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Abstract

We define the spherical Hecke algebra H for an almost split Kac-Moody group G over a
local non-archimedean field. We use the hovel .# associated to this situation, which is the
analogue of the Bruhat-Tits building for a reductive group. The stabilizer K of a special
point on the standard apartment plays the role of a maximal open compact subgroup. We
can define ‘H as the algebra of K —bi-invariant functions on G with almost finite support.
As two points in the hovel are not always in a same apartment, this support has to be
in some large subsemigroup Gt of G. We prove that the structure constants of H are
polynomials in the cardinality of the residue field, with integer coefficients depending on
the geometry of the standard apartment. We also prove the Satake isomorphism between
‘H and the algebra of Weyl invariant elements in some completion of a Laurent polynomial
algebra. In particular, H is always commutative. Actually, our results apply to abstract
“locally finite” hovels, so that we can define the spherical algebra with unequal parameters.
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Introduction

Let G be a connected reductive group over a local non-archimedean field K and let K be
an open compact subgroup. The space H of complex functions on G, bi-invariant by K and
with compact support is an algebra for the natural convolution product. Ichiro Satake [Sa63]|
studied this algebra H to define the spherical functions and proved, in particular, that H is
commutative for good choices of K. We know now that one of the good choices for K is
the fixator of some special vertex for the action of G on its Bruhat-Tits building .#, whose
structure is explained in [BrT72]. Moreover H, now called the spherical Hecke algebra, may
be entirely defined using .7, see e.g. [P06].
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Kac-Moody groups are interesting generalizations of reductive groups and it is natural to
try to generalize the spherical Hecke algebra to the case of a Kac-Moody group. But there
is now no good topology on G and no good compact subgroup, so the “convolution product”
has to be defined only with algebraic means. Alexander Braverman and David Kazhdan
[BrK10] succeeded in defining such a spherical Hecke algebra, when G is split and untwisted
affine. For a well chosen subgroup K, they define H as an algebra of K —bi-invariant complex
functions with “almost finite” support. There are two new features: the support has to be in
a subsemigroup G of G and it is an infinite union of double classes. Hence, H is naturally a
module over the ring of complex formal power series.

Our idea is to define this spherical Hecke algebra using the hovel associated to the almost
split Kac-Moody group G that we built in [GROS8|, [Rol12] and [Rol3]. This hovel .# is a
set with an action of G and a covering by subsets called apartments. They are in one-to-
one correspondence with the maximal split subtori, hence permuted transitively by G. Each
apartment A is a finite dimensional real affine space and its stabilizer N in G acts on it
via a generalized affine Weyl group W = W? x Y (where Y C Z is a discrete subgroup of
translations) which stabilizes a set M of affine hyperplanes called walls. So, .# looks much
like the Bruhat-Tits building of a reductive group, but M is not a locally finite system of
hyperplanes (as the root system @ is infinite) and two points in % are not always in a same
apartment (this is why .# is called a hovel). There is on .# a G—invariant preorder < which
induces on each apartment A the preorder given by the Tits cone T C A.

Now, we consider the fixator K in G of a special point 0 in a chosen standard apartment
A. The spherical Hecke algebra Hp is a space of K —bi-invariant functions on G with values
in a ring R. In other words, it is the space 7—[}{ of G—invariant functions on %y x %, where
Jy = G/K is the orbit of 0 in .#. The convolution product is easy to guess from this point of
view: (9 *)(z,y) = X..c.n ¢(x,2)1(2,y) (if this sum means something). As two points z,y
in .# are not always in a same apartment (i.e. the Cartan decomposition fails: G # KNK),
we have to consider pairs (z,y) € S X H, with < y (this implies that x,y are in a same
apartment). For Hp, this means that the support of ¢ € Hg has to be in K\G" /K where
Gt ={g€ G|0<g.0}is asemigroup. In addition, K\G' /K is in one-to-one correspondence
with the subsemigroup Y+ =Y N C’}’ of Y (where C}’ is the fundamental Weyl chamber).
Now, to get a well defined convolution product, we have to ask (as in [BrK10]) the support of
a ¢ € Hp to be almost finite: supp(p) C Ui, (M —QY) NY T, where X; € YT and QY is
the subsemigroup of Y generated by the fundamental coroots. Note that (A — QYY) NY ™+ is
infinite except when G is reductive.

With this definition we are able to prove that Hpg is really an algebra, which generalizes
the known spherical Hecke algebras in the finite or affine split case (§2)). In the split case, we
describe the hovel .# and give a direct proof that Hp is commutative (§3]).

The structure constants of Hp are the non-negative integers my ,(v) (for A\, p,v € Y1)
such that c) xc, = ZV€Y++ mA,ﬂ(y)cy, where c¢), is the characteristic function of KAK. Each
chamber (= alcove) in .# has only a finite number of adjacent chambers along a given panel.
These numbers are called parameters of .# and they form a finite set Q. In the split case, there
is only one parameter ¢: the number of elements of the residue field x of . In § we show
that the structure constants are polynomials in these parameters with integral coefficients
depending only on the geometry of an apartment.

In §5 we build an action of Hg on the module of functions from A N % to R. This gives
an injective homomorphism from Hp into a suitable completion R[[Y]] of the group algebra



Spherical Hecke algebras for Kac-Moody groups over local fields 3

R[Y]; hence Hp is abelian (5.3]). After modification by a character this homomorphism gives
the Satake isomorphism from H g onto the subalgebra R[[Y]]"" of WY —invariant elements in
R[[Y]]. The proof involves a parabolic retraction of .# onto an extended tree inside it.

Actually, this article is written in a more general framework (explained in §II): we ask %
to be an abstract ordered hovel (as defined in [Roll]) and G a strongly transitive group of
(positive, type-preserving) automorphisms.

The general definition and study of Hecke algebras for split Kac-Moody groups over local
fields was also undertaken by Alexander Braverman, David Kazhdan and Manish Patnaik
(as we knew from [P10]). A preliminary draft appeared recently [BrKP12|. Their arguments
are algebraic without use of a geometric object as a hovel, and the proofs seem complete
(temporarily?) only for the untwisted affine case. In addition to the construction of the
spherical Hecke algebra and the Satake isomorphism (as here), they give a formula for spherical
functions and they build the Iwahori-Hecke algebra. We hope to generalize, in a near future,
these results to our general framework.

One should notice that these authors use, instead of our group K, a smaller Ky, a priori
slightly different, see Remark in Section 3.4

1 General framework

1.1 Vectorial data

We consider a quadruple (V, W, (a;)ier, (o) )icr) where V is a finite dimensional real vector

7
space, W a subgroup of GL(V) (the vectorial Weyl group), I a finite set, (a));cr a family
in V and (;)ier a free family in the dual V*. We ask these data to verify the conditions of
[Rolll 1.1]. In particular, the formula r;(v) = v — a;(v)e;” defines a linear involution in V/
which is an element in W and (WY, {r; | i € I}) is a Coxeter system.

To be more concrete we consider the Kac-Moody case of [l.c. ; 1.2]: the matrix M =
(aj(y))ijer is a generalized Cartan matrix. Then W is the Weyl group of the corresponding

Kac-Moody Lie algebra gy and the associated real root system is

O = {w(e) |weW"icl}C Q= Z.a.
el

We set @ = & N QF where QF = £(P,c; (Z>0).w) and Q¥ = (B,e; Z.r), QL =
+(Bic; (Z>0).cf). We have & = &+ U @~ and, for a = w(e;) € @, 7o = wrjw ! and
a¥ = w(a)) depend only on «, and r4(v) = v — a(v)a’.

The set ® is an (abstract reduced) real root system in the sense of [MoP89|, [MoP95|
or [Ba96]. We shall sometimes also use the set A = ® U A} U A, of all roots (with
—A; = Al CQF, W’—stable) defined in [Ka90]. It is an (abstract reduced) root system
in the sense of [Ba96].

The fundamental positive chamberis C} = {v € V' | a;(v) > 0,Vi € I}. Its closure C_}’is the
disjoint union of the vectorial faces FU(J) ={v e V| a;(v) =0,Vi € J,a;(v) > 0,Vi € I\ J}
for J C I. The positive (resp. negative) vectorial faces are the sets w.FV(J) (resp. —w.F"(J))
for w € W¥ and J C I. The set J or the face w.F""(J) is called spherical if the group W?(J)
generated by {r; | i € J} is finite.

The Tits cone T is the (disjoint) union of the positive vectorial faces. It is a W"—stable
convex cone in V.
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1.2 The model apartment

As in [Rolll 1.4] the model apartment A is V' considered as an affine space and endowed with
a family M of walls. These walls are affine hyperplanes directed by Ker(«) for o € ®.

We ask this apartment to be semi-discrete and the origin 0 to be special. This means
that these walls are the hyperplanes defined as follows:

M(a,k)={veV|alw)+k=0} for o € ® and k € A,

(with Ay = ko.Z a non trivial discrete subgroup of R). Using the following lemma (i.e.
replacing ® by ®) we shall assume that A, = Z,Va € P.

For o = w(oy) € @, k € Ay(= Z) and M = M(o, k), the reflection 745 = ry with
respect to M is the affine involution of A with fixed point set the wall M and associated linear
involution r,. The affine Weyl group W is the group generated by the reflections rj; for
M € M; we assume that W stabilizes M.

For « € ® and k € R, D(a,k) = {v € V | a(v) + k > 0} is an half-space, it is called an
half-apartment if k € A, (= Z).

The Tits cone 7 and its interior 7° are convex and W"—stable cones, therefore, we can
define two W¥—invariant preorder relations on A:

o
r<y s y-—xzeT; z<y s y—xzecT’

If W? has no fixed point in V'\ {0} and no finite factor, then they are orders; but they are
not in general.

Lemma 1.3. For all o € ® we choose ko > 0 and define & = a/ka, @' = kq.a. Then
¢ ={a | a € ®} is the (abstract reduced) real root system (in the sense of [MoP89/, [MoP95] or
[Bad6)) associated to (V,W", (k3 .ci)ier, (ka,- )ier) hence to the generalized Cartan matriz
M = (k;jl.aj(kai.azv))me]. Moreover with ®, the walls are described using the subgroups

Ay =7.

Proof. For o, 3 € ®, the group W contains the translation 7 by kq.a" and 7(M(,0)) =

M(B3,—B(ka-a¥)). So ka.B(Y) € Ag ie @) = k:gl.ka.ﬁ(av) € Z. Hence M =
(k;jl.aj(kai.aiv))me] is a generalized Cartan matrix and the lemma is clear, as kyo = k. O

1.4 Faces, sectors, chimneys...

The faces in A are associated to the above systems of walls and halfapartments (i.e. D(a, k) =
{veA | a)+k>0}). Asin [BrT72|, they are no longer subsets of A, but filters of subsets
of A. For the definition of that notion and its properties, we refer to [BrT72| or [GROS].

If F'is a subset of A containing an element x in its closure, the germ of F' in z is the filter
germ,(F) consisting of all subsets of A which are intersections of F' and neighbourhoods of
x. In particular, if x # y € E, we denote the germ in x of the segment [z,y]| (resp. of the
interval |x,y]) by [z,y) (resp. |z,y)).

The enclosure cly(F') of a filter F' of subsets of A is the filter made of the subsets of
A containing an element of F of the shape NaeaD(a, ko), where ko € Z U {oco} (here,
D(a,00) = A).

A face F in the apartment A is associated to a point z € A and a vectorial face FV in
V; it is called spherical according to the nature of F'V. More precisely, a subset S of A is an
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element of the face F'(z, F) if and only if it contains an intersection of half-spaces D(a, k) or
open halfspaces D°(a, k) (for o € A and k € Z U {oo}) which contains QN (z + F"), where
is an open neighborhood of z in A. The enclosure of a face F' = F(x, F") is its closure: the
closed-face F'. It is the enclosure of the local-face in z, germ,(z + FV).

There is an order on the faces: the assertions “F is a face of F' 7, “F’ covers F' " and
“F < F'” are by definition equivalent to ' C F’. The dimension of a face F is the smallest
dimension of an affine space generated by some S € F. The (unique) such affine space E of
minimal dimension is the support of F. Any S € F' contains a non empty open subset of FE.
A face F is spherical if the direction of its support meets the open Tits cone, then its fixator
W in W is finite.

Any point z € A is contained in a unique face F(x, V() which is minimal (but seldom
spherical); z is a vertex if, and only if, F(z, Vy) = {z}.

A chamber (or alcove) is a maximal face, or, equivalently, a face such that all its elements
contain a nonempty open subset of A.

A panel is a spherical face maximal among faces which are not chambers, or, equivalently,
a spherical face of dimension n — 1. Its support is a wall. So, the set of spherical faces of A
and the Tits cone completely determine the set M of walls.

A sectorin A is a V—translate s = z + C" of a vectorial chamber C* = +w.C} (we W?),
x is its base point and CV its direction. Two sectors have the same direction if, and only if,
they are conjugate by V —translation, and if, and only if, their intersection contains another
sector.

The sector-germ of a sector s = x + CV in A is the filter & of subsets of A consisting
of the sets containing a V —translate of s, it is well determined by the direction C”. So the
set of translation classes of sectors in A, the set of vectorial chambers in V' and the set of
sector-germs in A are in canonical bijection. We write &_., the sector-germ associated to the
negative fundamental vectorial chamber —C}’.

A sector-face in A is a V —translate f = x + F" of a vectorial face F¥ = £wF"(J). The
sector-face-germ of f is the filter § of subsets containing a translate § of f by an element of F”
(i.e. § C §). If F¥ is spherical, then f and § are also called spherical. The sign of f and § is
the sign of F".

A chimney in A is associated to a face F' = F'(z, F{}), its basis, and to a vectorial face F'?,
its direction, it is the filter
v(F,FY) = clp(F + F7).

A chimney v = v(F, F") is splayed if F" is spherical, it is solid if its support (as a filter, i.e.
the smallest affine subspace containing t) has a finite fixator in W". A splayed chimney is
therefore solid. The enclosure of a sector-face f = z + F is a chimney.
A halfline 6 with origin in x and containing y # x (or the interval |z,y], the segment
o

o
[z,y]) is called preordered if x < y or y < x and generic if x < y or y < z. With these new
notions, a chimney can be defined as the enclosure of a preordered halfline and a preordered
segment-germ sharing the same origin. The chimney is splayed if, and only if, the halfline is
generic.

1.5 The hovel

In this section, we recall the definition of an ordered affine hovel given by Guy Rousseau in

[Rol1].
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An apartment of type A is a set A endowed with a set Isom(A, A) of bijections (called
isomorphisms) such that if fy € Isom(A, A), then f € Isom(A, A) if, and only if, there exists
w € W satisfying f = fo ow. An isomorphism between two apartments ¢ : A — A’ is a
bijection such that f € Isom(A, A) if, and only if, ¢ o f € Isom(A, A"). As the filters in A
defined in [[.4] above (e.g. faces, sectors, walls,..) are permuted by W%, they are well defined
in any apartment of type A.

Definition. An ordered affine hovel of type A is a set .# endowed with a covering A of subsets
called apartments such that:

(MA1) any A € A admits a structure of an apartment of type A;

(MAZ2) if F is a point, a germ of a preordered interval, a generic halfline or a solid chimney in
an apartment A and if A’ is another apartment containing F', then A N A’ contains the
enclosure cls(F) of F and there exists an isomorphism from A onto A’ fixing cla(F);

(MA3) if R is a germ of a splayed chimney and if F is a face or a germ of a solid chimney, then
there exists an apartment that contains R and F’;

(MA4) if two apartments A, A" contain R and F as in (MA3), then their intersection contains
clA(R U F) and there exists an isomorphism from A onto A’ fixing cl4(R U F);

(MAO) if x,y are two points contained in two apartments A and A’ and if x <4 y then the two
segments [z,y]4 and [x,y]a are equal.

We ask here .# to be thick of finite thickness: the number of chambers (=alcoves)
containing a given panel has to be finite > 3. This number is the same for any panel in a
given wall M [Rolll 2.9]; we denote it by 1 + qas.

We assume that .# has a strongly transitive group of automorphisms G (i.e. all isomor-
phisms involved in the above axioms are induced by elements of G, cf. [Rol3l, 4.10]). We
choose in .# a fundamental apartment which we identify with A. As G is strongly transi-
tive, the apartments of .# are the sets g.A for g € G. The stabilizer N of A in G induces
a group v(N) of affine automorphisms of A which permutes the walls, sectors, sector-faces...
and contains the affine Weyl group W [Rol3, 4.13.1]. We denote the fixator of 0 € A in G
by K.

We ask v(NN) to be positive and type-preserving for its action on the vectorial faces.
This means that the associated linear map @ of any w € v(N) is in WY, As v(N) contains
W® and stabilizes M, we have v(N) = WY x Y, where W" fixes the origin 0 of A and Y is a
group of translations such that: QVCcY cP'={veV]a(v) €ZVac D}

We ask Y to be discrete in V. This is clearly satisfied if ® generates V* i.e. (a;)icr is a
basis of V*.

Examples. The main examples of all the above situation are provided by the hovels of almost
split Kac-Moody groups over fields complete for a discrete valuation and with a finite residue
field, see [Rol12|, [Ch10], [Chll] or |[Rol3]. Some details in the split case can be found in
Section Bl

Remarks. a) In the following, we often refer to [GRO8| which deals with split Kac-Moody
groups and residue fields containing C. But the results cited are easily generalized to our
present framework, using the above references.
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b) For an almost split Kac-Moody group over a local field K, the set of roots & is
Ko, = {Fa € ¥@ | $Xa ¢ @} where the relative root system X® describes well the
commuting relations between the root subgroups. Unfortunately d gives a worst description
of these relations.

1.6 Type 0 vertices

The elements of Y considered as the subset Y = N.0 of V = A are called vertices of type
0 in A; they are special vertices. We note Y™ =Y N7 and Y+ =Y N C_}’ The type 0
vertices in ¢ are the points on the orbit %, of 0 by G. This set %, is often called the affine
Grassmannian as it is equal to G/K.

In general, G is not equal to KY K = KNK |GROS8,, 6.10] i.e. % # K.Y

We know that .# is endowed with a G—invariant preorder < which induces the known one
on A [Rolll, 5.9]. Weset #* ={x € 7 |0<a}, .7 = AHNITand Gt = {g€ G |0 < g.0};
SO fd" =GT.0=G"/K. As < is a G—invariant preorder, GT is a semigroup.

If x € JOJF there is an apartment A containing 0 and z (by definition of < ) and
all apartments containing 0 are conjugated to A by K (axiom (MA2)); so x € K.Y as
IFNA=Y" But y(NNK)=W"and Y+ = WY+ (with uniqueness of the element in
Y); so £" = K.Y, more precisely ;" = GT/K is the disjoint union of the KyK/K
fory e YT,

Hence, we have proved that the map Y+ — K\G" /K is one-to-one and onto.

1.7 Vectorial distance and )V —order

For x € T, we note 27 the unique element in C_}’ conjugated by W" to x.

Let S X< = {(z,y) € J x J | © < y} be the set of increasing pairs in .#. Such a
pair (z,y) is always in a same apartment g.A; so g~'y — g~ 'z € T and we define the vectorial
distance d'(z,y) € C_}’ by d¥(z,y) = (¢~ 'y — g '2)*T. It does not depend on the choices we
made.

For (z,y) € S x< S = {(x,y) € S x H | v < y}, the vectorial distance d"(x,y)
takes values in YT, Actually, as %y = G.0, K is the fixator of 0 and f0+ = K.Yt (with
uniqueness of the element in Y1), the map d” induces a bijection between the set . x < % /G
of orbits of G in ¥ x< S and Y+,

Any g € GT is in K.d"(0,g0).K.

For z,y € A, we say that © < gvy (resp. o < QY y) when y —xz € QY (resp. y —z €
Qry = D icr Rx0.y’). We get thus a preorder which is an order at least when (o )ies is free
or Ry—free (i.e. > a;of =0,a; > 0= a; =0,Vi).

1.8 Paths

We consider piecewise linear continuous paths 7 : [0, 1] — A such that each (existing) tangent
vector 7’(t) is in an orbit WV.\ of some \ € C_}’ under the vectorial Weyl group W". Such a
path is called a A—path; it is increasing with respect to the preorder relation < on A.

For any ¢ # 0 (resp. t # 1), we let «’ (t) (resp. ' (t)) denote the derivative of
7w at t from the left (resp. from the right). Further, we define wy(t) € WY to be the
smallest element in its (W?))—class such that 7/ (¢) = wy(¢).A (where (WV), is the fixator
in W¥ of \). Moreover, we denote by 7_(t) = n(t) — [0,1)7"_(t) = [x(¢),m(t —¢)) (resp.
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w4 (t) = w(t) + [0,1)7 (t) = [n(t),7(t + €)) (for € > O small) the positive (resp. negative)
segment-germ of m at t.
The reverse path 7 defined by ™ = 7(1 — ¢) has symmetric properties, it is a (—\)—path.
For any choices of \ € C_}’, m € A, r € N\ {0} and sequences 7 = (71,72,...,7) of
elements in WY/(W")y and @ = (a0 = 0 < a1 < ag < --- < a, = 1) of elements in R, we
define a A—path m = 7(\, 7, 7, a) by the formula:

m(t) = mo + Z (a; — ai—1)T(N) + (t —aj_1)1;(A)  for aj—1 <t <a;.

Any A—path may be defined in this way (and we may assume 7; # 7j11).

Definition. [KMOS8, 3.27] A Hecke path of shape A with respect to —C% is a A—path such
that, for all ¢t € [0,1]\ {0, 1}, 7. (¢) <we, 7'_(t), which means that there exists a W7 —chain
from 7’_(t) to @/ (t), i.e. finite sequences (o = 7’_(t),&1,...,& = 7', (t)) of vectors in V and
(B1,...,Bs) of real roots such that, for all i = 1,...,s:

i) rg,(&i-1) = &,

ii) Bi(&-1) <0,
iii) rg, € Wl i-e. Bi(m(t)) € Z: w(t) is in a wall of direction Ker(8;).
iv) each f3; is positive with respect to —C} i.e. 5;(C}) > 0.

Remarks. 1) The path is folded at 7(t) by applying successive reflections along the walls
M(B;, —Bi(m(t))). Moreover conditions ii) and iv) tell us that the path is “positively folded”
(cf. |[GLO5]) i.e. centrifugally folded with respect to the sector germ &_o = germe(—C?).

2) Let c— = germo(—C7) be the negative fundamental chamber (= alcove). A Hecke path
of shape A\ with respect to ¢ [BCGRI11] is a A—path in the Tits cone T satisfying the above
conditions except that we replace iv) by :

iv’) each f3; is positive with respect to c_ i.e. B;i(w(t) —¢c_) > 0.

Then ii) and iv’) tell us that the path is centrifugally folded with respect to the center ¢_.

2 Convolution algebras

2.1 Wanted
We consider the space
Hp = Hr(I,G) = {¢”: S x< S = R | ¢”(gz,9y) = ¢”(2,y),Yg € G}

of G—invariant functions on % x < %, with values in a ring R (essentially C or Z). We want
to make 7—[% (or some large subspace) an algebra for the following convolution product:

(@ N wy) = D ¢ (z,2)07(2,y).

z<z<y

It is clear that this product is associative and R—bilinear if it exists.
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Via dv, 7/-1\% is linearly isomorphic to the space Hp = {p%: Y+t = K\G*/K — R},
which can be interpreted as the space of K —bi-invariant functions on G*. The correspondence
©” < oY between H){ and Hpg is given by:

©%(9) = ¢7(0,9.0) and @7 (z,y) = ¢“(d"(z,y)).

In this setting, the convolution product should be: (p%*¥%)(g) = DoheGH /K e (h)Y%(htg),
where we consider ¢ and ® as trivial on G'\ G*. In the following we shall often make no
difference between ¢ or ¢ and forget the exponents # and ©.

We consider the subspace Hg of functions with finite support in Y+ = K\G"/K; its
natural basis is (cy)ycy++ where ¢y sends A to 1 and g # A to 0. Clearly ¢ is a unit for x. In
ﬁ){, (ex * cu)? (2, y) is the number of triangles [z, z,y] with d'(z,2) = A and d*(z,y) = p.

As suggested by [BrK10] and lemma [24] we consider also the subspace Hp of ”;QR of
functions ¢ with almost finite support i.e. supp(¢) C U, (A, —QY) NY T where \; € Y.

2.2 Retractions onto YT

For all x € .#7 there is an apartment containing z and ¢_ [Rolll 5.1] and this apartment is
conjugated to A by an element of K fixing ¢_ (axiom (MA2) ). So, by the usual arguments
and [lLc. , 5.5] we can define a retraction p._ of £t into A with center ¢_; its image is
pe (I =T=STNnAand p. (F)=Y".
There is also a retraction p_, of .# onto A with center the sector-germ &_., [GROS, 4.4].
For p = p._ or p_o the image of a segment [z,y] with (z,y) € & x< # and d"(x,y) =
A E C_}’ is a A—path [GROS| 4.4]. In particular, p(z) < p(y).

2.3 Convolution product

The convolution product in Hpr should be defined (for y € Y1) by

(e ¥)(y) = p2)(d(zy))
where the sum runs over the z € %" such that 0 < 2z < y and ¢(2) = ¢ (0,2) = ¢ (d*(0, 2)).

1) Using p._ we have, for A\, u,y € YT, (crxc,)(y) = > wewr vy, Neo (1, w.A,y) where
Ne_(p,w.A,y) is the number of z € ;" with d¥(z,y) = p and p,_(2) = w.A € Y. Note that,
if Ne_(u, w,y) > 0, there exists a y—path from w to y, hence y € wA + Y.

So ¢y * ¢, is the formal sum ¢y * ¢, = > cy++ mau(v)c, where the structure constant
mau(V) = 2 pews jwey, Neo (1, WA, v) € Z>oU{+00} is also equal to the number of triangles
[z,z,y] with d’(z,z) = X and d"(z,y) = p, for any fixed pair (z,y) € H x< H with
d*(z,y) = v (e.g. (z,y) = (0,v)).

2) Using p_oc we have my ,(v) = >, N_oo(pt,2',v) where the sum runs over the 2’ in
YT\ = pocc({z € FF | d¥(0,2) = A}) and N_oo(p, 2',v) € Zso U {+00} is the number of
z € 3 with d¥(0,2) = A, d¥(2,y) = p (for any y € F" with d*(0,y) = v e.g. y = v) and
P—oo(2) = 2'. But p_([0, z]) is a A—path hence increasing with respect to < ,s0 YT (\) C Y.
Moreover, p_oo([2,7]) is a p—path, so 2’ has to be in v — Y. Hence, 2’ has to run over the
set YT ()N(v=-YH)cY nr-Y").

Actually, the image by p_o of a segment [z,y] with (z,y) € & X< # and d"(z,y) =\ €
YT is a Hecke path of shape A\ with respect to —C}’ [GRO8, th. 6.2]. Hence the following
results:
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Lemma 2.4. a) For A\€ YT and w € WY, wA € A — QY, i.e. wA < gv \.

b) Let  be a Hecke path of shape X € YT with respect to —C}’, fromyg €Y toy; €Y.
Then X = 7/(0)"+ = (1), 7(0) < v A, 7(0) < gy (1 — o) < gy 7'(1) < gv A and
Y1 — Yo < Qv A

¢) If moreover (o )icr is free, we may replace above < Qy by < ov.

d) For \,p,v € YTt if my ,(v) >0, thenv e A+ p— QY ie. v < gv A+ L.

N.B. By d) above, if z < z <y in H, then d’(z,y) < gvd’(z, 2) + d°(z,y).

Proof. a) By definition, for A € Y, wA € A+ QV, hence a) follows from [Ka90, 3.12d] used in
a realization where (o);er is free.

b) By definition of Hecke paths in [L8 XA = #/(0)*" = #/(1)**. Moreover, Vt € [0,1],
A=7_(t)t" =7/ (t)T" and we know how to get 7/, (t) from 7’ (¢) by successive reflections;
this proves that 7/, (t) € 7’ (t) + Qg . By integrating the locally constant function 7'(t), we
get 7(0) < gy (11 — %) < gy 7'(1) < gy A

It is proved (but not stated) in [GROS| 5.3.3] that any Hecke path of shape A starting in
Yo € Y can be transformed in the path m)(t) = yo + At by applying successively the operators
€a, O €q, for i € I; moreover eq, (m)(1) = 7(1)+a; and €4, (7)(1) = 7(1), hence y1—yo < gv A.

¢) By b) y1 —yo — 7(0) € Qp, NQY = QY, so @'(0) < ¢gv(y1 — yo). Idem for
y1— Yo < qv'(1).

d) If my ,(v) > 0 we have an Hecke path of shape A (resp. p) from 0 to 2’ (resp. from 2’
to v). So d) follows from b). O

Proposition 2.5. Suppose (&) )icr free in V. Then for all A, p,v € YT, my ,(v) is finite.
N.B. Actually we may replace the condition () );cr free by (o )ier R —free.

Proof. We have to count the z € .%;" such that d’(0,z) = X and d*(z,v) = u. We set 2/ =
P—oo(2). By lemmal24db, 2/ € A—QY and v € 2'+p—QY, hence 2" is in A—QY)N(r—p+QY)
which is finite as (o) )ier is free or RT—free. So, we fix now z’. By [GROS8, cor. 5.9] there is a
finite number of Hecke paths 7’ of shape p from 2’ to v. So, we fix now /. And by [Lc. th.
6.3] (see also [L.10L LTT)) there is a finite number of segments [z, v] retracting to 7'; hence the
number of z is finite. O

Theorem 2.6. Suppose (o) )icr free or RT—free, then Hp is an algebra.

Proof. We saw that for X\, p, v € Y™+, my ,(v) is finite; hence ¢y ¢, is well defined (eventually
as an infinite formal sum). Let us consider ¢,9 € Hp: supp(p) C U™, (A — QY), supp(y) C
Uty (nj — QY). Let v € Y*H. If my ,(v) > 0 with A € supp(p), p € supp(yp) (hence
Ae XN —QY, pe p;— QY for some 4,7), we have A + p € v+ QY by lemma 2. So
Aew—p+QY)NN—QY) C (v—pj+QY)N (N —QY), a finite set. For the same reasons
1 is in a finite set, so ¢ * ¢ is well defined.

With the above notations v € (A4 p — QY) C U; j (Ai + pj — QY), so ¢ x1p € Hp. O

Definition 2.7. Hr = Hgr(.¥,G) is the spherical Hecke algebra (with coefficients in R)
associated to the hovel .# and its strongly transitive automorphism group G.

Remark. We shall now investigate H i and some other possible convolution algebras in ﬁR
by separating the cases: finite, indefinite and affine.
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2.8 Finite case

In this case ® and W are finite, (o) )ies is free, T = V and the relation < is trivial. The
hovel . = #% is a locally finite Bruhat-Tits building.

Let p be the half sum of positive roots. As 2p € Q and p(ay) =1, Vi € I, we see that an
almost finite set in Y7 is always finite. So Hr and 7-[1’; are equal.

The algebra Hc was already studied by I. Satake in [Sa63|. Its close link with buildings
is explained in [P06]. The algebra Hyz is the spherical Hecke ring of [KLMOS§|, where the
interpretation of my ,(v) as a number of triangles in .# is already given.

7/-[\3 is not an algebra as e.g. m)\7(,wO))\(O) # 0 VX € YT (where wy is the greatest element
in Wv).

2.9 Indefinite case

Lemma. Suppose now ® associated to an indefinite indecomposable generalized Cartan matrix.
Then there is in A} an element § (of support I) such that 6(e)) < 0, Vi € I and a basis
(0;)ier of the real vector space Qg spanned by ® such that 6;(T) >0, Vi € I.

Proof. Any 6 € A;’,‘n takes positive values on T [Ka90, 5.8]. Now, in the indefinite case, there
is § € Al N (®ier Rso.0;) such that §(a)) < 0, Vi € I [l.c. 4.3], hence § + a; € AT, Vi € 1.
Replacing eventually & by 34 [l.c. 5.5], we have (0+a;)(af) <0, Vi, j € I, hence §+a; € A
The wanted basis is inside {6} U{dp + o | i € I}. O

The existence of § € A as in the lemma proves that (o) );es is RT—free. So Hp is an
algebra. The following example 210l proves that H{z is in general not a subalgebra.

If (ov)ics generates (i.e. is a basis of) V*, Hp is also an algebra (the formal spherical
Hecke algebra): Let v € YT, we have to prove that there is only a finite number of pairs
(A, 1) € (YT1)? such that my ,(v) > 0. Let 2’ be as in the proof of ZEl We saw in 3] that
ZeYTN(v—-YT)=YNTnN(w-—T). By the lemma, 7 N (v — T) is bounded, hence
Y NT N(v—T)is finite. So we may fix 2. Now A € 2/ + QY hence (for § as in the lemma)
I(A) < 6(2'); as aj(N) € Zso Vi € T and 6§ € ®ierRsp.; this gives only a finite number of
possibilities for A. Similarly p € v — 2’ + Qi has to be in a finite set.

Actually Hp is often equal to #p when (o) )ier is free and (;)ier generates V* (hence
the matrix Ml = («;(y)) is invertible), see the following example 2ZT00

2.10 An indefinite rank 2 example

2 =3

Let us consider the Kac-Moody matrix M = <_ 3 9

). The basis of ® and V* is {a1, a2}

and we consider the dual basis (wwy,wy) of V. In this basis o = (_23), ay = <_3) and

2
. . -1 0 1 3 8 3
the matrices of rq, ro, ror1 and ri7y are respectively ( 3 1), <0 _1>, M = <_3 _1)
and M~! = <_31 _83) The eigenvalues of M or M~! are ax = (7 £ v/45)/2. In a basis

diagonalizing M and M~! we see easily that (ror1)™ + (r172)" = a,.Idy where a, = a’l +a”
is in N and increasing up to infinity (ag =2, a1 =7, ag = 47, a3 = 322,...).
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i) in Yt C Zso.w) & Z>o.wy. We have
(ror1)™ XA+ (r172)™. A = an.A. This means that my x(an.A) > Nc_ (A, (ror1)" A, an.A) > 1, for
all positive n (and the same thing for N_,). So ¢ * ¢ is an infinite formal sum.

Actually (—QY)NY ™ D Z>o.5wy) & Z>.5wy, hence YT itself is almost finite!

Consider now A = u = —af — oy = (

2.11 An affine rank 2 example

2 =2
Let us consider the Kac-Moody matrix M = (_2 9 The basis of ® is {1, s} but
we consider a realization V of dimension 3 for which {aY, a5} is free and with basis of
V* {a, = —p,a1,a2}. More precisely, if (wy,w@y,wy) is the dual basis of V, we have
-1 -1
alv = 2 1, ag = | —2 | and the matrices of ry, ro, r17ry and ror; are respectively
-2 2
1 1 0 1 0 1 1 1 3 1 3 1
0 -1 0,101 2|, M=|0 -1 —2|andM =[]0 3 2 |. A classical
0 2 1 00 -1 0 2 3 0 -2 -1
2 4n? 4n?
calculus using triangulation tells us that (rory)™ + (rire)® = |0 1 0 |. Actually
0 0 1
c=af +ay = —2wy € QY is the canonical central element [Ka90, § 6.2] and the above

calculations are peculiar cases of [l.c. § 6.5].

Let’s consider now A\ = pu = 3.7 | a;w) € YT+ C @2, Zsow). We have (rori)"(\) +
(rire)™(A) = X — 2n%|Aec with [A| = a1 + a2. This means that my (A — 2n?|A|c) >
Ne_ (A, (r2r1)"(A), A — 2n2|M|c) > 1, Vn € Z (and the same thing for N_.). So ¢y * ¢y is
an infinite formal sum.

Moreover as c s fixed by r1 and 7y, (ror1)"(A42n2|Ale)+(r172)™" (A) = A, 50 My Lop2)yjen(A) >
1, Vn € Z, and ”;QR is not an algebra.

Remark also that, if we consider the essential quotient V¢ = V/Re, the above calculus tells

that mxa(A) > >2,cz Ne_ (A, (r2r1)"(A), A) is infinite if |A] > 0.

2.12 Affine indecomposable case

We saw in the example ZTT] above that my y(\) may be infinite, VA € Y+ when (o )ier is
not free. So, in this case, Hp seems to contain no algebra except R.cg.

Remark also that (o) )iy free is equivalent to (o

V)ier RT —free in the affine indecomposable
case as the only possible relation between the o) is ¢ = 0 where ¢ = Y. ; /.« (with
a € Zso Vi € I) is the canonical central element.

An almost finite subset in Yt is a finite union of subsets like Yy = (A—QY)NY ™. Let
8 be the smallest positive imaginary root in A. Then §(QY) =0so Yy C {y € Y™t | i(y) =
SN} =Y. But 6 = >, ; aj.op with a; € Zg Vi € I, so the image of Yy in V¢ = V/Re
(where Re = Njer Ker(ey)) is finite. It is now clear that Y) is a finite union of sets like
p — Z>p.c with 4 € Y. Hence an almost finite subset as defined above is the same as an
almost finite union (of double cosets) as defined in [BrKI0].

The algebra Hc is the one introduced by A. Braverman and D. Kazhdan in [BrK10]. We

gave above a combinatorial proof that it is an algebra, without algebraic geometry.

el
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3 The split Kac-Moody case

3.1 Situation

As in [Ro12| or [Ro13|, we consider a split Kac-Moody group & associated to a root generating
system (RGS) & = (M, Ys, (@;)icr, (o) )icr) over a field K endowed with a discrete valuation
w (with value group A = Z and ring of integers O = w1([0, +00])) whose residue field x = F,
is finite . So, M = (a; j)i jer is a Kac-Moody matrix, Ys a free Z—module, (¢)icr a family
in Vs, (@;)icr a family in the dual X =Y of Ys and @;(ay) = a; ;.

If (@;)ier is free in X, we consider V' = V3 = Ys®zR and the clear quadruple (V, W?, («; =
Q;)icr, (@) )ier). In general, we may define Q = Z! with canonical basis («;);cs, then V =
Vo = Homgz(Q,R) is also in a quadruple as in [T A third example Ve of choice for V is
explained in [Rol3]. We always denote by bar : @ — X the linear map sending «; to @;.

With these vectorial data we may define what was considered in [L.I] and (we choose
Ao =AN=7Z,Va € ?).

Now the hovel .# in[[Hlis as defined in [Ro12] or [Rol3] and the strongly transitive group
is G = &(K). By |[Rolll 6.11] or [Rol2, 5.16] we have gy = ¢ for any wall M.

When & is a split reductive group, .# is its extended Bruhat-Tits building.

3.2 Generators for GG

The Kac-Moody group & contains a split maximal torus ¥ with character group X and cochar-
acter group Ys. We note T' = T(K). For each v € & C Q there is a group homomorphism
Zq @ K — G which is one-to-one; its image is the subgroup U,. Now G is generated by T and
the subgroups U, for a € ®, submitted to some relations given by Tits [T87], also available
in [Re02] or [Rol2]. We set U* the subgroup generated by the subgroups U, for a € ®*.
We shall explain now only a few of the relations. For u € K, t € T and « € ® one has:
(KMT4) t.zq(u).t™! = zo(@(t).u) (where @ = bar(a))
For u # 0, we note 34 (1) = 2o (u).7_o(u™1).24(u) and 3, = 5,(1).
(KMT5) 84(u).t.3q(u) "t = ro(t) (W acts on V', Y5, X hence on T')

3.3 Weyl groups

Actually the stabilizer N of A C . is the normalizer of T in G. The image v(N) of N in
Aut(A) is a semi-direct product v(N) = v(Ng) x v(T') with:

Ny is the fixator of 0 in N and v(Np) is isomorphic to W acting linearly on A = V.
Actually v(Np) is generated by the elements v(s,) which act as r, (for a € ).

t € T acts on A by a translation of vector v(t) € V such that X(v(t)) = —w(x(t)) for any
X € X =Y¢ and x € X or @ which are related by X = x if V = Vy or ¥ = bar(x) if V = Vg.

So, ¥(N) = W' x Y where Y is closely related to Ys ~ T/T(0): as A = w(K) = Z,
they are equal if V' = Vy and, if V = Vg, Y = bar*(Ys) is the image of Ys by the map
bar* : Ys — Homz(Q,Z) dual to bar.

So, the choice V' = Vy is more pleasant. The choice V' = V{5 is made e.g. in [Ch10], [Ch11]
or [Re02] and has good properties in the indefinite case, cf. 2291 They coincide both when
(@i)icr is a basis of X ® R = V5. This assumption generalizes semi-simplicity, in particular
the center of & is then finite [Re02] 9.6.2].
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3.4 The group K

The group K = G should be equal to &(QO) for some integral structure of & over O cf. [GROS,
3.14]. But the appropriate integral structure is difficult to define in general. So we define K
by its generators:

The group Ny is generated by Ty = T(O) = T'N K and the elements s, for a € ® (this is
clear by B.3). The group Uy, generated by the groups Uy o = 24(O) for a € @, is in K. We
note UofE = UyNU*. In general USE is not generated by the groups U, for a € d* [Rol2,
4.12.3a].

It is likely that K may be greater than the group generated by Ny and Uy (i.e. by Uy
and Tp). We have to define groups U™ O U and U™~ D Uy as follows. In a formal
positive completion G+ of G, we can define a subgroup Ug]n‘” = [loea+ Ua,o of the subgroup
Umt =T],ea+ Ua of G+, with U+ c ymat (where U, and U, are suitably defined for o
imaginary). Then U™t = U NG = U NU*. The group UF™™ is defined similarly
with A~ using a group Uy"*™ C U™ in a formal negative completion G~ of G.

Now K = Go = U™ .U .No = Uy .Uy .No  [Rol2, 4.14, 5.1]

Remark. Let us denote by K; the group used by A. Braverman, D. Kazhdan and M.
Patnaik in their definition of the spherical Hecke algebra. With the notation above, K; is
generated by Ty and Uy, i.e. by Tp, UJ‘ and Uy, hence K = U™ K = Ugm+.K1, with
Uy CUY cU™ and Uf C Ugm+ C U™. But they prove, at least in the untwisted affine
case, that U"NUT. K, C K; [BtKP12| proof of 6.4.3]; so U™~ c U NK c U NU'.K; C K
and K = Kj. This result answers positively a question in [Rol3l 5.4|, at least for points of
type 0 and in the untwisted affine split case.

Proposition 3.5. There is an involution 6 (called Chevalley involution) of the group G such
that O(t) =t~ for allt € T and 0(zo(u)) = 2_o(u) for all « € ® and u € K. Moreover K is
0—stable and 0 induces the identity on W¥ = N/T.

Proof. This involution is well known on the corresponding complex Lie algebra, see [Ka90),
1.3.4] where one uses for the generators e, a convention different from ours ([eq, e_o] = —a¥
as in [T87] or [Re02]). Hence the proposition follows when s contains C or is at least of
characteristic 0. But here we have to use the definition of G by generators and relations.

We see in [Rol2, 1.5, 1.7.5] that 5,(—u) = 54(u)~! and 3,(u) = 5_4(u"t). So for the
wanted involution 6 we have 0(54(u)) = 5_o(u) = 54(u™!). We have now to verify the
relations between the 0(z4(u)) = z_o(u), 6(t) = t~! and 0(5,(u)) = 54(u"!). This is clear
for (KMT4) and (KMT5) (as rq = 7_4). The three other relations are:

(KMT3) (za(u),zg(v)) = HmW(Cgf’qﬁ.ul’vq) for (a,3) € ®% prenilpotent and, for the
product, v = pa+ ¢ runs in (Zsoa+Z-oB)N®. But the integers Cﬁ’qﬁ are picked up from the
corresponding formula between exponentials in the automorphism group of the corresponding
complex Lie algebra. As we know that 6 is defined in this Lie algebra, we have C, ¢ e Cp, ’qﬁ
and (KMT3) is still true for the images by 6.

(KMT6) 54(u™t) = 34.a" (u) for a simple and u € K \ {0}.

This is still true after a change by 0 as 8(5,(u™!)) = 54(u) and (—a)(u) = " (u™1).

(KMTT7) $p.25(u).5,1 = 24 (cu) if v = ro(B) and 3,(e5) = c.e, in the Lie algebra (with
e = £1). This is still true after a change by 6 because 5,(eg) = €.e, = 54(e_g) = €.e_, (as

ra(BY) =7Y).



Spherical Hecke algebras for Kac-Moody groups over local fields 15

So, 6 is a well defined involution of G, 8(Uy) = Uy, 8(Ny) = Ny and (Uy) = UF. But
the isomorphism @ of U™ onto U™ can clearly be extended to an isomorphism 6 from U™+
onto U™~ sending U onto U™, So (UL ) = UF™ and §(K) = K. As 0(34) = 3a,
6 induces the identity on W"¥ = N/T. O

Theorem 3.6. The algebra 7:23 or Hg is commutative, when it exists.

Notation: To be clearer we shall sometimes write RrR(6,K) or Hr(®,K) instead of H R O
Hr.

Proof. The formula 6% (g) = 6(g~") defines an anti-involution (6% (gh) = 6% (h).60%(g) ) of G
which induces the identity on 7" and stabilizes K. In particular 07 (GT) = 0#(KY+TTK) = G
and 0% (KAK) = KAK, YA € Y**. For ¢, € Hp and g € GT, one has: (p*v)(g) =
() (07(9) = Lheg+/x ()Y (h™16%(g)). The map h — h' = 6% (h='0% (g)) = g% (h™")
is one-to-one from G /K onto G /K. So, (¢ *¥)(9) = Y e+ /i (07 (W'~ g))p(07 (W)

Swea+x PNTIOU(R) = (¥ 9)(9). O

Remarks 3.7. 1) This commutativity will be below proved in general as a consequence of
the Satake isomorphism. The above proof generalizes well known proofs in the reductive case,
e.g. for = BL,, #% is the transposition.

2) When & is an almost split Kac-Moody group over the field K (supposed complete or
henselian) it splits over a finite Galois extension £, the hovel X.¢ over K exists and embeds
in the hovel %£# over £ [Rol3| § 6]. After enlarging eventually £ one may suppose that 0 is
a special point in X and “.#, more precisely in the fundamental apartments XA C “A = A
associated respectively to a maximal —split torus & and a L—split maximal torus T D 6.
If we make a good choice of the homomorphisms z,, : £ — &(L), the associated involution
of (L) should commute with the action of the Galois group I' = Gal(L/K) hence induce an
involution X6 and an anti-involution *6# of &(K) = &(L)! such that *(K) =X0#(K) = K
and K6# induces the identity in YV (x&) = x&(K)/x&(0). The commutativity of Hz(®, K)
or Hr(®,K) would follow.

This strategy works well when & is quasi split over K; unfortunately it seems to fail in the
general case.

3) The commutativity of 7-73 or Hpg is linked to the choice of a special vertex for the
origin 0. Even in the semi-simple case, other choices may give non commutative convolution
algebras, see [Sa63| and [KeR07].

4 Structure constants

We come back to the general framework of §[II We shall compute the structure constants of
7/-[\3 or Hp by formulas depending on A and the numbers gq,s of Note that there are only
a finite number of them: as quar = qur, Yw € v(N) and wM (o, k) = M(wa, k),Yw € WY,
we may suppose M = M(a;, k) with i € [ and k € Z. Now oy € Q¥ C Y; as ai(a)) = 2
the translation by « permutes the walls M = M(«;, k) (for k € Z) with two orbits. So
Y has at most two orbits in the set of the constants qps(a, 1), those of ¢ = qpr(a,,0) and
4 = qM(as,+1)- Hence the number of (possibly) different parameters is at most 2.|I|. We
denote by Q@ = {q1, - ,q1,¢} = @41, -+ ,q] = g2} this set of parameters.
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4.1 Centrifugally folded galleries of chambers

Let = be a point in the standard apartment A. Let ®, be the set of all roots a such that
a(z) € Z. Tt is a closed subsystem of roots. Its associated Weyl group W, is a Coxeter group.

We have twinned buildings #,;" (resp. ., ) whose elements are segment germs [z,y) =
germy([x,y]) fory € I,y # x, y > x (resp. y < x). We consider their unrestricted structure,
so the associated Weyl group is W? and the chambers (resp. closed chambers) are the local
chambers C' = germ,(z + C) (resp. local closed chambers C = germ,(z + C?)), where C”
is a vectorial chamber, c¢f. [GRO8, 4.5] or |[Roll, § 5]. To A is associated a twin system of
apartments A, = (A, Al).

We choose in A, a negative (local) chamber C, and denote C; its opposite in A}. We
consider the system of positive roots ®* associated to C} (i.e. @ = w@;f, if <I>;f is the system
®F defined in LI and C;f = germg(z +wC7)). We note (a;)ier the corresponding basis of @
and (7;);er the corresponding generators of W?.

Fix a reduced decomposition of an element w € WY, w = r; ---r; and let i =
(i1, ...,7-) be the type of the decomposition. We consider now galleries of (local) cham-
bers ¢ = (C,,C,...,C,) in the apartment A starting at C. and of type i. The set
of all these galleries is in bijection with the set I'(i) = {1,7;,} x --- x {1,r;.} via the

map (c1,...,¢) = (Cp,a1Cy,.,c1---¢.C ). Let Bj = —c1---cj(ay;), then B; is the root
corresponding to the common limit hyperplane M; = Mg, of Cj—1 = ¢1---¢;—1C; and

Cj = c1---¢;C; and satisfying to 3;(C;) > Bj(x) (actually M; is a wall <= f; € &,). In
the following, we shall identify a sequence (cy, ..., ¢,) and the corresponding gallery.

Definition 4.2. Let Q be a chamber in A}. A gallery ¢ = (c1,...,¢,) € T'(i) is said to
be centrifugally folded with respect to Q if ¢; = 1 implies §; € ®, and wglﬁj < 0, where
wg = w(CF,Q) € WY (i.e. Q = wqC,). We denote this set of centrifugally folded galleries
by TH(3i).

Proposition 4.3. A gallery ¢ = (C;,C1,...,C,) € I'(i) belongs to I‘g(i) if, and only if,
Cj = Cj—1 wmplies that M; = Mg, is a wall and separates 9 from Cj = Cj_y.

Proof. We saw that M; is a wall <= f; € ®,. We have the following equivalences:
(M; separates Q from C; = Cj_1) < (wgle separates C from wgle = wgle,l) =
(wglﬁj is a negative root). O

The group G, = G, /G 4, acts strongly transitively on .#," and .#,". For any root a € ®,
with a(z) = k € Z, the group Uy = Uy /Uqs k+1 is a finite subgroup of G, of cardinality
Qr,0 = qM(a,—a(z)) € Q- We denote by u, the elements of this group.

Next, let pg : 7, — A, be the retraction centered at 3. To a gallery of chambers
c=(c1,...,cr) = (C;,Ch,...,Cp) in T'(i), one can associate the set of all galleries of type i
starting at C in . that retract onto c, we denote this set by Cq(c). We denote the set of
minimal galleries in Cq(c) by CZ'(c). Set

) g if wglﬁj >0or g € 0, )

9i = Uej (o) € if wglﬁj <0 and B;j € ®,. 1)
Proposition 4.4. Cq(c) is the non empty set of all galleries (C; = C{,C1,...,C}) where
K C]’» = g1---9;C, with each g; chosen as in (1) above. For all j the local chambers Q and
Cj’» are in the apartment gy - - - g;Az.
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The set CF (c) is empty if, and only if, the gallery c is not centrifugally folded with respect
to Q. The gallery (C; = C’O,C’l, ,Cy) is minimal if, and only if, ¢; # 1 for any j with
1ﬂj>00rﬁ]¢<b and u,, 7é1f0ranyj with ¢c;j =1 andwnlﬂj<0

Remark. For g; as in equation @) we may write g; = uc;(q, )¢ (With uc;(q, ) = 1 if
J J

wglﬂj > 0or f3; ¢ ®;). Then in the product g;---g; we may gather the ¢; on the right
and, as c1---cp(ay,) = —P, we may write g1---g; = u_g, - “ru_g;.c1- - cj. Hence C]’~ =
g1+ 9;C; =u_p,---u_g,C;. When u_g, # 1 we have [ € &, and wglﬂk < 0; so it is clear
that ,OQ(CJ/) = Cj.

The gallery (C; = C(,C1, ...,CL) (of type i) is minimal if, and only if, we may also write
(uniquely) C} = u_q,, Mgy (—aiy) " Uy oy, (=) i T (Cy) = hi--hjry -1, (CF)
with hy = Uy, ooy (—a) € Upyyooriy | (—auy) (which fixes C). In particular, CF € hy -+~ hjA,.
But this formula gives no way to know When pQ(C’ ) = Cj. We know only that when G & &,
i.e. riy o1y (=0, ) & Py, we have necessarily hk =1.

Proof. As the type i of (C; = C[,CY1,...,C}) is the type of a minimal decomposition, this
gallery is minimal if, and only if, two consecutive chambers are different. So the last assertion
is a consequence of the first ones. We prove these properties for (C, = C{,C4,...,C", ) by
induction on j. We write in the following just H; for the common limit hyperplane H g; of
C;—1 and Cj of type i;.

There are five possible relative positions of Q, C; and C; with respect to H; and we seek
O/ with pg(C}) = Cy and C] D Cy N Hy.

0) f1 = —c1v;, & Py, then Hi is not a wall, each C] with F{ D C; N Hjy is equal to Cf
or r;,C; and C] or C, are contained in the same apartments. So C] = C; = ¢1C,; Cq and
Q are in g1A, = A, with g1 = ¢;. When C] = C, we have ¢; = 1 and c is not centrifugally
folded.

We suppose now 1 € ®,, so Hy is a wall.

1) C; is on the same side of H; as Q and C; not, then ¢; = r;y, /1 = a4y, w51ﬁ1 < 0,
C) =qC, = u,ailrile_ = U—q,, C4. But Uy, pointwise stabilizes the halfspace bounded
by Hj containing C, hence u_q, (Q) = Q and (] are in the apartment g;A;.

2) Q and C, = C} are separated by Hy, then¢; =1, /1 = —ay,, w51ﬁ1 <0,C1=qnC; =
Uq; Oy but uq, pointwise stabilizes the halfspace bounded by Hi not containing C, hence
9 and C] are in the apartment g;A,.

3) Cy is on the same side of H; as 9 and C not, then ¢; =1, 1 = a;y, wg ﬁl > 0 and
C] has to be C1 so g1 = ¢1 =14y, Wy (a“) > 0, moreover Q and C] = r;,; C,; = Cy are in the
apartment g1 A,.

4) 9Q and C; = C] are on the same side of H;. Then ¢; = 1 and w5151 > 0; the gallery c
is not centrifugally folded. So pq(C1) = C implies C] = C, = ¢1C, with g1 =¢; =1 as in
(@). But the gallery (C; = Cg, C1, ..., C}) cannot be minimal.

By induction we assume now that the chambers £ and C]/'q = g1---9;—1C, are in the
apartment A;_1 = g1 ---g;—1A;. Again, we have five possible relative positions for Q,C}_;
and Cj with respect to H;. We seek C with pq(C}) = C; and C’ D C’ 1Ng1--gj-1Ha, -

0) Bj = —c1 -+ ¢jai; & Py, then Hj is not a wall, each C with C’ D C’ 1Ng1- - gj—1Ha,,
is equal to C 1 =9g1--9j—1C; or g1---gj_1m;;C; ; moreover C or C _, are contained in
the same apartments So C]’» = g1 gj—1¢;C, and Q are in g; - ngm = g1+ gj—1A,; with

gj = ¢j. When O} = C’_;, we have ¢; = 1 and c is not centrifugally folded.
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We suppose now 3; € ®,, so H; is a wall.
1) Cj_1 is on the same side of H; = cl---cj,lHaij as Q and Cj not, then ¢; = r;,
Bj=c1--- Cj-10;, wglﬁj < 0. Moreover £ and Cg/‘—l are on the same side of g1 ---g;_1H,,.
J
in Aj—l; and

C‘; = g1 gjflu*aij ’I"Z‘jcw_
g gj_lu_ai.rij (91 e gj—l)ilc.;*l
91 gj—1U—ay, (91 gj-1) " g1 gj—1ri; (g1 - 'gj—l)flcj/'fl’

where g1 -+ g;_17i;(g1 - -gj,l)_lC’»_l is the chamber adjacent to C} along ¢ -- -gj,lHaij in
A;_1. Moreover, g -+ g;— 1y, (g1 gj—1)"! pointwise stabilizes the halfspace bounded by
g1+ gj—1Ha,, containing iy "and 9. So Q and C; are in the apartment g; - - - g;A;.

2) Cj_1 = Cj and Q are separated by Hj, then ¢; = 1, 8 = —c1 - ¢j_10y,, wglﬁj < 0.
Moreover C' 1 and 9 are separated by ¢ - gj_lHaij in A;_1, and Q and the chamber

g1+ gj—17i, (g1 gj—1) ' Chy

are on the same side of this wall. For Uey;, #1

Ci=g1--- 9j—1ta;, Cp = g1+ gj—1Ua, (91 - -gj—1) 0,

is a chamber adjacent (or equal) to C}_; along 91"'9j—1Haij = gl---gj_luainaij in
g1+ 9;A; (with g; = U, ).

The root-subgroup g; - - - gj_anij (g1~ gj_l)*l pointwise stabilizes the halfspace bounded
by g1 - -- gj,lHaij and containing the chamber gy --- g; 17, (g1 - -gj,l)_lcjl-fl. So 9 and C]’»
are in the apartment g; - -- gjA,.

3) C; is on the same side of H; = cl---cj,lHaij as Q and Cj_; not, then ¢; = Tijs
Bj = c1--ci1ay,, wglﬁj > 0. and so C'J’- =g1---gj-17;;C; . Whence Q and C]’» are in the
apartment gp - -- g;A;.

4) Cj—1 = C; and Q are on the same side of H; = 01"'Cj—1Haij, then ¢; = 1, B;
—c1-+-cjq10y; and wglﬁj > 0. The gallery c is not centrifugally folded. So pQ(C’]’) = Cj
implies C} = C]_; = g1---¢g;C; with g; = ¢; = 1 as in (I). But the gallery (C =
Cp, C1, .. C’) cannot be minimal.

O

Corollary 4.5. If c € T{(i), then the number of elements in C%(c) is:

t(c) r(c

)
ﬁcﬂ H qjp, X q]l -1)

=1

where q; = qup, = Qeoi, € Q, tlc) = #Hj | ¢ = rij, B € ; and wglﬁj < 0} and
r(c)=#{j|c;=1,05; € D, and wglﬁj < 0}.
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4.6 Galleries and opposite segment germs

Suppose now x € AN .ZT. Let € and 7 be two segment germs in A}. Let —n and —¢ opposite
respectively n and ¢ in A/. Let i be the type of a minimal gallery between C, and C_g,
where C_¢ is the negative (local) chamber containing —¢ such that w(C; , C_¢) is of minimal
length. Let 9 be a chamber of A containing 1. We suppose ¢ and 7 conjugated by WY.

Lemma. The following conditions are equivalent:

(i) There exists an opposite ¢ to n in I~ such that p, ~-(¢) = —¢.

(ii) There exists a gallery ¢ € T§(i) ending in —.

(i) & < wen (in the sense of L8, with T defined as in[{1] using C; ).

Moreover the possible  are in one-to-one correspondence with the disjoint union of the
sets C&'(c) for c in the set Fg(i, —n) of galleries in F;S(i) ending in —n. More precisely, if
m € Cq(c) is associated to (hi,--- ,hy) as in remark[{4], then ( = hy --- hy(=&).

Proof. 1f ¢ € .#; opposites n and if p W () = —¢, then any minimal gallery m =
(Cy, My, ...,M, > () retracts onto a minimal gallery between C; and C_¢. So we can as
well assume that m has type i = (i1,...,4,) and then ¢ determines m. Now, if we retract m
from 9, we get a gallery ¢ = pa, o(m) in A starting at C,, ending in —n and centrifugally
folded with respect to Q.

Reciprocally, let c = (C,,C4,...,C}) € I‘g(i), such that —n € C,.. According to proposition
and remark 4] there exists a minimal gallery m = (C,,C1, ..., CL) in the set Cq(c), and the
chambers C]’~ can be described by C} =g1--9;C;, =hy---hjry --- Ti; C, where each hy, fixes
Cy , hence p, - restricts on O} to the action of (hy - -- hj)~L.

Let ¢ € C! opposite n in any apartment containing those two. The minimality of the
gallery m = (C, (1, ...,Cl) ensures that pr,C;(C) € C_¢; hence pr,C;(C) = —¢ as they are
both opposite n up to conjugation by W7.

So we proved the equivalence (i) <= (ii) and the last two assertions.

Now the equivalence (i) <= (dii) is proved in |[GROS, Prop. 6.1 and Th. 6.3|: in
this reference we speak of Hecke paths with respect to —C}’, but the essential part is a local
discussion in .#, (using only C; and the twin building structure of .#;) which gives this
equivalence. O

4.7 Liftings of Hecke paths

Let ™ be a A—path from 2’ € Y to y € YT entirely contained in the Tits cone 7, hence
in a finite union of closed sectors wC_}’ with w € WY, By |GROS8, 5.2.1], for each w € W"
there is only a finite number of s €]0, 1] such that the reverse path 7(t) = m(1 — t) leaves,
in m(s), a wall positively with respect to —wC_}’, i.e. this wall separates m_(s) from —wC_}’.
Therefore, we are able to define £ € Nand 0 < ¢; < t9 < --- <ty < 1 such that the z; = w(tx),
k € {1,....,¢} are the only points in the path where at least one wall containing z; separates
7—(t) and the local chamber c¢_ of [[82.

For each k € {1,...,£} we choose for C7 (as in LT]) the germ in zj of the sector of vertex
zj, containing ¢_. Let i be a fixed reduced decomposition of the element w_(tx) € W" and
let Qf be a fixed chamber in f;); containing 1y = w4 (tx). We note —& = m_(tx). When 7 is
a Hecke path (or a billiard path as in [GROS]), & and 7, are conjugated by W7 .
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When 7 is a Hecke path with respect to ¢_, {z1,---, 2/} includes all points where the
piecewise linear path 7 is folded and, in the other points, all galleries in ng (ig, —mx) are

unfolded.
Let S._(m,y) be the set of all segments [z, y] such that p._([z,y]) = 7.

Theorem 4.8. S._(m,y) is non empty if, and only if, ™ is a Hecke path with respect to c_.
Then, we have a bijection

V4
Sy~ 11 ca

k=1 CEFEk (i, —7)

In particular the number of elements in this set is a polynomial in the numbers q € Q with
coefficients in Z>o depending only on A.

N.B. So the image by p._ of a segment in .# " is a Hecke path with respect to c_.
Proof. The restriction of p._ to .#,, is clearly equal to p, - ; so the lemma tells that o
Zk? Zk

is a Hecke path with respect to ¢_ if, and only if, each ng(ik, —n) is non empty.
We set to = 0 and tp1; = 1. We shall build a bijection from S (m,_,1),¥) onto

Hf;:n Hcefgk(ikﬁnk)cgk(c) by decreasing induction on n € {1,--- £+ 1}. Forn =/¢+1

and if ty # 1, no wall cutting 7([ty, 1]) separates y = w(1) from ¢_; so a segment s in . with
s(1) =y and p,_ o s = 7 has to coincide with 7 on [ts, 1].
Suppose now that s € Sc_ (7, 1),¥) is determined, in the following way, by a unique

. ¢ . .
element in [[;_,, ., ]—[cngk (ip,—mp) €0y, (€): For an element (my, 11, My 49, ..., my) in this last set,

each my, = (C,, Cf, e C’,’?k) is a minimal gallery given by a sequence of elements (h’f, vy hfk) €
(G,

)", as in remark @Al and, for ¢ € [tn, tn1], we have s(t) = (h{...hL) - (R AP (t)
where actually each h;? is a chosen element of U.

1 Tn41
—riy iy (o)) whose class in U

—Tiy i (o)

is the hé? defined above; in particular each h;? fixes ¢_.
We note g = (h§..hL,) -+ (R R+ Y € Ge_. Then g~ 's(t,) = m(ty) = 2n.

Tnt1
If s € S (mp,_,,1,y) and s, 1) 18 ;s above, then g~'s_(t,) is a segment germ in g,
opposite g~ 1sy (t,) = 7o (tn) = 1, and retracting to 7_(t,) by p._. By lemma and the
above remark, this segment germ determines uniquely a minimal gallery m,, € CJ (c) with
ce I‘gn(in, —1n).
Conversely such a minimal gallery m,, determines a segment germ ¢ € .#_, opposite
74 (tn) = My such that Pa. c (¢) = m—(tp). By lemma L6, ¢ = (h}...h} )7_(t,) for some

well defined (hY,--- ,hy ) € (G.,)™. As above we replace each g; by a chosen element of

Zn

G(z,uc_) Whose class in G, is this g7. As no wall cutting [2,-1, 2,)] separates z, = 7(t,)
from c¢_, any segment retracting by p._ onto [z,-1,2,] and with [z,,2) = 7_(t,) (resp.
= (, = gC) is equal to [zn_1,2,] (vesp. (h7...h7 )[zn—1,2a), g(RT .07 )[Zn—1,2n]). We set
s(t) = (hf..nL,) -+ (R R ) (BB )7 (t) for t € [ty_1, ).

With this inductive definition, s is a A—path, s(1) = y, p._ os = 7 and s, _, 4, Is a
segment Vk € {1,...,4+1}. Moreover, for k € {1, ..., ¢}, the segment germs [s(tx), s(tx+1)) and
[s(tk), s(tx—1)) are opposite. By the following lemma this proves that s itself is a segment. [

Lemma 4.9. Let z,y, z be three points in an ordered hovel .7, with x < y < z and suppose
the segment germs [y, z) , [y,x) opposite in the twin buildings #,. Then [x,y] U [y, 2| is the
segment [z, z].
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Proof. For any u € [y,z], we have z < y < u < 2, hence = and [u,y) or [u,z) are in a
same apartment |[Rolll 5.1]. As [y, z] is compact we deduce that there are points uy =

y,u1,- - ,up = z such that x and [u;_1, u;] are in a same apartment A;, for 1 <i < /¢. Now A;
contains = and [y, u1], hence also [z,y] (axiom (MAO) of [LH). But [y,z) and [y,u1) = [y, 2)
are opposite, so [z,y| U [y,u1] = [x,u1]. The lemma follows by induction. O

Remark 4.10. The same things as above may be done for the retraction p_ instead of p._:
for all z we choose C; = germy(z — C%). For a A—path m in A from 2’ to y, [GROS, 5.2.1]
tells that we have a finite number of points z; = m(tx) where at least a wall is left positively
by the path 7(t) = 7(1 — t). We define as above iy, Q, np and &. Now S_o(m,y) is the set
of all segments [z, y] such that p_([2,y]) = 7.

In [GRO8, Theorems 6.2 and 6.3], we have proven that S_.(7,y) is nonempty if, and only
if, m is a Hecke path with respect to —C%. Moreover, we have shown that, for .# associated to
a split Kac-Moody group over C((t)), S_oo(7,y) is isomorphic to a quasi-affine toric complex
variety. The arguments above prove that, with our choice for .#, S_(7,y) is finite, with the
following precision (which generalizes to the Kac-Moody case some formulae of [GL11]):

Proposition 4.11. Let w be a Hecke path with respect to —C}) from 2’ toy. Then we have a
bijection:

)4
Swmy~[1 I ¢c&(

k=1 CEFEk (iks—mk)

In particular the number of elements in this set is a polynomial in the numbers q € Q with
coefficients in Z>o depending only on A.

Theorem 4.12. Let \,u,v € Y1, ¢_ the negative fundamental alcove and suppose (o )icr
R*—free. Then

a) The number of Hecke paths of shape p with respect to c_ starting in 2z’ = w\ (for some
w € WV fizring 0) and ending in y = v is finite.

b) The structure constant my ,,(v) i.e. the number of triangles [0, z,v] in & with d,(0, z) =
X and dy(z,v) = p is equal to:

tr
ma) = Y Y ]I > g () (2)

weW?/(Wv)y ™ k=1 celdy, (ie,—me)

where ™ runs over the set of Hecke paths of shape p with respect to ¢ from wA to v and £y,
ng(ika —ni) and CF (c) are defined as above for each such .

c) In particular the structure constants of the Hecke algebra Hp are polynomials in the
numbers g € Q with coefficients in Z>qo depending only on A.

Proof. We saw in 231 that my ,(v) is the number of z € #;" such that d,(0,2) = X and
dy(z,v) = p. Such a z determines uniquely a Hecke path m = p._([z,v]) of shape p with
respect to ¢_ from 2/ = p._(z) to v. But d,(0,2) = A and 0 € c_, s0 d,(0,2) = X i.e. 2/ = wA
with w € W?. So the formula (2]) follows from theorem [£.8]

We know already that m ,(v) is finite (Z5) and Sc_(7,y) # 0 (theorem [AF), hence a) is
clear. Now c) follows from corollary O
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5 Satake isomorphism

In this section, we prove the Satake isomorphism. From now on, we assume that the a’s are
free.

We denote by U~ the fixator in G of the sector germ G_o, i.e. any v € U~ has to fix
pointwise a sector x — C}’ C A. By definition, for z € .Z, p_(z) is the only point of the orbit
U™.zin A.

5.1 The module of functions on the type 0 vertices in A

Let Ag =v(N)-0=1Y -0 be the set of vertices of type 0 in A. Note that A can be identified
to the set of horocycles of U™ in %, i.e. to /U, via the retraction p_,. We consider first
F = % = Z(Ag, R), the set of functions on Ay with values in a ring R. Equivalently, F
can be identified with the set of U™ —invariant functions on .%.

For 1 € Y, we define x,, € .# as the characteristic function of U~.p in % (or {u} in Y).
Then, any x € T may be written x = >_ y aux,u with ay, € R. We set supp(x) = {n | ay #
0}. Now, let

T =Fr={x€F |supp(x) C Uj_i(pj — QY) for some y1; € Ao}

be the set of functions on ., with almost finite support.
We define also the following completion of the group algebra R[Y]:

R[[Y]|=A{f= Z aye? | supp(f) ={y € Y | ay # 0} C Ul (p; — QY) for some pj € Ag}
yey

it is clearly a commutative algebra (with e¥.e* = €¥*#). Actually, it is the Looijenga’s coweight
algebra, see Section 4.1 in [Lool.

The formula (f.x)(p) = > ey ayXx(p —y), for f =3 aye? € R[Y]], x € F and p €Y,
defines an element f.x € .%; in particular e¥.x, = X,4y. Clearly, the map R[[Y]] x % — 7,
(f,x) = f.x makes .# into a free R[[Y']|—-module of rank 1, with any x,, as basis element.

Definition-Proposition 5.2. The map

FXH — F
Ge) = x*o,

where, for z € Jy, (x * ©)(%) = X ez x(¥)¢” (y,z), defines a right action of H on .Z that
commutes with the actions of Z = {n € N | v(n) € Y} and (more generally) R[[Y]].

Proof. 1t is relatively clear that x * ¢ is a function on .#,/U~ and that the map indeed defines
an action. Let us check that this action commutes with the one of Z. Let ¢t € Z and = € .9,
then

(x*x@)tr) = 3,cq xW)e” (y,tz)
= Yyenxty)e? (ty tx)  (y=ty)
= Yyen Xty (v, o)

= ((xot)*x¢)(@).
So, (xot)xp=(x*xp)ot. For v(t) =p €Y and x € .%, we have clearly xot =e #.x. Asa
formal consequence, the right action of % commutes with the left action of R[[Y]].
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The difficult point is to show that the support condition is satisfied. For any A € YT,
and any v € Y,

(Xuxe)W) = Yemxu®)es (y,v)
= Hye Al p-ly) =p and d(y,v) = A}

The latest is also the cardinality of the set of all segments [y,v]| in # (y < v) of “length” A
such that y € U™ - u. In addition, since the action of H commutes with the one of Z, we set
naA(v — ) = (xu * cx)(v). Then ny(v — p) = > 45 o (m,v) where the sum runs over the set
of Hecke A—paths with respect to —C} from p to v (see [LI0 for the definition of S_o (7, v)).

Now, Lemma [Z4]b) shows that ny (v —p) # 0 implies v —p <o, X. Moreover, if v = A+ p,
then ny(A) = 1. Therefore, we get

Xuxor= Y mE—pxe=xaut Y, m—px. (3)
v<gvA+p v<gv A+

This formula shows that, for any ¢ € H with supp(¢) C U, (\; — QY) and any & € .F with
supp(x) C U?Zl(,uj — QY), the support of x * ¢ is contained in U; j(A; + p; — QY). More
precisely, for any v € U;j(A; + pj — QY) there exists a finite number of A € supp(p) and
p € supp(x) such that v <g, A+ pu. Hence, x * ¢ is well defined. O

5.3 The Satake isomorphism
5.3.1 The morphism &,

As 7 is a free R[[Y]]-module of rank one, we have Endg(y)(#) = R[[Y]]. So the right
action of H on the R[[Y]]—module .# gives an algebra homomorphism S, : H — R][[Y]] such
that x * ¢ = Si(¢).x for any ¢ € H and any x € Z.

As €”.xu = Xu+v, equation (3) gives

Si(en) = Z ny(v)e’ = et + Z ny(v)e”

IJSQ\/)\ l/<Q\/)\

We shall modify S, by some character to get the Satake isomorphism.

5.3.2 The module §

We define a map 0 : Q¥ — R, .} ajaf — [[;c; (¢ig))™, where g;,q; € Q C N are as in
the beginning of Section [l We extend this homomorphism and its square root to Y (as R is
uniquely divisible). So, we get homomorphisms 0, 812y - R*% and = dov, 812 =120y -
Z — R

We made a choice for §. But we shall see in theorem [B.4] that the expected properties
depend only on 5‘Qv.

In the classical case, where G is a split semi-simple group and .# its Bruhat-Tits building,

we have ¢; = q; = q for any i € I. Hence, if we set p = Y, ; a;o;

where p is the half sum of positive roots.
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5.3.3 The Satake isomorphism

From now on, we suppose that the algebra R contains the image of §'/2 in R% . We define

Sy =Y (e’ =62+ Y 6V (wna(u)e”

,U«SQV)\ }L<Q\/)\

and extend it to formal combinations of the ¢y with almost finite support.

We get thus an algebra homomorphism S : H — R][[Y]] called the Satake isomorphism, as
it is one to one:

For ¢ = Y, axcy € H, we have S(p) = 3, ax(6Y2(\)e* + ZLKQM 52 (u)na(p)er).
If ¢ # 0 and \g is a maximum element in supp(y), then A is also a maximum element in
supp(S(p)) and S(p) # 0.

Remarks. a) So we already know that # is commutative.

b) In the classical case where G is a split semi-simple group, S(c)) is defined as an integral
over a maximal unipotent subgroup, we choose here U~. The Haar measure du on U~ is
chosen to give volume 1 to K N U~, and, for an element ¢ in the torus Z, the formula for
changing variables is given by d(tut™!) = 6(¢t)"'du. So the classical formula for the Satake
isomorphism given e.g. in [Ca79, (19) p 146] when v(t) = p, is:

Slea)(t) = 5(t)1/? Jo- 5 (ut)du = §(t)1/? Jy— ¢ (0,ut.0)du
= 5(t)1/2 fU, cf(ufl.O,t.O)du = 5(t)1/2 ZyEU_.O c‘/\y(y,u)
= (W2 e xoW)-c (v, 1) = 6(6)2(x0 * cx) (1)

This is the same formula as ours.

5.3.4 W"'—invariance

There is an action of W* on Y, hence on R[Y] by setting w.e* = ¢%* for w € W? and A € Y.
This action does not extend to R[[Y]], but we define R[[Y]]V" = {f = S axe* € R[[Y]] | ay =
Ay, YA € Y,Vw € W'}, This is a subalgebra of R[[Y]] and actually the image of the Satake
isomorphism (see Theorem [5.4]).

Remark. Let CY = {mr € V* | o) (7) > 0,Vi € I} and T" = Uyew» wC" be the fundamental
dual chamber and the dual Tits cone in V*. By definition, for f € R[[Y]] and 7 € CV,
m(supp(f)) is bounded above. Hence, for f € R[[Y]]"", m(supp(f)) is also bounded above
for any m € TV. We know that the dual cone of T is the closed convex hull T of the set
AiimU{O}, where Afm C QY is the set of positive imaginary roots in the dual system of roots
AV, [Ka90, 5.8]. So, the only directions along which points in supp(f) (for f € R[[Y]]"")
may go to infinity are the directions in —I.

Theorem 5.4. The Hecke algebra Hpr is isomorphic via S to the commutative algebra
R[[Y)IV" of Weyl invariant elements in R[[Y]].

Proof. As S(cy\) = zuSQvA 6Y2(u)ny(u)e” we only have to prove that, for w € WY,

SY2()na(p) = 6Y2(wp)ny(wp) or ny(wp) = ny(u)6Y?(u — wp). It is sufficient to prove
this for w = r; a fundamental reflection, hence to prove that ny(riu) = n ()02 (1 — rip) =
nx ()0 %(a;(p)ay). By the given definition of §, the wanted formula is:
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maran) = (o) ()" (@)

The proof of this formula is postponed to the following subsections, starting with One can
already notice that a;(u) is an integer. If it is odd, since any t € Z with v(t) = p exchanges
the walls M («;,0) and M (o, a; (), hence g; = ¢g.. So, in any case (M)lai(“)‘ is an integer.

Once the formula (@) is proved we know that S(H) C R[[Y)|"". For f = Y aue! €
R[[Y]I"W" with supp(f) C Ui_; (A\j — QY), we shall build a sequence ¢, in H such that
supp(f —S(pn)) C Uiy (\j — QY,,) and supp(pni1 —n) CY TN (U (A — QY,,)), where
QY, = {>icrmiy € QY | > n; > n}. Then, the limit ¢ of this sequence exists in 4 and
S(p) = f. So, S is onto.

We build the sequence by induction. We set g = 0. If ¢q,- - ,p, are given as above,
we set {11, st = supp(f — Spn)) \ Ujmy (A — QY1) For any w € W¥, wpy €
supp(f — S(pn)) C Uj_; (Nj — QY,,), s0 wpy, cannot be strictly greater than g for <qv; this
proves that u, € YT+, So we define pn11 = ©n — S5y @ (f — S(n))d(ur) "V 2c,,. As
S(cy) = 62(N)et + Z“<Qv)\ 6Y2(p)ny(p)et, this @, is suitable. O

Remark. Suppose G is a split Kac-Moody group as in Section Bl And consider the complex
Kac-Moody algebra g¥ associated with GV, the Langlands dual of G. Let h¥Y = C®z Y
be the Cartan subalgebra of g¥. Let Rep(g') be the category of g¥—modules V such that
V is hY—diagonalizable, the weight spaces V) are finite dimensional and the set 22(V) of
weights of V' satisfies 22(V) C U7_; (\; — QY), for some );. One can check that Rep(g")
is stable by tensoring, hence, we can consider its Grothendieck ring K(g¥). Now, the map
[V]+— 3", (dim Vy)e* is an isomorphism from K (g¥) onto C[[Y]]"". Therefore, by composing
it with S, we get an isomorphism between H¢ and K(g).

5.5 Extended tree associated to (A, «;)

We consider the vectorial panel —F"({i}) in —C_}) and its support the vectorial wall Ker(o;).
Their respective directions are a panel oo in a wall Mo, in the twin buildings .#*> at infinite
of .# [Rolll 3.3, 3.4, 3.7).

The germs of the sector panels in .# of direction § are the points of an (essential) affine
building .#(§~), which is of rank 1 i.e. a tree [Rolll 4.6].

The union .#(My) of the apartments in .# containing a wall of direction M, is an
inessential affine building whose essential quotient is #(F) [Rolll, 4.9]. More precisely
7 (M) may be identified with the product of the tree .#(F) and an affine space quotient
of A.

The canonical apartment of .# (M) is A endowed with a smaller set of walls: uniquely
the walls of direction Ker(a;). As we chose .# semi-discrete (L2]), this is a locally finite set
of hyperplanes; hence .# (M) is discrete and .#(F~) a discrete tree (not an R—tree). By
[Rolll, 2.9] the valences of these walls are the same in & (M) and in ., i.e. 14 ¢; and 1+¢};
hence ¥ (F) is a semi-homogeneous tree of valences 1+ ¢; and 1 + ¢/. By definition, 0 € A
is in a wall of valence 1 + ¢;.

We asked that the stabilizer N of A in G is positive and type preserving (L5 i.e.
acts on V = TA) via WY, So, the stabilizer in W? of M is {1,r;} and My determines
in V a supplementary vectorial subspace of dimension one : MOLO = Ker(1 + r;). The
affine space A decomposes as the product of the affine space £ = A/ML with associated
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vector space Ker(a;) and an affine line (= A/Ker(«;)). This decomposition is canonical i.e.
invariant by the stabilizer N(My) of M in N. As a consequence we get the decomposition
I (My) = E X . (Foo) which is canonical i.e. invariant by the stabilizer G(My) of My in
G. Moreover G(My,) acts on E by translations only.

Remark. Suppose & is an almost split Kac-Moody group over a local field K and .# its
associated hovel as in [Rol3|. Then the stabilizer G(F~) of F in G is a parabolic subgroup,
endowed with a Levi decomposition G(§Fo) = G(Mso) X U(Foo) (With U(Fo) C U™) and
I (Moo) (resp. #(Fo)) is the extended (resp. essential) Bruhat-Tits building associated to
the reductive group of rank one G(My), embedded in .# [Rol3, 6.12.2]. Any orbit of U(F)
in . meets .# (M) in one and only one point.

The tree .# (Foo) is a piece of the polyhedral “compactification” of .# (a true compactifica-
tion when & is reductive). With the notation of [Rol3|, (M) (resp. -#(Fo)) is the fagade

S (6, K, K)Soo (resp. Z(6,K, Ke)goo).

5.6 Parabolic retraction

Let x be a point in .#. There is a unique sector-panel x + §o of vertex x and direction Foo
[Rolll 4.7.1]. The germ of this sector-panel is a point in #(§«), the projection prg_(z) of =
onto & (Foo), cf- [Chl0], [Ch1l] or [Rol3l 4.3.5] in the Kac-Moody case.

Let A, be an apartment in .# containing = and o, hence = + Foo and germeso(z + Foo)-
But this germ is in an apartment B, of .# (M) (axiom (MA3) applied to germeo(z+§~) and
a sector of direction C%) and there exists an isomorphism v, of A, onto B, fixing this germ
(axiom (MAZ2)). One writes p(z) = ¢(x) € F(Ms). We have thus defined the retraction
P = PgoMs Of F onto I (M) with center §oo. We shall now verify that p(z) does not
depend on the choices made.

By definition, p(x) is in the hyperplane H, of B, containing germe(z + §~) and of
direction M, this H, does not depend on the choice of B,. Moreover for two choices
VYp 1 Ay — By and ¢, : AL — By, ¥, o1 is the identity on germeo(x + Foo) hence on
H,. Tt is now clear that ¥, (z) = ¥/ (z). Actually p(x) may also be defined in the following
simple way: there exist y,z € (x 4+ Foo) N By such that y is the middle of [z, z] in A, then
p(zx) is the point of H, C B, such that y is the middle of [p(z), 2] in Bj.

Remark. It is possible to prove that the image by p of a preordered segment is a polygonal
line and, in some generalized sense, a Hecke path.

5.7 Factorization of p_

The panel Foo is in the closure of the chamber €_,, of .# 7% associated to —C}). So this
chamber or the associated sector-germ &_o, determines an end of the tree .#(Foo) |[Rolll
4.6] i.e. a sector-germ &’ in & (My): &' is one of the two sector-germs in A (considered as
an apartment of (M) with its small set of walls), each element in &’ contains an half
apartment of equation «;(y) < k with k € Z. We write p’_ the retraction of .# (M) onto A
with center &'.

Lemma. The retraction p_ factorizes through p : p—_oo = p'_ o © p-

Proof. For x € ., one chooses an apartment A, containing x and €_.,, hence the sector
r + €_, its sector-germ &_,, and its panel x + Fo. One chooses also an apartment
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B, of S (M) containing germeo(z + Foo) and &_. Hence, A, and B, contain both
germoo (T + §o0) and &_o; by axiom (MA4) there exists an isomorphism v, of A, onto
B, fixing these two germs. By the definition of the parabolic retraction, in 5.6 p(x) = 1. (z).

Now the apartments A, and B, of % (M) contain both &_,, hence &'. So there is
an isomorphism 6 : B, — A fixing &', hence 6_. As p(z) € B, one has p/ o p(x) =
O(p(x)) = 0o, (x) and this is p_oo(z) as o), : Ay — A is an isomorphism fixing &_,. O

5.8 Counting

We want to prove equation @): ny(rip) = na(u) (/a4 %) for X € Y** and p €Y, where
n(p) is the number of points y € % such that p_o(y) = —p and d”(y,0) = A, f. For
z € I (My) one writes py(z) € Z>oU{oo} for the number of points y € .#, such that p(y) = 2
and d’(y,0) = A. By lemma 5.7 ny(u) is the sum of py(z) for z € F(My) N # such that
pLoo(Z) = —H-.

Let My =0+ My = Ker(a;) be the wall in A of direction My, containing 0. Its fixator
G(Mp) (C G(My)) acts transitively on the apartments of . or .# (M) containing it (by
axiom (MA4), as My is the enclosure of two sector panel germs). Moreover G(My,) fixes §oo,
hence p is G(My )—equivariant. As a consequence, the weight function p) is constant on the
orbits of G(Mp) in & (M) N F. Hence ny(n) = 3 g pa(Q)nS(—p), where the sum runs over
the orbits Q of G(Mp) in .# (M) N .# and n®(v) is the number of points in the orbit € such
that p/_(2) =v.

To prove formula (), it is sufficient to prove for any orbit 2 as above and any v € Y that:

nﬂ(nu) = TLQ(I/) <\/q7qg) i)

We saw, in .5 that G(My) leaves the decomposition . (My) = ¥ (Foo) X E invariant
and acts on E by translations. But G(Mp) fixes My > 0, so it acts trivially on E. As G(M))
is transitive on the apartments containing My, an orbit Q is a set S, x {e} where S, is the
sphere of radius r € Z>( and center 0 in the tree .#(§~). The apartment A (with its small set
of walls) is the product (R,Z) x E, where «; is the projection of A onto the one dimensional
apartment R with vertex set Z.

So, the above formula, hence Formula (@) and Theorem [.4] are consequences of the
following proposition. The fact that ¢; = ¢ when m = a;(v) is odd, was explained in the

proof of [5.41

5.9 The tree case

Let T be a (discrete) semi-homogeneous tree. Let A ~ R be an apartment in T whose vertices
are identified with Z. The valence of the vertex s € Z is 1 4+ ¢ (resp. 1+ ¢') if s is even (resp.
odd). Let —oo be the end of A corresponding to integers converging towards —oo. Let p’ be
the retraction of T onto A with center —oo. For m € Z C A and r € Z>( we write n,(m) the
number of vertices in the sphere S, of center 0 and radius r in T such that p/'(z) = m.

If m is odd we ask that ¢ = ¢'.

Proposition. One has n,.(m) = n,(—m)(/qq")™.

Remark. This formula is equivalent to the W"(T)—invariance of the image of the Satake
isomorphism for the Bruhat-Tits tree T. As this invariance is known, the following proof is
not necessary; we give it for the convenience of the reader.
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For a Bruhat-Tits tree .# = T, there are two choices for .# (and Y'): the set of vertices
at even distance from 0 or the full set of vertices. In this last case, we have to allow m to be
odd and we see below that the hypothesis ¢ = ¢’ is necessary to get the formula. So, even for
classical Bruhat-Tits buildings, to get the good image for the Satake isomorphism, .#, cannot
be any G'—stable set of special vertices (we chose .% to be a G—orbit).

Proof. For z € S,, let s, € Z be the vertex of A such that [0,s,] = [0,2] N A. Then
J(2) = 5.+ (r — |s.]) € 2.

We can calculate the number n,(m) of vertices z € S, such that p/'(z) = m:

First case: s, >0 <= p/(z) =r. Son.(r) =qq¢'qq --- (r factors).

Second case: —r < s, <0 <= p/(z) <r and then p/'(z) =r+2s, i.e. s, = (p/(2) — 1) /2.
The number n,(m) is then:

1 if m=s,=—r
(g—1)¢qq -+ (r+s,=(r+m)/2 factors) if s, €] —r0[iseven
(¢ —Dqd'q--+ (r+s,=(r+m)/2 factors) if s, €]—r0[isodd

It is now easy to compare n,(m) and n,(—m). We get the wanted formula, using that
g = ¢ when m is odd. O
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