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Spherical Hecke algebras for Kac-Moody groups

over local fields

Stéphane Gaussent and Guy Rousseau

May 22, 2012

Abstract

We define the spherical Hecke algebra H for an almost split Kac-Moody group G over a

local non-archimedean field. We use the hovel I associated to this situation, which is the

analogue of the Bruhat-Tits building for a reductive group. The stabilizer K of a special

point on the standard apartment plays the role of a maximal open compact subgroup. We

can define H as the algebra of K−bi-invariant functions on G with almost finite support.

As two points in the hovel are not always in a same apartment, this support has to be

in some large subsemigroup G+ of G. We prove that the structure constants of H are

polynomials in the cardinality of the residue field, with integer coefficients depending on

the geometry of the standard apartment. We also prove the Satake isomorphism between

H and the algebra of Weyl invariant elements in some completion of a Laurent polynomial

algebra. In particular, H is always commutative. Actually, our results apply to abstract

“locally finite” hovels, so that we can define the spherical algebra with unequal parameters.
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Introduction

Let G be a connected reductive group over a local non-archimedean field K and let K be
an open compact subgroup. The space H of complex functions on G, bi-invariant by K and
with compact support is an algebra for the natural convolution product. Ichiro Satake [Sa63]
studied this algebra H to define the spherical functions and proved, in particular, that H is
commutative for good choices of K. We know now that one of the good choices for K is
the fixator of some special vertex for the action of G on its Bruhat-Tits building I , whose
structure is explained in [BrT72]. Moreover H, now called the spherical Hecke algebra, may
be entirely defined using I , see e.g. [P06].
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Kac-Moody groups are interesting generalizations of reductive groups and it is natural to
try to generalize the spherical Hecke algebra to the case of a Kac-Moody group. But there
is now no good topology on G and no good compact subgroup, so the “convolution product”
has to be defined only with algebraic means. Alexander Braverman and David Kazhdan
[BrK10] succeeded in defining such a spherical Hecke algebra, when G is split and untwisted
affine. For a well chosen subgroup K, they define H as an algebra of K−bi-invariant complex
functions with “almost finite” support. There are two new features: the support has to be in
a subsemigroup G+ of G and it is an infinite union of double classes. Hence, H is naturally a
module over the ring of complex formal power series.

Our idea is to define this spherical Hecke algebra using the hovel associated to the almost
split Kac-Moody group G that we built in [GR08], [Ro12] and [Ro13]. This hovel I is a
set with an action of G and a covering by subsets called apartments. They are in one-to-
one correspondence with the maximal split subtori, hence permuted transitively by G. Each
apartment A is a finite dimensional real affine space and its stabilizer N in G acts on it
via a generalized affine Weyl group W = W v

⋉ Y (where Y ⊂ −→
A is a discrete subgroup of

translations) which stabilizes a set M of affine hyperplanes called walls. So, I looks much
like the Bruhat-Tits building of a reductive group, but M is not a locally finite system of
hyperplanes (as the root system Φ is infinite) and two points in I are not always in a same
apartment (this is why I is called a hovel). There is on I a G−invariant preorder ≤ which
induces on each apartment A the preorder given by the Tits cone T ⊂ −→

A .

Now, we consider the fixator K in G of a special point 0 in a chosen standard apartment
A. The spherical Hecke algebra HR is a space of K−bi-invariant functions on G with values
in a ring R. In other words, it is the space HI

R of G−invariant functions on I0 × I0 where
I0 = G/K is the orbit of 0 in I . The convolution product is easy to guess from this point of
view: (ϕ ∗ψ)(x, y) = ∑

z∈I0
ϕ(x, z)ψ(z, y) (if this sum means something). As two points x, y

in I are not always in a same apartment (i.e. the Cartan decomposition fails: G 6= KNK),
we have to consider pairs (x, y) ∈ I0 × I0, with x ≤ y (this implies that x, y are in a same
apartment). For HR, this means that the support of ϕ ∈ HR has to be in K\G+/K where
G+ = {g ∈ G | 0 ≤ g.0} is a semigroup. In addition, K\G+/K is in one-to-one correspondence
with the subsemigroup Y ++ = Y ∩ Cv

f of Y (where Cv
f is the fundamental Weyl chamber).

Now, to get a well defined convolution product, we have to ask (as in [BrK10]) the support of
a ϕ ∈ HR to be almost finite: supp(ϕ) ⊂ ⋃n

i=1 (λi −Q∨
+) ∩ Y ++, where λi ∈ Y ++ and Q∨

+ is
the subsemigroup of Y generated by the fundamental coroots. Note that (λ−Q∨

+) ∩ Y ++ is
infinite except when G is reductive.

With this definition we are able to prove that HR is really an algebra, which generalizes
the known spherical Hecke algebras in the finite or affine split case (§2). In the split case, we
describe the hovel I and give a direct proof that HR is commutative (§3).

The structure constants of HR are the non-negative integers mλ,µ(ν) (for λ, µ, ν ∈ Y ++)
such that cλ ∗ cµ =

∑
ν∈Y ++ mλ,µ(ν)cν , where cλ is the characteristic function of KλK. Each

chamber (= alcove) in I has only a finite number of adjacent chambers along a given panel.
These numbers are called parameters of I and they form a finite set Q. In the split case, there
is only one parameter q: the number of elements of the residue field κ of K. In §4 we show
that the structure constants are polynomials in these parameters with integral coefficients
depending only on the geometry of an apartment.

In §5 we build an action of HR on the module of functions from A ∩ I0 to R. This gives
an injective homomorphism from HR into a suitable completion R[[Y ]] of the group algebra
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R[Y ]; hence HR is abelian (5.3). After modification by a character this homomorphism gives
the Satake isomorphism from HR onto the subalgebra R[[Y ]]W

v
of W v−invariant elements in

R[[Y ]]. The proof involves a parabolic retraction of I onto an extended tree inside it.
Actually, this article is written in a more general framework (explained in §1): we ask I

to be an abstract ordered hovel (as defined in [Ro11]) and G a strongly transitive group of
(positive, type-preserving) automorphisms.

The general definition and study of Hecke algebras for split Kac-Moody groups over local
fields was also undertaken by Alexander Braverman, David Kazhdan and Manish Patnaik
(as we knew from [P10]). A preliminary draft appeared recently [BrKP12]. Their arguments
are algebraic without use of a geometric object as a hovel, and the proofs seem complete
(temporarily?) only for the untwisted affine case. In addition to the construction of the
spherical Hecke algebra and the Satake isomorphism (as here), they give a formula for spherical
functions and they build the Iwahori-Hecke algebra. We hope to generalize, in a near future,
these results to our general framework.

One should notice that these authors use, instead of our group K, a smaller K1, a priori
slightly different, see Remark in Section 3.4.

1 General framework

1.1 Vectorial data

We consider a quadruple (V,W v , (αi)i∈I , (α
∨
i )i∈I) where V is a finite dimensional real vector

space, W v a subgroup of GL(V ) (the vectorial Weyl group), I a finite set, (α∨
i )i∈I a family

in V and (αi)i∈I a free family in the dual V ∗. We ask these data to verify the conditions of
[Ro11, 1.1]. In particular, the formula ri(v) = v − αi(v)α

∨
i defines a linear involution in V

which is an element in W v and (W v, {ri | i ∈ I}) is a Coxeter system.
To be more concrete we consider the Kac-Moody case of [l.c. ; 1.2]: the matrix M =

(αj(α
∨
i ))i,j∈I is a generalized Cartan matrix. Then W v is the Weyl group of the corresponding

Kac-Moody Lie algebra gM and the associated real root system is

Φ = {w(αi) | w ∈W v, i ∈ I} ⊂ Q =
⊕

i∈I

Z.αi.

We set Φ± = Φ ∩ Q± where Q± = ±(
⊕

i∈I (Z≥0).αi) and Q∨ = (
⊕

i∈I Z.α∨
i ), Q

∨
± =

±(
⊕

i∈I (Z≥0).α
∨
i ). We have Φ = Φ+ ∪ Φ− and, for α = w(αi) ∈ Φ, rα = w.ri.w

−1 and
α∨ = w(α∨

i ) depend only on α, and rα(v) = v − α(v)α∨.
The set Φ is an (abstract reduced) real root system in the sense of [MoP89], [MoP95]

or [Ba96]. We shall sometimes also use the set ∆ = Φ ∪ ∆+
im ∪ ∆−

im of all roots (with
−∆−

im = ∆+
im ⊂ Q+, W v−stable) defined in [Ka90]. It is an (abstract reduced) root system

in the sense of [Ba96].
The fundamental positive chamber is Cv

f = {v ∈ V | αi(v) > 0,∀i ∈ I}. Its closure Cv
f is the

disjoint union of the vectorial faces F v(J) = {v ∈ V | αi(v) = 0,∀i ∈ J, αi(v) > 0,∀i ∈ I \ J}
for J ⊂ I. The positive (resp. negative) vectorial faces are the sets w.F v(J) (resp. −w.F v(J))
for w ∈W v and J ⊂ I. The set J or the face w.F v(J) is called spherical if the group W v(J)
generated by {ri | i ∈ J} is finite.

The Tits cone T is the (disjoint) union of the positive vectorial faces. It is a W v−stable
convex cone in V .
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1.2 The model apartment

As in [Ro11, 1.4] the model apartment A is V considered as an affine space and endowed with
a family M of walls. These walls are affine hyperplanes directed by Ker(α) for α ∈ Φ.

We ask this apartment to be semi-discrete and the origin 0 to be special. This means
that these walls are the hyperplanes defined as follows:

M(α, k) = {v ∈ V | α(v) + k = 0} for α ∈ Φ and k ∈ Λα

(with Λα = kα.Z a non trivial discrete subgroup of R). Using the following lemma (i.e.
replacing Φ by Φ̃) we shall assume that Λα = Z,∀α ∈ Φ.

For α = w(αi) ∈ Φ, k ∈ Λα(= Z) and M = M(α, k), the reflection rα,k = rM with
respect to M is the affine involution of A with fixed point set the wall M and associated linear
involution rα. The affine Weyl group W a is the group generated by the reflections rM for
M ∈ M; we assume that W a stabilizes M.

For α ∈ Φ and k ∈ R, D(α, k) = {v ∈ V | α(v) + k ≥ 0} is an half-space, it is called an
half-apartment if k ∈ Λα (= Z).

The Tits cone T and its interior T o are convex and W v−stable cones, therefore, we can
define two W v−invariant preorder relations on A:

x ≤ y ⇔ y − x ∈ T ; x
o
≤ y ⇔ y − x ∈ T o.

If W v has no fixed point in V \ {0} and no finite factor, then they are orders; but they are
not in general.

Lemma 1.3. For all α ∈ Φ we choose kα > 0 and define α̃ = α/kα, α̃∨ = kα.α
∨. Then

Φ̃ = {α̃ | α ∈ Φ} is the (abstract reduced) real root system (in the sense of [MoP89], [MoP95] or
[Ba96]) associated to (V,W v, (k−1

αi
.αi)i∈I , (kαi

.α∨
i )i∈I) hence to the generalized Cartan matrix

M̃ = (k−1
αj
.αj(kαi

.α∨
i ))i,j∈I . Moreover with Φ̃, the walls are described using the subgroups

Λ̃α = Z.

Proof. For α, β ∈ Φ, the group W a contains the translation τ by kα.α
∨ and τ(M(β, 0)) =

M(β,−β(kα.α∨)). So kα.β(α
∨) ∈ Λβ i.e. β̃(α̃∨) = k−1

β .kα.β(α
∨) ∈ Z. Hence M̃ =

(k−1
αj
.αj(kαi

.α∨
i ))i,j∈I is a generalized Cartan matrix and the lemma is clear, as kwα = kα.

1.4 Faces, sectors, chimneys...

The faces in A are associated to the above systems of walls and halfapartments (i.e. D(α, k) =
{v ∈ A | α(v)+ k ≥ 0}). As in [BrT72], they are no longer subsets of A, but filters of subsets
of A. For the definition of that notion and its properties, we refer to [BrT72] or [GR08].

If F is a subset of A containing an element x in its closure, the germ of F in x is the filter
germx(F ) consisting of all subsets of A which are intersections of F and neighbourhoods of
x. In particular, if x 6= y ∈ E, we denote the germ in x of the segment [x, y] (resp. of the
interval ]x, y]) by [x, y) (resp. ]x, y)).

The enclosure clA(F ) of a filter F of subsets of A is the filter made of the subsets of
A containing an element of F of the shape ∩α∈∆D(α, kα), where kα ∈ Z ∪ {∞} (here,
D(α,∞) = A).

A face F in the apartment A is associated to a point x ∈ A and a vectorial face F v in
V ; it is called spherical according to the nature of F v. More precisely, a subset S of A is an
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element of the face F (x, F v) if and only if it contains an intersection of half-spaces D(α, k) or
open halfspaces D◦(α, k) (for α ∈ ∆ and k ∈ Z⊔ {∞}) which contains Ω∩ (x+F v), where Ω
is an open neighborhood of x in A. The enclosure of a face F = F (x, F v) is its closure: the
closed-face F . It is the enclosure of the local-face in x, germx(x+ F v).

There is an order on the faces: the assertions “F is a face of F ′ ”, “F ′ covers F ” and
“F ≤ F ′ ” are by definition equivalent to F ⊂ F ′. The dimension of a face F is the smallest
dimension of an affine space generated by some S ∈ F . The (unique) such affine space E of
minimal dimension is the support of F . Any S ∈ F contains a non empty open subset of E.
A face F is spherical if the direction of its support meets the open Tits cone, then its fixator
WF in W is finite.

Any point x ∈ A is contained in a unique face F (x, V0) which is minimal (but seldom
spherical); x is a vertex if, and only if, F (x, V0) = {x}.

A chamber (or alcove) is a maximal face, or, equivalently, a face such that all its elements
contain a nonempty open subset of A.

A panel is a spherical face maximal among faces which are not chambers, or, equivalently,
a spherical face of dimension n − 1. Its support is a wall. So, the set of spherical faces of A
and the Tits cone completely determine the set M of walls.

A sector in A is a V−translate s = x+Cv of a vectorial chamber Cv = ±w.Cv
f (w ∈W v),

x is its base point and Cv its direction. Two sectors have the same direction if, and only if,
they are conjugate by V−translation, and if, and only if, their intersection contains another
sector.

The sector-germ of a sector s = x + Cv in A is the filter S of subsets of A consisting
of the sets containing a V−translate of s, it is well determined by the direction Cv. So the
set of translation classes of sectors in A, the set of vectorial chambers in V and the set of
sector-germs in A are in canonical bijection. We write S−∞ the sector-germ associated to the
negative fundamental vectorial chamber −Cv

f .
A sector-face in A is a V−translate f = x + F v of a vectorial face F v = ±wF v(J). The

sector-face-germ of f is the filter F of subsets containing a translate f′ of f by an element of F v

(i.e. f′ ⊂ f). If F v is spherical, then f and F are also called spherical. The sign of f and F is
the sign of F v.

A chimney in A is associated to a face F = F (x, F v
0 ), its basis, and to a vectorial face F v,

its direction, it is the filter
r(F,F v) = clA(F + F v).

A chimney r = r(F,F v) is splayed if F v is spherical, it is solid if its support (as a filter, i.e.
the smallest affine subspace containing r) has a finite fixator in W v. A splayed chimney is
therefore solid. The enclosure of a sector-face f = x+ F v is a chimney.

A halfline δ with origin in x and containing y 6= x (or the interval ]x, y], the segment

[x, y]) is called preordered if x ≤ y or y ≤ x and generic if x
o
≤ y or y

o
≤ x. With these new

notions, a chimney can be defined as the enclosure of a preordered halfline and a preordered
segment-germ sharing the same origin. The chimney is splayed if, and only if, the halfline is
generic.

1.5 The hovel

In this section, we recall the definition of an ordered affine hovel given by Guy Rousseau in
[Ro11].
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An apartment of type A is a set A endowed with a set Isom(A, A) of bijections (called
isomorphisms) such that if f0 ∈ Isom(A, A), then f ∈ Isom(A, A) if, and only if, there exists
w ∈ W a satisfying f = f0 ◦ w. An isomorphism between two apartments φ : A → A′ is a
bijection such that f ∈ Isom(A, A) if, and only if, φ ◦ f ∈ Isom(A, A′). As the filters in A

defined in 1.4 above (e.g. faces, sectors, walls,..) are permuted by W a, they are well defined
in any apartment of type A.

Definition. An ordered affine hovel of type A is a set I endowed with a covering A of subsets
called apartments such that:

(MA1) any A ∈ A admits a structure of an apartment of type A;

(MA2) if F is a point, a germ of a preordered interval, a generic halfline or a solid chimney in
an apartment A and if A′ is another apartment containing F , then A ∩A′ contains the
enclosure clA(F ) of F and there exists an isomorphism from A onto A′ fixing clA(F );

(MA3) if R is a germ of a splayed chimney and if F is a face or a germ of a solid chimney, then
there exists an apartment that contains R and F ;

(MA4) if two apartments A,A′ contain R and F as in (MA3), then their intersection contains
clA(R ∪ F ) and there exists an isomorphism from A onto A′ fixing clA(R ∪ F );

(MAO) if x, y are two points contained in two apartments A and A′, and if x ≤A y then the two
segments [x, y]A and [x, y]A′ are equal.

We ask here I to be thick of finite thickness: the number of chambers (=alcoves)
containing a given panel has to be finite ≥ 3. This number is the same for any panel in a
given wall M [Ro11, 2.9]; we denote it by 1 + qM .

We assume that I has a strongly transitive group of automorphisms G (i.e. all isomor-
phisms involved in the above axioms are induced by elements of G, cf. [Ro13, 4.10]). We
choose in I a fundamental apartment which we identify with A. As G is strongly transi-
tive, the apartments of I are the sets g.A for g ∈ G. The stabilizer N of A in G induces
a group ν(N) of affine automorphisms of A which permutes the walls, sectors, sector-faces...
and contains the affine Weyl group W a [Ro13, 4.13.1]. We denote the fixator of 0 ∈ A in G
by K.

We ask ν(N) to be positive and type-preserving for its action on the vectorial faces.
This means that the associated linear map −→w of any w ∈ ν(N) is in W v. As ν(N) contains
W a and stabilizes M, we have ν(N) =W v

⋉ Y , where W v fixes the origin 0 of A and Y is a
group of translations such that: Q∨ ⊂ Y ⊂ P∨ = {v ∈ V | α(v) ∈ Z,∀α ∈ Φ}.

We ask Y to be discrete in V . This is clearly satisfied if Φ generates V ∗ i.e. (αi)i∈I is a
basis of V ∗.

Examples. The main examples of all the above situation are provided by the hovels of almost
split Kac-Moody groups over fields complete for a discrete valuation and with a finite residue
field, see [Ro12], [Ch10], [Ch11] or [Ro13]. Some details in the split case can be found in
Section 3.

Remarks. a) In the following, we often refer to [GR08] which deals with split Kac-Moody
groups and residue fields containing C. But the results cited are easily generalized to our
present framework, using the above references.
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b) For an almost split Kac-Moody group over a local field K, the set of roots Φ is
KΦred = {Kα ∈ KΦ | 1

2 .
Kα 6∈ KΦ} where the relative root system KΦ describes well the

commuting relations between the root subgroups. Unfortunately Φ̃ gives a worst description
of these relations.

1.6 Type 0 vertices

The elements of Y considered as the subset Y = N.0 of V = A are called vertices of type
0 in A; they are special vertices. We note Y + = Y ∩ T and Y ++ = Y ∩ Cv

f . The type 0
vertices in I are the points on the orbit I0 of 0 by G. This set I0 is often called the affine
Grassmannian as it is equal to G/K.

In general, G is not equal to KYK = KNK [GR08, 6.10] i.e. I0 6= K.Y .
We know that I is endowed with a G−invariant preorder ≤ which induces the known one

on A [Ro11, 5.9]. We set I + = {x ∈ I | 0 ≤ x} , I
+
0 = I0∩I + andG+ = {g ∈ G | 0 ≤ g.0};

so I
+
0 = G+.0 = G+/K. As ≤ is a G−invariant preorder, G+ is a semigroup.

If x ∈ I
+
0 there is an apartment A containing 0 and x (by definition of ≤ ) and

all apartments containing 0 are conjugated to A by K (axiom (MA2)); so x ∈ K.Y + as
I

+
0 ∩ A = Y +. But ν(N ∩K) =W v and Y + = W v.Y ++ (with uniqueness of the element in

Y ++); so I
+
0 = K.Y ++, more precisely I

+
0 = G+/K is the disjoint union of the KyK/K

for y ∈ Y ++.
Hence, we have proved that the map Y ++ → K\G+/K is one-to-one and onto.

1.7 Vectorial distance and Q∨−order

For x ∈ T , we note x++ the unique element in Cv
f conjugated by W v to x.

Let I ×≤ I = {(x, y) ∈ I × I | x ≤ y} be the set of increasing pairs in I . Such a
pair (x, y) is always in a same apartment g.A; so g−1y− g−1x ∈ T and we define the vectorial
distance dv(x, y) ∈ Cv

f by dv(x, y) = (g−1y − g−1x)++. It does not depend on the choices we
made.

For (x, y) ∈ I0 ×≤ I0 = {(x, y) ∈ I0 × I0 | x ≤ y}, the vectorial distance dv(x, y)
takes values in Y ++. Actually, as I0 = G.0, K is the fixator of 0 and I

+
0 = K.Y ++ (with

uniqueness of the element in Y ++), the map dv induces a bijection between the set I0×≤I0/G
of orbits of G in I0 ×≤ I0 and Y ++.

Any g ∈ G+ is in K.dv(0, g0).K.
For x, y ∈ A, we say that x ≤ Q∨ y (resp. x ≤ Q∨

R

y) when y − x ∈ Q∨
+ (resp. y − x ∈

Q∨
R+ =

∑
i∈I R≥0.α

∨
i ). We get thus a preorder which is an order at least when (α∨

i )i∈I is free
or R+−free (i.e.

∑
aiα

∨
i = 0, ai ≥ 0 ⇒ ai = 0,∀i).

1.8 Paths

We consider piecewise linear continuous paths π : [0, 1] → A such that each (existing) tangent
vector π′(t) is in an orbit W v.λ of some λ ∈ Cv

f under the vectorial Weyl group W v. Such a
path is called a λ−path; it is increasing with respect to the preorder relation ≤ on A.

For any t 6= 0 (resp. t 6= 1), we let π′−(t) (resp. π′+(t)) denote the derivative of
π at t from the left (resp. from the right). Further, we define w±(t) ∈ W v to be the
smallest element in its (W v)λ−class such that π′±(t) = w±(t).λ (where (W v)λ is the fixator
in W v of λ). Moreover, we denote by π−(t) = π(t) − [0, 1)π′−(t) = [π(t), π(t − ε) ) (resp.
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π+(t) = π(t) + [0, 1)π′+(t) = [π(t), π(t + ε) ) (for ε > 0 small) the positive (resp. negative)
segment-germ of π at t.

The reverse path π defined by π = π(1− t) has symmetric properties, it is a (−λ)−path.
For any choices of λ ∈ Cv

f , π0 ∈ A, r ∈ N \ {0} and sequences τ = (τ1, τ2, . . . , τr) of
elements in W v/(W v)λ and a = (a0 = 0 < a1 < a2 < · · · < ar = 1) of elements in R, we
define a λ−path π = π(λ, π0, τ , a) by the formula:

π(t) = π0 +

j−1∑

i=1

(ai − ai−1)τi(λ) + (t− aj−1)τj(λ) for aj−1 ≤ t ≤ aj.

Any λ−path may be defined in this way (and we may assume τj 6= τj+1).

Definition. [KM08, 3.27] A Hecke path of shape λ with respect to −Cv
f is a λ−path such

that, for all t ∈ [0, 1]\{0, 1}, π′+(t) ≤W v
π(t)

π′−(t), which means that there exists a W v
π(t)−chain

from π′−(t) to π′+(t), i.e. finite sequences (ξ0 = π′−(t), ξ1, . . . , ξs = π′+(t)) of vectors in V and
(β1, . . . , βs) of real roots such that, for all i = 1, . . . , s:

i) rβi
(ξi−1) = ξi,

ii) βi(ξi−1) < 0,

iii) rβi
∈W v

π(t) i.e. βi(π(t)) ∈ Z: π(t) is in a wall of direction Ker(βi).

iv) each βi is positive with respect to −Cv
f i.e. βi(Cv

f ) > 0.

Remarks. 1) The path is folded at π(t) by applying successive reflections along the walls
M(βi,−βi(π(t)) ). Moreover conditions ii) and iv) tell us that the path is “positively folded”
(cf. [GL05]) i.e. centrifugally folded with respect to the sector germ S−∞ = germ∞(−Cv

f ).
2) Let c− = germ0(−Cv

f ) be the negative fundamental chamber (= alcove). A Hecke path
of shape λ with respect to c− [BCGR11] is a λ−path in the Tits cone T satisfying the above
conditions except that we replace iv) by :

iv’) each βi is positive with respect to c− i.e. βi(π(t)− c−) > 0.
Then ii) and iv’) tell us that the path is centrifugally folded with respect to the center c−.

2 Convolution algebras

2.1 Wanted

We consider the space

ĤI
R = ĤR(I , G) = {ϕI : I0 ×≤ I0 → R | ϕI(gx, gy) = ϕI(x, y),∀g ∈ G}

of G−invariant functions on I0 ×≤ I0 with values in a ring R (essentially C or Z). We want
to make ĤI

R (or some large subspace) an algebra for the following convolution product:

(ϕI ∗ ψI)(x, y) =
∑

x≤z≤y

ϕI(x, z)ψI(z, y).

It is clear that this product is associative and R−bilinear if it exists.
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Via dv, ĤI
R is linearly isomorphic to the space ĤR = {ϕG : Y ++ = K\G+/K → R},

which can be interpreted as the space of K−bi-invariant functions on G+. The correspondence
ϕI ↔ ϕG between ĤI

R and ĤR is given by:

ϕG(g) = ϕI(0, g.0) and ϕI(x, y) = ϕG(dv(x, y)).

In this setting, the convolution product should be: (ϕG∗ψG)(g) =
∑

h∈G+/K ϕG(h)ψG(h−1g),

where we consider ϕG and ψG as trivial on G \ G+. In the following we shall often make no
difference between ϕI or ϕG and forget the exponents I and G.

We consider the subspace Hf
R of functions with finite support in Y ++ = K\G+/K; its

natural basis is (cλ)λ∈Y ++ where cλ sends λ to 1 and µ 6= λ to 0. Clearly c0 is a unit for ∗. In
ĤI

R , (cλ ∗ cµ)I(x, y) is the number of triangles [x, z, y] with dv(x, z) = λ and dv(z, y) = µ.
As suggested by [BrK10] and lemma 2.4, we consider also the subspace HR of ĤR of

functions ϕ with almost finite support i.e. supp(ϕ) ⊂ ∪n
i=1 (λi −Q∨

+)∩ Y ++ where λi ∈ Y ++.

2.2 Retractions onto Y +

For all x ∈ I + there is an apartment containing x and c− [Ro11, 5.1] and this apartment is
conjugated to A by an element of K fixing c− (axiom (MA2) ). So, by the usual arguments
and [l.c. , 5.5] we can define a retraction ρc− of I + into A with center c−; its image is
ρc−(I

+) = T = I + ∩ A and ρc−(I
+
0 ) = Y +.

There is also a retraction ρ−∞ of I onto A with center the sector-germ S−∞ [GR08, 4.4].
For ρ = ρc− or ρ−∞ the image of a segment [x, y] with (x, y) ∈ I ×≤ I and dv(x, y) =

λ ∈ Cv
f is a λ−path [GR08, 4.4]. In particular, ρ(x) ≤ ρ(y).

2.3 Convolution product

The convolution product in ĤR should be defined (for y ∈ Y ++) by

(ϕ ∗ ψ)(y) =
∑

ϕ(z)ψ(dv(z, y))

where the sum runs over the z ∈ I
+
0 such that 0 ≤ z ≤ y and ϕ(z) = ϕI (0, z) = ϕG(dv(0, z)).

1) Using ρc− we have, for λ, µ, y ∈ Y ++, (cλ ∗cµ)(y) =
∑

w∈W v/(W v)λ
Nc−(µ,w.λ, y) where

Nc−(µ,w.λ, y) is the number of z ∈ I
+
0 with dv(z, y) = µ and ρc−(z) = w.λ ∈ Y +. Note that,

if Nc−(µ,wλ, y) > 0, there exists a µ−path from wλ to y, hence y ∈ wλ+ Y +.
So cλ ∗ cµ is the formal sum cλ ∗ cµ =

∑
ν∈Y ++ mλ,µ(ν)cν where the structure constant

mλ,µ(ν) =
∑

w∈W v/(W v)λ
Nc−(µ,w.λ, ν) ∈ Z≥0∪{+∞} is also equal to the number of triangles

[x, z, y] with dv(x, z) = λ and dv(z, y) = µ, for any fixed pair (x, y) ∈ I0 ×≤ I0 with
dv(x, y) = ν (e.g. (x, y) = (0, ν)).

2) Using ρ−∞ we have mλ,µ(ν) =
∑

z′ N−∞(µ, z′, ν) where the sum runs over the z′ in
Y +(λ) = ρ−∞({z ∈ I

+
0 | dv(0, z) = λ}) and N−∞(µ, z′, ν) ∈ Z≥0 ∪ {+∞} is the number of

z ∈ I
+
0 with dv(0, z) = λ, dv(z, y) = µ (for any y ∈ I

+
0 with dv(0, y) = ν e.g. y = ν) and

ρ−∞(z) = z′. But ρ−∞([0, z]) is a λ−path hence increasing with respect to ≤ , so Y +(λ) ⊂ Y +.
Moreover, ρ−∞([z, ν]) is a µ−path, so z′ has to be in ν − Y +. Hence, z′ has to run over the
set Y +(λ) ∩ (ν − Y +) ⊂ Y + ∩ (ν − Y +).

Actually, the image by ρ−∞ of a segment [x, y] with (x, y) ∈ I ×≤ I and dv(x, y) = λ ∈
Y ++ is a Hecke path of shape λ with respect to −Cv

f [GR08, th. 6.2]. Hence the following
results:
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Lemma 2.4. a) For λ ∈ Y ++ and w ∈W v, wλ ∈ λ−Q∨
+, i.e. wλ ≤ Q∨ λ.

b) Let π be a Hecke path of shape λ ∈ Y ++ with respect to −Cv
f , from y0 ∈ Y to y1 ∈ Y .

Then λ = π′(0)++ = π′(1)++, π′(0) ≤ Q∨ λ, π′(0) ≤ Q∨

R
(y1 − y0) ≤ Q∨

R
π′(1) ≤ Q∨ λ and

y1 − y0 ≤ Q∨ λ.
c) If moreover (α∨

i )i∈I is free, we may replace above ≤ Q∨

R

by ≤ Q∨.
d) For λ, µ, ν ∈ Y ++, if mλ,µ(ν) > 0, then ν ∈ λ+ µ−Q∨

+ i.e. ν ≤ Q∨ λ+ µ.

N.B. By d) above, if x ≤ z ≤ y in I0, then dv(x, y) ≤ Q∨dv(x, z) + dv(z, y).

Proof. a) By definition, for λ ∈ Y , wλ ∈ λ+Q∨, hence a) follows from [Ka90, 3.12d] used in
a realization where (α∨

i )i∈I is free.
b) By definition of Hecke paths in 1.8, λ = π′(0)++ = π′(1)++. Moreover, ∀t ∈ [0, 1],

λ = π′−(t)
++ = π′+(t)

++ and we know how to get π′+(t) from π′−(t) by successive reflections;
this proves that π′+(t) ∈ π′−(t) +Q∨

R+. By integrating the locally constant function π′(t), we
get π′(0) ≤ Q∨

R

(y1 − y0) ≤ Q∨

R

π′(1) ≤ Q∨

R

λ.
It is proved (but not stated) in [GR08, 5.3.3] that any Hecke path of shape λ starting in

y0 ∈ Y can be transformed in the path πλ(t) = y0 +λt by applying successively the operators
eαi

or ẽαi
for i ∈ I; moreover eαi

(π)(1) = π(1)+α∨
i and ẽαi

(π)(1) = π(1), hence y1−y0 ≤ Q∨ λ.
c) By b) y1 − y0 − π′(0) ∈ Q∨

R+ ∩ Q∨ = Q∨
+, so π′(0) ≤ Q∨ (y1 − y0). Idem for

y1 − y0 ≤ Q∨ π′(1).
d) If mλ,µ(ν) > 0 we have an Hecke path of shape λ (resp. µ) from 0 to z′ (resp. from z′

to ν). So d) follows from b).

Proposition 2.5. Suppose (α∨
i )i∈I free in V . Then for all λ, µ, ν ∈ Y ++, mλ,µ(ν) is finite.

N.B. Actually we may replace the condition (α∨
i )i∈I free by (α∨

i )i∈I R
+−free.

Proof. We have to count the z ∈ I
+
0 such that dv(0, z) = λ and dv(z, ν) = µ. We set z′ =

ρ−∞(z). By lemma 2.4b, z′ ∈ λ−Q∨
+ and ν ∈ z′+µ−Q∨

+, hence z′ is in (λ−Q∨
+)∩(ν−µ+Q∨

+)
which is finite as (α∨

i )i∈I is free or R+−free. So, we fix now z′. By [GR08, cor. 5.9] there is a
finite number of Hecke paths π′ of shape µ from z′ to ν. So, we fix now π′. And by [l.c. th.
6.3] (see also 4.10, 4.11) there is a finite number of segments [z, ν] retracting to π′; hence the
number of z is finite.

Theorem 2.6. Suppose (α∨
i )i∈I free or R

+−free, then HR is an algebra.

Proof. We saw that for λ, µ, ν ∈ Y ++, mλ,µ(ν) is finite; hence cλ∗cµ is well defined (eventually
as an infinite formal sum). Let us consider ϕ,ψ ∈ HR: supp(ϕ) ⊂ ∪m

i=1 (λi −Q∨
+), supp(ψ) ⊂

∪n
j=1 (µj − Q∨

+). Let ν ∈ Y ++. If mλ,µ(ν) > 0 with λ ∈ supp(ϕ), µ ∈ supp(ψ) (hence
λ ∈ λi − Q∨

+, µ ∈ µj − Q∨
+ for some i, j), we have λ + µ ∈ ν + Q∨

+ by lemma 2.4d. So
λ ∈ (ν − µ+Q∨

+)∩ (λi −Q∨
+) ⊂ (ν − µj +Q∨

+)∩ (λi −Q∨
+), a finite set. For the same reasons

µ is in a finite set, so ϕ ∗ ψ is well defined.
With the above notations ν ∈ (λ+ µ−Q∨

+) ⊂ ∪i,j (λi + µj −Q∨
+), so ϕ ∗ ψ ∈ HR.

Definition 2.7. HR = HR(I , G) is the spherical Hecke algebra (with coefficients in R)
associated to the hovel I and its strongly transitive automorphism group G.

Remark. We shall now investigate HR and some other possible convolution algebras in ĤR

by separating the cases: finite, indefinite and affine.
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2.8 Finite case

In this case Φ and W v are finite, (α∨
i )i∈I is free, T = V and the relation ≤ is trivial. The

hovel I = I + is a locally finite Bruhat-Tits building.
Let ρ be the half sum of positive roots. As 2ρ ∈ Q and ρ(α∨

i ) = 1, ∀i ∈ I, we see that an
almost finite set in Y ++ is always finite. So HR and Hf

R are equal.
The algebra HC was already studied by I. Satake in [Sa63]. Its close link with buildings

is explained in [P06]. The algebra HZ is the spherical Hecke ring of [KLM08], where the
interpretation of mλ,µ(ν) as a number of triangles in I is already given.

ĤR is not an algebra as e.g. mλ,(−w0)λ(0) 6= 0 ∀λ ∈ Y ++ (where w0 is the greatest element
in W v).

2.9 Indefinite case

Lemma. Suppose now Φ associated to an indefinite indecomposable generalized Cartan matrix.
Then there is in ∆+

im an element δ (of support I) such that δ(α∨
i ) < 0, ∀i ∈ I and a basis

(δi)i∈I of the real vector space QR spanned by Φ such that δi(T ) ≥ 0, ∀i ∈ I.

Proof. Any δ ∈ ∆+
im takes positive values on T [Ka90, 5.8]. Now, in the indefinite case, there

is δ ∈ ∆+
im ∩ (⊕i∈I R>0.αi) such that δ(α∨

i ) < 0, ∀i ∈ I [l.c. 4.3], hence δ + αi ∈ ∆+, ∀i ∈ I.
Replacing eventually δ by 3δ [l.c. 5.5], we have (δ+αi)(α

∨
j ) < 0, ∀i, j ∈ I, hence δ+αi ∈ ∆+

im.
The wanted basis is inside {δ} ∪ {δ0 + αi | i ∈ I}.

The existence of δ ∈ ∆+
im as in the lemma proves that (α∨

i )i∈I is R
+−free. So HR is an

algebra. The following example 2.10 proves that Hf
R is in general not a subalgebra.

If (αi)i∈I generates (i.e. is a basis of) V ∗, ĤR is also an algebra (the formal spherical
Hecke algebra): Let ν ∈ Y ++, we have to prove that there is only a finite number of pairs
(λ, µ) ∈ (Y ++)2 such that mλ,µ(ν) > 0. Let z′ be as in the proof of 2.5. We saw in 2.3 that
z′ ∈ Y + ∩ (ν − Y +) = Y ∩ T ∩ (ν − T ). By the lemma, T ∩ (ν − T ) is bounded, hence
Y ∩ T ∩ (ν − T ) is finite. So we may fix z′. Now λ ∈ z′ +Q∨

+ hence (for δ as in the lemma)
δ(λ) ≤ δ(z′); as αi(λ) ∈ Z>0 ∀i ∈ I and δ ∈ ⊕i∈I R>0.αi this gives only a finite number of
possibilities for λ. Similarly µ ∈ ν − z′ +Q∨

+ has to be in a finite set.

Actually ĤR is often equal to HR when (α∨
i )i∈I is free and (αi)i∈I generates V ∗ (hence

the matrix M = (αj(α
∨
i )) is invertible), see the following example 2.10.

2.10 An indefinite rank 2 example

Let us consider the Kac-Moody matrix M =

(
2 −3
−3 2

)
. The basis of Φ and V ∗ is {α1, α2}

and we consider the dual basis (̟∨
1 ,̟

∨
2 ) of V . In this basis α∨

1 =

(
2
−3

)
, α∨

2 =

(
−3
2

)
and

the matrices of r1, r2, r2r1 and r1r2 are respectively

(
−1 0
3 1

)
,

(
1 3
0 −1

)
, M =

(
8 3
−3 −1

)

and M−1 =

(
−1 −3
3 8

)
. The eigenvalues of M or M−1 are a± = (7 ±

√
45)/2. In a basis

diagonalizing M and M−1 we see easily that (r2r1)
n + (r1r2)

n = an.IdV where an = an+ + an−
is in N and increasing up to infinity (a0 = 2, a1 = 7, a2 = 47, a3 = 322,...).
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Consider now λ = µ = −α∨
1 − α∨

2 =

(
1
1

)
in Y ++ ⊂ Z≥0.̟

∨
1 ⊕ Z≥0.̟

∨
2 . We have

(r2r1)
n.λ + (r1r2)

n.λ = an.λ. This means that mλ,λ(an.λ) ≥ Nc−(λ, (r2r1)
nλ, an.λ) ≥ 1, for

all positive n (and the same thing for N−∞). So cλ ∗ cλ is an infinite formal sum.
Actually (−Q∨

+) ∩ Y ++ ⊃ Z≥0.5̟
∨
1 ⊕ Z≥0.5̟

∨
2 , hence Y ++ itself is almost finite!

2.11 An affine rank 2 example

Let us consider the Kac-Moody matrix M =

(
2 −2
−2 2

)
. The basis of Φ is {α1, α2} but

we consider a realization V of dimension 3 for which {α∨
1 , α

∨
2 } is free and with basis of

V ∗ {αo = −ρ, α1, α2}. More precisely, if (̟∨
0 ,̟

∨
1 ,̟

∨
2 ) is the dual basis of V , we have

α∨
1 =



−1
2
−2


, α∨

2 =



−1
−2
2


 and the matrices of r1, r2, r1r2 and r2r1 are respectively



1 1 0
0 −1 0
0 2 1


,



1 0 1
0 1 2
0 0 −1


, M =



1 1 3
0 −1 −2
0 2 3


 and M−1 =



1 3 1
0 3 2
0 −2 −1


. A classical

calculus using triangulation tells us that (r2r1)
n + (r1r2)

n =



2 4n2 4n2

0 1 0
0 0 1


. Actually

c = α∨
1 + α∨

2 = −2̟∨
0 ∈ Q∨

+ is the canonical central element [Ka90, § 6.2] and the above
calculations are peculiar cases of [l.c. § 6.5].

Let’s consider now λ = µ =
∑2

i=1 ai̟
∨
i ∈ Y ++ ⊂ ⊕2

i=1 Z≥0̟
∨
i . We have (r2r1)

n(λ) +
(r1r2)

n(λ) = λ − 2n2|λ|c with |λ| = a1 + a2. This means that mλ,λ(λ − 2n2|λ|c) ≥
Nc−(λ, (r2r1)

n(λ), λ − 2n2|λ|c) ≥ 1, ∀n ∈ Z (and the same thing for N−∞). So cλ ∗ cλ is
an infinite formal sum.

Moreover as c is fixed by r1 and r2, (r2r1)n(λ+2n2|λ|c)+(r1r2)
n(λ) = λ, somλ+2n2|λ|c,λ(λ) ≥

1, ∀n ∈ Z, and ĤR is not an algebra.
Remark also that, if we consider the essential quotient V e = V/Rc, the above calculus tells

that mλ,λ(λ) ≥
∑

n∈Z Nc−(λ, (r2r1)
n(λ), λ) is infinite if |λ| > 0.

2.12 Affine indecomposable case

We saw in the example 2.11 above that mλ,λ(λ) may be infinite, ∀λ ∈ Y ++ when (α∨
i )i∈I is

not free. So, in this case, ĤR seems to contain no algebra except R.c0.
Remark also that (α∨

i )i∈I free is equivalent to (α∨
i )i∈I R

+−free in the affine indecomposable
case as the only possible relation between the α∨

i is c = 0 where c =
∑

i∈I a
∨
i .α

∨
i (with

a∨i ∈ Z>0 ∀i ∈ I) is the canonical central element.
An almost finite subset in Y ++ is a finite union of subsets like Yλ = (λ−Q∨

+)∩ Y ++. Let
δ be the smallest positive imaginary root in ∆. Then δ(Q∨

+) = 0 so Yλ ⊂ {y ∈ Y ++ | δ(y) =
δ(λ)} = Y ′

λ. But δ =
∑

i∈I ai.αi with ai ∈ Z>0 ∀i ∈ I, so the image of Y ′
λ in V e = V/Rc

(where Rc = ∩i∈I Ker(αi)) is finite. It is now clear that Yλ is a finite union of sets like
µ − Z≥0.c with µ ∈ Y ++. Hence an almost finite subset as defined above is the same as an
almost finite union (of double cosets) as defined in [BrK10].

The algebra HC is the one introduced by A. Braverman and D. Kazhdan in [BrK10]. We
gave above a combinatorial proof that it is an algebra, without algebraic geometry.
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3 The split Kac-Moody case

3.1 Situation

As in [Ro12] or [Ro13], we consider a split Kac-Moody group G associated to a root generating
system (RGS) S = (M, YS , (αi)i∈I , (α

∨
i )i∈I) over a field K endowed with a discrete valuation

ω (with value group Λ = Z and ring of integers O = ω−1([0,+∞])) whose residue field κ = Fq

is finite . So, M = (ai,j)i,j∈I is a Kac-Moody matrix, YS a free Z−module, (α∨
i )i∈I a family

in YS , (αi)i∈I a family in the dual X = Y ∗
S of YS and αj(α

∨
i ) = ai,j.

If (αi)i∈I is free inX, we consider V = VY = YS⊗ZR and the clear quadruple (V,W v, (αi =
αi)i∈I , (α

∨
i )i∈I). In general, we may define Q = Z

I with canonical basis (αi)i∈I , then V =
VQ = HomZ(Q,R) is also in a quadruple as in 1.1. A third example V xl of choice for V is
explained in [Ro13]. We always denote by bar : Q→ X the linear map sending αi to αi.

With these vectorial data we may define what was considered in 1.1 and 1.2 (we choose
Λα = Λ = Z, ∀α ∈ Φ).

Now the hovel I in 1.5 is as defined in [Ro12] or [Ro13] and the strongly transitive group
is G = G(K). By [Ro11, 6.11] or [Ro12, 5.16] we have qM = q for any wall M .

When G is a split reductive group, I is its extended Bruhat-Tits building.

3.2 Generators for G

The Kac-Moody group G contains a split maximal torus T with character group X and cochar-
acter group YS . We note T = T(K). For each α ∈ Φ ⊂ Q there is a group homomorphism
xα : K → G which is one-to-one; its image is the subgroup Uα. Now G is generated by T and
the subgroups Uα for α ∈ Φ, submitted to some relations given by Tits [T87], also available
in [Re02] or [Ro12]. We set U± the subgroup generated by the subgroups Uα for α ∈ Φ±.

We shall explain now only a few of the relations. For u ∈ K, t ∈ T and α ∈ Φ one has:
(KMT4) t.xα(u).t−1 = xα(α(t).u) (where α = bar(α))

For u 6= 0, we note s̃α(u) = xα(u).x−α(u
−1).xα(u) and s̃α = s̃α(1).

(KMT5) s̃α(u).t.s̃α(u)−1 = rα(t) (W v acts on V , YS , X hence on T )

3.3 Weyl groups

Actually the stabilizer N of A ⊂ I is the normalizer of T in G. The image ν(N) of N in
Aut(A) is a semi-direct product ν(N) = ν(N0)⋉ ν(T ) with:

N0 is the fixator of 0 in N and ν(N0) is isomorphic to W v acting linearly on A = V .
Actually ν(N0) is generated by the elements ν(s̃α) which act as rα (for α ∈ Φ).

t ∈ T acts on A by a translation of vector ν(t) ∈ V such that χ(ν(t)) = −ω(χ(t)) for any
χ ∈ X = Y ∗

S and χ ∈ X or Q which are related by χ = χ if V = VY or χ = bar(χ) if V = VQ.
So, ν(N) = W v

⋉ Y where Y is closely related to YS ≃ T/T(O): as Λ = ω(K) = Z,
they are equal if V = VY and, if V = VQ, Y = bar∗(YS) is the image of YS by the map
bar∗ : YS → HomZ(Q,Z) dual to bar.

So, the choice V = VY is more pleasant. The choice V = VQ is made e.g. in [Ch10], [Ch11]
or [Re02] and has good properties in the indefinite case, cf. 2.9. They coincide both when
(αi)i∈I is a basis of X ⊗ R = V ∗

Y . This assumption generalizes semi-simplicity, in particular
the center of G is then finite [Re02, 9.6.2].
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3.4 The group K

The group K = G0 should be equal to G(O) for some integral structure of G over O cf. [GR08,
3.14]. But the appropriate integral structure is difficult to define in general. So we define K
by its generators:

The group N0 is generated by T0 = T(O) = T ∩K and the elements s̃α for α ∈ Φ (this is
clear by 3.3). The group U0, generated by the groups Uα,0 = xα(O) for α ∈ Φ, is in K. We
note U±

0 = U0 ∩ U±. In general U±
0 is not generated by the groups Uα,0 for α ∈ Φ± [Ro12,

4.12.3a].
It is likely that K may be greater than the group generated by N0 and U0 (i.e. by U0

and T0). We have to define groups Upm+
0 ⊃ U+

0 and Unm−
0 ⊃ U−

0 as follows. In a formal
positive completion Ĝ+ of G, we can define a subgroup Uma+

0 =
∏

α∈∆+ Uα,0 of the subgroup

Uma+ =
∏

α∈∆+ Uα of Ĝ+, with U+ ⊂ Uma+ (where Uα,0 and Uα are suitably defined for α
imaginary). Then Upm+

0 = Uma+
0 ∩ G = Uma+

0 ∩ U+. The group Unm−
0 is defined similarly

with ∆− using a group Uma−
0 ⊂ Uma− in a formal negative completion Ĝ− of G.

Now K = G0 = Unm−
0 .U+

0 .N0 = Upm+
0 .U−

0 .N0 [Ro12, 4.14, 5.1]

Remark. Let us denote by K1 the group used by A. Braverman, D. Kazhdan and M.
Patnaik in their definition of the spherical Hecke algebra. With the notation above, K1 is
generated by T0 and U0, i.e. by T0, U

+
0 and U−

0 , hence K = Unm−
0 .K1 = Upm+

0 .K1, with
U−
0 ⊂ Unm−

0 ⊂ U− and U+
0 ⊂ Upm+

0 ⊂ U+. But they prove, at least in the untwisted affine
case, that U−∩U+.K1 ⊂ K1 [BrKP12, proof of 6.4.3]; so Unm−

0 ⊂ U−∩K ⊂ U−∩U+.K1 ⊂ K1

and K = K1. This result answers positively a question in [Ro13, 5.4], at least for points of
type 0 and in the untwisted affine split case.

Proposition 3.5. There is an involution θ (called Chevalley involution) of the group G such
that θ(t) = t−1 for all t ∈ T and θ(xα(u)) = x−α(u) for all α ∈ Φ and u ∈ K. Moreover K is
θ−stable and θ induces the identity on W v = N/T .

Proof. This involution is well known on the corresponding complex Lie algebra, see [Ka90,
1.3.4] where one uses for the generators eα a convention different from ours ([eα, e−α] = −α∨

as in [T87] or [Re02]). Hence the proposition follows when κ contains C or is at least of
characteristic 0. But here we have to use the definition of G by generators and relations.

We see in [Ro12, 1.5, 1.7.5] that s̃α(−u) = s̃α(u)
−1 and s̃α(u) = s̃−α(u

−1). So for the
wanted involution θ we have θ(s̃α(u)) = s̃−α(u) = s̃α(u

−1). We have now to verify the
relations between the θ(xα(u)) = x−α(u), θ(t) = t−1 and θ(s̃α(u)) = s̃α(u

−1). This is clear
for (KMT4) and (KMT5) (as rα = r−α). The three other relations are:

(KMT3) (xα(u), xβ(v)) =
∏
xγ(C

α,β
p,q .upvq) for (α, β) ∈ Φ2 prenilpotent and, for the

product, γ = pα+qβ runs in (Z>0α+Z>0β)∩Φ. But the integers Cα,β
p,q are picked up from the

corresponding formula between exponentials in the automorphism group of the corresponding
complex Lie algebra. As we know that θ is defined in this Lie algebra, we have C−α,−β

p,q = Cα,β
p,q

and (KMT3) is still true for the images by θ.
(KMT6) s̃α(u−1) = s̃α.α

∨(u) for α simple and u ∈ K \ {0}.
This is still true after a change by θ as θ(s̃α(u−1)) = s̃α(u) and (−α)∨(u) = α∨(u−1).

(KMT7) s̃α.xβ(u).s̃−1
α = xγ(ε.u) if γ = rα(β) and s̃α(eβ) = ε.eγ in the Lie algebra (with

ε = ±1). This is still true after a change by θ because s̃α(eβ) = ε.eγ ⇒ s̃α(e−β) = ε.e−γ (as
rα(β

∨) = γ∨).
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So, θ is a well defined involution of G, θ(U0) = U0, θ(N0) = N0 and θ(U±
0 ) = U∓

0 . But
the isomorphism θ of U+ onto U− can clearly be extended to an isomorphism θ from Uma+

onto Uma− sending Uma+
0 onto Uma−

0 . So θ(Upm+
0 ) = Unm−

0 and θ(K) = K. As θ(s̃α) = s̃α,
θ induces the identity on W v = N/T .

Theorem 3.6. The algebra ĤR or HR is commutative, when it exists.

Notation: To be clearer we shall sometimes write ĤR(G,K) or HR(G,K) instead of ĤR or
HR.

Proof. The formula θ#(g) = θ(g−1) defines an anti-involution (θ#(gh) = θ#(h).θ#(g) ) of G
which induces the identity on T and stabilizes K. In particular θ#(G+) = θ#(KY ++K) = G+

and θ#(KλK) = KλK, ∀λ ∈ Y ++. For ϕ,ψ ∈ ĤR and g ∈ G+, one has: (ϕ ∗ ψ)(g) =
(ϕ∗ψ)(θ#(g)) = ∑

h∈G+/K ϕ(h)ψ(h−1θ#(g)). The map h 7→ h′ = θ#(h−1θ#(g)) = gθ#(h−1)

is one-to-one from G+/K onto G+/K. So, (ϕ ∗ ψ)(g) = ∑
h′∈G+/K ϕ(θ#(h′−1g))ψ(θ#(h′)) =∑

h′∈G+/K ϕ(h′−1g)ψ(h′) = (ψ ∗ ϕ)(g).

Remarks 3.7. 1) This commutativity will be below proved in general as a consequence of
the Satake isomorphism. The above proof generalizes well known proofs in the reductive case,
e.g. for G = GLn, θ# is the transposition.

2) When G is an almost split Kac-Moody group over the field K (supposed complete or
henselian) it splits over a finite Galois extension L, the hovel KI over K exists and embeds
in the hovel LI over L [Ro13, § 6]. After enlarging eventually L one may suppose that 0 is
a special point in KI and LI , more precisely in the fundamental apartments K

A ⊂ L
A = A

associated respectively to a maximal K−split torus KS and a L−split maximal torus T ⊃ KS.
If we make a good choice of the homomorphisms xα : L → G(L), the associated involution θ
of G(L) should commute with the action of the Galois group Γ = Gal(L/K) hence induce an
involution Kθ and an anti-involution Kθ# of G(K) = G(L)Γ such that Kθ(K) = Kθ#(K) = K
and Kθ# induces the identity in Y (KS) = KS(K)/KS(O). The commutativity of ĤR(G,K)
or HR(G,K) would follow.

This strategy works well when G is quasi split over K; unfortunately it seems to fail in the
general case.

3) The commutativity of ĤR or HR is linked to the choice of a special vertex for the
origin 0. Even in the semi-simple case, other choices may give non commutative convolution
algebras, see [Sa63] and [KeR07].

4 Structure constants

We come back to the general framework of § 1. We shall compute the structure constants of
ĤR or HR by formulas depending on A and the numbers qM of 1.5. Note that there are only
a finite number of them: as qwM = qM , ∀w ∈ ν(N) and wM(α, k) = M(wα, k),∀w ∈ W v,
we may suppose M = M(αi, k) with i ∈ I and k ∈ Z. Now α∨

i ∈ Q∨ ⊂ Y ; as αi(α
∨
i ) = 2

the translation by α∨
i permutes the walls M = M(αi, k) (for k ∈ Z) with two orbits. So

Y has at most two orbits in the set of the constants qM(αi,k), those of qi = qM(αi,0) and
q′i = qM(αi,±1). Hence the number of (possibly) different parameters is at most 2.|I|. We
denote by Q = {q1, · · · , ql, q′1 = ql+1, · · · , q′l = q2l} this set of parameters.
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4.1 Centrifugally folded galleries of chambers

Let x be a point in the standard apartment A. Let Φx be the set of all roots α such that
α(x) ∈ Z. It is a closed subsystem of roots. Its associated Weyl group W v

x is a Coxeter group.
We have twinned buildings I +

x (resp. I −
x ) whose elements are segment germs [x, y) =

germx([x, y]) for y ∈ I , y 6= x, y ≥ x (resp. y ≤ x). We consider their unrestricted structure,
so the associated Weyl group is W v and the chambers (resp. closed chambers) are the local
chambers C = germx(x + Cv) (resp. local closed chambers C = germx(x + Cv)), where Cv

is a vectorial chamber, cf. [GR08, 4.5] or [Ro11, § 5]. To A is associated a twin system of
apartments Ax = (A−

x ,A
+
x ).

We choose in A
−
x a negative (local) chamber C−

x and denote C+
x its opposite in A

+
x . We

consider the system of positive roots Φ+ associated to C+
x (i.e. Φ+ = wΦ+

f , if Φ+
f is the system

Φ+ defined in 1.1 and C+
x = germx(x+wCv

f )). We note (αi)i∈I the corresponding basis of Φ
and (ri)i∈I the corresponding generators of W v.

Fix a reduced decomposition of an element w ∈ W v, w = ri1 · · · rir and let i =
(i1, ..., ir) be the type of the decomposition. We consider now galleries of (local) cham-
bers c = (C−

x , C1, ..., Cr) in the apartment A
−
x starting at C−

x and of type i. The set
of all these galleries is in bijection with the set Γ(i) = {1, ri1} × · · · × {1, rir} via the
map (c1, ..., cr) 7→ (C−

x , c1C
−
x , ..., c1 · · · crC−

x ). Let βj = −c1 · · · cj(αij ), then βj is the root
corresponding to the common limit hyperplane Mj = Mβj

of Cj−1 = c1 · · · cj−1C
−
x and

Cj = c1 · · · cjC−
x and satisfying to βj(Cj) ≥ βj(x) (actually Mj is a wall ⇐⇒ βj ∈ Φx). In

the following, we shall identify a sequence (c1, ..., cr) and the corresponding gallery.

Definition 4.2. Let Q be a chamber in A
+
x . A gallery c = (c1, ..., cr) ∈ Γ(i) is said to

be centrifugally folded with respect to Q if cj = 1 implies βj ∈ Φx and w−1
Q βj < 0, where

wQ = w(C+
x ,Q) ∈ W v (i.e. Q = wQC

+
x ). We denote this set of centrifugally folded galleries

by Γ+
Q(i).

Proposition 4.3. A gallery c = (C−
x , C1, ..., Cr) ∈ Γ(i) belongs to Γ+

Q(i) if, and only if,
Cj = Cj−1 implies that Mj =Mβj

is a wall and separates Q from Cj = Cj−1.

Proof. We saw that Mj is a wall ⇐⇒ βj ∈ Φx. We have the following equivalences:
(Mj separates Q from Cj = Cj−1) ⇐⇒ (w−1

Q Mj separates C+
x from w−1

Q Cj = w−1
Q Cj−1) ⇐⇒

(w−1
Q βj is a negative root).

The group Gx = Gx/GIx
acts strongly transitively on I +

x and I −
x . For any root α ∈ Φx

with α(x) = k ∈ Z, the group Uα = Uα,k/Uα,k+1 is a finite subgroup of Gx of cardinality
qx,α = qM(α,−α(x)) ∈ Q. We denote by uα the elements of this group.

Next, let ρQ : Ix → Ax be the retraction centered at Q. To a gallery of chambers
c = (c1, ..., cr) = (C−

x , C1, ..., Cr) in Γ(i), one can associate the set of all galleries of type i

starting at C−
x in I −

x that retract onto c, we denote this set by CQ(c). We denote the set of
minimal galleries in CQ(c) by Cm

Q (c). Set

gj =

{
cj if w−1

Q βj > 0 or βj 6∈ Φx

ucj(αij
)cj if w−1

Q βj < 0 and βj ∈ Φx.
(1)

Proposition 4.4. CQ(c) is the non empty set of all galleries (C−
x = C ′

0, C
′
1, ..., C

′
r) where

∀j : C ′
j = g1 · · · gjC−

x with each gj chosen as in (1) above. For all j the local chambers Q and
C ′
j are in the apartment g1 · · · gjAx.
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The set Cm
Q (c) is empty if, and only if, the gallery c is not centrifugally folded with respect

to Q. The gallery (C−
x = C ′

0, C
′
1, ..., C

′
r) is minimal if, and only if, cj 6= 1 for any j with

w−1
Q βj > 0 or βj 6∈ Φx and ucj(αij

) 6= 1 for any j with cj = 1 and w−1
Q βj < 0.

Remark. For gj as in equation (1) we may write gj = ucj(αij
)cj (with ucj(αij

) = 1 if

w−1
Q βj > 0 or βj 6∈ Φx). Then in the product g1 · · · gj we may gather the ck on the right

and, as c1 · · · ck(αik) = −βk, we may write g1 · · · gj = u−β1 · · · u−βj
.c1 · · · cj . Hence C ′

j :=

g1 · · · gjC−
x = u−β1 · · · u−βj

Cj. When u−βk
6= 1 we have βk ∈ Φx and w−1

Q βk < 0; so it is clear
that ρQ(C ′

j) = Cj .
The gallery (C−

x = C ′
0, C

′
1, ..., C

′
r) (of type i) is minimal if, and only if, we may also write

(uniquely) C ′
j = u−αi1

.uri1 (−αi2
) · · · uri1 ···rij−1

(−αij
).ri1 · · · rij(C−

x ) = h1 · · · hj .ri1 · · · rij (C−
x )

with hk = uri1 ···rik−1
(−αik

) ∈ U ri1 ···rik−1
(−αik

) (which fixes C−
x ). In particular, C ′

j ∈ h1 · · · hjAx.

But this formula gives no way to know when ρQ(C ′
j) = Cj. We know only that, when βk 6∈ Φx

i.e. ri1 · · · rik−1
(−αik) 6∈ Φx, we have necessarily hk = 1.

Proof. As the type i of (C−
x = C ′

0, C
′
1, ..., C

′
r) is the type of a minimal decomposition, this

gallery is minimal if, and only if, two consecutive chambers are different. So the last assertion
is a consequence of the first ones. We prove these properties for (C−

x = C ′
0, C

′
1, ..., C

′
j) by

induction on j. We write in the following just Hj for the common limit hyperplane Hβj
of

Cj−1 and Cj of type ij.
There are five possible relative positions of Q, C−

x and C1 with respect to H1 and we seek

C ′
1 with ρQ(C ′

1) = C1 and C ′
1 ⊃ C−

x ∩H1.

0) β1 = −c1αi1 6∈ Φx, then H1 is not a wall, each C ′
1 with C ′

1 ⊃ C−
x ∩H1 is equal to C−

x

or ri1C
−
x and C ′

1 or C−
x are contained in the same apartments. So C ′

1 = C1 = c1C
−
x ; C1 and

Q are in g1Ax = Ax with g1 = c1. When C ′
1 = C−

x , we have c1 = 1 and c is not centrifugally
folded.

We suppose now β1 ∈ Φx, so H1 is a wall.
1) C−

x is on the same side of H1 as Q and C1 not, then c1 = ri1 , β1 = αi1 , w
−1
Q β1 < 0,

C ′
1 = g1C

−
x = u−αi1

ri1C
−
x = u−αi1

C1. But u−αi1
pointwise stabilizes the halfspace bounded

by H1 containing C−
x , hence u−αi1

(Q) = Q and C ′
1 are in the apartment g1Ax.

2) Q and C−
x = C1 are separated by H1, then c1 = 1, β1 = −αi1 , w

−1
Q β1 < 0, C ′

1 = g1C
−
x =

uαi1
C−
x but uαi1

pointwise stabilizes the halfspace bounded by H1 not containing C−
x , hence

Q and C ′
1 are in the apartment g1Ax.

3) C1 is on the same side of H1 as Q and C−
x not, then c1 = ri1 , β1 = αi1 , w

−1
Q β1 > 0 and

C ′
1 has to be C1 so g1 = c1 = ri1 , w

−1
Q (αi1) > 0, moreover Q and C ′

1 = ri1C
−
x = C1 are in the

apartment g1Ax.
4) Q and C−

x = C1 are on the same side of H1. Then c1 = 1 and w−1
Q β1 > 0; the gallery c

is not centrifugally folded. So ρQ(C ′
1) = C1 implies C ′

1 = C−
x = g1C

−
x with g1 = c1 = 1 as in

(1). But the gallery (C−
x = C ′

0, C
′
1, ..., C

′
j) cannot be minimal.

By induction we assume now that the chambers Q and C ′
j−1 = g1 · · · gj−1C

−
x are in the

apartment Aj−1 = g1 · · · gj−1Ax. Again, we have five possible relative positions for Q, Cj−1

and Cj with respect to Hj. We seek C ′
j with ρQ(C ′

j) = Cj and C ′
j ⊃ C ′

j−1 ∩ g1 · · · gj−1Hαij
.

0) βj = −c1 · · · cjαij 6∈ Φx, then Hj is not a wall, each C ′
j with C ′

j ⊃ C ′
j−1∩g1 · · · gj−1Hαij

is equal to C ′
j−1 = g1 · · · gj−1C

−
x or g1 · · · gj−1rijC

−
x ; moreover C ′

j or C ′
j−1 are contained in

the same apartments. So C ′
j = g1 · · · gj−1cjC

−
x and Q are in g1 · · · gjAx = g1 · · · gj−1Ax with

gj = cj . When C ′
j = C ′

j−1, we have cj = 1 and c is not centrifugally folded.
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We suppose now βj ∈ Φx, so Hj is a wall.
1) Cj−1 is on the same side of Hj = c1 · · · cj−1Hαij

as Q and Cj not, then cj = rij ,

βj = c1 · · · cj−1αij , w
−1
Q βj < 0. Moreover Q and C ′

j−1 are on the same side of g1 · · · gj−1Hαij

in Aj−1, and

C ′
j = g1 · · · gj−1u−αij

rijC
−
x

= g1 · · · gj−1u−αij
rij(g1 · · · gj−1)

−1C ′
j−1

= g1 · · · gj−1u−αij
(g1 · · · gj−1)

−1g1 · · · gj−1rij (g1 · · · gj−1)
−1C ′

j−1,

where g1 · · · gj−1rij(g1 · · · gj−1)
−1C ′

j−1 is the chamber adjacent to C ′
j along g1 · · · gj−1Hαij

in

Aj−1. Moreover, g1 · · · gj−1u−αij
(g1 · · · gj−1)

−1 pointwise stabilizes the halfspace bounded by

g1 · · · gj−1Hαij
containing C ′

j−1 and Q. So Q and C ′
j are in the apartment g1 · · · gjAx.

2) Cj−1 = Cj and Q are separated by Hj, then cj = 1, βj = −c1 · · · cj−1αij , w
−1
Q βj < 0.

Moreover C ′
j−1 and Q are separated by g1 · · · gj−1Hαij

in Aj−1, and Q and the chamber

g1 · · · gj−1rij (g1 · · · gj−1)
−1C ′

j−1

are on the same side of this wall. For uαij
6= 1

C ′
j = g1 · · · gj−1uαij

C−
x = g1 · · · gj−1uαij

(g1 · · · gj−1)
−1C ′

j−1

is a chamber adjacent (or equal) to C ′
j−1 along g1 · · · gj−1Hαij

= g1 · · · gj−1uαij
Hαij

in
g1 · · · gjAx (with gj = uαij

).

The root-subgroup g1 · · · gj−1Uαij
(g1 · · · gj−1)

−1 pointwise stabilizes the halfspace bounded

by g1 · · · gj−1Hαij
and containing the chamber g1 · · · gj−1rij (g1 · · · gj−1)

−1C ′
j−1. So Q and C ′

j

are in the apartment g1 · · · gjAx.
3) Cj is on the same side of Hj = c1 · · · cj−1Hαij

as Q and Cj−1 not, then cj = rij ,

βj = c1 · · · cj−1αij , w
−1
Q βj > 0. and so C ′

j = g1 · · · gj−1rijC
−
x . Whence Q and C ′

j are in the
apartment g1 · · · gjAx.

4) Cj−1 = Cj and Q are on the same side of Hj = c1 · · · cj−1Hαij
, then cj = 1, βj =

−c1 · · · cj−1αij and w−1
Q βj > 0. The gallery c is not centrifugally folded. So ρQ(C

′
j) = Cj

implies C ′
j = C ′

j−1 = g1 · · · gjC−
x with gj = cj = 1 as in (1). But the gallery (C−

x =
C ′
0, C

′
1, ..., C

′
j) cannot be minimal.

Corollary 4.5. If c ∈ Γ+
Q(i), then the number of elements in Cm

Q (c) is:

♯Cm
Q (c) =

t(c)∏

k=1

qjk ×
r(c)∏

l=1

(qjl − 1)

where qj = qx,βj
= qx,αij

∈ Q, t(c) = ♯{j | cj = rij , βj ∈ Φx and w−1
Q βj < 0} and

r(c) = ♯{j | cj = 1, βj ∈ Φx and w−1
Q βj < 0}.
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4.6 Galleries and opposite segment germs

Suppose now x ∈ A∩I +. Let ξ and η be two segment germs in A+
x . Let −η and −ξ opposite

respectively η and ξ in A
−
x . Let i be the type of a minimal gallery between C−

x and C−ξ,
where C−ξ is the negative (local) chamber containing −ξ such that w(C−

x , C−ξ) is of minimal
length. Let Q be a chamber of A+

x containing η. We suppose ξ and η conjugated by W v
x .

Lemma. The following conditions are equivalent:
(i) There exists an opposite ζ to η in I −

x such that ρ
Ax,C

−

x
(ζ) = −ξ.

(ii) There exists a gallery c ∈ Γ+
Q(i) ending in −η.

(iii) ξ ≤ W v
x
η (in the sense of 1.8, with Φ+ defined as in 4.1 using C−

x ).
Moreover the possible ζ are in one-to-one correspondence with the disjoint union of the

sets Cm
Q (c) for c in the set Γ+

Q(i,−η) of galleries in Γ+
Q(i) ending in −η. More precisely, if

m ∈ CQ(c) is associated to (h1, · · · , hr) as in remark 4.4, then ζ = h1 · · · hr(−ξ).

Proof. If ζ ∈ I −
x opposites η and if ρ

Ax,C
−

x
(ζ) = −ξ, then any minimal gallery m =

(C−
x ,M1, ...,Mr ∋ ζ) retracts onto a minimal gallery between C−

x and C−ξ. So we can as
well assume that m has type i = (i1, ..., ir) and then ζ determines m. Now, if we retract m

from Q, we get a gallery c = ρAx,Q(m) in A
−
x starting at C−

x , ending in −η and centrifugally
folded with respect to Q.

Reciprocally, let c = (C−
x , C1, ..., Cr) ∈ Γ+

Q(i), such that −η ∈ Cr. According to proposition
and remark 4.4, there exists a minimal gallery m = (C−

x , C
′
1, ..., C

′
r) in the set CQ(c), and the

chambers C ′
j can be described by C ′

j = g1 · · · gjC−
x = h1 · · · hj .ri1 · · · rijC−

x where each hk fixes
C−
x , hence ρ

Ax,C
−

x
restricts on C ′

j to the action of (h1 · · · hj)−1.

Let ζ ∈ C ′
r opposite η in any apartment containing those two. The minimality of the

gallery m = (C−
x , C

′
1, ..., C

′
r) ensures that ρ

Ax,C
−

x
(ζ) ∈ C−ξ; hence ρ

Ax,C
−

x
(ζ) = −ξ as they are

both opposite η up to conjugation by W v
x .

So we proved the equivalence (i) ⇐⇒ (ii) and the last two assertions.
Now the equivalence (i) ⇐⇒ (iii) is proved in [GR08, Prop. 6.1 and Th. 6.3]: in

this reference we speak of Hecke paths with respect to −Cv
f , but the essential part is a local

discussion in Ix (using only C−
x and the twin building structure of I ±

x ) which gives this
equivalence.

4.7 Liftings of Hecke paths

Let π be a λ−path from z′ ∈ Y + to y ∈ Y + entirely contained in the Tits cone T , hence
in a finite union of closed sectors wCv

f with w ∈ W v. By [GR08, 5.2.1], for each w ∈ W v

there is only a finite number of s ∈]0, 1] such that the reverse path π̄(t) = π(1 − t) leaves,
in π(s), a wall positively with respect to −wCv

f , i.e. this wall separates π−(s) from −wCv
f .

Therefore, we are able to define ℓ ∈ N and 0 < t1 < t2 < · · · < tℓ ≤ 1 such that the zk = π(tk),
k ∈ {1, ..., ℓ} are the only points in the path where at least one wall containing zk separates
π−(tk) and the local chamber c− of 1.8.2.

For each k ∈ {1, ..., ℓ} we choose for C−
zk

(as in 4.1) the germ in zk of the sector of vertex
zk containing c−. Let ik be a fixed reduced decomposition of the element w−(tk) ∈ W v and
let Qk be a fixed chamber in I +

zk
containing ηk = π+(tk). We note −ξk = π−(tk). When π is

a Hecke path (or a billiard path as in [GR08]), ξk and ηk are conjugated by W v
zk

.
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When π is a Hecke path with respect to c−, {z1, · · · , zℓ} includes all points where the
piecewise linear path π is folded and, in the other points, all galleries in Γ+

Qk
(ik,−ηk) are

unfolded.
Let Sc−(π, y) be the set of all segments [z, y] such that ρc−([z, y]) = π.

Theorem 4.8. Sc−(π, y) is non empty if, and only if, π is a Hecke path with respect to c−.
Then, we have a bijection

Sc−(π, y) ≃
ℓ∏

k=1

∐

c∈Γ+
Qk

(ik,−ηk)

Cm
Qk

(c)

In particular the number of elements in this set is a polynomial in the numbers q ∈ Q with
coefficients in Z≥0 depending only on A.

N.B. So the image by ρc− of a segment in I + is a Hecke path with respect to c−.

Proof. The restriction of ρc− to Izk is clearly equal to ρ
Azk

,C−

zk

; so the lemma 4.6 tells that π

is a Hecke path with respect to c− if, and only if, each Γ+
Qk

(ik,−ηk) is non empty.
We set t0 = 0 and tℓ+1 = 1. We shall build a bijection from Sc−(π|[tn−1,1], y) onto∏ℓ

k=n

∐
c∈Γ+

Qk
(ik,−ηk)

Cm
Qk

(c) by decreasing induction on n ∈ {1, · · · , ℓ + 1}. For n = ℓ + 1

and if tℓ 6= 1, no wall cutting π([tℓ, 1]) separates y = π(1) from c−; so a segment s in I with
s(1) = y and ρc− ◦ s = π has to coincide with π on [tℓ, 1].

Suppose now that s ∈ Sc−(π|[tn,1], y) is determined, in the following way, by a unique

element in
∏ℓ

k=n+1

∐
c∈Γ+

Qk
(ik,−ηk)

Cm
Qk

(c): For an element (mn+1,mn+2, ...,mℓ) in this last set,

each mk = (C−
zk
, Ck

1 , ..., C
k
rk
) is a minimal gallery given by a sequence of elements (hk1 , ..., h

k
rk
) ∈

(Gzk)
rk , as in remark 4.4 and, for t ∈ [tn, tn+1], we have s(t) = (hℓ1...h

ℓ
rℓ
) · · · (hn+1

1 ...hn+1
rn+1

)π(t)

where actually each hkj is a chosen element of U−ri1 ···rij−1
(αij

) whose class in U−ri1 ···rij−1
(αij

)

is the hkj defined above; in particular each hkj fixes c−.

We note g = (hℓ1...h
ℓ
rℓ
) · · · (hn+1

1 ...hn+1
rn+1

) ∈ Gc− . Then g−1s(tn) = π(tn) = zn.
If s ∈ Sc−(π|[tn−1,1], y) and s|[tn,1] is as above, then g−1s−(tn) is a segment germ in I −

zn
opposite g−1s+(tn) = π+(tn) = ηn and retracting to π−(tn) by ρc− . By lemma 4.6 and the
above remark, this segment germ determines uniquely a minimal gallery mn ∈ Cm

Qn
(c) with

c ∈ Γ+
Qn

(in,−ηn).
Conversely such a minimal gallery mn determines a segment germ ζ ∈ I −

zn , opposite
π+(tn) = ηn such that ρ

Azn ,C
−

zn
(ζ) = π−(tn). By lemma 4.6, ζ = (hn1 ...h

n
rn)π−(tn) for some

well defined (hn1 , · · · , hnrn) ∈ (Gzn)
rn . As above we replace each gnj by a chosen element of

G(zn∪c−) whose class in Gzn is this gnj . As no wall cutting [zn−1, zn] separates zn = π(tn)
from c−, any segment retracting by ρc− onto [zn−1, zn] and with [zn, x) = π−(tn) (resp.
= ζ, = gζ) is equal to [zn−1, zn] (resp. (hn1 ...h

n
rn)[zn−1, zn], g(hn1 ...h

n
rn)[zn−1, zn]). We set

s(t) = (hℓ1...h
ℓ
rℓ
) · · · (hn+1

1 ...hn+1
rn+1

)(hn1 ...h
n
rn)π(t) for t ∈ [tn−1, tn].

With this inductive definition, s is a λ−path, s(1) = y, ρc− ◦ s = π and s|[tk−1,tk] is a
segment ∀k ∈ {1, ..., ℓ+1}. Moreover, for k ∈ {1, ..., ℓ}, the segment germs [s(tk), s(tk+1)) and
[s(tk), s(tk−1)) are opposite. By the following lemma this proves that s itself is a segment.

Lemma 4.9. Let x, y, z be three points in an ordered hovel I , with x ≤ y ≤ z and suppose
the segment germs [y, z) , [y, x) opposite in the twin buildings Iy. Then [x, y] ∪ [y, z] is the
segment [x, z].
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Proof. For any u ∈ [y, z], we have x ≤ y ≤ u ≤ z, hence x and [u, y) or [u, z) are in a
same apartment [Ro11, 5.1]. As [y, z] is compact we deduce that there are points u0 =
y, u1, · · · , uℓ = z such that x and [ui−1, ui] are in a same apartment Ai, for 1 ≤ i ≤ ℓ. Now A1

contains x and [y, u1], hence also [x, y] (axiom (MAO) of 1.5). But [y, x) and [y, u1) = [y, z)
are opposite, so [x, y] ∪ [y, u1] = [x, u1]. The lemma follows by induction.

Remark 4.10. The same things as above may be done for the retraction ρ−∞ instead of ρc− :
for all x we choose C−

x = germx(x − Cv
f ). For a λ−path π in A from z′ to y, [GR08, 5.2.1]

tells that we have a finite number of points zk = π(tk) where at least a wall is left positively
by the path π̄(t) = π(1− t). We define as above ik, Qk, ηk and ξk. Now S−∞(π, y) is the set
of all segments [z, y] such that ρ−∞([z, y]) = π.

In [GR08, Theorems 6.2 and 6.3], we have proven that S−∞(π, y) is nonempty if, and only
if, π is a Hecke path with respect to −Cv

f . Moreover, we have shown that, for I associated to
a split Kac-Moody group over C((t)), S−∞(π, y) is isomorphic to a quasi-affine toric complex
variety. The arguments above prove that, with our choice for I , S−∞(π, y) is finite, with the
following precision (which generalizes to the Kac-Moody case some formulae of [GL11]):

Proposition 4.11. Let π be a Hecke path with respect to −Cv
f from z′ to y. Then we have a

bijection:

S−∞(π, y) ≃
ℓ∏

k=1

∐

c∈Γ+
Qk

(ik,−ηk)

Cm
Qk

(c)

In particular the number of elements in this set is a polynomial in the numbers q ∈ Q with
coefficients in Z≥0 depending only on A.

Theorem 4.12. Let λ, µ, ν ∈ Y ++, c− the negative fundamental alcove and suppose (α∨
i )i∈I

R
+−free. Then

a) The number of Hecke paths of shape µ with respect to c− starting in z′ = wλ (for some
w ∈W v fixing 0) and ending in y = ν is finite.

b) The structure constant mλ,µ(ν) i.e. the number of triangles [0, z, ν] in I with dv(0, z) =
λ and dv(z, ν) = µ is equal to:

mλ,µ(ν) =
∑

w∈W v/(W v)λ

∑

π

ℓπ∏

k=1

∑

c∈Γ+
Qk

(ik,−ηk)

♯Cm
Qk

(c) (2)

where π runs over the set of Hecke paths of shape µ with respect to c− from wλ to ν and ℓπ,
Γ+
Qk

(ik,−ηk) and Cm
Qk

(c) are defined as above for each such π.
c) In particular the structure constants of the Hecke algebra HR are polynomials in the

numbers q ∈ Q with coefficients in Z≥0 depending only on A.

Proof. We saw in 2.3.1 that mλ,µ(ν) is the number of z ∈ I
+
0 such that dv(0, z) = λ and

dv(z, ν) = µ. Such a z determines uniquely a Hecke path π = ρc−([z, ν]) of shape µ with
respect to c− from z′ = ρc−(z) to ν. But dv(0, z) = λ and 0 ∈ c−, so dv(0, z′) = λ i.e. z′ = wλ
with w ∈W v. So the formula (2) follows from theorem 4.8.

We know already that mλ,µ(ν) is finite (2.5) and Sc−(π, y) 6= ∅ (theorem 4.8), hence a) is
clear. Now c) follows from corollary 4.5
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5 Satake isomorphism

In this section, we prove the Satake isomorphism. From now on, we assume that the α∨
i ’s are

free.
We denote by U− the fixator in G of the sector germ S−∞, i.e. any u ∈ U− has to fix

pointwise a sector x−Cv
f ⊂ A. By definition, for z ∈ I , ρ−∞(z) is the only point of the orbit

U−.z in A.

5.1 The module of functions on the type 0 vertices in A

Let A0 = ν(N) · 0 = Y · 0 be the set of vertices of type 0 in A. Note that A0 can be identified
to the set of horocycles of U− in I0, i.e. to I0/U

−, via the retraction ρ−∞. We consider first
F̂ = F̂R = F (A0, R), the set of functions on A0 with values in a ring R. Equivalently, F̂

can be identified with the set of U−−invariant functions on I0.
For µ ∈ Y , we define χµ ∈ F̂ as the characteristic function of U−.µ in I0 (or {µ} in Y ).

Then, any χ ∈ F̂R may be written χ =
∑

µ∈Y aµχµ with aµ ∈ R. We set supp(χ) = {µ | aµ 6=
0}. Now, let

F = FR = {χ ∈ F̂ | supp(χ) ⊂ ∪n
j=1(µj −Q∨

+) for some µj ∈ A0}

be the set of functions on I0 with almost finite support.
We define also the following completion of the group algebra R[Y ]:

R[[Y ]] = {f =
∑

y∈Y

aye
y | supp(f) = {y ∈ Y | ay 6= 0} ⊂ ∪n

j=1(µj −Q∨
+) for some µj ∈ A0}

it is clearly a commutative algebra (with ey.ez = ey+z). Actually, it is the Looijenga’s coweight
algebra, see Section 4.1 in [Loo].

The formula (f.χ)(µ) =
∑

y∈Y ayχ(µ − y), for f =
∑
aye

y ∈ R[[Y ]], χ ∈ F and µ ∈ Y ,
defines an element f.χ ∈ F ; in particular ey.χµ = χµ+y. Clearly, the map R[[Y ]]× F → F ,
(f, χ) 7→ f.χ makes F into a free R[[Y ]]−module of rank 1, with any χµ as basis element.

Definition-Proposition 5.2. The map

F ×H → F

(χ,ϕ) 7→ χ ∗ ϕ,

where, for x ∈ I0, (χ ∗ ϕ)(x) = ∑
y∈I0

χ(y)ϕI (y, x), defines a right action of H on F that
commutes with the actions of Z = {n ∈ N | ν(n) ∈ Y } and (more generally) R[[Y ]].

Proof. It is relatively clear that χ∗ϕ is a function on I0/U
− and that the map indeed defines

an action. Let us check that this action commutes with the one of Z. Let t ∈ Z and x ∈ I0,
then

(χ ∗ ϕ)(tx) =
∑

y∈I0
χ(y)ϕI (y, tx)

=
∑

y′∈I0
χ(ty′)ϕI (ty′, tx) (y = ty′)

=
∑

y′∈I0
χ(ty′)ϕI (y′, x)

= ((χ ◦ t) ∗ ϕ)(x).
So, (χ ◦ t) ∗ϕ = (χ ∗ϕ) ◦ t. For ν(t) = µ ∈ Y and χ ∈ F , we have clearly χ ◦ t = e−µ.χ. As a
formal consequence, the right action of H commutes with the left action of R[[Y ]].
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The difficult point is to show that the support condition is satisfied. For any λ ∈ Y ++,
and any ν ∈ Y ,

(χµ ∗ cλ)(ν) =
∑

y∈I0
χµ(y)c

I
λ (y, ν)

= ♯{y ∈ I0 | ρ−∞(y) = µ and dv(y, ν) = λ}

The latest is also the cardinality of the set of all segments [y, ν] in I (y ≤ ν) of “length” λ
such that y ∈ U− · µ. In addition, since the action of H commutes with the one of Z, we set
nλ(ν − µ) = (χµ ∗ cλ)(ν). Then nλ(ν − µ) =

∑
π ♯S−∞(π, ν) where the sum runs over the set

of Hecke λ−paths with respect to −Cv
f from µ to ν (see 4.10 for the definition of S−∞(π, ν)).

Now, Lemma 2.4 b) shows that nλ(ν−µ) 6= 0 implies ν−µ ≤Q+ λ. Moreover, if ν = λ+µ,
then nλ(λ) = 1. Therefore, we get

χµ ∗ cλ =
∑

ν≤Q∨λ+µ

nλ(ν − µ)χν = χλ+µ +
∑

ν<Q∨λ+µ

nλ(ν − µ)χν . (3)

This formula shows that, for any ϕ ∈ H with supp(ϕ) ⊂ ∪n
i=1(λi −Q∨

+) and any ξ ∈ F with
supp(χ) ⊂ ∪n

j=1(µj − Q∨
+), the support of χ ∗ ϕ is contained in ∪i,j(λi + µj − Q∨

+). More
precisely, for any ν ∈ ∪i,j(λi + µj − Q∨

+) there exists a finite number of λ ∈ supp(ϕ) and
µ ∈ supp(χ) such that ν ≤Q+ λ+ µ. Hence, χ ∗ ϕ is well defined.

5.3 The Satake isomorphism

5.3.1 The morphism S∗

As F is a free R[[Y ]]−module of rank one, we have EndR[[Y ]](F ) = R[[Y ]]. So the right
action of H on the R[[Y ]]−module F gives an algebra homomorphism S∗ : H → R[[Y ]] such
that χ ∗ ϕ = S∗(ϕ).χ for any ϕ ∈ H and any χ ∈ F .

As eν .χµ = χµ+ν , equation (3) gives

S∗(cλ) =
∑

ν≤Q∨λ

nλ(ν)e
ν = eλ +

∑

ν<Q∨λ

nλ(ν)e
ν

We shall modify S∗ by some character to get the Satake isomorphism.

5.3.2 The module δ

We define a map δ : Q∨ → R
∗
+ ,

∑
i∈I aiα

∨
i 7→ ∏

i∈I (qiq
′
i)
ai , where qi, q′i ∈ Q ⊂ N are as in

the beginning of Section 4. We extend this homomorphism and its square root to Y (as R∗
+ is

uniquely divisible). So, we get homomorphisms δ, δ1/2 : Y → R
∗
+ and δ = δ ◦ν, δ1/2 = δ1/2 ◦ν :

Z → R
∗
+.

We made a choice for δ. But we shall see in theorem 5.4 that the expected properties
depend only on δ

Q∨
.

In the classical case, where G is a split semi-simple group and I its Bruhat-Tits building,
we have qi = q′i = q for any i ∈ I. Hence, if we set µ =

∑
i∈I aiα

∨
i , δ1/2(µ) = q

∑
ai = qρ(µ)

where ρ is the half sum of positive roots.



24 Stéphane Gaussent & Guy Rousseau

5.3.3 The Satake isomorphism

From now on, we suppose that the algebra R contains the image of δ1/2 in R
∗
+. We define

S(cλ) =
∑

µ≤Q∨λ

δ1/2(µ)nλ(µ)e
µ = δ1/2(λ)eλ +

∑

µ<Q∨λ

δ1/2(µ)nλ(µ)e
µ

and extend it to formal combinations of the cλ with almost finite support.
We get thus an algebra homomorphism S : H → R[[Y ]] called the Satake isomorphism, as

it is one to one:
For ϕ =

∑
λ aλcλ ∈ H, we have S(ϕ) =

∑
λ aλ

(
δ1/2(λ)eλ +

∑
µ<Q∨λ δ

1/2(µ)nλ(µ)e
µ
)
.

If ϕ 6= 0 and λ0 is a maximum element in supp(ϕ), then λ0 is also a maximum element in
supp(S(ϕ)) and S(ϕ) 6= 0.

Remarks. a) So we already know that H is commutative.
b) In the classical case where G is a split semi-simple group, S(cλ) is defined as an integral

over a maximal unipotent subgroup, we choose here U−. The Haar measure du on U− is
chosen to give volume 1 to K ∩ U−, and, for an element t in the torus Z, the formula for
changing variables is given by d(tut−1) = δ(t)−1du. So the classical formula for the Satake
isomorphism given e.g. in [Ca79, (19) p 146] when ν(t) = µ, is:

S(cλ)(t) = δ(t)1/2
∫
U− cGλ (ut)du = δ(t)1/2

∫
U− cIλ (0, ut.0)du

= δ(t)1/2
∫
U− cIλ (u−1.0, t.0)du = δ(t)1/2

∑
y∈U−.0 c

I
λ (y, µ)

= δ(t)1/2
∑

y∈I0
χ0(y).c

I
λ (y, µ) = δ(t)1/2(χ0 ∗ cλ)(µ)

This is the same formula as ours.

5.3.4 W v−invariance

There is an action of W v on Y , hence on R[Y ] by setting w.eλ = ewλ for w ∈W v and λ ∈ Y .
This action does not extend to R[[Y ]], but we define R[[Y ]]W

v
= {f =

∑
aλe

λ ∈ R[[Y ]] | aλ =
awλ,∀λ ∈ Y,∀w ∈ W v}. This is a subalgebra of R[[Y ]] and actually the image of the Satake
isomorphism (see Theorem 5.4).

Remark. Let C∨ = {π ∈ V ∗ | α∨
i (π) ≥ 0,∀i ∈ I} and T ∨ = ∪w∈W v wC∨ be the fundamental

dual chamber and the dual Tits cone in V ∗. By definition, for f ∈ R[[Y ]] and π ∈ C∨,
π(supp(f)) is bounded above. Hence, for f ∈ R[[Y ]]W

v
, π(supp(f)) is also bounded above

for any π ∈ T ∨. We know that the dual cone of T ∨
is the closed convex hull Γ of the set

∆∨im
+ ∪{0}, where ∆∨im

+ ⊂ Q∨
+ is the set of positive imaginary roots in the dual system of roots

∆∨, [Ka90, 5.8]. So, the only directions along which points in supp(f) (for f ∈ R[[Y ]]W
v

)
may go to infinity are the directions in −Γ.

Theorem 5.4. The Hecke algebra HR is isomorphic via S to the commutative algebra
R[[Y ]]W

v

of Weyl invariant elements in R[[Y ]].

Proof. As S(cλ) =
∑

µ≤Q∨λ δ
1/2(µ)nλ(µ)e

µ we only have to prove that, for w ∈ W v,

δ1/2(µ)nλ(µ) = δ1/2(wµ)nλ(wµ) or nλ(wµ) = nλ(µ)δ
1/2(µ − wµ). It is sufficient to prove

this for w = ri a fundamental reflection, hence to prove that nλ(riµ) = nλ(µ)δ
1/2(µ− riµ) =

nλ(µ)δ
1/2(αi(µ)α

∨
i ). By the given definition of δ, the wanted formula is:
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nλ(riµ) = nλ(µ)
(√

qiq′i

)αi(µ)
(4)

The proof of this formula is postponed to the following subsections, starting with 5.5. One can
already notice that αi(µ) is an integer. If it is odd, since any t ∈ Z with ν(t) = µ exchanges

the walls M(αi, 0) and M(αi, αi(µ)), hence qi = q′i. So, in any case
(√

qiq′i
)|αi(µ)| is an integer.

Once the formula (4) is proved we know that S(H) ⊂ R[[Y ]]W
v
. For f =

∑
aµe

µ ∈
R[[Y ]]W

v
with supp(f) ⊂ ∪r

j=1 (λj − Q∨
+), we shall build a sequence ϕn in H such that

supp(f −S(ϕn)) ⊂ ∪r
j=1 (λj −Q∨

+n) and supp(ϕn+1 −ϕn) ⊂ Y ++ ∩ (∪r
j=1 (λj −Q∨

+n)), where
Q∨

+n = {∑i∈I niα
∨
i ∈ Q∨

+ | ∑ni ≥ n}. Then, the limit ϕ of this sequence exists in H and
S(ϕ) = f . So, S is onto.

We build the sequence by induction. We set ϕ0 = 0. If ϕ0, · · · , ϕn are given as above,
we set {µ1, · · · , µs} = supp(f − S(ϕn)) \ ∪r

j=1 (λj − Q∨
+(n+1)). For any w ∈ W v, wµk ∈

supp(f − S(ϕn)) ⊂ ∪r
j=1 (λj −Q∨

+n), so wµk cannot be strictly greater than µk for ≤Q∨; this

proves that µk ∈ Y ++. So we define ϕn+1 = ϕn − ∑s
k=1 aµk

(f − S(ϕn))δ(µk)
−1/2cµk

. As
S(cλ) = δ1/2(λ)eλ +

∑
µ<Q∨λ δ

1/2(µ)nλ(µ)e
µ, this ϕn+1 is suitable.

Remark. Suppose G is a split Kac-Moody group as in Section 3. And consider the complex
Kac-Moody algebra g∨ associated with G∨, the Langlands dual of G. Let h∨ = C ⊗Z Y
be the Cartan subalgebra of g∨. Let Rep(g∨) be the category of g∨−modules V such that
V is h∨−diagonalizable, the weight spaces Vλ are finite dimensional and the set P(V ) of
weights of V satisfies P(V ) ⊂ ∪r

j=1 (λj − Q∨
+), for some λj . One can check that Rep(g∨)

is stable by tensoring, hence, we can consider its Grothendieck ring K(g∨). Now, the map
[V ] 7→ ∑

λ(dimVλ)e
λ is an isomorphism from K(g∨) onto C[[Y ]]W

v

. Therefore, by composing
it with S, we get an isomorphism between HC and K(g∨).

5.5 Extended tree associated to (A, αi)

We consider the vectorial panel −F v({i}) in −Cv
f and its support the vectorial wall Ker(αi).

Their respective directions are a panel F∞ in a wall M∞, in the twin buildings I ±∞ at infinite
of I [Ro11, 3.3, 3.4, 3.7].

The germs of the sector panels in I of direction F∞ are the points of an (essential) affine
building I (F∞), which is of rank 1 i.e. a tree [Ro11, 4.6].

The union I (M∞) of the apartments in I containing a wall of direction M∞ is an
inessential affine building whose essential quotient is I (F∞) [Ro11, 4.9]. More precisely
I (M∞) may be identified with the product of the tree I (F∞) and an affine space quotient
of A.

The canonical apartment of I (M∞) is A endowed with a smaller set of walls: uniquely
the walls of direction Ker(αi). As we chose I semi-discrete (1.2), this is a locally finite set
of hyperplanes; hence I (M∞) is discrete and I (F∞) a discrete tree (not an R−tree). By
[Ro11, 2.9] the valences of these walls are the same in I (M∞) and in I , i.e. 1+ qi and 1+ q′i;
hence I (F∞) is a semi-homogeneous tree of valences 1 + qi and 1 + q′i. By definition, 0 ∈ A

is in a wall of valence 1 + qi.
We asked that the stabilizer N of A in G is positive and type preserving (1.5) i.e.

acts on V =
−→
A via W v. So, the stabilizer in W v of M∞ is {1, ri} and M∞ determines

in V a supplementary vectorial subspace of dimension one : M⊥
∞ = Ker(1 + ri). The

affine space A decomposes as the product of the affine space E = A/M⊥
∞ with associated
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vector space Ker(αi) and an affine line (= A/Ker(αi)). This decomposition is canonical i.e.
invariant by the stabilizer N(M∞) of M∞ in N . As a consequence we get the decomposition
I (M∞) = E × I (F∞) which is canonical i.e. invariant by the stabilizer G(M∞) of M∞ in
G. Moreover G(M∞) acts on E by translations only.

Remark. Suppose G is an almost split Kac-Moody group over a local field K and I its
associated hovel as in [Ro13]. Then the stabilizer G(F∞) of F∞ in G is a parabolic subgroup,
endowed with a Levi decomposition G(F∞) = G(M∞) ⋉ U(F∞) (with U(F∞) ⊂ U−) and
I (M∞) (resp. I (F∞)) is the extended (resp. essential) Bruhat-Tits building associated to
the reductive group of rank one G(M∞), embedded in I [Ro13, 6.12.2]. Any orbit of U(F∞)
in I meets I (M∞) in one and only one point.

The tree I (F∞) is a piece of the polyhedral “compactification” of I (a true compactifica-
tion when G is reductive). With the notation of [Ro13], I (M∞) (resp. I (F∞)) is the façade

I (G,K,A)F∞
(resp. I (G,K,Ae

)F∞
).

5.6 Parabolic retraction

Let x be a point in I . There is a unique sector-panel x + F∞ of vertex x and direction F∞

[Ro11, 4.7.1]. The germ of this sector-panel is a point in I (F∞), the projection prF∞
(x) of x

onto I (F∞), cf. [Ch10], [Ch11] or [Ro13, 4.3.5] in the Kac-Moody case.
Let Ax be an apartment in I containing x and F∞, hence x+ F∞ and germ∞(x+ F∞).

But this germ is in an apartment Bx of I (M∞) (axiom (MA3) applied to germ∞(x+F∞) and
a sector of direction Cv

f ) and there exists an isomorphism ψx of Ax onto Bx fixing this germ
(axiom (MA2)). One writes ρ(x) = ψx(x) ∈ I (M∞). We have thus defined the retraction
ρ = ρF∞,M∞

of I onto I (M∞) with center F∞. We shall now verify that ρ(x) does not
depend on the choices made.

By definition, ρ(x) is in the hyperplane Hx of Bx containing germ∞(x + F∞) and of
direction M∞, this Hx does not depend on the choice of Bx. Moreover for two choices
ψx : Ax → Bx and ψ′

x : A′
x → Bx, ψ′

x ◦ ψ−1
x is the identity on germ∞(x + F∞) hence on

Hx. It is now clear that ψx(x) = ψ′
x(x). Actually ρ(x) may also be defined in the following

simple way: there exist y, z ∈ (x + F∞) ∩ Bx such that y is the middle of [x, z] in Ax, then
ρ(x) is the point of Hx ⊂ Bx such that y is the middle of [ρ(x), z] in Bx.

Remark. It is possible to prove that the image by ρ of a preordered segment is a polygonal
line and, in some generalized sense, a Hecke path.

5.7 Factorization of ρ−∞

The panel F∞ is in the closure of the chamber C−∞ of I −∞ associated to −Cv
f . So this

chamber or the associated sector-germ S−∞ determines an end of the tree I (F∞) [Ro11,
4.6] i.e. a sector-germ S′ in I (M∞): S′ is one of the two sector-germs in A (considered as
an apartment of I (M∞) with its small set of walls), each element in S′ contains an half
apartment of equation αi(y) ≤ k with k ∈ Z. We write ρ′−∞ the retraction of I (M∞) onto A

with center S′.

Lemma. The retraction ρ−∞ factorizes through ρ : ρ−∞ = ρ′−∞ ◦ ρ.

Proof. For x ∈ I , one chooses an apartment Ax containing x and C−∞, hence the sector
x + C−∞, its sector-germ S−∞ and its panel x + F∞. One chooses also an apartment
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Bx of I (M∞) containing germ∞(x + F∞) and S−∞. Hence, Ax and Bx contain both
germ∞(x + F∞) and S−∞; by axiom (MA4) there exists an isomorphism ψx of Ax onto
Bx fixing these two germs. By the definition of the parabolic retraction, in 5.6, ρ(x) = ψx(x).

Now the apartments Ax and Bx of I (M∞) contain both S−∞, hence S′. So there is
an isomorphism θ : Bx → A fixing S′, hence S−∞. As ρ(x) ∈ Bx, one has ρ′−∞ ◦ ρ(x) =
θ(ρ(x)) = θ ◦ψx(x) and this is ρ−∞(x) as θ ◦ψx : Ax → A is an isomorphism fixing S−∞.

5.8 Counting

We want to prove equation (4): nλ(riµ) = nλ(µ)
(√

qiq′i
)αi(µ) for λ ∈ Y ++ and µ ∈ Y , where

nλ(µ) is the number of points y ∈ I0 such that ρ−∞(y) = −µ and dv(y, 0) = λ, cf. 5.2. For
z ∈ I (M∞) one writes pλ(z) ∈ Z≥0∪{∞} for the number of points y ∈ I0 such that ρ(y) = z
and dv(y, 0) = λ. By lemma 5.7, nλ(µ) is the sum of pλ(z) for z ∈ I (M∞) ∩ I0 such that
ρ′−∞(z) = −µ.

Let M0 = 0 +M∞ = Ker(αi) be the wall in A of direction M∞ containing 0. Its fixator
G(M0) (⊂ G(M∞)) acts transitively on the apartments of I or I (M∞) containing it (by
axiom (MA4), as M0 is the enclosure of two sector panel germs). Moreover G(M∞) fixes F∞,
hence ρ is G(M∞)−equivariant. As a consequence, the weight function pλ is constant on the
orbits of G(M0) in I (M∞)∩I0. Hence nλ(µ) =

∑
Ω pλ(Ω)n

Ω(−µ), where the sum runs over
the orbits Ω of G(M0) in I (M∞)∩I0 and nΩ(ν) is the number of points in the orbit Ω such
that ρ′−∞(z) = ν.

To prove formula (4), it is sufficient to prove for any orbit Ω as above and any ν ∈ Y that:

nΩ(riν) = nΩ(ν)
(√

qiq′i

)−αi(ν)

We saw, in 5.5, that G(M∞) leaves the decomposition I (M∞) = I (F∞) × E invariant
and acts on E by translations. But G(M0) fixes M0 ∋ 0, so it acts trivially on E. As G(M0)
is transitive on the apartments containing M0, an orbit Ω is a set Sr × {e} where Sr is the
sphere of radius r ∈ Z≥0 and center 0 in the tree I (F∞). The apartment A (with its small set
of walls) is the product (R,Z)× E, where αi is the projection of A onto the one dimensional
apartment R with vertex set Z.

So, the above formula, hence Formula (4) and Theorem 5.4 are consequences of the
following proposition. The fact that qi = q′i when m = αi(ν) is odd, was explained in the
proof of 5.4.

5.9 The tree case

Let T be a (discrete) semi-homogeneous tree. Let A ≃ R be an apartment in T whose vertices
are identified with Z. The valence of the vertex s ∈ Z is 1 + q (resp. 1 + q′) if s is even (resp.
odd). Let −∞ be the end of A corresponding to integers converging towards −∞. Let ρ′ be
the retraction of T onto A with center −∞. For m ∈ Z ⊂ A and r ∈ Z≥0 we write nr(m) the
number of vertices in the sphere Sr of center 0 and radius r in T such that ρ′(z) = m.

If m is odd we ask that q = q′.

Proposition. One has nr(m) = nr(−m)(
√
qq′)m.

Remark. This formula is equivalent to the W v(T)−invariance of the image of the Satake
isomorphism for the Bruhat-Tits tree T. As this invariance is known, the following proof is
not necessary; we give it for the convenience of the reader.
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For a Bruhat-Tits tree I = T, there are two choices for I0 (and Y ): the set of vertices
at even distance from 0 or the full set of vertices. In this last case, we have to allow m to be
odd and we see below that the hypothesis q = q′ is necessary to get the formula. So, even for
classical Bruhat-Tits buildings, to get the good image for the Satake isomorphism, I0 cannot
be any G−stable set of special vertices (we chose I0 to be a G−orbit).

Proof. For z ∈ Sr, let sz ∈ Z be the vertex of A such that [0, sz ] = [0, z] ∩ A. Then
ρ′(z) = sz + (r − |sz|) ∈ Z.

We can calculate the number nr(m) of vertices z ∈ Sr such that ρ′(z) = m:
First case: sz ≥ 0 ⇐⇒ ρ′(z) = r. So nr(r) = qq′qq′ · · · (r factors).
Second case: −r ≤ sz < 0 ⇐⇒ ρ′(z) < r and then ρ′(z) = r+ 2sz i.e. sz = (ρ′(z)− r)/2.

The number nr(m) is then:

1 if m = sz = −r
(q − 1)q′qq′ · · · (r + sz = (r +m)/2 factors) if sz ∈]− r, 0[ is even
(q′ − 1)qq′q · · · (r + sz = (r +m)/2 factors) if sz ∈]− r, 0[ is odd

It is now easy to compare nr(m) and nr(−m). We get the wanted formula, using that
q = q′ when m is odd.
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