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Abstract: Given a random couple (X, Y ) with unknown distribution P ,
the problem of statistical learning consists in the estimation of the Bayes
g∗ = argminG EP l(g(X), Y ), where G is a class of candidate functions and l

is a loss function. In this paper we adress this problem when we have at our
disposal a corrupted sample Dn = {(Z1, Y1), . . . , (Zn, Yn)} of i.i.d. indirect
observations. It means that the inputs Zi, i = 1, . . . n are distributed from
the density Af , where A is a known compact linear operator and f is the
density of the direct input X.

1. Introduction

In this paper we consider the problem of learning from an indirect set of obser-
vations. The model can be described through 4 components:

• A generator G of random variables X ∈ X ⊆ R
d with unknown density f

with respect to ν, a σ-finite measure defined on X ,
• A supervisor S who associates to X an output Y ∈ Y, according to an
unknown conditional probability,

• A known linear compact operator A: L2(ν,X ) → L2(ν, X̃ ) which corrupts
X given Z where Z has density Af with respect to ν,

• A learning Machine LM which given n i.i.d. observations (Zi, Yi), i =
1 . . . n, returns an estimator ŷ associated to any given x from the generator.

Figure 1. This representation has its origin in Vapnik [2000]. Here the pres-
ence of the nuisance operator A makes the problem an inverse problem.
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The goal is to design a decision rule returning, for each new generator’s
value x, a value ŷ as close as possible to the supervisor’s response y. Note that
depending on the nature of the supervisor, this problem contains models of
classification, density estimation, and regression. For example if operator A is a
convolution product, we are faced to density deconvolution, classification with
errors in variables or regression with errors in variables.

For this purpose, we introduce a loss function l : R × Y → R+ and a class
G of measurable functions g : X → R. To define the best approximation, the
problem is that of choosing from the given set of functions g ∈ G, the one that
minimizes the risk functionnal:

Rl(g) = El(g(X), Y ), (1.1)

where the expectation is taken over the joint distribution of (X,Y ) denoted by
P . The performances of a given g in measured through its non-negative excess
risk, given by:

Rl(g)−Rl(g
∗), (1.2)

where g∗ is the minimizer over G of the risk (1.1). It is important to note that we
do not adress in this paper the problem of model selection of G which consists
in studying the difference Rl(g

∗)− infg Rl(g), where the infimum is taken over
all possible measurable functions g. Here the target g∗ corresponds to the oracle
in the family G. The purpose of this work is to use ERM strategies based on a
corrupted sample to minimize the excess risk (1.2).

In the direct case where we observe i.i.d. (X1, Y1), . . . , (Xn, Yn) with law P ,
a classical way is to consider the Empirical Risk Minimizer (ERM) estimator
defined as:

ĝn = argmin
g∈G

Rn(g), (1.3)

where Rn(g) denotes the empirical risk defined as:

Rn(g) =
1

n

n
∑

i=1

l(g(Xi), Yi) := Pnl(g).

In the sequel the empirical measure of the direct sample (X1, Y1), . . . , (Xn, Yn)
will be denoted as Pn. A large literature (see Vapnik [2000] for such a general-
ity) deals with the statistical performances of (1.3) in terms of the excess risk
(1.2). To be concise, under complexity assumptions over G (such as finite VC di-
mension (Vapnik [1982]), entropy conditions (Van De Geer [2000]), Rademacher
complexity assumptions (Koltchinskii [2006]) and assumptions over the loss l, it
is possible to get both consistency and rates of convergence of ERM estimators
(see also Massart and Nédélec [2006] in classification). The main probabilistic
tool for this problem is the statement of uniform concentration of the empir-
ical measure to the true measure. This can be easily seen using the so-called
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Vapnik’s bound:

Rl(ĝn)−Rl(g
∗) ≤ Rl(ĝn)− Rn(ĝn) +Rn(g

∗)−Rl(g
∗)

≤ 2 sup
g∈G

|(Rn −Rl)(g)| = 2 sup
g∈G

|(Pn − P )l(g)|. (1.4)

It is important to note that (1.4) can be improved using a local approach (see
Massart [2000]) which consists in reducing the supremum to a neighborhood of
g∗. We do not develop these important refinement in this introduction for the
sack of concision whereas it is the main ingredient of the literature cited aboveIt
allows to get fast rates of convergence in pattern recognition.

Here the framework is essentially different since we observe a corrupted sam-
ple (Z1, Y1), . . . , (Zn, Yn) where Zi, i = 1, . . . , n are i.i.d. Af with A a known lin-
ear compact operator. As a result, the empirical measure Pn = 1

n

∑n
i=1 δ(Xi,Yi)

is unobservable and standard ERM (1.3) is not available. Unfortunately, using
the corrupted sample (Z1, Y1), . . . , (Zn, Yn) in standard ERM (1.3) fails since:

1

n

n
∑

i=1

l(g(Zi), Yi) −→ El(g(Z), Y ) 6= Rl(g).

Due to the action of A, and provided that A 6= I, the empirical measure from
the indirect sample, defined as P̃n := 1

n

∑n
i=1 δ(Zi,Yi) differs from Pn and we are

faced to an ill-posed inverse problem. Note that this problem has been recently
considered in Klemela and Mammen [2010] where L2-ERM type estimators are
proposed in the particular gaussian white noise model and in density estimation
(see also Butucea and Taupin [2008] in a semi-parametric model of regression
with errors).

In this paper, we propose to adopt a comparable strategy in statistical learn-
ing. Given a smoothing parameter λ = (λ1, . . . , λd) ∈ R

d
+, we propose to con-

sider the following λ-Empirical Risk Minimization:

argmin
g∈G

Rλ
n(g), (1.5)

where Rλ
n(g) is called the λ−Empirical risk and is defined in a general way as:

Rλ
n(g) =

∫

X

l(g(x), y)P̂λ(dx, dy). (1.6)

Here P̂λ = P̂λ(Z1, Y1, . . . , Zn, Yn) is an estimator of the joint distribution P us-
ing the set of indirect inputs (Z1, . . . , Zn). It will be related with standard reg-
ularization methods coming from the inverse problem literature (see Engl et al.
[1996]) and as a consequence depends on a smoothing parameter λ ∈ R

d
+. An

explicit construction of P̂λ and the empirical risk (1.6) is detailled in Section 2
in pattern recognition with applications in Section 3.

To study the performances of the minimizer of the empirical risk (1.6), it is
possible to use empirical processes theory in the spirit of Van De Geer [2000],
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van der Vaart and Weelner [1996] or more recently Koltchinskii [2006]. Follow-
ing the pioneering’s work of Vapnik, we can write, in the presence of indirect
observations, for ĝλn a solution of (1.5):

Rl(ĝ
λ
n)−Rl(g

∗) ≤ Rl(ĝ
λ
n)−Rλ

n(ĝ
λ
n) +Rλ

n(g
∗)−Rl(g

∗)

≤ Rλ
l (ĝ

λ
n)−Rλ

n(ĝ
λ
n) +Rλ

n(g
∗)−Rλ

l (g
∗) + (Rl −Rλ

l )(ĝ
λ
n − g∗)

≤ sup
g∈G

|(Rλ
n −Rλ

l )(g
∗ − g)|+ sup

g∈G
|(Rλ

l −Rl(g − g∗)|, (1.7)

where in the sequel, under integrability conditions and using Fubini:

Rλ
l (g) = ERλ

n(g) =

∫

l(g(x), y)EP̂λ(dx, dy). (1.8)

Bounds (1.7) are called Inverse Vapnik’s bounds. There consist in two terms:

• A variance term supg∈G |(Rλ
n − Rλ

l )(g
∗ − g)| related to the estimation of

g∗ using an empirical couterpart. This term can be controled thanks to
uniform concentration inequalities such as Talagrand’s type inequality,
applied to a class of functions depending on a parameter.

• A bias term supg∈G |(Rλ
l − Rl(g − g∗)|. It comes from the estimation of

P into the expression of Rl(g) with estimator P̂λ. This term is specific
to our method. However, it seems to be related to the usual bias term in
nonparametric density estimation since we can see coarselly that:

Rλ
l (g)−Rl(g) =

∫

l(g(x), y)[EP̂λ − Pλ](dx, dy).

The choice of λ is crucial in the decomposition (1.7). We will show below that
the variance term exploses when λ tends to zero whereas the bias term vanishes.
Parameter λ has to be chosen as a trade-off between these two terms, and as
a consequence will depend on unknown parameters. The problem of adaptation
is not adressed in this paper but is an interesting future direction.

In this work we restrict ourselve to classification where Y = {0, 1, . . . ,M}.
In other words, we consider the problem of pattern recognition with indirect
observations, as illustrated in Figure 2 (see Devroye et al. [1996] for a survey in
the direct case).
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Figure 2. Representation of a binary classification sample ”banana” (left) and
a noisy version (right).

The paper is organized as follows. In Section 2, we propose to give an ex-
plicit construction of the empirical risk (1.6) in classification, thanks to the set
of indirect observations. We state a general upper bound for the solution of
the λ-Empirical Risk Minimization (1.5) under minimal assumptions over the
loss function l and the complexity of G. It gives a generalization of the results
of Koltchinskii [2006] when dealing with indirect observations. Section 3 gives
applications of the result of Section 2 in two particular setting: (1) the errors-
in-variables case where operator A is a convolution product, generalizing the
results of Loustau and Marteau [2011]; (2) the general case using projections
into the SVD of operator A. Rates of convergence are proposed which general-
ize the existing fast rates of convergence in classification stated in Koltchinskii
[2006] and coincide with recent lower bounds proposed in discriminant analysis
by Loustau and Marteau [2011]. Section 4 is devoted to a discussion related to
the complexity assumption when we deal with indirect observations whereas
Section 5 concludes the paper. Section 6 is dedicated to the proofs of the main
results.

2. General Upper Bound

In this section, we detail the construction of the empirical risk (1.6) in classi-
fication and gives minimal assumptions to control the excess risk (1.2) of the
procedure. The construction of the empirical risk is based on the following de-
composition of the true risk:

Rl(g) =
∑

y∈Y

p(y)

∫

X

l(g(x), y)fy(x)ν(dx), (2.1)

where fy(·) is the conditional density of X |Y = y and p(y) = P(Y = y), for any
y ∈ Y = {0, . . . ,M}. With such a decomposition, we propose to estimate each
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conditional density fy(·) using the set of indirect observations Zi i = 1, . . . , n,
thanks to a nonparametric estimator with smoothing parameter λ ∈ R

d
+. To

state a general upper bound, we consider a family of estimators such that:

∀y ∈ Y, f̂y(x) =
1

ny

ny
∑

i=1

kλ(Z
y
i , x), (2.2)

where ny = card{i : Yi = y}, kλ : X̃ × X → R and the set of inputs
(Zy

i )
ny

i=1 = {Zi, i = 1, . . . , n : Yi = y}.
Here we consider a constant bandwidth λ for any y ∈ Y in f̂y. It illustrates
rather well the difference of our approach with plug-in type estimators (see
Audibert and Tsybakov [2007] for instance). If we want to estimate fy, for each
y ∈ Y, the bandwidth λ in (2.2) has to depend on ny and the regularity of fy.
However here the aim is to estimate the true risk Rl(g) and to get satisfying
upper bounds, we will see that λ does not necessary depend on the value y ∈ Y.
It is also important to note that assumption (2.2) provides a variety of nonpara-
metric estimators of fy. For instance if Af = f ∗ η is a convolution operator,
we can construct a deconvolution kernel provided that the noise has a nonnull
Fourier transform. This is rather classical in deconvolution problems (see Fan
[1991] or Meister [2009]). Another classical example of (2.2) is to consider pro-
jection estimators of the conditionnal densities using the SVD of operator A or
any other regularizations methods (see Engl et al. [1996]). Section 3 gives some
examples.
Finally given f̂y satisfying (2.2), we plug these estimators in the true risk (2.1)
to get an empirical risk defined as:

Rλ
n(g) =

∑

y∈Y

∫

X

l(g(x), y)f̂y(x)ν(dx)p̂(y),

where p̂(y) =
ny

n is an estimator of the quantity p(y) = P(Y = y). Thanks to
(2.2), the empirical risk in(1.6) can be written:

Rλ
n(g) =

1

n

n
∑

i=1

lλ(g, (Zi, Yi)), (2.3)

where lλ(g, (z, y)) is a modified version of l(g(x), y) given by:

lλ(g, (z, y)) =

∫

X

l(g(x), y)kλ(z, x)ν(dx).

In this section we propose a general upper bound for the expected excess risk
of the estimator:

ĝλn := argmin
1

n

n
∑

i=1

lλ(g, (Zi, Yi)). (2.4)

Note that in case no such minimum exists, we can consider a δ-approximate
minimizer as in Bartlett and Mendelson [2006] without significant change in
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the results.
The main idea in the proof is to use iterate a Talagrand’s type inequality due
to Bousquet [2002]. It allows to control the increments of the empirical process:

νλn(g) =
1√
n

n
∑

i=1

lλ(g, (Zi, Yi))− Elλ(g, (Z, Y ).

Here it is important to note that Talagrand’s inequality has to be applied to
the class of functions {(z, y) 7→ lλ(g, (z, y)), g ∈ G}. This class depends on a
regularization parameter λ. This parameter will be calibrated as a function of n
and that’s why Talagrand’s inequality has to be used in a careful way. For this
purpose, we introduce in Definition 1 particular classes {lλ(g), g ∈ G} lipschitz
with constant c(λ) and bounded by a constant K(λ).

2.1. The result

In the sequel, with a slight abuse of notations, we write lλ(g) for (z, y) 7→
lλ(g, (z, y)).

Definition 1. We say that the class {lλ(g), g ∈ G} is a LB-class (lipschitz
bounded class) with respect to µ with parameters (c(λ),K(λ)) if these two prop-
erties hold:

(Lµ) {lλ(g), g ∈ G} is lipschitz w.r.t. µ with constant c(λ):

∀g, g′ ∈ G, ‖lλ(g)− lλ(g
′)‖L2(P̃ ) ≤ c(λ)‖l(g)− l(g′)‖L2(µ),

for µ = ν ⊗ PY or µ = P .
(B) {lλ(g), g ∈ G} is uniformly bounded with constant K(λ):

sup
g∈G

sup
(z,y)

|lλ(g, (z, y))| ≤ K(λ).

A LB-class of loss function is lipschitz and bounded with constants depend-
ing on λ. This properties are necessary to control the variance in (1.7) using
Talagrand’s type inequality to the class {lλ(g), g ∈ G}.
The lipschitz property (Lµ) with µ = P is stronger than (Lµ) with µ = ν⊗PY

since we have coarselly for any measurable f : X × Y → R, if the fy’s are
bounded:

EP f
2 ≤ C

∑

y∈Y

py

∫

f(x, y)2ν(dx) = C‖f‖2L2(νY ),

for some positive constant C, where in the sequel νY = ν ⊗ PY .
Note that to state a general upper bound, this lipschitz property has to be
combined with Definition 2 below to have the following statement:

‖f‖L2(P̃ ) ≤ c(λ)‖f‖L2(µ) ≤ c(λ) (EP f)
1
2κ , (2.5)
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applied to the class of functions {f = l(g)− l(g∗), g ∈ G}. Hence the dependence
on µ in (Lµ) is related to Definition 2 below and the Bernstein property of the
loss class F = {l(g)− l(g∗), g ∈ G}.
Moreover the lipschitz property is a key ingredient to control the complexity of
the class of functions {lλ(g), g ∈ G}. In the sequel, we use the following geometric
complexity parameter:

ω̃n(G, δ, µ) := E sup
g,g′∈G:‖l(g)−l(g′)‖L2(µ)≤δ

∣

∣

∣(P̃ − P̃n)(lλ(g)− lλ(g
′))
∣

∣

∣ ,

where µ = νY or µ = P following the context. The control of such a quantity is
proposed in Section 4.
Finally (B) is necessary to apply Talagrand’s inequality to a class of functions
depending on a smoothing parameter λ.

Definition 2. For κ ≥ 1, we say that F is a Bernstein class with respect to µ
with parameter κ if there exists κ0 ≥ 0 such that for every f ∈ F :

‖f‖2L2(µ)
≤ κ0[EP f ]

1
κ .

This notion of Bernstein class first appears in Bartlett and Mendelson [2006]
for µ = P . This assumption arises naturally in statistical learning when we want
to apply a functional Bernstein inequality such as Talagrand’s type inequality.
Here the dependence in measure µ ∈ {νY , P} gives rise to two different assump-
tions. Since ‖ · ‖L2(P ) ≤ ‖ ·C‖L2(νY ), a Bernstein class with respect to νY is also
Bernstein with respect to P . The most favorable case where µ = νY arises in
binary classification (see for instance Tsybakov [2004b] or Massart and Nédélec
[2006]). Section 3 states rates of convergence in these two different settings.

To control the excess risk of the procedure, we also need to control the bias
term defined in (1.7) as follows.

Definition 3. We said that the class {lλ(g), g ∈ G} has approximation function
a(λ) and residual constant 0 < r < 1 if the following holds:

∀g, g′ ∈ G, (Rl −Rλ
l )(g − g′) ≤ a(λ) + r(Rl(g)−Rl(g

′))2.

This definition is specific to our framework where a bias appears in the In-
verse Vapnik’s bound (1.7). It is straightforward that using (1.7), we get with
Definition 3 a control of the excess risk as follows:

Rl(ĝ
λ
n)−Rl(g

∗) ≤ 1

1− r

(

sup
g∈G(1)

|(P̃n − P̃ )(lλ(g)− lλ(g
∗)|+ a(λ)

)

,

provided that ĝλn ∈ G(1) where in the sequel G(δ) = {g ∈ G : Rl(g)−Rl(g
∗) ≤ δ}.

Under regularity conditions over the conditional densities fy, gathering with
Definition 2 below, Section 3 proposes to give explicit function a(λ) and residual
constant r < 1 to get rates of convergence.

We are now on time to state the main result of this section.
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Theorem 1. Consider a LB-class {lλ(g), g ∈ G} with respect to µ with param-
eters (c(λ),K(λ)) and approximation function a(λ) such that:

a(λ) .

(

c(λ)√
n

)
2κ

2κ+ρ−1

∨
(

[c(λ)K(λ)]
2κ

4κ+ρ−1

n
3κ

4κ+ρ−1

)

. (2.6)

Suppose {l(g)− l(g∗), g ∈ G} is Bernstein with respect to µ with parameter κ > 1
where g∗ ∈ argminG Rl(g) is unique. Suppose there exists 0 < ρ < 1 such that
for every δ > 0:

ω̃n(G, δ, µ) := E sup
g,g′∈G:‖l(g)−l(g′)‖L2(µ)≤δ

|P̃ − P̃n|(lλ(g)− lλ(g
′)) .

c(λ)√
n
δ1−ρ.(2.7)

Then estimator ĝ = ĝλn defined in (2.4) is such that:

ERl(ĝ)−Rl(g
∗) .

(

c(λ)√
n

)
2κ

2κ+ρ−1

∨
(

[c(λ)K(λ)]
2κ

4κ+ρ−1

n
3κ

4κ+ρ−1

)

.

The proof of this result is presented in Section 5. Some remarks are in order.
Assumption over {lλ(g), g ∈ G} introduced in Definition 1 is central. Gathering
with the complexity assumption (2.7), it leads to a control of the variance term
in decomposition (1.7). Then condition (2.6) gives the order of the bias term
and leads to the excess risk bound.

This general upper bound generalizes the result presented in Koltchinskii
[2006] to the indirect framework. Theorem 1 provides fast rates of convergence
of the form: O

(

(c(λ)/
√
n)2κ/2κ+ρ−1

)

provided thatK(λ) is small enough. In the
direct case with standard ERM estimators, lλ(g) = l(g) and c(λ) = K(λ) = 1 in
Definition 1. In this case we obtain the fast rates O(n−κ/2κ+ρ−1) of Koltchinskii
[2006], Tsybakov [2004b]. In the presence of indirect observations, rates are
slower since c(λ) → +∞ as n → +∞. Hence the price to pay for the inverse
problem is quantified by the lipschitz constant c(λ) in Definition 1.

The behavior of constants c(λ) and K(λ) depend on the difficulty of the
inverse problem through the degree of ill-posedness of operator A. Section 3
proposes to deal with the midly ill-posed case where c(λ) and K(λ) grows poly-
nomially when λ tends to zero.

Constant a(λ) depends essentially on the regularity of the conditional den-
sities fy, y ∈ Y. It has to be upper-bounded by the level of variance in (2.6).
Section 3 proposes to give explicit constants to calibrate λ and to get optimal
rates of convergence.

Note that the control of the modulus of continuity in (2.7) is specific to
the indirect framework and also depends on the constant c(λ). A comparable
hypothesis arises in the direct case in Koltchinskii [2006], up to the constant c(λ).
Section 4 is dedicated to the control (2.7). It appears that it will be satisfied
under standard complexity conditions, such as L2(µ)-entropy of the loss class
{l(g), g ∈ G} (see Lemma 1 in Section 4 and the related discussion).

Finally Theorem 1 requires the unicity of the Bayes g∗. There is nice hope
that such a restriction can be avoided using a more sophisticated geometry as
in [Koltchinskii, 2006, Section 4].
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3. Applications

In this section, we propose to apply the general upper bound of Theorem 1 to
give rates of convergence of λ-ERM defined in (2.4). The first result deals with
the errors-in-variables case where operator A is a convolution product. Using
kernel deconvolution estimators, we obtain fast rates of convergence. Then we
consider the general case using a family of projection estimators into the SVD
base of the operator. These results hold when the loss class {l(g)− l(g∗), g ∈ G}
is Bernstein with respect to µ = ν ⊗PY , such as binary classification with hard
loss for instance. For completeness, we also provide the same kind of results
when {l(g)− l(g∗), g ∈ G} is Bernstein with respect to P , where in this case we
need to restrict the study to a compact set K ⊆ X .

3.1. Errors-in-variables case

We suppose that we observe a training set (Zi, Yi), i = 1 . . . , n where:

Zi = Xi + ǫi, i = 1, . . . , n,

where the ǫi’s are i.i.d. R
d-random variables with density η with respect to ν, the

Lebesgue measure on R
d. In this case operator A is a convolution product and

the difficulty of this inverse problem can be represented thanks to the asymp-
totic behavior of the Fourier transform of the density η. Assumption (A1) below
deals with the asymptotic behavior of the characteristic function of the noise
distribution. These kind of restrictions are standard in deconvolution problems
(see Butucea [2007], Fan [1991], Meister [2009]).

(A1): There exist (β1, . . . , βd)
′ ∈ R

d
+ such that for all i ∈ {1, . . . , d},

|F [ηi](t)| ∼ |t|−βi , as t→ +∞,

where F [ηi] denotes the Fourier transform of the ηi. Moreover, we assume that
F [ηi](t) 6= 0 for all t ∈ R and i ∈ {1, . . . , d}.

Hence we restrict ourselves to moderately ill-posed inverse problems by con-
sidering polynomial decay of the Fourier transform. Note that straightforward
modifications in the proofs allow to consider severely ill-posed inverse problems.
In this framework, we propose to construct a kernel deconvolution estimator of
the densities fy, y ∈ Y. To this end, let us introduce K =

∏d
i=1 Kj : Rd → R a

d-dimensional function defined as the product of d unidimensional function Kj .
Then if we denote by λ = (λ1, . . . , λd) a set of (positive) bandwidths and by
F [·] the Fourier transform, we define Kη as

Kη : R
d → R

t 7→ Kη(t) = F−1

[ F [K](·)
F [η](·/λ)

]

(t). (3.1)
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S. Loustau/Statistical learning with indirect observations 11

To apply Theorem 1, we also need the following assumption on the regularity
of the conditional densities:

(R1): For any y ∈ Y, fy ∈ H(γ, L) where:

H(γ, L) = {f ∈ Σ(γ, L) : f are probability densities w.r.t. Lebesgue,

∀x ∈ R
d f(x) ≤M0},

and Σ(γ, L) is the Hölder class of ⌊γ⌋-fold continuously differentiable functions
on R

d satisfying the Hölder condition.

This Hölder regularity is standard to control the bias term of kernel estimators in
density estimation or density deconvolution (see for instance Tsybakov [2004a]).

In this context, for all g ∈ G, we consider the empirical minimization (1.5)
with empirical risk given by:

Rλ
n(g) =

1

n

n
∑

i=1

lλ(g, (Zi, Yi)), (3.2)

where lλ(g, (z, y)) is given by:

lλ(g, (z, y)) =

∫

Rd

l(g(x), y)
1

λ
Kη

(

z − x

λ

)

dx.

Theorem 2 below proposes to give the rates of convergence of λ-ERM under
assumptions (A1)-(R1).

Theorem 2. Suppose {l(g)− l(g∗), g ∈ G} is a Bernstein class with respect to
νY with parameter κ > 1 and l(g(·), y) ∈ L2(R

d), for any y ∈ Y. Suppose there
exists 0 < ρ < 1 such that for every 0 < δ < 1:

ω̃n(G, δ, νY ) .
c(λ)√
n
δ1−ρ.

If (A1) and (R1) hold, we have

sup
fy∈H(γ,l)

ERl(ĝ)−Rl(g
∗) . n

− κγ

γ(2κ+ρ−1)+2(κ−1)β̄ ,

where β̄ =
∑d

i=1 βi and for a choice of λ = (λ1, . . . , λd) given by:

∀i ∈ {1, . . . , d}, λi ∼ n
− κ−1

γ(2κ+ρ−1)+2(κ−1)β̄ . (3.3)

The proof of this result in presented in Section 4. Few remarks are in order.

Rates in Theorem 2 generalizes the result of Koltchinskii [2006] (see also
Tsybakov [2004b]) to the errors-in-variables case. Note that if β̄ = 0, we get
the rates of the direct case. Here the price to pay for the inverse problem of
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deconvolution can be quantified as 2(κ−1)β̄
γ , where κ > 1. Hence the perfor-

mances of the method depends on the behavior of the characteristic function
of the noise distribution. Moreover, in pattern recognition, we note that the
influence of the errors in variables has to be related with the parameters κ of
the Bernstein asumption and γ of the regularity of fy. Same phenomenon arises
in Loustau and Marteau [2011].
It is interesting to study the minimax optimality of the result of Theorem 2
using the lower bounds presented in Loustau and Marteau [2011]. To this end,
we consider a random couple (X,Y ) of law P where Y ∈ {0, 1}, a loss function
l(g(x), y) = |Y − 1I(X ∈ G)|, and a class of candidates {g(x) = 1IG(x), G ∈ G}.
In this case, the Bayes risk is defined as:

R(G) = E|Y − 1I(X ∈ G)|.

Moreover it is easy to see that for y ∈ {0, 1} and g(x) = 1IG(x), we have:

|l(g(x), y)− l(g′(x), y)| = ||y − 1IG(x)| − |y − 1IG′(x)|| = | 1IG(x) − 1IG′(x)|.

Gathering with the margin assumption, [Mammen and Tsybakov, 1999, Lemma
2] gives:

‖l(g)− l(g′)‖2L2(νY ) = ‖ 1IG − 1IG′‖2L2(Rd) = d∆(G,G
′) ≤ df,g(G,G

′)
α

α+1 .

As a result the loss class {l(g) − l(g′), g, g′ ∈ G} is Bernstein with respect to
µ = νY with parameter κ = α+1

α since 1
2df,g(G,G

′) = E(l(g)− l(g′)).
To apply Theorem 2, we are now on time to check (Lµ) and (B) of Definition
1. Note that Lemma 3 in Loustau and Marteau [2011] states:

‖lλ(g)− lλ(g
′)‖2

L2(P̃ )
≤ Πd

i=1λ
−βi

i d∆(G,G
′),

where {lλ(G), G ∈ G} is defined in (3.2) with l(g(x), y) = |Y − 1I(X ∈ G)|.
It follows that {lλ(G), G ∈ G} is a LB-class with respect to νY with constants

c(λ) = Πλ−βi

i and K(λ) = Πλ
−βi−1/2
i .

Last step is to control the complexity parameter ω̃n(G, δ, νY ) as a function of
δ. Using [Audibert and Tsybakov, 2007, Lemma 5.1], if η(x) := P(Y = 1|X =
x) ∈ Σ(γ, L), we have a control of the L2(νY )-entropy with bracketing of the
class { 1IG, G ∈ G} with exponent ρ = d

γα . As a result, we can apply Lemma 1
in Section 4 to get a control of the desired modulus of continuity as follows:

ω̃n(G, δ, νY ) .
c(λ)√
n
δ1−

d
γα .

Hence we are on time to apply Theorem 2 to get:

ERl(ĝ)−Rl(g
∗) . n

−
(α+1)γ

γ(α+2)+d+2β̄ ,

which corresponds to the minimax rates of classification with errors in vari-
ables stated in Loustau and Marteau [2011]. This result ensures the minimax
optimality of the method in the errors-in-variables case.
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3.2. General case with singular values decomposition

In this section we observe a training set (Zi, Yi), i = 1, . . . , n where Zi are i.i.d.
with law Af , where A : L2(X ) → L2(X̃ ) is a known linear compact operator.
For simplicity, we also restrict ourselves to moderately ill-posed inverse problem
considering the singular values decomposition of A as follows. Since A is com-
pact, A∗A is auto-adjoint and compact and we can find an orthonormal base
of eigenfunctions of A∗A, denoted by (φk)k∈N∗ such that A∗Aφk = b2kφk, with
(bk)k∈N∗ the decreasing sequence of singular values. Considering the image base
ψk = Aφk/bk, we have the following SVD (singular values decomposition):

Aφk = bkψk and A∗ψk = bkφk, k ∈ N
∗. (3.4)

In the sequel we make the following assumption:
(A2): There exist β ∈ R+ such that:

bk ∼ k−βas k → +∞.

In this case the rate of decrease of the singular values is polynomial. As an
example, we can consider the convolution operator above and from an easy
calculation, the spectral domain is the Fourier domain and (A2) is comparable
to (A1). However assumption (A2) can deal with any linear inverse problem
and is rather standard in the statistical inverse problem literature (see Cavalier
[2008]).

Considering the SVD (3.4), we propose to replace in the true risk the condi-
tional densities fy by a family of projection estimators given by:

f̂y(x) =

N
∑

k=1

θ̂ykφk(x), (3.5)

where θ̂yk is an unbiased estimator of θyk =
∫

fyφkdν given by:

θ̂yk =
1

ny

ny
∑

i=1

b−1
k φk(Zi). (3.6)

In this case, assumption (2.2) is satisfied with kN (z, x) =
∑N

k=1 b
−1
k φk(z)φk(x).

It gives the following expression of the empirical risk:

RN
n (g) =

1

n

n
∑

i=1

lN (g, Zi, Yi),

where here:

lN (g, z, y) =

N
∑

k=1

b−1
k

∫

X

φk(x)l(g(x), y)ν(dx)φk(z).
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Next theorem propose to give rates of convergence for the ERM estimator ĝNn
defined as:

ĝNn := argmin
g∈G

1

n

n
∑

i=1

lN(g, Zi, Yi).

In this framework we also need the following assumption on the regularity of
the conditional densities:

(R2):For any y ∈ Y, fy ∈ P(γ, L) where:

P(γ, L) = {f ∈ Θ(γ, L) : f are probability densities w.r.t. Lebesgue,

∀x ∈ X , f(x) ≤M0},

and Θ(γ, L) is the ellipsöıd in the SVD base defined as:

Θ(γ, L) = {f(x) =
∑

k≥1

θkφk(x) :
∑

k≥1

θ2kk
2γ ≤ L}.

Theorem 3. Suppose {l(g)− l(g∗), g ∈ G} is Bernstein class with respect to νY
with parameter κ > 1 such that l(g(·), y) ∈ L2(ν), for any y ∈ Y. Suppose there
exists 0 < ρ < 1 such that for every 0 < δ < 1:

ω̃n(G, δ, νY ) .
c(N)√
n
δ1−ρ.

Then if (A2) and (R2) hold, estimators ĝNn satisfies:

sup
fy∈P(γ,l)

ER(ĝNn )−R(g∗) . n− κγ

γ(2κ+ρ−1)+2(κ−1)β ),

where we choose N such that:

N ∼ n
κ−1

γ(2κ+ρ−1)+2(κ−1)β .

Theorem 3 shows that in pattern recognition with indirect observations, we
can deal with any linear compact operator A using the SVD. From this point of
view, this result could be compared with Klemela and Mammen [2010] where
white noise model is considered.
Rates of convergence in Theorem 3 are comparable with Theorem 2. If A is a
convolution operator, the result above shows that ĝNn using projection estimators
in the SVD reaches the rate of Theorem 2 with d = 1 using kernel deconvolu-
tion estimators. In this case the regularity assumption deals with ellipsoids in
the SVD domain instead of Hölder classes. However we can conjecture that this
result is also minimax, although a rigorous lower bound has to be managed.
Finally there is nice hope that this result can be extended to other linear reg-
ularization methods without significant change. Here we present the result for
projections into the SVD domain for the sack of simplicity in the proofs but
Tikhonov and Landweber regularization coud be considered for instance.
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3.3. Restriction to a compact K

In this subsection, we propose an alternative to Theorem 2-3 to deal with a
weaker Bernstein assumption. For the sack of simplicity, we restrict in Theorem
2-3 to Bernstein class {l(g)− l(g∗), g ∈ G} with respect to measure νY according
to Definition 2. In this case, it is sufficient to deal with LB-class with respect
to νY in Definition 1, thanks to (2.5). However Bernstein class with respect to
νY appears only in particular case, such as classification with hard loss in the
context of Mammen and Tsybakov [1999], Tsybakov [2004b] (see also Section
3.1). Here we propose to state Theorem 2-3 when we deal with a Bernstein class
in the spirit of Bartlett and Mendelson [2006], namely such that:

EP f
2 ≤ κ0 (EP f)

1/κ
, ∀f ∈ F = {l(g)− l(g∗), g ∈ G}.

The idea is to restrict the study to a set K ⊆ R
d where f ≥ c0 > 0 over K.

To this end we can consider a set G of classifiers g such that {x ∈ X : f(x) >
0} ⊂ K. Another point of view is to consider a convolution loss defined as:

lλ(g, z, y) =

∫

K

kλ(z, x)l(g(x), y)ν(dx). (3.7)

It means that we consider the minimization of a true risk of the form:

Rl,K(g) =
∑

y∈Y

p(y)

∫

K

l(g(x), y)fy(x)dx.

With (3.7), it is straightforward to get (Lµ) with µ = P since if f ≥ c0 > 0 on
K, one gets:

∑

y∈Y

py

∫

K

(l(g(x), y)− l(g′(x), y))2ν(dx) ≤ 1

c0
‖l(g)− l(g′)‖L2(P ).

Roughly speaking, Assumption (Lµ) in Definition 1 whith µ = P provides a
control of the variance of lλ(g, (Z, Y )) by the variance of l(g(X), Y ). To have a
control of the L2(P̃ )-norm with respect to the L2(P )-norm, we need to restrict
g to a set where f > 0. Otherwise, the variance of lλ(g) according to the law of
P̃ cannot be compared with the variance of l(g) with respect to P . With this
trick, we have the following result.

Corollary 1. Suppose {l(g)− l(g∗), g ∈ G} is a Bernstein class with respect to
P with parameter κ > 1 and l(g(·), y) ∈ L2(ν), for any y ∈ Y. Suppose there
exists 0 < ρ < 1 such that for every 0 < δ < 1:

ω̃n(G, δ, P ) .
c(λ)√
n
δ1−ρ.

1. If (A1) and (R1) hold, ĝλn with (3.7) satisfies:

sup
fy∈H(γ,l)

ERl(ĝ)−Rl(g
∗) . n

− κγ

γ(2κ+ρ−1)+2(κ−1)β̄ ,
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where β̄ =
∑d

i=1 βi and for a choice of λ = (λ1, . . . , λd) given by:

∀i ∈ {1, . . . , d}, λi ∼ n
− κ−1

γ(2κ+ρ−1)+2(κ−1)β̄ . (3.8)

2. If (A2) and (R2) hold, ĝNn with (3.7) satisfies:

sup
fy∈P(γ,l)

ER(ĝNn )−R(g∗) . n− κγ
γ(2κ+ρ−1)+2(κ−1)β ),

where we choose N such that:

N ∼ n
κ−1

γ(2κ+ρ−1)+2(κ−1)β .

This corollary allows to get the same fast rates of convergence of Theorem
2-3 under a weaker Bernstein assumption. The price to pay for the λ-ERM with
restricted loss (3.7) resides in the dependence on K of the estimation procedure.

4. Complexity from indirect observations

In this section we propose to control the indirect modulus of continuity thanks
to standard learning theory arguments. The first result relates the control of
ω̃n(G, δ, µ) to the bracketing entropy of the loss class, which generalizes the
result of the direct case (see van der Vaart and Weelner [1996]) when A = Id.

Lemma 1. Consider a LB-class {lλ(g), g ∈ G} with respect to µ with lipschitz
constant c(λ). Then we have the following assertion:

HB({l(g), g ∈ G}, ǫ, L2(µ)) ≤ cǫ−2ρ ⇒ ω̃n(G, δ, µ) .
c(λ)√
n
δ1−ρ,

where HB({l(g), g ∈ G}, ǫ, L2(µ)) denotes the ǫ-entropy with bracketing of the
set {l(g), g ∈ G} with respect to L2(µ) (see van der Vaart and Weelner [1996]
for a definition).

With such a Lemma, it is possible to control the complexity in the indirect
setup thanks to standard entropy conditions. Note that here no boundedness
assumption is required for the loss l since we deal with a class of lipschitz
and bounded loss g 7→ lλ(g). The proof is presented in Section 6 and follows
van der Vaart and Weelner [1996]. Lemma 1 allows to consider standard hy-
pothesis sets G from the machine learning theory as hypothesis space (we refer
for instance to Koltchinskii [2006] for many examples). Theorem 2 or Theorem
3 give corresponding rates of convergence.

Another interesting direction is to get a control of the indirect modulus of
continuity thanks to Rademacher complexities. This can be done using the sym-
metrization device as follows:

ω̃n(G, δ, µ) ≤ 2E sup
f∈F(δ)

1

n

∣

∣

∣

∣

∣

n
∑

i=1

ǫilλ(g, (Zi, Yi))

∣

∣

∣

∣

∣

,
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where F(δ) = {g, g′ ∈ G : ‖l(g) − l(g′)‖L2(µ) ≤ δ}. In this case, we have for
instance when the loss class {l(g), g ∈ G} ⊂ L2(µ) is a D-dimensional subset
with orthornormal base (ϕk)

D
k=1:

E sup
f∈F(δ)

1

n

∣

∣

∣

∣

∣

n
∑

i=1

ǫilλ(g, (Zi, Yi))

∣

∣

∣

∣

∣

≤ 1

n
E sup

θ∈RD

∣

∣

∣

∣

∣

D
∑

k=1

n
∑

i=1

ǫi

∫

X

kλ(Zi, x)(θk − θ′k)ϕk(x)ν(dx)

∣

∣

∣

∣

∣

≤ 1

n
EP⊗n

Y
sup
θ∈RD

√

√

√

√

D
∑

k=1

(θk − θ′k)
2EP̃⊗n

Z
Eǫ⊗n

√

√

√

√

D
∑

k=1

(

n
∑

i=1

ǫi

∫

X

kλ(Zi, x)ϕk(x)ν(dx)

)2

≤ δ

n
EP̃Z

Eǫ⊗n

√

√

√

√

D
∑

k=1

n
∑

i=1

ǫ2i

∫

X

EP̃Z
k2λ(Z, x)ϕ

2
k(x)ν(dx)

≤
supx∈X ‖kλ(Z, x)‖L2(P̃Z )δ

√
D

√
n

,

provided that we restrict the study to a compact set X (see Section 3.3 be-
low). Note that this result corresponds to assumption (2.7) since it is easy to
see from Definition 1 that {lλ(g), g ∈ G} is necessary lipschitz with constant
c(λ) = supx∈X ‖kλ(Z, x)‖L2(P̃Z ). Finally we obtain the control of the modulus

of continuity stated in the direct case up to the term c(λ).
Another possible powerful direction is to study directly the complexity of the

class {lλ(g), g ∈ G} thanks to entropy numbers of compact operators. To this
end, note that if X is compact, lλ(g, z, y) =

∫

X
kλ(z, x)l(g(x), y)ν(dx) can be

considerated as the image of l(g) by the integral operator Lkλ
associated to the

function kλ. We hence have:

{lλ(g), g ∈ G} = Lkλ
({l(g), g ∈ G}).

Moreover it is clear that if kλ is continuous, Lkλ
is well-defined and compact

with operator norm verifying:

‖Lkλ
‖ ≤

√

ν(X ) sup
(z,x)

|kλ(z, x)|.

Using for instance Williamson et al. [2001], and provided that l is bounded and
G consists in bounded functions in L2(ν,X ), entropy of the class {lλ(g), g ∈ G}
could be controled in terms of the eigenvalues of the integral operator. In this
case, it is clear that the entropy of the class {lλ(g), g ∈ G} depends strongly on
the spectrum of the operator A.
More precisely, if A is a convolution product, this paper proposes to use kernel
deconvolution estimators where in this case kλ(z, x) =

1
λKη(

z−x
λ ). As a result,

operator Lkλ
is defined as the convolution product Lkλ

f(z) = 1
λKη(

·
λ )∗f(z). Its

spectrum is related to the behavior of the Fourier transform of the deconvolution
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kernel estimator, which corresponds to the quantity F [K]
F [η]( ·

λ
) . At the end, the

control of the entropy of the class of interest {lλ(g), g ∈ G} could be calculated
thanks to an assumption over the behavior of the Fourier transform of the noise
distribution η such as (A1).

5. Conclusion

This paper has tried to investigate the effect of indirect observations into the
statement of fast rates of convergence in empirical minimization. Many issues
could be considered in future works.

The main result is a general upper bound in the statistical learning context,
when we observe indirect observations Zi, i = 1, . . . , n with law Af . The proof
is based on an uniform concentration inequality, which seems to fit the indirect
case, provided that it is used carefully. For this purpose, we introduce lipschitz
and bounded classes {lλ(g), g ∈ G}, depending on a smoothing parameter λ. It
allows us to quantify the effect of the inverse problem on the empirical process
machinery. The price to pay is summarized in a constant c(λ) which exploses as
λ → 0. The behavior of this constant is related to the degree of ill-posedness.
Here in the midly ill-posed case, c(λ) grows polyniomally as a function of λ.

The result of Section 2 proposes the same order of generality as the results
of Koltchinskii [2006] in the direct case, which allows to recover most of the
recent results in statistical learning theory and the area of fast rates. There is
nice hope that many problems when dealing with indirect observations could be
managed following the guiding thread of this paper.

The estimation procedure proposed in this paper can be discussed for several
reasons. Firstly it is not adaptive in many sense. At the first glance, we can see
three level of adaptation: (1) adaptation to the operator A; (2) adaptation to the
tunable parameter λ; (3) adaptation or model selection of the hypothesis space
G. At this time, it is important to note that at least in the direct case, the same
machinery used to analyzed the order of the excess risk can be applied to pro-
duce penalized empirical minimization (see Blanchard et al. [2008], Koltchinskii
[2006], Loustau [2009], Tsybakov and Geer [2005]). However the construction of
adaptive versions of λ-ERM of the previous sections is a challenging open prob-
lem.

Moreover an alternative point of view would be to design the best possible
decision rule for classify Z, thanks to the i.i.d. observations Zi’s. In this case
standard ERM using the indirect sample can be performed. However to compare
this ”direct” method with the results of this paper, a rigorous comparison of the
two frameworks should be done, and precisely the respective excess risks. It could
be the core of a future work, from both theoretical and practical point of view
(see Laurent et al. [2011] for a related discussion in testing inverse problems).
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6. Proofs

The main ingredient of the proofs is a concentration inequality for empirical
processes in the spirit of Talagrand (Talagrand [1996]). We use precisely a ver-
sion due to Bousquet (see Bousquet [2002]) applied to a class of measurable
functions f ∈ F from X into [0,K]. In this case it is stated in Bousquet [2002]
that for all t > 0:

P

(

Z ≥ EZ +
√

2t(nσ2 + (1 +K)EZ) +
t

3

)

≤ exp(−t),

where

Z = sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

f(Xi)

∣

∣

∣

∣

∣

and sup
f∈F

Var(f(X1)) ≤ σ2.

The proof of Lemma 2 below uses iteratively Bousquet’s inequality and gives
rise to solve the fixed point equation as in Koltchinskii [2006]. For this purpose,
we introduce, for a function ψ : R+ → R+, the following transformations:

ψ̄(δ) := sup
σ≥δ

ψ(σ)

σ
and ψ̌(ǫ) := inf{δ > 0 : ψb(δ) ≤ ǫ}.

We are also interested in the following discretization version of these transfor-
mations:

ψ̄q(δ) := sup
δj≥δ

ψ(δj)

δj
and ψ̌q(ǫ) := inf{δ > 0 : ψb,q(δ) ≤ ǫ},

where δj = q−j , j ∈ N for some q > 1.
In the sequel, constant K,C > 0 denotes generic constants that may vary

from line to line.

6.1. Proof of Theorem 1

Lemma 2. Suppose {lλ(g), g ∈ G} is such that sup ‖lλ(g)‖∞ ≤ K(λ) with
approximation function a(λ) and residual constant 0 < r < 1 according to
Definition 3. Define:

Uλ
n (δj , t) := K

[

φλn(F , δj) +
√

t

n
Dλ(F , δj) +

√

t

n
(1 +K(λ))φλn(F , δj) +

t

n

]

,

φλn(F , δj) := E sup
g,g′∈G(δj)

|P̃n − P̃ |[lλ(g)− lλ(g
′)],

Dλ(F , δj) := sup
g,g′∈G(δj)

√

P̃ (lλ(g)− lλ(g′))2.
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Then ∀δ ≥ δλn(t) := (Ǔλ
n,t)

q( 1
2q ), if a(λ) ≤ 1−r

4q δ we have:

P(Rl(ĝ)−Rl(g
∗) ≥ δ) ≤ c(δ, q)e−t,

where c(δ, q) = − log(δ)
log(q) .

Proof. The proof follows Koltchinskii [2006] extended to the noisy set-up.
Given q > 1, we introduce a sequence of positive numbers:

δj = q−j , ∀j ≥ 1.

Consider the following event:

Eλ
n,j(t) =

{

sup
g,g′∈G(δj)

|P̃n − P̃ |[lλ(g)− lλ(g
′)] ≤ Uλ

n (δj , t)

}

.

We hence have, using Bousquet’s version of Talagrand’s inequality (see Bousquet
[2002]), for some K > 0, P(EλC

n,j (t)) ≤ e−t, ∀t ≥ 0.

We restrict ourself to the event Eλ
n,j(t). Let consider δj > δ, 0 < ǫ <

δj+1

4 ,
and g ∈ G(ǫ). Then we have the following assertion:

δj+1 ≤ Rl(ĝ)−Rl(g
∗) ≤ δj ⇒ δj+1 ≤ Rl(ĝ)−Rl(g) + ǫ.

Using Definition 3 we have from (1.7):

Rl(ĝ)−Rl(g) ≤ (P̃n − P̃ )(lλ(g)− lλ(ĝ)) + (Rl −Rλ
l )(ĝ − g)

≤ (P̃n − P̃ )(lλ(g)− lλ(ĝ)) + a(λ) + r(Rl(ĝ)−Rl(g))
2.

It gives coarselly that:

δj+1 ≤ 1

1− r

(

(P̃n − P̃ )(lλ(g)− lλ(ĝ)) + a(λ)
)

+ ǫ,

since |Rl(ĝ)−Rl(g)| ≤ δj + ǫ ≤ δj +
δj+1

4 ≤ 1. On the event Eλ
n,j(t), since ǫ ≤ δj

it follows coarselly that:

δj+1 ≤ 1

1− r
Uλ
n (δj , t) +

1

1− r
a(λ) + ǫ.

Hence we obtain using V λ
n (δ, t) := Ūλ

n (δ, t):

V λ
n (δ, t) ≥ 1

q
− qj

[

1

1− r
a(λ) + ǫ

]

≥ 1

2q
,

since we have:

a(λ) ≤ 1− r

4q
δ =⇒ qj

(

1

1− r
a(λ) + ǫ

)

≤ 1

2q
.
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It follows from the definition of ψ̌ that:

δ ≤ (Ǔλ
n (δj , t))

q(
1

2q
) = δλn(t).

We hence have on the event Eλ
n,j(t), for δj ≥ max(δ, ǫ):

ĝ ∈ G(δj , δj+1) ⇒ δ ≤ δλn(t),

or equivalently,

δλn(t) ≤ δ ≤ δj ⇒ ĝ /∈ G(δj , δj+1).

We eventually obtain:

⋂

δj≥δ

Eλ
n,j(t) and δ ≥ δλn(t) ⇒ Rl(ĝ)−Rl(g

∗) ≤ δ.

This formulation allows us to write by union’s bound:

P(R(ĝ)−R(g∗) ≥ δ) ≤
∑

δj≥δ

P(EλC
n,j (t)) ≤ c(δ, q)e−t,

since {j : δj ≥ δ} = {j : j ≤ − logδ
logq }.

Proof of Theorem 1. The proof is a direct application of Lemma 1. We have:

Uλ
n (δ, t) ≤ φλn(F , δ) +

√

t

n
φλn(F , δ)(1 +K(λ)) +

√

t

n
Dλ(G, δ) + t

n
.

Using the Bernstein condition gathering with the complexity assumption over
ω̃n(G, δ), we have:

φλn(F , δ) ≤ E sup
g,g′∈G(δ)

|P̃n − P̃ |[lλ(g)− lλ(g
′)]

≤ E sup
g,g′∈G:P (l(g)−l(g′))2≤K2

1
κ δ

1
κ

|P̃n − P̃ |[lλ(g)− lλ(g
′)] = ω̃n(G, δ

1
2κ )

≤ c(λ)√
n
δ

1−ρ
2κ .

A control of Dλ(G, δ) using the lipschitz assumption leads to:

Uλ
n (δ, t) ≤ c(K,κ)

c(λ)√
n
δ

(1−ρ)
2κ +

c(λ)1/2

n3/4
δ

1−ρ
4κ

√

K(λ)t+

√

t

n
c(λ)δ

1
2κ +

t

n
.

We hence have from an easy calculation:

δλn(t) ≤ max

(

(

c(λ)√
n

)
2κ

2κ+ρ−1

,
[c(λ)K(λ)]

2κ
4κ+ρ−1

n
3κ

4κ+ρ−1

t
2κ

4κ+ρ−1 ,

(

c(λ)√
n

)
2κ

2κ−1

t
2κ

2κ−1 ,
t

n

)

.
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To get the result we apply Lemma 1 with:

δ = K ′(1 + t)

(

[

c(λ)√
n

]
2κ

2κ+ρ−1

∨ [c(λ)K(λ)]
2κ

4κ+ρ−1

n
3κ

4κ+ρ−1

t
2κ

4κ+ρ−1

)

,

provided that the approximation function obeys to the following inequality:

a(λ) ≤ C(1 + t)

(

[

c(λ)√
n

]
2κ

2κ+ρ−1

∨ [c(λ)K(λ)]
2κ

4κ+ρ−1

n
3κ

4κ+ρ−1

t
2κ

4κ+ρ−1

)

.

6.2. Proof of Theorem 2

Theorem 2 is straightforward application of Theorem 1 to the particular case of
errors in variables using deconvolution kernel estimators and the general linear
inverse problem using projection estimators.

First step is to check that the estimation procedure described in Section 3.1
gives rise to a LB-class with respect to νY where ν is the Lebesgue measure on
R

d, thanks to the following lemma.

Lemma 3. Suppose (A1) holds and suppose l(g(·), y) ∈ L2(X ) for any y ∈
Y. Consider a deconvolution kernel Kη(t) = F−1

[

F [K](·)
F [η](·/λ)

]

where K(t) =

Πd
i=1Ki(ti) with Ki having bounded compact supported Fourier transform. Then

we have:

‖lλ(g)− lλ(g
′)‖L2(P̃

. Πd
i=1λ

−βi

i ‖l(g)− l(g′)‖L2(νY ),

and moreover:

sup
g∈G

‖lλ(g)‖∞ .

d
∏

i=1

λ
−βi−1/2
i .

Proof. We have in dimension d = 1 for simplicity, using the boundedness as-
sumptions:

‖lλ(g)− lλ(g
′)‖2

L2(P̃ )
=

∑

y∈Y

py

∫

X̃

[∫

X

1

λ
Kη

(

z − x

λ

)

(l(g(x), y))− l(g′(x), y)))dx

]2

Afy(z)dz

=
∑

y∈Y

py

∫

X̃

[

1

λ
Kη(

·
λ
) ∗ (l(g(·), y)− l(g′(·), y))(z)

]2

Afy(z)dz

≤ C
∑

y∈Y

py

∫

X̃

1

λ2
|F [Kη(

·
λ
)](t)|2|F [l(g(·), y)− l(g′(·), y)](t)|2dt

≤ C′λ−2β‖l(g)− l(g′)‖2L2(νY ),
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where we use in last line the following inequalities:

1

λ2
|F [Kη(./λ)](s)|2 = |F [Kη](sλ)|2 ≤ sup

t∈R

∣

∣

∣

∣

F [K](tλ)

F [η](t)

∣

∣

∣

∣

2

≤ sup
t∈[−K

λ
,K
λ
]

C

∣

∣

∣

∣

1

F [η](t)

∣

∣

∣

∣

2

≤ Cλ−2β ,

provided that F [K] is compactly supported.
By the same way, the second assertion holds since if l(g(·), y) ∈ L2(X ):

sup
(z,y)

|lλ(g, (z, y))| ≤ sup
(z,y)

∫

X

∣

∣

∣

∣

1

λ
Kη

(

z − x

λ

)

l(g(x), y))

∣

∣

∣

∣

dx

≤ C sup
z∈X

√

∫

X

∣

∣

∣

∣

1

λ
Kη

(

z − x

λ

)∣

∣

∣

∣

2

dx

≤ λ−β−1/2.

A straightforward generalization leads to the d-dimensional case.

Last step is to get an approximation function for the class {lλ(g), g ∈ G} with
the following lemma:

Lemma 4. Suppose (R1) holds and Kη(t) = F−1
[

F [K](·)
F [η](·/λ)

]

such that K

is a kernel of order γ with respect to the Lebesgue measure. Then if {l(g) −
l(g′), g, g′ ∈ G} is Bernstein with parameter κ ≥ 1, we have:

∀g, g′ ∈ G, (Rλ
l −Rl)(g − g′) ≤ a(λ) + r(Rl(g)−Rl(g

′))2,

where

a(λ) = C

d
∑

i=1

λ
κγ
κ−1

i and r =
1

κ
.

Proof. We consider the case d = 1 fro simplicity. Using the elementary property
EKη

(

Z−x
λ

)

= EK
(

X−x
λ

)

, gathering with Fubini, we can write:

(Rλ
l −Rl)(g − g′) =

∑

y∈Y

py

∫

X 2

K(u)(l(g(x), y)− l(g′(x), y)) (fy(x+ λu)− fy(x)) dudx.

Now since the fy’s has l = ⌊γ⌋ derivatives, there exists τ ∈]0, 1[ such that:

∫

X

K(u) (fy(x+ λu)− fy(x)) du ≤
∫

X

K(u)

(

l−1
∑

k=1

f
(k)
y (x)

k!
(λu)k +

f (l)(x+ τλu)

l!
(λu)l

)

du

≤
∫

X

K(u)

(

(λu)l

l!
(f (l)(x+ τλu) − f (l)(x))

)

du

≤
∫

X

L(λuτ)γ

l!
du ≤ Cλγ ,
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where we use in last line the Hölder regularity of the fy’s and that K is a kernel
of order l = ⌊γ⌋.
Using the Bernstein assumption, one gets:

(Rλ
l −Rl)(g − g′) ≤ Cλγ

∑

y∈Y

py

∫

X

|l(g(x), y)− l(g′(x), y)|dx.

≤ Cλγ

√

√

√

√

∑

y∈Y

py

(∫

X

|l(g(x), y)− l(g′(x), y)|dx
)2

≤ C‖l(g)− l(g′)‖L2(ν)λ
γ

≤ Cλγ (Rl(g)−Rl(g
′))

1
2κ

≤ Cλ
κγ
κ−1 +

1

κ
(Rl(g)−Rl(g

′))
2
,

where we use in last line Young’s inequality:

xyr ≤ ry + x1/1−r , ∀r < 1,

with r = 1
κ .

Proof of Theorem 2. The proof is a straightforward application of Theorem 1.
From Lemma 3 and Lemma 4, condition (2.6) in Theorem 1 can be written:

d
∑

i=1

λ
κγ
κ−1

i .

(

Πd
i=1λ

−βi

i√
n

)
2κ

2κ+ρ−1

⇔ ∀i = 1, . . . , d λi . n
− κ−1

γ(2κ+ρ−1)+2(κ−1)β̄ .

Applying Theorem 1 with a smoothing parameter λ such that equalities hold
above gives the rates of convergence.

6.3. Proof of Theorem 3

First step is to check that the estimation procedure described in Section 3.2
gives rise to a LB-class with respect to νY with the following lemma.

Lemma 5. Suppose (A2) holds and l(g(·), y) ∈ L2(ν) for any y ∈ Y. Then we
have:

‖lλ(g)− lλ(g
′)‖L2(P̃ ) . Nβ‖l(g)− l(g′)‖L2(νY ),

and moreover:

sup
g∈G

‖lλ(g)‖∞ . Nβ+1/2.

Proof. The proof follows the proof of Lemma 3. We have in dimension d = 1
for simplicity since (φk)k∈N is an orthonormal base and using the boundedness
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assumptions over the fy’s:

‖lN(g)− lN(g′)‖2
L2(P̃ )

=
∑

y∈Y

py

∫

X̃

(

N
∑

k=1

b−1
k

∫

X

φk(z)φk(x)(l(g(x), y)) − l(g′(x), y)))ν(dx)

)2

Afy(z)ν(dz)

.
∑

y∈Y

py

N
∑

k=1

b−2
k

∫

X̃

φk(z)
2

(∫

X

(l(g(x), y))− l(g′(x), y)))φk(x)ν(dx)

)2

ν(dz)

≤ CN2β
∑

y∈Y

py

N
∑

k=1

(∫

X

(l(g(x), y))− l(g′(x), y)))φk(x)ν(dx)

)2

≤ CN2β‖l(g)− l(g′)‖2L2(νY ).

By the same way, the second assertion holds since if l(g) ∈ L2(ν):

sup
(z,y)

|lλ(g, (z, y))| ≤ sup
(z,y)

∣

∣

∣

∣

∣

N
∑

k=1

b−1
k

∫

X

φk(x)φk(z)l(g, (x, y))ν(dx)

∣

∣

∣

∣

∣

≤ sup
(z,y)

√

√

√

√

N
∑

k=1

b−2
k

√

√

√

√

N
∑

k=1

θ
l(g)2
k φk(z)2

≤ CNβ+1/2.

Last step is to control the bias term of the procedure with the following
lemma:

Lemma 6. Suppose (R2) holds and {l(g) − l(g′), g,′ ∈ G} is Bernstein with
parameter κ ≥ 1. Then we have:

∀g, g′ ∈ G, (Rλ
l −Rl)(g − g′) ≤ a(λ) + r(Rl(g)−Rl(g

′))2,

where

a(N) = C

d
∑

i=1

N
− κγ

κ−1

i and r =
1

κ
.

Proof. We first write, since EZy θ̂yk = θyk =:
∫

X
fy(x)φk(x)ν(dx):

RN
l (g) = ERN

n (g) = E

∫

X

l(g(x), y)

N
∑

k=1

θ̂ykφk(x)ν(dx)

=
∑

y∈Y

py

∫

X

l(g(x), y)

N
∑

k=1

EZy θ̂ykφk(x)ν(dx)

=
∑

y∈Y

py

∫

X

l(g(x), y)

N
∑

k=1

θykφk(x)ν(dx)
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We hence write:

(Rλ
l −Rl)(g − g′) =

∑

y∈Y

py

∫

X

(l(g(x), y)− l(g′(x), y))





N
∑

k=1

θykφk(x) −
∑

k≥1

θykφk(x)



 ν(dx)

=
∑

y∈Y

py

∫

X

(l(g′(x), y)− l(g(x), y))
∑

k>N

θykφk(x)ν(dx).

Using Cauchy-Schwarz twice, we have since (φk)k∈N in an orthonormal base and
provided that fy ∈ Θ(γ, L):

|(Rλ
l −Rl)(g − g′)| ≤

√

√

√

√

∑

y∈Y

py

(∫

X

(l(g′(x), y)− l(g(x), y))φk(x)ν(dx)

)2

√

√

√

√

∑

y∈Y

py

(

∑

k>N

θyk

)2

≤
√

∑

y∈Y

py

∫

X

(l(g(x), y)− l(g′(x), y))2ν(dx)

∫

X

φ2k(x)ν(dx)

√

√

√

√

∑

y∈Y

py

(

∑

k>N

θyk

)2

≤ C‖l(g)− l(g′)‖L2(νY )

∑

y∈Y

pyN
−γ

√

∑

k>N

(θyk)
2k2γ

≤ C (Rl(g)−Rl(g
′))

1
2κ

∑

y∈Y

pyN
−γ

√

∑

k>N

(θyk)
2k2γ

≤ C (Rl(g)−Rl(g
′))

1
2κ N−γ .

We conclude the proof using Young’s inequality exactly as in Lemma 4.

Proof of Theorem 3. The proof is a straightforward application of Theorem 1.
From Lemma 5 and Lemma 6, condition (2.6) in Theorem 1 can be written:

N
−κγ
κ−1 .

(

Nβ

√
n

)

2κ
2κ+ρ−1

⇔ N . n
κ−1

γ(2κ+ρ−1)+2(κ−1)β .

Applying Theorem 1 with a smoothing parameter N such thatan equality holds
above gives the rates of convergence.

6.4. Proof of Lemma 1

The proof uses the maximal inequality presented in van der Vaart and Weelner
[1996] to the class:

F = {lλ(g)− lλ(g
′), g, g′ ∈ G : P (l(g)− l(g′))2 ≤ δ2}.
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Indeed from Theorem 2.14.2 of van der Vaart and Weelner [1996], we can write,
∀η > 0:

ω̃n(G, δ, µ) = E sup
g,g′∈G:‖l(g)−l(g′)‖2

L2(µ)
≤δ2

∣

∣

∣(P̃n − P̃ )(lλ(g)− lλ(g
′))
∣

∣

∣

≤
‖F‖2

L2(P̃ )√
n

∫ η

0

√

1 +HB(F , ǫ‖F‖2L2(P̃ )
, L2(µ))dǫ

+
supf∈F ‖f‖L2(P̃ )√

n

√

1 +HB(F , η‖F‖2L2(P̃ )
, L2(µ)) (6.1)

where F (z, y) = supf∈F |lλ(g, z, y)− lλ(g
′, z, y)| is the enveloppe function of the

class F . Since {lλ(g), g ∈ G} is a LB-class with bounded constant K(λ):

‖F‖2
L2(P̃ )

=

∫

F 2(z)P (dz, dy)

=
∑

y∈Y

py

∫

(

sup
f∈F

|lλ(g, z, y)− lλ(g
′, z, y)|

)2

Afy(z)ν(dz)

. K(λ)2.

Moreover, we have since {lλ(g), g ∈ G} is a LB-class with respect to µ with
lipschitz constant c(λ):

HB({l(g), g ∈ G}, ǫ, L2(µ)) ≤ cǫ−2ρ ⇒ HB(F , ǫ, L2(P̃ )) . c(λ)2ρǫ−2ρ.

We hence have in (6.1), choosing η = c(λ)
K(λ)2 δ:

ω̃n(G, δ) .
K(λ)2√

n

∫ η

0

√

1 + ǫ−2ρK(λ)−4ρc(λ)2ρdǫ+
c(λ)δ√
n

√

1 + η−2ρK(λ)−4ρc(λ)2ρ

.
ηK(λ)2√

n
+
η1−ρK(λ)2(1−ρ)c(λ)ρ√

n
+
c(λ)δ√
n

+
c(λ)1+ρη−ρK(λ)−2ρδ√

n

.
η1−ρK(λ)2(1−ρ)c(λ)ρ√

n
+
c(λ)1+ρη−ρK(λ)−2ρδ√

n

c(λ)√
n
δ1−ρ,

provided that δ ≤ 1.
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