convergence in distribution. The asymptotic expressions for the expected value

and the variance of XPn are given by

EXPn =
n

ρp′(ρ)
+O(1) with ρ ∈ (0, 1) such that p(ρ) = 1, (7)

var(XPn ) = Kn+O(1) where K =
ρp′′(ρ) + p′(ρ)− ρ(p′(ρ))2

ρ2(p′(ρ))3
. (8)

[Note that the expression for the coefficient K of the variance given in Proposition IX.7 in [9] is incorrect; the correct
version is (ρh′′(ρ) + h′(ρ)− ρh′(ρ)2)/(ρh′(ρ)3), as given in many other places in the book.]

We now note that the central limit theorem can actually be strengthened to the local limit theorem, pretty much as
discussed in [9, Theorem IX.14 and the remarks following its proof on p. 697]. Let us recall the following notion.

Definition 4.1 Let (Xn) be a sequence of integer valued random variables with EXn = µn and var(Xn) = σ2
n. Let (εn) be

a sequence of positive numbers going to 0. We say that (Xn) satisfies a local limit theorem (of Gaussian type) with speed εn
if

sup
x∈R

∣∣∣∣∣σn Pr(Xn = bµn + xσnc)−
e−x

2/2

√
2π

∣∣∣∣∣ ≤ εn.
As was discussed in [9, p. 697], to see that the local limit theorem holds for restricted compositions, it suffices to check
that ρ(u) when restricted to the unit circle uniquely attains its minimum4 at u = 1. This is what we prove in the following
lemma.

Lemma 4.2 Let p be a power series with nonnegative coefficients, of radius of convergence ρp > 0 (possibly ρp = +∞).
Let ρ(u) be as above the positive root5 of up(ρ(u)) = 1. If p is aperiodic6, then for 0 < 1

R < ρp and t ∈]0, 2π[, we have

ρ(R) < |ρ(Reit)| ,

i.e. the minimum on each circle is on the positive real axis. In particular, if the radius of convergence of p is larger than
1, then for |u| = 1 and u 6= 1 we have

ρ(1) < |ρ(u)|.

Proof. First, p has nonnegative real coefficients, therefore the triangle inequality gives p(|ρ(u)|) ≥ |p(ρ(u))|. Equality can
hold only if p(ρ(u)) has just nonnegative terms, but this is not possible if ρ(u) 6∈ R+ as p is aperiodic with nonnegative
coefficients. Hence one has a strict triangle inequality: p(|ρ(u)|) > |p(ρ(u))| = |1/u| = 1/R (the middle equality is just the
definition of ρ and the last equality comes from the fact we are on the circle |u| = R). As p is increasing on [0, 1/R], we
can apply p−1 to p(|ρ(u)|) > 1/R which gives p−1(p(|ρ(u)|) > p−1(1/R), that is |ρ(u)| > ρ(R). �

Note that the aperiodicity condition is important, e.g. for p(z) = z2 + z6 (i.e. ρ(u) is the radius of convergence
of P (z, u) = 1/(1− u(z2 + z6))), one has ρ(−1) = iρ(1); however some periodic cases have a unique minimum on the unit
circle, e.g. p(z) = z2 + z4. Note also that (in either periodic or aperiodic case), the uniqueness of the minimum on the
circle |u| = 1 at u = 1 does not hold in general for the other roots of up(ρ(u)) = 1.

4There is a typo in [9] p.697: the inequality direction is wrong.
5p(z) has nonnegative real coefficients and is thus increasing in a neighborhood of 0, i.e. on z ∈ [0,+ε]. p being analytic near 0, is continuous

and for any x ∈ R small enough, p(z) = x will therefore have a real positive root zx, and this root will be analytic in x. This is the root that we
call “real positive”.

6A power series p is said to be periodic if and only if there exists a power series q and an integer g > 1 such that p(z) = q(zg). Equivalently,
the gcd of the support (=the ranks of nonzero coefficients) of the power series p is g 6= 1. If this gcd g equals 1, then p is said to be aperiodic.
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5 Asymptotic probability that restricted compositions have the same num-
ber of parts

Our motivation for including the results from [9] in the preceding section is the following theorem which considerably extends
the main results of [6]. We single out the case m = 2 since in some cases it has been already studied in the literature.

5.1 Pairs of compositions

Theorem 5.1 Let P ⊂ N. The probability that two random compositions with parts in P have the same number of parts
is, asymptotically as n→∞,

πn ∼
C√
π
√
n
,

where the value of C is related to the constant K from Equation 8, namely:

C =
1

2

√
K =

ρ(p′(ρ))3/2

2
√
ρp′′(ρ) + p′(ρ)− ρ(p′(ρ))2

. (9)

Before proving this theorem let us make some comments.
Remarks and examples:

(i) Some special cases were considered in [6]. They include unrestricted compositions (P = N), P = {1, 2}, or more
generally P = {a, b} with a, b relatively prime, compositions with all parts of size at least d (P = {n ∈ N : n ≥ d}),
and compositions with all parts odd and at least d. The arguments of [6] rely on the analysis of the asymptotics of the
bivariate generating functions, which is sometimes difficult and does not seem to be easily amenable to the analysis
in the case of a general subset P of positive integers. Our approach is much more probabilistic and relies on a local
limit theorem for the number of parts in a random composition with parts in P. This turned out to be a much more
universal tool.

(ii) To illustrate the principle behind our approach, consider the unrestricted compositions. As was observed in [11], in
that case XPn is distributed like 1 + Bin(n− 1, 1/2) random variable. Therefore,

πn = Pr(Bin(n− 1, 1/2) = Bin′(n− 1, 1/2))

where Bin and Bin′ denote two independent binomial random variables with specified parameters. Since the second
parameter is 1/2 we have

Bin(n− 1, 1/2)
d
= n− 1− Bin(n− 1, 1/2).

Therefore, by independence we get

πn = Pr(Bin(n− 1, 1/2) + Bin′(n− 1, 1/2) = n− 1).

Finally, since

Bin(n− 1, 1/2) + Bin′(n− 1, 1/2)
d
= Bin(2(n− 1), 1/2),

we obtain by Stirling’s formula that

πn = Pr(Bin(2n− 2, 1/2) = n− 1) =

(
2n−2
n−1

)
22n−2

∼ 1√
πn

.

This is consistent with (9) (and with [6]) as for unrestricted compositions p(z) =
∑
k≥1 z

k = z/(1 − z), so that ρ =

1/2, p′(z) = 1/(1− z)2, and p′′(z) = 2/(1− z)3 which gives C = 1.

(iii) Although the above argument may look very special and heavily reliant on the properties of binomial random vari-
ables, our point here is that it is actually quite general. The key feature is that the number of parts (whether in
unrestricted or arbitrarily restricted compositions) satisfies the local limit theorem of Gaussian type, and this is
enough to asymptotically evaluate the probability in Theorem 5.1.

(iv) For another example, consider compositions of n into two parts, i.e. P = {a, b} with a, b relatively prime. Then
Theorem 5.1 holds with

C =
(aρa + bρb)3/2

2|a− b|
√
ρa+b

, (10)

9



where ρ is the unique root of za+zb = 1 in the interval (0, 1). In this case p(z) = za+zb so that p′(z) = aza−1 +bzb−1

and p′′(z) = a(a− 1)za−2 + b(b− 1)zb−2. Thus, writing the numerator of (9) as

ρ(P ′(ρ))3/2 =
1
√
ρ

(ρP ′(ρ))3/2 =
1
√
ρ

(aρa + bρb)3/2,

we only need to check that
ρP ′′(ρ) + P ′(ρ)− ρ(P ′(ρ))2 = (a− b)2ρa+b−1. (11)

But
ρP ′′(ρ) + P ′(ρ) = a2ρa−1 + b2ρb−1

so that the left–hand side of (11) is

a2ρa−1 + b2ρb−1 − a2ρ2a−1 − b2ρ2b−1 − 2abρa+b−1.

Factoring and using ρa + ρb = 1, we see that this is

a2ρa−1(1− ρa) + b2ρb−1(1− ρb)− 2abρa+b−1 = (a− b)2ρa+b−1,

as claimed.

When a = 1 and b = 2 we have the Fibonacci numbers relation so that ρ = (
√

5− 1)/2 and (10) becomes

C =
(ρ+ 2ρ2)3/2

2ρ3/2
=

1

2
(1 + 2ρ)3/2 =

53/4

2
,

which agrees with (4) above and also with the expression given in [6] (see equation (2.10) therein). However, in the
case of general a and b, the value of C was given in the last display of Section 3 in [6] as

ρ(aρa−1 + bρb−1)2√
4(a+ b)ρ2a+2b−2 + 2(1− ρ2a − ρ2b)(aρ2a−2 + bρ2b−2)

. (12)

This is incorrect as it is lacking a factor |a−b| in the denominator (so that it gives the correct value of C when |a−b| = 1
but not otherwise). To see this and also to reconcile (12) with (10) (up to a factor |a− b|) we simplify (12) by noting
that ρa + ρb = 1 implies

1− ρ2a − ρ2b = 1− (ρa)2 − ρ2b = (1 + ρa)ρb − ρ2b = ρb(1 + ρa − ρb) = 2ρa+b

so that the expression under the square root sign in (12) becomes

4ρa+b−2((a+ b)ρa+b + aρ2a + bρ2b) = 4ρa+b−2(aρa + bρb)(ρa + ρb).

Using again ρa + ρb = 1 (12) is seen to be

ρ2(aρa−1 + bρb−1)2

2
√
ρa+b(aρa + bρb)

=
(aρa + bρb)3/2

2
√
ρa+b

,

which, except for the factor |a− b| in the denominator, agrees with (10).

(v) Other examples from [6] can be rederived in the same fashion, but we once again would like to stress universality
of our approach. As an extreme example, we can only repeat after [9]: even if we consider compositions into twin
primes, P = {3, 5, 7, 11, 13, 17, 19, 29, 31, . . . }, we know that the probability of two such compositions having the same
number of parts is of order 1/

√
n. This is rather remarkable, considering the fact that it is not even known whether

this set P is finite or not.

Proof of Theorem 5.1. This will follow immediately from the following lemma applied to Xn = XPn and formula (8)
which gives the expression for σn. This lemma should be compared with a more general Lemma 6 of [5]. We include our
proof to illustrate that seemingly very special arguments used in item (ii) are actually quite general. �

Lemma 5.2 Let (Xn) with EXn = µn and var(Xn) = σ2
n →∞ as n→∞, be a sequence of integer valued random variables

satisfying a local limit theorem (of Gaussian type) with speed εn as described in Definition 4.1. Let (X ′n) be an independent
copy of (Xn) defined on the same probability space. Then

πn = Pr(Xn = X ′n) =
1

2
√
πσn

+O

(
εn
σn

+
1

σ2
n

)
.
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Proof. For Xn and X ′n as in the statement we have

πn = Pr(Xn = X ′n) =
∑
k≥1

Pr(Xn = k = X ′n) =
∑
k≥1

Pr2(Xn = k)

=

∞∑
`=−∞

Pr(Xn = bµnc+ `) Pr(Xn = bµnc+ `). (13)

Now,

Pr(Xn = bµnc+ `) = Pr(Xn = bµnc − `) +
{

Pr(Xn = bµnc+ `)− Pr(Xn = bµnc − `)
}
.

To estimate the term in the curly brackets take x+ and x− such that

bµnc+ ` = bµn + x+σnc, and bµnc − ` = bµn − x−σnc.

By elementary considerations, −2{µn}/σn ≤ x+−x− ≤ 2(1−{µn})/σn (where {z} is the fractional part of z), hence |x+−
x−| ≤ 2/σn. Then

Pr(Xn = bµnc+ `)− Pr(Xn = bµnc − `) =
1√

2πσn

(
e−

x2+
2 − e−

x2−
2

)

+

(
Pr(Xn = bµn + x+σnc)−

e−x
2
+/2

√
2πσn

)
−

(
Pr(Xn = bµn − x−σnc)−

e−x
2
−/2

√
2πσn

)
.

The absolute value of the second term is

1

σn

∣∣∣∣σn Pr(Xn = bµn + x+σnc)−
1√
2π
e−

x2+
2

∣∣∣∣ ≤ εn
σn
,

and similarly with the third term. Applying the inequality |f(x) − f(y)| ≤ |x − y| sup |f ′(t)| to the first term gives

e−
x2+
2 − e−

x2−
2 ≤ |x+ − x−| = O(1/σn) and so, the first term is O(1/σ2

n). Therefore,∣∣∣Pr(Xn = bµnc+ `)− Pr(Xn = bµnc − `)
∣∣∣ = O

(
εn
σn

+
1

σ2
n

)
.

Coming back to equation (13), we see that

∞∑
`=−∞

Pr(Xn = bµnc+ `)

(
Pr(Xn = bµnc − `) +O

(
εn
σn

+
1

σ2
n

))

=

( ∞∑
`=−∞

Pr(Xn = bµnc+ `,X ′n = bµnc − `)

)
+ 1×O

(
εn
σn

+
1

σ2
n

)
= Pr(Xn +X ′n = 2bµnc) +O

(
εn
σn

+
1

σ2
n

)
.

Since Xn + X ′n is a sum of two i.i.d. random variables, it has mean 2µn and the variance 2σ2
n. Furthermore, since each

of the summands satisfies the local limit theorem of Gaussian type, so does the sum (its probability generating function
is the square of fn(u) and thus falls into quasi-power category, just as fn(u) does). Since 2bµnc = b2µn + x

√
2σnc for

some x = O(1/σn), just as before we have∣∣∣∣√2σn Pr(Xn +X ′n = b2µnc)−
1√
2π

∣∣∣∣ = O

(
εn +

1

σn

)
.

Consequently,

πn = Pr(Xn = X ′n) = Pr(Xn +X ′n = b2µnc) =
1

2
√
πσn

+O

(
εn
σn

+
1

σ2
n

)
,

which completes the proof of Lemma 5.2 and of Theorem 5.1. �
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5.2 Tuples of compositions

Here we sketch a proof of the following extension of Theorem 5.1.

Theorem 5.3 Let P ⊂ N and let m ≥ 2 be fixed. Then, the probability πn that m randomly and independently chosen
compositions with parts in P all have the same number of parts is, asymptotically as n→∞,

πn ∼
Cm√

(πn)m−1
,

where Cm is related to the constant K from Equation 8, namely:

Cm =
1√

2m−1m

√
K
m−1

=
1√

2m−1m

(
ρ2(p′(ρ))3

ρp′′(ρ) + p′(ρ)− ρ(p′(ρ))2

)(m−1)/2

.

Remark. For unrestricted compositions, the expression in the big parentheses is 2 (see (i) in Remarks above). This
gives Cm =

√
2m−1/m as stated in Section 3.1.

Proof of Theorem 5.3. This follows immediately from the following statement which itself is a straightforward extension of
Lemma 6 of [5] with essentially the same proof. We will be using it for Gaussian density in which case∫ ∞

−∞
gm(x)dx =

1√
(2π)m

∫ ∞
−∞

e−
mx2

2 dx =
1√

(2π)m−1
1√
m
.

Lemma 5.4 (Bóna–Flajolet). Let (Xn) be integer valued with µn = EXn, σ2
n = var(Xn) → ∞ as n → ∞. Let g be the

probability density function and suppose that

lim
n→∞

sup
x
|Pr(Xn = bµn + xσnc)− g(x)| = 0.

Let further (X
(k)
n ), k = 1, . . . ,m be independent copies of the sequence (Xn) defined on the same probability space. Then

σm−1n Pr(X(1)
n = X(2)

n = · · · = X(m)
n ) −→

∫ ∞
−∞

gm(x)dx, as n→∞.

To see this we just follow the argument in [5, Lemma 6] with obvious adjustments: the left–hand side above is

σm−1n

∞∑
k=1

Prm(Xn = k) = σm−1n

∞∑
k=1

Prm(Xn = bµn + xkσnc),

with k−µn
σn
≤ xk < k+1−µn

σn
. This is further equal to

1

σn

∑
k

(σn Pr(Xn = bµn + xkσnc))m ∼
1

σn

∑
k

gm(xk) ∼ 1

σn

∫ ∞
−∞

gm(
x− µn
σn

)dx,

where the first approximation holds by the assumption of the lemma (after having first restricted the range of xk’s to a
large compact set) and the second by the Riemann sum approximation of the integral. Since the expression on the right
is
∫∞
−∞ gm(x)dx, the result follows. �

6 Concluding remarks

1. In this article, we restricted our attention to compositions (giving first several new closed-form formulas, and then
going to the asymptotics), but it is clear that Lemma 5.4 can be applied to many combinatorial structures, e.g. the
probability that m random permutations of size n have the same number of cycles (see [13] for the case m = 2),
or the probability that m permutations have a longest increasing subsequence of the same length, or the probability
that m random planar maps have a largest component of same size. This leads to interesting analytic/computational
considerations, as it will involve evaluating the integral of gm(x) where g(x) will be the Tracy–Widom distribution
density (provided the local limit theorem holds, which has not been proven yet), or the map-Airy distribution density
(for which a local limit theorem was established, see [3]).

2. A similar approach can be also applied to tuples of combinatorial structures following m different local limit laws
(with m densities having fast decreasing tails), as long as they have the same mean.
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3. When the means are not the same, the probability of the same number of parts is generally of much smaller order.
This is because if Xn has mean cn and X ′n has mean c′n and both have linear variances, then assuming w.l.o.g. c > c′

and choosing α < c−c′
2 we note that if |Xn − cn| < αn and |X ′n − c′n| < αn then

Xn −X ′n > cn− αn− (c′n+ αn) = (c− c′ − 2α)n > 0,

so that Xn 6= X ′n. Therefore,

πn = Pr(Xn = X ′n) ≤ Pr(|Xn − cn| ≥ αn) + Pr(|X ′n − c′n| ≥ αn).

Since both Xn and X ′n converge to a Gaussian law and σn = σn, the first probability is roughly (with β = α/
√
σ)

Pr

(
|Xn − cn|√

σn
≥ β
√
n

)
∼ 1√

2π

∫ ∞
β
√
n

e−t
2/2dt ∼ 1√

2πβ
√
n
e−

β2n
2 ,

by the well–known bound on the tails of Gaussian random variables (see, e.g. [8, Chapter VII, Lemma 2]). This
is consistent with an example discussed in Section 3.1. The difficulty with making this argument rigorous is that
the error in the first approximation is usually of much bigger (typically 1/

√
n) magnitude than the quantities that

are approximated. However, a slightly weaker bound, namely, e−βn (with a generally different value of β) can be
obtained by using Theorem IX.15 in [9] which asserts that tail probabilities of random variables falling in the scheme
of quasi-powers are decaying exponentially fast. While this theorem is stated for the logarithm of Pr(|Xn−cn| > αn),
it is clear from its proof that one actually gets exponential bound on the tail probabilities (see Equation (88) on p. 701
in [9] and a few sentences following it).

4. The Gaussian local limit law explains the universality of the 1/(πn)(m−1)/2 appearance for numerous combinatorial
problems in which we would force m combinatorial structures of size n to have an extra parameter of the same value.
We also wish to point out yet another insight provided by the probabilistic approach. As we mentioned in Section 3.1
(see Footnote 2), it allows to solve the connection constant problem intrinsic to the Frobenius method, and therefore,
a combination of these two approaches (local limit law plus Frobenius method) gives access to full asymptotics in
numerous cases.
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and Airy phenomena. Random Struct. Algorithms, 19(3-4):194–246, 2001.

[4] Cyril Banderier and Sylviane Schwer. Why Delannoy numbers? J. Stat. Plann. Inference, 135(1):40–54, 2005.
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