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ON THE GALILEAN INVARIANCE OF SOME DISPERSIVE WAVE

EQUATIONS

ANGEL DURAN, DENYS DUTYKH∗, AND DIMITRIOS MITSOTAKIS

Abstract. Surface water waves in ideal fluids have been typically modeled by asymptotic

approximations of the full Euler equations. Some of these simplified models lose relevant

properties of the full water wave problem. One of them is the Galilean symmetry, which is

not present in important models such as the BBM equation and the Peregrine (Classical

Boussinesq) system. In this paper we propose a mechanism to modify the above mentioned

classical models and derive new, Galilean invariant models. We present some properties

of the new equations, with special emphasis on the computation and interaction of their

solitary-wave solutions. The comparison with full Euler solutions shows the relevance of

the preservation of Galilean invariance for the description of water waves.
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1. Introduction

The purpose of this paper is to investigate the relevance of the Galilean invariance in
the description of water waves. Some classical approximate models are reviewed. Those
without the property of invariance under Galilean transformations are modified and the
corresponding invariant versions are formulated. The new models are considered as ap-
proximations to the full Euler equations and compared with the classical systems. The
comparison is focused on the existence and the dynamics of solitary waves.

A natural argument in mathematical modeling is the inheritance of the physical proper-
ties of the phenomenon under study through the introduction of mathematical devices. In
the case of water wave theory, the approximation to the full Euler equations leads to some
mathematical models in which some fundamental properties of the original problem can
be lost. This is relevant in the case of symmetries. For example, when asymptotic expan-
sions around the still water level are performed, the invariance under vertical translations
can be broken and the derived model is valid only in this particular frame of reference.
Dispersive wave models possessing the property of invariance under vertical translations
have been shown to be particularly robust for the simulation of the long wave runup, cf.
[31]. A second symmetry, which this paper is focused on, is related to the universality of
mechanical laws in all inertial frames of reference. The Galilean invariance (or Galilean rel-
ativity) is one of the fundamental properties of any mathematical model arising in classical
mechanics. This principle was empirically established by Galileo Galilei 55 years before
the formulation of Newton’s laws of mechanics in 1687, [57]. Nowadays, it is common to
speak about this principle in terms of a symmetry of the governing equations, [59]. For
instance, the complete water wave problem possesses naturally this property. (For a sys-
tematic study of symmetries and conservation laws of the full water wave formulation we
refer to Benjamin & Olver (1982), [5]). Nevertheless, numerous dispersive wave equations,
some of them being well-known, are not invariant under the Galilean transformation. This
issue was already addressed in a previous study by Christov (2001), [19]. We note that
some fully nonlinear approximations such as Nonlinear Shallow Water Equations (NSWE),
[24, 6, 41, 54, 33, 32], improved Shallow Water Equations, [29], and the Serre or Green-
Naghdi equations, [68, 37, 38, 42, 26, 17, 20], are invariant under the vertical translation
and the Galilean boost. Some other examples of some Boussinesq-type systems which are
not Galilean invariant can be found in [12, 58, 7, 8]. It is finally noted that the idea of
exploiting symmetries of continuous equations has already been shown very beneficial in
improving the behavior of underlying numerical discretizations, [43, 44, 18].

However, to our knowledge, the practical implications of the loss of the Galilean sym-
metry are not sufficiently known. In the present study we try to shed some light on this
issue and its influence on the approximate dispersive wave models.

The paper is organized as follows. In Section 2 we review some classical models in water
wave theory and present the invariant counterparts of the BBM equation and the classical
Peregrine system. A way to asses the accuracy of the invariantized models is by comparing
their travelling wave solutions to the corresponding ones of the full Euler equations and of
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the rest of the classical models under consideration. In Section 3, solitary-wave profiles of
the new models are generated numerically. The comparison with the wave profiles of other
approximations (some with exact formulas) and of the Euler equations (by using Tanaka’s
algorithm and Fenton’s asymptotic solution) is established in terms of the amplitude-speed
and amplitude-shape relations. The interactions of solitary waves for the new models, with
head-on and overtaking collisions, are studied in Section 4. Finally, the main conclusions
of this study are outlined in Section 5.

2. Mathematical models

Consider an ideal fluid of constant density along with a cartesian coordinate system
in two space dimensions (x, y). The y-axis is taken vertically upwards and the x-axis
is horizontal and coincides traditionally with the still water level. The fluid is bounded
below by an impermeable horizontal bottom at y = −d and above by an impermeable free
surface at y = η(x, t). We assume that the total depth h(x, t) ≡ d+η(x, t) remains positive
h(x, t) > h0 > 0 at all times t. The sketch of the physical domain is shown in Figure 1.

Assuming that the flow is incompressible and irrotational, the governing equations of
the classical water wave problem are the following, [47, 69, 55, 72]

φ 2

xx + φ 2

yy = 0 − d 6 y 6 η(x, t), (2.1)

ηt + φx ηx − φy = 0 y = η(x, t), (2.2)

φt + 1

2
(φx)

2 + 1

2
(φy)

2 + g η = 0 y = η(x, t), (2.3)

φy = 0 y = −d, (2.4)

with φ being the velocity potential (by definition, the irrotational velocity field u = φx and
g the acceleration due to the gravity force. The water wave problem possesses Hamiltonian,
[65, 75, 14, 67], and Lagrangian, [53, 20], variational structures.

Remark 1. We make the classical assumption that the free surface is a graph y = η(x, t)
of a single-valued function. This means in practice that we exclude some interesting phe-
nomena, (e.g., wave breaking) which are out of the scope of this modeling paradigm.

Remark 2. We underline the fact that in the presence of a free surface the vorticity does
not remain zero even if it is so initially. Any singularity at the free surface may lead the
vortex sheets creation. However, the water wave theory is not supposed to hold when a
wave breaking event occurs.

The symmetry group of the complete water wave problem (2.1) – (2.4) was described
by Benjamin & Olver (1982) in [5]. In particular, the full formulation of the water wave
equations admits the Galilean boost symmetry and the invariance under the vertical trans-
lations (the latter issue will be addressed by the authors in a future work). However, the
water wave theory has been developed from the beginning by constructing various approxi-
mate models which may conserve or break some of the symmetries, [23]. Below we consider
several classical models and discuss their Galilean invariance property.
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Figure 1. Sketch of the physical domain.

2.1. The KdV equation. The unidirectional propagation of long waves in the so-called
Boussinesq regime (where the nonlinearity and the dispersion are of the same order of
magnitude), [13, 8, 30], can be described by the celebrated Korteweg–de Vries (KdV)
equation [45, 40], which in dimensional variables is written in the form:

ut +
√

gd ux +
3

2
uux +

d2

6

√

gd uxxx = 0, (2.5)

where u(x, t) is the horizontal velocity variable which is usually defined as the depth-
averaged velocity, [64], or the fluid velocity measured at some specific water depth, [12, 58].
Some very well-known properties of (2.5) are reviewer (see e.g. [36, 48, 56]). First, the
KdV equation is an integrable model with the following two-parameter family of solitary
wave solutions:

u(x, t) = u0 sech
2
(

1

2
κ(x− cst− x0)

)

, cs =
√

gd+
u0
2
, (κd)2 =

3u0√
gd
, u0 > 0, x0 ∈ R.

The initial value problem of the Korteweg–de Vries (KdV) equation possesses a Hamil-
tonian structure

ut = J
δH
δu

,

(where δ denotes the variational derivative) in a suitable phase space of functions vanishing,
along with some of their derivatives, at infinity. The skew-symmetric operator J and the
Hamiltonian functional H are

J = −∂x, H =
1

2

∫

R

[

√

gdu2 + 1

2
u3 −

√

gd
d2

6
u2x

]

dx.

The HamiltonianH is the third conserved quantity of the well-known hierarchy of invariants
for (2.5), [48].

The central question in our study is the Galilean invariance of model equations. We can
show that the KdV equation (2.5) possesses this property. The procedure is as follows.
We choose another frame of reference which moves uniformly, for example, rightwards
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with constant celerity c. This symmetry is expressed by the following transformation of
variables:

x→ x− 3

2
ct, t→ t, u→ u+ c. (2.6)

In this moving frame of reference (2.5) becomes:

ut −
3

2
cux +

√

gdux +
3

2
(u+ c)ux +

d2

6

√

gd uxxx = 0.

After some simplifications one can recover the original KdV equation, which completes the
proof of the invariance.

In order to assess the relative magnitude of various terms in equation (2.5) scaled vari-
ables are introduced. The classical long wave scaling is the following:

x′ :=
x

ℓ
, y′ :=

y

d
, t′ :=

g

d
t, η′ :=

η

a
, u′ :=

u√
gd
, (2.7)

where h0, a, ℓ are the characteristic water depth, wave amplitude and wave length re-
spectively. Using these three characteristic lengths we can form three following important
dimensionless numbers:

ε :=
a

d
, µ2 :=

(d

ℓ

)2

, S :=
ε

µ2
. (2.8)

Parameters ε ≪ 1 and µ2 ≪ 1 characterize the wave nonlinearity and dispersion, while
the so-called Stokes number S measures the analogy between these two effects. In the
Boussinesq regime the Stokes number is of order of one, S = O(1), which establishes that
the dispersion and the nonlinear effects are comparable. The relevance of this parameter
is discussed by Ursell (1953), cf. e.g. [71].

Using these dimensionless and scaled variables the KdV equation (2.5) can be written
in the form:

ut + ux +
3

2
εuux +

µ2

6
uxxx = 0.

where the primes have been dropped. Formulas (2.7) and (2.8) will also be used in some
of the developments below.

2.2. The BBM equation. Benjamin, Bona & Mahony (1970), [4], (see also [63]) proposed
the following modification of the KdV equation, known as the BBM equation:

ut +
√

gdux +
3

2
uux −

d2

6
uxxt = 0. (2.9)

The main idea for the derivation of this model is to use the lower order relation between
time and space derivatives in order to modify the higher-order dispersive term:

ut = −ux +O(ε+ µ2) =⇒ uxxx = −uxxt +O(ε+ µ2).

One of the main practical motivations for this modification is to improve the dispersion
relation properties of the KdV equation. Specifically, unlike the KdV equation, the phase
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and group velocities of the BBM equation have a lower bound. It is also noted that the
BBM equation has the following solitary wave solutions:

u(x, t) = u0 sech
2
(

1

2
κ(x− cst− x0)

)

, cs =
√

gd+
u0
2
, (κd)2 =

3u0√
gd+ 1

2
u0
, x0 ∈ R.

The BBM equation is not integrable, but it can also be written as an infinite-dimensional
Hamiltonian system

ut = J
δH
δu

,

where the operator J and the Hamiltonian functional H are defined as:

J = (1− d2

6
∂xx)

−1 · (−∂x), H =
1

2

∫

R

[

√

gdu2 + 1

2
u3
]

dx. (2.10)

and the structure is defined on a phase space similar to that of the KdV equation.
As far as the Galilean invariance is concerned, the change of variables (2.6) applied to

(2.9) leads to

ut −
3

2
cux +

√

gd ux +
3

2
(u+ c)ux −

d2

6
uxxt +

d2

4
cuxxx = 0,

and after some algebraic simplifications we obtain:

ut +
√

gd ux +
3

2
uux −

d2

6
uxxt +

d2

4
cuxxx = 0.

Since there is at least one new term (d
2

4
cuxxx) appeared in the previous moving frame of

reference, the BBM equation is not Galilean invariant. The relevance of this drawback
always puzzled the researchers, cf. [19].

2.3. The iBBM equation. We now propose a modification to the classical BBM equation
which allows us to recover the Galilean invariance property. Furthermore, the idea behind
the arguments below can be extrapolated to other models. The strategy is to add a new
term which will vanish the non-invariant contribution of the BBM dispersion uxxt under
the transformation (2.6). The resulting equation, which will be called invariant Benjamin–
Bona–Mahony (iBBM) equation, takes the form:

ut +
√

gdux +
3

2
uux −

d2

6
uxxt −

d2

4
uuxxx = 0. (2.11)

It is straightforward to see that (2.11) is invariant under the Galilean transformation (2.6)
The modification proposed above becomes more transparent in scaled variables. The

application of the long wave limit (2.7) to (2.11) leads to

ut + ux +
3

2
εuux −

µ2

6
uxxt −

εµ2

4
uuxxx = 0.

One can observe that the last term on the left hand side, responsible of the Galilean invari-
ance of (2.11), is a nonlinear term of order O(εµ2) and consequently, it is asymptotically
negligible in the BBM formulation. Since this additional term is nonlinear, the linear
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dispersion relation of (2.9) is not modified. Its effect will be studied thoroughly in the
following sections.

Remark 3. Unlike the BBM equation (2.9), this invariant version (2.11) does not possess,
to our knowledge, a Hamiltonian structure. However, it is possible to propose an invari-
antization which preserves this variational formulation along with the Galilean invariance.
The alternative given by the equation

ut +
√

gd ux +
3

2
uux −

d2

6
uxxt −

d2

4

(

2uxuxx + uuxxx
)

= 0. (2.12)

has an additional higher-order nonlinear term which allows for a non-canonical Hamilton-
ian structure. In this case, the operator J = (1 − d2

6
∂xx)

−1 · (−∂x) is the same as for the
BBM equation and the Hamiltonian H is

H =
1

2

∫

R

[

√

gdu2 +
1

2
u3 +

d2

4
uu2x

]

dx.

We underline some similarity between equation (2.12) and several proposed earlier moodels
such as the Camassa-Holm [15], Burgers-Poisson [35] and Degasperis-Procesi [25] equa-
tions.

We now look for travelling wave solutions of (2.11) of the form:

u(x, t) = u(ξ), ξ := x− cst, (2.13)

where cs is the solitary wave speed. We also assume that u(ξ) decays to zero along with
all derivatives when |ξ| → ∞. Substituting (2.13) into the iBBM equation (2.11) leads to
the ordinary differential equation:

(
√

gd− cs)u
′ +

3

4
(u2)′ + cs

d2

6
u′′′ − d2

4
uu′′′ = 0, (2.14)

where the prime denotes differentiation with respect to ξ. Using the boundary conditions
at the infinity, the identity uu′′′ = (uu′′− 1

2
(u′)2)′, and after one integration, equation (2.14)

becomes:

(
√

gd− cs)u+
3

4
u2 + cs

d2

6
u′′ − d2

6

(1

2
(u′)2 − uu′′

)

= 0, (2.15)

that can be written as a system

u′ = v, (2.16)

v′ =
2

d2
(

cs
3
− u

2

)

(

(cs −
√

gd)u− 3

4
u2 − d2

8
v2
)

. (2.17)

Now it can be checked that when cs >
√
gd, the origin u = v = 0 is a saddle point,

as depicted in Figure 2(a), which shows the corresponding phase plane. The homoclinic
trajectory O → A → B → O represents a solitary wave. (The MATLAB code for this
figure can be found in [60].).
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Figure 2. Phase plane of the invariant models with cs >
√
gd: (a) (iBBM).

(b) (iPer). In both cases, the trajectory O → A → B → O represents a
solitary wave.

2.4. The Peregrine system. Under the assumptions described above, D.H. Peregrine in
1967 derived the following system of equations governing the two-way propagation of long
waves of small amplitude in the Boussinesq regime [64]:

ηt +
(

(d+ η)u
)

x
= 0, (2.18)

ut + uux + gηx −
d2

3
uxxt = 0, (2.19)

where u(x, t) is now defined as the depth averaged fluid velocity, η(x, t) is the deviation
of the free surface of the water from its rest position. This system is also known as the
Classical Boussinesq system, cf. [8] and will be denoted by (cPer). In [61], the existence and
some properties of solitary wave solutions of (2.18)-(2.19) are obtained, without explicit
formulas. On the other hand, to our knowledge, a Hamiltonian structure has not been
found, [8].

We now study the Galilean invariance of (2.18)-(2.19). In this case, the Galilean trans-
formation takes the following form:

x→ x− ct, t→ t, η → η, u→ u+ c. (2.20)

The mass conservation equation (2.18) in new variables reads:

ηt − cηx +
(

(d+ η)(u+ c)
)

x
= 0.

After simplifications one can see that this equation remains invariant under the transfor-
mation (2.20).
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Now let us consider the momentum balance equation (2.19). In the moving frame of
reference this equation becomes:

ut − cux + (u+ c)ux + gηx −
d2

3
uxxt + c

d2

3
uxxx = 0,

and after some manipulations

ut + uux + gηx −
d2

3
uxxt + c

d2

3
uxxx = 0.

As in the BBM case, a new dispersive term cd
2

3
uxxx appears, showing that the system

(2.18)-(2.19) is not Galilean invariant.

2.5. The iPeregrine system. Following the same technique as in the case of the BBM
equation, it is possible to propose a modification to the classical Peregrine system (2.18)-
(2.19) which will allow us to recover the Galilean invariance property. It can be done in a
way leading to the iBBM equation (2.11). The corresponding system reads:

ηt +
(

(d+ η)u
)

x
= 0, (2.21)

ut + uux + gηx −
d2

3
uxxt −

d2

3
uuxxx = 0. (2.22)

Note that since the mass conservation equation is invariant, it is not modified in the new
version. Now it is straightforward to check the invariance of equation (2.22). Therefore,
system (2.21)-(2.22), which will be called invariant Peregrine system or (iPer) for the sake
of conciseness, is Galilean invariant. In dimensionless and scaled variables, the system
reads:

ηt +
(

(1 + εη)u
)

x
= 0,

ut + εuux + ηx −
µ2

3
uxxt −

εµ2

3
uuxxx = 0,

and one can see that the new term is of higher-order and, asymptotically speaking, neg-
ligible. As in the case of the Peregrine system, equations (2.21)-(2.22) do not possess, to
our knowledge, a Hamiltonian structure.

Finally, we can look for travelling wave solutions of system (2.21)-(2.22) of the form

η(x, t) = η(ξ), u(x, t) = u(ξ), ξ := x− cst,

where η and u decay to zero, along with their derivatives, as |ξ| → ∞. After substituting
this representation into the governing equations (2.21)-(2.22) they become:

−csη′ +
(

(d+ η)u
)′

= 0,

−csu′ +
1

2
(u2)′ + gη′ + cs

d2

3
u′′′ − d2

3
uu′′′ = 0.

An integration of the mass conservation equation and the decay at infinity lead to

u =
csη

d+ η
, η =

d · u
cs − u

. (2.23)
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Then the momentum balance equation can be integrated once and we have

− cs
(

u− d2

3
u′′
)

+
1

2
u2 +

gd · u
cs − u

− d2

3

(1

2
(u′)2 − uu′′

)

= 0. (2.24)

Similarly to the case of the (iBBM), one can see that, (2.24) written as a first order system
and when c2s − gd > 0, the origin is a saddle point; the phase plane sketched in Figure 2(b)
also shows a solitary wave, in the form of a trajectory O → A→ B → O.

2.6. The Serre equations. In order to complete the presentation of our model equations,
we consider the fully-nonlinear system referred to as the Serre, [68, 3, 26], or the Green–
Naghdi equations, [37, 38, 42, 50, 17]:

ht + [hu]x = 0, (2.25)

ut + uux + ghx = 1

3
h−1

[

h3(uxt + uuxx − u2x)
]

x
. (2.26)

Solitary wave solutions of (2.25)-(2.26) are explicitly known. They are given by the for-
mulas:

η(x, t) = a0sech
2
(

1

2
κ(x− cst− x0)

)

, u =
cs η

d+ η
, cs =

√

g(d+ a0), (κd)2 =
3a0
d+ a0

.

(2.27)
As pointed out by Li, [49] and [50], the Serre equations possess a Hamiltonian structure:

(

ht
q̃t

)

= J ·

(

δH / δh
δH / δq̃

)

,

where the Hamiltonian functional H and the operator J are given by

H = 1

2

∫

R

[

h u2 + 1

3
h3 u2x + g η2

]

dx, J = −
(

0 hx
h∂x q̃x + q̃∂x

)

.

The variable q̃ is sometimes referred to as the potential vorticity flux and is defined by

q̃ := h u − 1

3
[ h3 ux ]x.

The Serre equations (2.25)-(2.26) can be shown to have the Galilean invariance property.
For the mass conservation equation (2.25) we refer to Section 2.5. Thus it remains to check
this property for the momentum conservation equation (2.26). If we make the change of
variables t→ t, x→ x− ct, h→ h and u→ u+ c as before, equation (2.26) becomes:

ut − cux + (u+ c)ux + ghx = 1

3
h−1

[

h3(uxt − cuxx + (u+ c)uxx − u2x)
]

x
,

and after two simple algebraic simplifications one can recover the original equation (2.26).

3. Numerical computation of travelling waves

In the previous section we presented several classical models arising in water wave theory.
Moreover, we proposed two novel equations, the iBBM equation and the (iPer) system,
with the aim of incorporating the property of invariance under the Galilean transformation,
lost by the original BBM equation and the (cPer) model. The purpose of this and the next
sections is to compare these models through the computation of their respective solitary
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wave solutions (and whenever possible with the solitary waves of full Euler equations).
Some of the models, such as the KdV, BBM and Serre equations, possess explicit formulas
for these solutions, while the iBBM equation, the (iPer) system and the (cPer) system
do not. Consequently, the latter have to be constructed numerically. In the next section
we give the great lines of the numerical procedure to this end, as well as the method we
use to construct approximate solitary waves of the Euler equations. Both techniques will
be applied in the comparative study. We note that in all cases we will use the models in
nondimensional but unscaled variables (taking ε = µ2 = 1).

3.1. Computation of travelling-wave profiles. The Petviashvili method. The in-
vestigation for travelling wave solutions in one-dimensional systems typically leads to a set
of differential equations of the form

LU = N (U), (3.1)

for some differential operators L (linear) and N (nonlinear). The numerical resolution of
the preceding system can be done in many different ways (see [73] and the references therein
as a modest representation of the related literature). Among all the possibilities, the so-
called Petviashvili method will be used in our computations. This method stems from
the pioneering work of V.I. Petviashvili (1976), [66]. It is based on a modification of the
classical fixed point iteration (which in these cases is usually divergent) and it is formulated
as follows. Given an initial profile U0, the Petviashvili iteration generates approximations
Un of the original solution of (3.1) following the formulas

Mn =
〈LUn, Un〉

〈N (Un), Un〉
, (3.2)

LUn+1 = Mγ
nN(Un), (3.3)

where 〈·, ·〉 denotes the usual L2−norm and γ is a free parameter that controls the con-
vergence of the method. The term (3.2) is called the stabilizing factor. See [62, 46] for
details, generalizations and some local convergence results.

In this study, (3.2)-(3.3) is applied to compute solitary wave profiles in the following
cases and with the corresponding operators, namely:

• (iBBM):

Lu = (
√

gd− cs)u+ cs
d2

6
u′′, N (u) =

d2

4

(

(u′)2

2
− uu′′

)

− 3

4
u2.

• (cPer):

Lu = cs

(

u− d2

3
u′′
)

, N (u) =
u2

2
+

gdu

cs − u
.

• (iPer):

Lu = cs

(

u− d2

3
u′′
)

, N (u) =
u2

2
+

gdu

cs − u
− d2

3

(

(u′)2

2
− uu′′

)

,

where cs is the solitary wave speed.
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Figure 3. Solitary wave profiles of the invariant Benjamin–Bona–Mahony
(iBBM) equation for different speeds cs.

3.1.1. Generation and numerical evolution of the profiles. In many cases, the method (3.2)-
(3.3) can be efficiently implemented by using Fourier techniques, [62, 46]. Specifically, our
implementation for the three systems has been performed by considering the corresponding
periodic problem and using a pseudospectral representation for the approximations to the
profiles. As an initial iteration, a solitary wave solution (2.27) of the Serre equations or
the third-order asymptotic solution of Grimshaw, [39], can be considered. The iterative
procedure is continued until the difference between two consecutive iterations in the L∞

norm, or the L∞ norm of the residual is less than a prescribed small tolerance which, in
our case, is of order O(10−15). The convergence is reached in 10–20 iterations. In order
to illustrate better the transformations that solitary waves undergo while we gradually
increase the propagation speed parameter cs, we superpose several profiles on the same
Figure (Figure 3 corresponds to invariant Benjamin–Bona–Mahony (iBBM) system and
Figure 4 to invariant Peregrine (iPer)) system.

In order to assess the accuracy of the computations, the three models have been nu-
merically integrated in time using the computed solitary wave profiles as the initial con-
ditions. Some error indicators measuring the accuracy of the numerical approximation
of the solitary waves have been computed. The numerical method for the corresponding
initial-periodic boundary value problem consists of a pseudospectral-Galerkin method for
the semi-discretization in space and the classical, explicit fourth-order Runge-Kutta scheme
for the time integration, [28].

In the experiments below, we study the propagation of a solitary-wave profile, generated
by (3.2)-(3.3) with speed cs = 1.1 in the interval [−128, 128], with N = 2048 points for the
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Figure 4. Solitary wave profiles of the invariant Peregrine (iPer) system
for different speeds cs.

pseudospectral approximation and and spatial and time step sizes dx = 1.25 × 10−2, dt =
1.25×10−3 respectively. The results correspond to (cPer) and (iPer) systems. The (iBBM)
case has also implemented, with similar results.

We study the evolution of two parameters: the normalized amplitude error and the shape
error. The first one is computed by comparing, at each time level, the initial amplitude
of the profile (generated by the Petviashvili method) with the corresponding amplitude of
the numerical solution. Their computation is implemented as in e. g. [27]. Figure 5 shows
the temporal evolution of this amplitude error up to a final time T = 100, for both (cPer)
and (iPer). We observe that for the specific values of dx and dt the amplitude is conserved
up to 10 decimal digits in both cases.

On the other hand, the shape error is computed by comparing the numerical solution
with time translations of the initial profile with the prescribed speed and minimizing the
differences (see [9] for the details). The results displayed in Figure 6 show a virtually
constant evolution of this error, which in both cases is of order O(10−10). These results
confirm the accuracy of the technique used to generate the solitary wave profiles and of the
numerical code for the time evolution. The latter will be used for the experiments below.

3.2. Tanaka’s solution. The construction of approximations to travelling wave solutions
for the 2D Euler equations with free surface (to be considered as reference solutions for
the approximate models) will be performed with two techniques. In this Section we briefly
recall some basic facts about the first one, the Tanaka’s algorithm, [70]. Consider the two-
dimensional water wave problem in a channel of uniform depth d = const. Since we look
for travelling wave solutions, the flow field can be reduced to the steady state by choosing
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Figure 5. The normalized Amplitude Error as a function of time, for Pere-
grine and invariant Peregrine systems.
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Figure 6. The Shape Error as a function of time, for Peregrine and invari-
ant Peregrine systems.

a frame of reference moving with the wave speed cs. The introduction of dimensionless

variables leads to a single scaling parameter, the Froude number Fr, defined as Fr :=
cs√
gd

.

Hereafter, the governing equations are considered in dimensionless form.
The complex velocity potential is classically introduced as w = φ + iψ, where ψ is the

stream function. We choose φ = 0 at the crest and ψ = 0 at the bottom. The fluid
region is then mapped onto the strip 0 < ψ < 1, −∞ < φ < ∞ on the plane w with
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ψ = 1 corresponding to the free surface. We introduce the quantity Ω = log
dw

dz
= τ − iθ,

where θ is the angle between the velocity vector and horizontal axis Ox. The real part τ
is expressed in terms of the velocity magnitude q as τ = log q.

The boundary conditions to be satisfied are the dynamic condition on the free surface
and the bottom impermeability; they are expressed as

dq3

dφ
= − 3

Fr2
sin θ, on ψ = 1 and θ = 0, on ψ = 0. (3.4)

The problem is then transformed into the determination of the complex function Ω,
analytic with respect to w within the region of the unit strip 0 < ψ < 1, decaying at infinity
and satisfying the boundary conditions (3.4). By applying Cauchy’s integral theorem, one
can find the following integral equation on the free surface ψ = 1:

−θ(φ)− 2

π

∞
∫

−∞

θ(φ)

(ϕ− φ)2 + 4
dϕ = −1

π

∞
∫

−∞

(ϕ− φ)τ(ϕ)

(ϕ− φ)2 + 4
dϕ+

1

π
p.v.

∞
∫

−∞

τ(ϕ)

ϕ− φ
dϕ,

where τ(φ) and θ(φ) denote the traces of the corresponding functions on the free surface
ψ = 1. This integral equation is solved iteratively. The convergence is tested with respect
to the Froude number Fr.

3.3. Fenton’s asymptotic solution. In 1972 Fenton proposed a ninth-order asymptotic
solution to the solitary wave of the full Euler equations [34]. Later, in collaboration with
Longuet-Higgins, this solution was extended to the 14th order [52]. For example the 14th
order approximation to the speed cs (given the amplitude a) can be described by the
following relation:

( cs√
gd

)2

=
N
∑

n=0

fnε
n +O(εN+1), ε :=

a

d
. (3.5)

The coefficients fn up to the 14th order are given in Table 1. This and the ninth-order
asymptotic solutions will be also considered as reference solutions.

3.4. Numerical results. In this section we compare the solitary waves of the following
models:

• the Korteweg–de Vries (KdV) equation (2.5)
• the Benjamin–Bona–Mahony (BBM) equation (2.9)
• the invariant Benjamin–Bona–Mahony (iBBM) equation (2.11)
• the Peregrine classical Peregrine (cPer) system (2.18), (2.19)
• the invariant Peregrine invariant Peregrine (iPer) system (2.21), (2.22)
• the Serre equations (2.25), (2.26)

from either the analytical formula (when possible) or the computations with the Petvi-
ashvili method. The comparison is established between them and with those of the full
Euler equations with free surface. The latter are computed by two ways: from the Fenton
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Order, n Coefficient value, fn
0 1.000000
1 1.000000
2 -0.050000
3 -0.0428571
4 -0.0342857
5 -0.0315195
6 -0.0292784
7 -0.0268451
8 -0.0302634
9 -0.0219347
10 -0.048229
11 0.051809
12 -0.506790
13 3.4666
14 -31.64

Table 1. Coefficients of the Fenton’s asymptotic expansion of the solitary
wave speed, cf. [34, 52].

asymptotic ninth order solution and the Tanaka’s solution of the two-dimensional incom-
pressible Euler equations with free surface. The study is focused on the amplitudes and
shapes of the computed free surface elevation η(ξ), provided by the models for the same
prescribed value of the propagation speed parameter cs.

3.4.1. Solitary wave speed–amplitude relation. Figure 7 shows an amplitude-wave speed
diagram for the models considered. First, an approximate relation between the amplitude
and speed for the solitary waves of the full Euler system is computed, by using the Tanaka’s
algorithm and (3.5). They virtually give the same results and these are compared with
the relation obtained by each of the models. We observe that the Serre equations (and,
consequently, the other systems, that have weaker nonlinearities) are known to provide a
relatively good approximation to solitary wave solutions of full Euler equations in a range
of amplitudes not greater than 0.5, cf. e.g. [51, 16]. Therefore, our attention is focused
on solitary waves with these amplitudes, as it is observed in Figure 7. Figure 8 shows a
magnification for the largest amplitudes.

Corresponding to the comparison between the solitary waves of the models at hand, we
note that the non Galilean invariant models, the Benjamin–Bona–Mahony (BBM) equa-
tion and the classical Peregrine (cPer) system, tend to underestimate the solution speed
for a given amplitude. On the other hand, the curves corresponding to their invariant
counterparts along with the fully nonlinear Serre equations lie above the reference solu-
tion. In particular, the results for the invariant Benjamin–Bona–Mahony (iBBM) equation
are very close to those of Serre equations. A surprising fact is that the amplitude-speed
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Figure 7. Solitary wave amplitude–speed diagram. (The curves corre-
sponding to the iPeregrine system and the Serre system are superposed up
to the graphical resolution.)
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resolution.)

relation given by the invariant Peregrine (iPer) system is superposed with that of the Serre
equations up to the graphical resolution.
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Figure 9. Small amplitude solitary waves computed for the propagation
speed cs√

gd
= 1.05084689 (a/d ≈ 0.1).

3.4.2. Solitary wave shapes. A second comparison between the shape of the computed soli-
tary waves, is presented in Figures 9-14. They illustrate the cases of small (a/d ≈ 0.1, see
Figure 9 and a magnification on the wave crest in Figure 10), moderate (a/d ≈ 0.22, see
Figures 11 and a magnification in Figure 12) and large (a/d ≈ 0.4, see Figures 13 and 14)
solitary wave amplitudes of the models (within the range mentioned above). According
to these results, it is observed that the invariant Benjamin–Bona–Mahony (iBBM) equa-
tion and the invariant Peregrine (iPer) system approximate much better the amplitude of
the reference solution (represented, in this case, by the Tanaka’s solution) than the non-
Galilean invariant counterparts, and they stay very close to the results of the Serre system
near the crest. As a measure of the level of approximation to solitary wave solutions of the
Euler system, these and the previous results show the benefits of taking into account the
invariantization process in the approximate models.

4. Solitary waves interactions

We complete the numerical experiments by studying the effects of the Galilean invariance
property in solitary wave interactions. Specifically, we compare, by numerical means, head-
on and overtaking collisions of two solitary waves of the invariant BBM and Peregrine
equations with those of their corresponding not invariant models.

It is known that the tails produced by the interaction of two solitary waves are sensitive to
both the linear terms (characterizing the linear dispersion relation) and the nonlinearities.
For example, two solitary waves of the KdV equation interact in an elastic way without
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Figure 10. Magnification of Figure 9.
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Figure 11. Moderate amplitude solitary waves computed for the propaga-
tion speed cs√

gd
= 1.10269248 (a/d ≈ 0.22).
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Figure 12. Magnification of Figure 11.
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Figure 13. Large amplitude solitary waves computed for the propagation
speed cs√

gd
= 1.1784972 (a/d ≈ 0.4).
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Figure 14. Magnification of Figure 13.

producing dispersive tails at all, [74], while the collision of solitary waves of the BBM
equation will produce dispersive tails and probably small-amplitude nonlinear pulses as the
main indication of an inelastic interaction, [10, 11]. In the new Galilean invariant models,
the new nonlinear terms are of order εµ2 and their effects on the interaction will be studied
here. The same code introduced in Section 3 is used for the numerical computations, as well
as the Petviashvili method (3.2)-(3.3) to generate solitary wave profiles when necessary.

4.1. Head-on collisions of solitary waves. A first group of experiments concerns head-
on collisions. The classical Peregrine (cPer) and the invariant Peregrine (iPer) systems
have been considered, by constructing, in both cases, two solitary waves on the interval
[−256, 256] with speeds cs,1 = 1.15 and cs,2 = 1.05 (translated appropriately such as their
amplitudes achieved on −50 and 50 respectively) and travelling in opposite directions.
These solitary waves are of small amplitude and their shapes are almost the same for both
models. The code uses N = 4096 nodes, a spatial step size of 1.25× 10−1 and 5× 10−3 as
the time step.

Figure 16 shows the η− evolution of the head-on collision for both models and at several
times. A tail behind each tallest wave after the collision is observed. This is larger in the
case of the invariant Peregrine system (of the order of 10−4) than in the case of the classical
Peregrine system (approx. 10−4), see Figure 16 (d) and (f). During the collisions, a similar
phase shift also takes place, see Figure 17.

A final comparison is established in terms of the degree of inelasticity of the interaction.
This can be measured by using several parameters, [1, 21]. In each case, a symmetric
head-on collision has been implemented; that is, two solitary waves with the same spped
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Figure 15. Symmetric head-on collision. Ratio K of amplitudes before and
after the collision, for Peregrine and invariant Peregrine systems.

(a) Peregrine system

cs Ainit Aafter

1.1 0.2177418 0.2177417
1.2 0.4757297 0.4757202
1.3 0.7822906 0.7821674
1.4 1.1476304 1.1469096

(b) iPeregrine system

cs Ainit Aafter

1.1 0.21 0.209978
1.2 0.44 0.439365
1.3 0.69 0.686027
1.4 0.95 0.946593

Table 2. Symmetric head-on collision.

cs travelling in opposite directions. After the interaction, both solitary waves emerge with
similar amplitudes Aafter, but below the initial one Ainit, as is observed in Table 2. Then
a ratio K of the amplitude of the waves after the collision to their amplitude before the
collision has been computed. Figure 15 shows the behavior of this value, as a function of
the speed parameter cs and for both systems. The results reveal a higher inelastic collision
in the case of the invariant system, in accordance to what is observed in the full water
wave model [22].

4.2. Overtaking interactions of solitary waves. In order to study the overtaking colli-
sion of solitary waves, we first consider the classical and the invariant Peregrine systems and
construct, for both, two solitary waves on the interval [−1024, 1024] with speeds cs,1 = 1.15
and cs,2 = 1.05 (translated appropriately such as their amplitude achieved on −50 and 50
respectively) travelling in the same direction, with N = 16384 and time step of 5 × 10−3.
In Figure 18 we observe that the basic characteristics of the interaction are similar for both
systems, (cf. also [2]). Specifically, the interaction is again inelastic; after the collision a
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(a) Solution before the interaction (t = 25)
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(b) Solution during the interaction (t = 47.5)
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(c) Solution after the interaction (t = 100)

−250 −200 −150 −100 −50 0 50 100 150 200 250
−1

0

1
x 10

−4

x

η

 

 

Classical Peregrine
iPeregrine

(d) Magnification of the dispersive tail (t =

100)
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(e) Solution after the interaction (t = 150)
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(f) Magnification of the dispersive tail (t =

150)

Figure 16. Head on collision of two solitary waves for the Peregrine and
invariant Peregrine systems.

tail, of apparent dispersive nature, behind the smallest wave (moving to the right) and a
small N-shape wavelet (moving to the left) are generated. Moreover, a small phase shift
and a change in shape can be observed in the solitary pulses (Figure 17). The wavelet
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Figure 17. Phase diagram of the overtaking collision: (a) Peregrine system.
(b) Invariant Peregrine system.

generated in the case of the classical Peregrine system has an inverse N-shape while the
invariant version has an N-shape.

On the contrary, with the same input data, an overtaking collision for the case of the
BBM and iBBM equations is shown in Figure 19 at several times. In this case, no N-shape
wavelet is observed and only a tail behind the waves appears.

We can conclude that these two groups of results show that, as expected, the O(ǫµ2)
nonlinear terms of the invariant models do not change significantly, in a qualitative sense,
the behaviour of the interactions of solitary waves provided by the corresponding not
Galilean invariant system.

4.3. Comparison with Euler equations. Finally, we study the evolution of a solitary
wave of the Euler equations when we use it as initial condition to the approximate models.
Specifically, we consider an approximate solitary wave Φh(x) of amplitude A = 0.2 (and
speed cs ≈ 1.095490471188718) obtained by using Fenton’s ninth order asymptotic solution.
In the case of the Peregrine and the iPeregrine systems we use for initial velocity u0(x) =
csη0(x)/(d+ η0(x)). We remind that due to the mass conservation property this formula is
exact (see equation (2.23) for the velocity given the surface elevation η for both Peregrine
and iPeregrine systems). In Figure 20 we present the solution at T = 100. We observe
that the initial condition is resolved into a new solitary wave followed by a dispersive tail.
In the case of the classical models, the dispersive tails appear to be smaller. Figure 21 (a)
shows the shaper error of the solution (i.e. how much different is the solution for being
the exact solitary wave of the Euler equations) while Figure 21 (b) presents the amplitude
of the solution as a function of time t. From these two figures we observe that in the case
of classical models the emerging solitary waves are closer in shape and amplitude to the
original solitary wave solution of the Euler equations than the respective solitary waves of
the invariant models.
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(a) Solution before the interaction (t = 250)
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(b) Solution during the interaction (t = 750)
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(c) Solution after the interaction (t = 950)
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(d) Solution after the interaction (t = 1750)
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(e) Magnification of the dispersive tail (t =

1750)

Figure 18. Overtaking collision of two solitary waves for classical Peregrine
(cPer) and invariant Peregrine (iPer) systems.

5. Conclusions

In the present work the influence of Galilean invariance in several equations arising in
water wave modelling is studied. We propose the modification of existing not invariant
models in order to include this fundamental property. The technique introduced here
consists of adding higher-order terms from the approximation of the governing equations.
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(a) Solution before the interaction (t = 250)
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(b) Solution during the interaction (t = 750)
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(c) Solution after the interaction (t = 950)
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(d) Solution after the interaction (t = 1750)
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(e) Magnification of the dispersive tail (t =

1750)

Figure 19. Overtaking collision of two solitary waves for Benjamin–Bona–
Mahony (BBM) and invariant Benjamin–Bona–Mahony (iBBM) models.

These terms are asymptotically negligible and consequently, the modified models are still
valid in the appropriate regime. As a case study, corresponding modifications of two not
invariant models, the Benjamin–Bona–Mahony (BBM) equation and the classical Peregrine
system, are presented. The comparison with reference solutions to the full Euler equations
shows that this extra-term is beneficial for the description of the travelling wave solutions
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(a) Solution of the BBM equation at T = 100
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(b) Solution of the iBBM equation at T = 100
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(c) Solution of the Peregrine system at T =

100
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(d) Solution of the iPeregrine system at T =

100

Figure 20. Evolution of a solitary wave of the Euler equations. (A = 0.2)
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Figure 21. Shape error and amplitude of the solution as a function of time

in several ways. First, this modification improves the SW amplitude-speed relation which
lies closer to the Tanaka’s and Fenton’s solutions. In this regard, we obtain a surpris-
ing performance of the iPeregrine system (2.21), (2.22) with the amplitude-speed relation
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undistinguishable from the fully-nonlinear Serre equations (2.25), (2.26). Moreover, the
amplitudes of solitary wave solutions to the invariant models are closer to the correspond-
ing full Euler solutions than classical counterparts. The comparison is finished off with a
numerical study of head-on and overtaking collisions. Compared to the behaviour observed
in the not invariant equations, the higher order nonlinear terms incorporated in the new
models do not affect qualitatively the inelastic character of the interactions. However, a
relevant difference in the degree of inelasticity is observed, being higher in the case of the
invariant versions. This behaviour is closer to what has been observed in the case of the
full Euler equations.
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