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ON THE INCLUSION OF THE QUASICONFORMAL

TEICHMÜLLER SPACE INTO THE LENGTH-SPECTRUM

TEICHMÜLLER SPACE

D. ALESSANDRINI, L. LIU, A. PAPADOPOULOS, AND W. SU

Abstract. Given a surface of infinite topological type, there are several Te-
ichmüller spaces associated with it, depending on the basepoint and on the
point of view that one uses to compare different complex structures. This pa-
per is about the comparison between the quasiconformal Teichmüller space and
the length-spectrum Teichmüller space. We work under this hypothesis that
the basepoint is upper-bounded and admits short interior curves. There is a
natural inclusion of the quasiconformal space in the length-spectrum space. We
prove that, under the above hypothesis, the image of this inclusion is nowhere
dense in the length-spectrum space. As a corollary we find an explicit de-
scription of the length-spectrum Teichmüller space in terms of Fenchel-Nielsen
coordinates and we prove that the length-spectrum Teichmüller space is path-
connected.

AMS Mathematics Subject Classification: 32G15 ; 30F30 ; 30F60.

Keywords: Length-spectrum metric, quasiconformal metric, quasiconformal map,
Teichmüller space, Fenchel-Nielsen coordinates.

1. Introduction

In this paper, the word surface refers to a connected orientable surface of finite or
infinite topological type. To motivate our results, we review some basic preliminary
facts about Teichmüller spaces of surfaces of infinite topological type.

1.1. The quasiconformal Teichmüller space. Given a surface S, its Teichmüller
space is a parameter space of some homotopy classes of complex structures on S.
There are several possible ways for defining what is the set of homotopy classes one
wants to parametrize and which topology one wants to put on this set. Usually it
is not necessary to worry too much about the details, because in the most common
case considered, i.e. the case when S is a closed surface, the set is just the set of
all possible homotopy classes of complex structures, and all “reasonable” possible
definitions of a topology on that set give the same topology. Therefore, in the case
of closed surfaces, this freedom to choose between several possible definitions is
not a problem, it is, instead, a very useful tool in the theory: one can choose the
definition that best suits the problem studied.

As soon as we leave the setting of closed surfaces, it is necessary to be more
careful with the definitions. In this paper we deal with surfaces of infinite topo-
logical type, and in this case the different possible definitions do not always agree.
First of all, it is necessary to choose a basepoint, i.e. a base complex structure R
on the surface S, and then to consider only the set of homotopy classes of complex
structures on S that are “comparable” with R in a suitable sense. This notion
of comparability usually suggests a good definition of the topology. For example,
the most commonly used definition is what we call the quasiconformal Teichmüller
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space, where the set Tqc(R) parametrizes all the homotopy classes of complex struc-
tures X on S that are quasiconformally equivalent to R, i.e. such that there exists
a quasiconformal homeomorphism between R and X that is homotopic to the iden-
tity of S. (Note that the space Tqc(R) we consider here is the reduced Teichmüller
space i.e. homotopies need not fix the ideal boundary point-wise.)

The topology on Tqc(R) is given by the quasiconformal distance dqc, also called
the Teichmüller distance, defined using quasiconformal dilatations of quasicon-
formal homeomorphisms: for any two homotopy classes of complex structures
X,Y ∈ Tqc(R), their quasiconformal distance dqc(X,Y ) is defined as

dqc(X,Y ) =
1

2
log inf

f
K(f)

where K(f) is the quasiconformal dilatation of a quasiconformal homeomorphism
f : X → Y which is homotopic to the identity.

1.2. Fenchel-Nielsen coordinates. In [2], we studied the quasiconformal Te-
ichmüller space of a surface of infinite topological type using pair of pants decom-
positions and Fenchel-Nielsen coordinates. We will use this technique also in this
paper, so we recall some of the main facts we need here. The definition of these co-
ordinates depends on the interpretation of every complex structure as a hyperbolic
metric on the surface. To do so, we use the intrinsic hyperbolic metric on a com-
plex surface, defined by Bers. For complex structures of the first type (i.e. if the
ideal boundary is empty) this metric is just the Poincaré metric, but for complex
structures of the second type it is different from this well known metric. For these
notions and for other related notions, we refer the reader to the paper [2] for the
details of this definition and for explanations about how the intrinsic metric may
differ from the Poincaré metric. This metric has the property that every puncture
of the surface shows one of the following behaviors:

(1) It has a neighborhood isometric to a cusp, i.e., the quotient of {z = x+iy ∈
H

2 | a < y}, for some a > 0, by the group generated by the translation
z 7→ z + 1.

(2) It is possible to glue to the puncture a boundary component that is a simple
closed geodesic for the hyperbolic metric. Punctures of this kind will be
called boundary components, and the boundary geodesic will be considered
as part of the surface.

For infinite-type surfaces we proved in [2] that given a topological pair of pants
decomposition P = {Ci} of S and a complex structure X on S, it is always possible
to find geodesics {γi} for the intrinsic metric of X such that each γi is homotopic to
Ci and the set {γi} is again a pair of pants decomposition of S. To every curve Ci

of the topological decomposition we can associate two numbers (ℓX(Ci), τX(Ci)),
where ℓX(Ci) is the length in X of the geodesic γi and τX(Ci) is the twist pa-
rameter between the two pairs of pants (which can be the same) with geodesic
boundary adjacent to γi. In this paper, the twist parameter is a length, and this is
a slight change in notation with reference to the paper [2], where it was an “angle”
parameter.

Let R be a complex structure equipped with a geodesic pants decomposition
P = {Ci}. We say that the pair (R,P) is upper-bounded if supCi

ℓR(Ci) < ∞.
We say that the pair (R,P) is lower-bounded if infCi

ℓR(Ci) > 0. If (R,P) is
both upper-bounded and lower-bounded, then we say that (R,P) satisfies Shiga’s
property (this property was first used by Shiga in [15]). Note that if R is of finite
type, then any pants decomposition of R satisfies Shiga’s property. Shiga’s property
was introduced in [15], and we used it in our papers [4] and [3]. We note however
that this property is used in a weaker form in these papers [4] and [3], and this is
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also the form which will be useful in the present paper. In fact, we shall say from
now on that Shiga’s property holds for the pair (R,P) if the pants decomposition
P is upper-bounded and there exists a positive constant δ such that ℓR(Ci) > δ for
any Ci ∈ P which is in the interior of the surface.

In this paper, we will often use another condition, we say that (R,P) admits short
interior curves if there is a sequence of curves of the pair of pants decomposition
αk = Cik such that the curves αk are not boundary components of the surface and
such that ℓR(αi) tends to zero.

In the paper [2], we proved that if (R,P) is upper-bounded, then the quasi-
conformal Teichmüller space (Tqc(R), dqc) is locally bi-Lipschitz equivalent to the
sequence space ℓ∞, using Fenchel-Nielsen coordinates. An analogous result, in the
case of the non-reduced Teichmüller space, is due to Fletcher, see [7] and the survey
by Fletcher and Markovic [8].

1.3. The length-spectrum Teichmüller space. In this paper we study a differ-
ent definition of Teichmüller space, which we call the length-spectrum Teichmüller
space. The definition of this space and of its distance depend on a measure of how
the lengths of essential curves change when we change the complex structure.

A simple closed curve on a surface is said to be essential if it is not homotopic
to a point or to a puncture (but it can be homotopic to a boundary component).
We denote by S the set of homotopy classes of essential simple closed curves on R.

Given a complex structure X on S and an essential simple closed curve γ on S,
we denote by ℓX(γ) the length, for the intrinsic metric on X , of the unique geodesic
that is homotopic to γ. The value ℓX(γ) does not change if we take another complex
structure homotopic to X , hence this function is well defined on homotopy classes
of complex structures on S.

Given two homotopy classes X,Y of complex structures on S, we define the
functional

L(X,Y ) = sup
γ∈S

{

ℓX(γ)

ℓY (γ)
,
ℓY (γ)

ℓX(γ)

}

≤ ∞.

Given a base complex structure R on S, the length-spectrum Teichmüller space
Tls(R) is the space of homotopy classes of complex structures X on S satisfying
L(R,X) < ∞.

For any two distinct elements X,Y ∈ Tls(R), we have 1 < L(X,Y ) < ∞. We
define a metric dls on Tls(R), called the length-spectrum distance, by setting

dls(X,Y ) =
1

2
logL(X,Y ).

Historically, the length-spectrum distance was defined before the length-spectrum
Teichmüller space. Initially people considered this distance as a distance on the
quasiconformal Teichmüller space: they studied the metric space (Tqc(R), dls). For
finite type surfaces this is a perfectly fine distance on Tqc(R), it makes this space
complete and it induces the ordinary topology, and it is more suitable for studying
problems regarding lengths of geodesics. For an example of a paper studying this
space, see [6], some of whose results we will use in the following.

The first paper dealing with the space (Tqc(R), dls) in the case of surfaces of
infinite type was [15].

We proved in [3] that the metric space (Tqc(R), dls) is, in general, not complete.
More precisely this happens if there exists a pair of pants decomposition P = {Ci}
such that the pair (R,P) admits short interior curves, i.e. if there is a sequence of
curves of the pair of pants decomposition αk = Cik contained in the interior of R
with ℓR(αi) → 0. The idea was to construct a sequence of hyperbolic metrics by
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large twists along short curves. To be more precise, for any X ∈ Tqc(R), we have
again ℓX(αi) = ǫi → 0. Denote by τ tα(X) the surface obtained from X by a twist
of magnitude t along α and let Xi = τ tiαi

(X), with ti = log | log ǫi|. Then we proved
that dqc(X,Xi) → ∞, while dls(X,Xi) → 0. If we set Yn = τ tnαn

◦ · · · ◦ τ t2α2
◦ τ t1α1

(X)
and if we define Y∞ to be the surface obtained from X by a twist of magnitude ti
along αi for every i, then a similar argument shows that Y∞ ∈ Tls(R) \ Tqc(R) and
limn→∞ dls(Yn, Y∞) = 0; see [3], [4] for more details. We shall give another proof
of the last result in Section 5 below.

The fact that the metric space (Tqc(R), dls) is, in general, not complete is an
indication of the fact that Tqc(R) is not the right space for this distance. The
length-spectrum Teichmüller space was defined in [12], with the idea that it was
the most natural space for that distance, and it was studied in [3], [4]. We proved
in [3] that for every base complex structure R, the metric space (Tls(R), dls) is
complete. This result answered a question raised in [12] (Question 2.22).

Other properties, such as connectedness and contractibility, are unknown in the
general case for surfaces of infinite type. If the basepoint R satisfies Shiga’s condi-
tion, then it follows from the main result of [4] that (Tls(R), dls) is homeomorphic
to the sequence space ℓ∞ with an homeomorphism that is locally bi-Lipschitz, and,
in particular, the space is contractible. One of the results we prove in the present
paper is the following.

Theorem 6.3 If (R,P) is upper-bounded and it admits short interior curves, then
(Tls(R), dls) is path-connected.

To obtain this result, we will need some results about the comparison between the
quasiconformal and the length-spectrum spaces (see below), and we will also need
the following explicit characterization of the length-spectrum Teichmüller space in
terms of Fenchel-Nielsen coordinates, which is interesting in itself:

Theorem 6.2 Assume X = (ℓX(Ci), τX(Ci)). X lies in Tls(R) if and only if there
is a constant N > 0 such that for each i,

∣

∣

∣

∣

log
ℓX(Ci)

ℓY (Ci)

∣

∣

∣

∣

< N

and

|τX(Ci)− τR(Ci)| < N max{| log ℓR(Ci)|, 1}.

1.4. Comparison between the two spaces. It is interesting to compare the two
spaces (Tls(R), dls) with (Tqc(R), dqc).

A classical result of Sorvali [16] and Wolpert [17] states that for any K-quasi-
conformal map f : X → Y and any γ ∈ S, we have

1

K
≤ ℓY (f(γ))

ℓX(γ)
≤ K.

It follows from this result that there is a natural inclusion map

I : (Tqc(R), dqc) → (Tls(R), dls)

and that this map is 1-Lipschitz.
In [12] we proved that if R satisfies the Shiga’s condition, then this inclusion is

surjective, showing that under this hypothesis we have Tls(R) = Tqc(R) as sets. In
the same paper we also gave an example of a complex structure R such that the
inclusion map I is not surjective.

The inverse map of I (defined on the image set Tqc(R)) is not always continuous.
Shiga gave in [15] an example of a hyperbolic structure R on a surface of infinite
type and a sequence (Rn) of hyperbolic structures in Tls(R)∩ Tqc(R) which satisfy

dls(Rn, R) → 0, while dqc(Rn, R) → ∞.
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In particular, the metrics dls and dqc do not induce the same topology on Tqc(R).
A more general class of surfaces with the same behavior was described in the paper
[13] by Liu, Sun and Wei.

In the same paper, Shiga showed that if the hyperbolic metric R carries a geodesic
pants decomposition that satisfies Shiga’s condition, then dls and dqc induce the
same topology on Tqc(R). In the paper [4] we strengthened this result by showing
that under Shiga’s condition the inclusion map is locally bi-Lipschitz.

Several natural questions arise after this, for instance :

(1) Give necessary and sufficient conditions under which the inclusion map I
is surjective.

(2) Under what conditions is the inverse map (defined on the image set) con-
tinuous ? Under what conditions is it Lipschitz ? bi-Lipschitz ?

(3) Are the two spaces (Tqc(R), dqc) and (Tls(R), dls) in the general case locally
isometric to the infinite sequence space ℓ∞ ? If not, are there other “model
spaces” to which such a space is locally isometric ?

(4) How does the image I ((Tqc(R), dqc)) sit in the space (Tls(R), dls) ? Is it
dense ? Is it nowhere dense ?

Some of these problems have been solved in the present paper.
Consider Tqc(R) as a subset in Tls(R). A natural question which is asked in [3] is

whether the subset Tqc(R) is dense in (Tls(R), dls). This would tell us that Tls(R)
is the metric completion of Tqc(R) with reference to the distance dls, and it would
also imply that (Tls(R), dls) is connected (since the closure of a connected subset
is also connected). In this paper, we will give a negative answer to this question.
We prove the following:

Theorem 5.8 IfR admits a geodesic pants decomposition which is upper-bounded
and admits short interior geodesics, then the space (Tqc(R), dls) is nowhere dense
in (Tls(R), dls).

The proof of Theorem 5.8 involves some estimates between quasiconformal di-
latation and hyperbolic length under the twist deformation. Some of the techniques
used in this paper are developed in our papers [2] and [4]. The upper-boundedness
assumption of (R,P) is used here so that we can get a lower bound estimate of the
length-spectrum distance under a twist. Without this assumption, the density of
Tqc(R) in Tls(R) is unknown.

It would be interesting to study the closure of Tqc(R) in Tls(R). This space is
the completion of Tqc(R) with reference to the length-spectrum metric.

Under the geometric conditions of Theorem 5.8, we showed in [3] (Example
5.1) that the inverse of the inclusion map I restricted to Tqc(R): (Tqc(R), dls) →
(Tqc(R), dqc) is nowhere continuous. We give another proof of this fact in the present
paper (Proposition 5.2).

Regarding Item (4) above, we prove (Proposition 5.4 below) that if the surface R
admits an upper-bounded pants decomposition P such that (R,P) is upper-bounded
and admits short interior curves, then there exists a point in Tls(R) \Tqc(R) which
can be approximated by a sequence in Tqc(R) with the length-spectrum metric.
This gives in particular a new proof of the fact (obtained in [3]) that the space
Tqc(R) equipped with the restriction of the metric dls is not complete.

2. Preliminaries

Let R be a base topological surface equipped with a hyperbolic structure X and
with a geodesic pants decomposition P = {Ci}. The pieces of the decomposition
(completions of connected components of the complements of the curves Ci) are
spheres with three holes equipped with hyperbolic metrics, where a hole is either
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a cusp or a geodesic boundary component. We call such a piece a generalized pair
of pants to stress on the fact that it is not necessarily a hyperbolic pair of pants
with three geodesic boundary componentss. To each Ci ∈ P, we consider its length
parameter ℓX(Ci) and its twist parameter τX(Ci). Recall that the latter is only
defined if Ci is not a boundary component of R, and it is a measure of the relative
twist amount along the geodesic Ci between the two generalized pairs of pants
(which may be the same) that have this geodesic in common. The twist amount
per unit time along Ci is chosen so that a complete positive Dehn twist along Ci

changes the twist parameters on Ci by addition of ℓX(Ci). For any hyperbolic
metric X , its Fenchel-Nielsen parameters relative to P is the collection of pairs

{(ℓX(Ci), τX(Ci))}i=1,2,···

where it is understood that if Ci is a boundary component of R, then there is no
twist parameter associated to it, and instead of a pair (ℓX(Ci), τX(Ci)) we have a
single parameter ℓX(Ci).

There is an injective mapping from Tqc(R) or Tls(R) to an infinite-dimensional
real parameter space:

X 7→
((

log
ℓX(Ci)

ℓR(Ci)
, τX(Ci)− τR(Ci)

))

i=1,2,···

.

If the image of X belongs to ℓ∞, then we say that X is Fenchel-Nielsen bounded
(with respect to (R,P)).

For each Ci in the interior of X , there is a simple closed curve βi satisfying the
following (see Figure 1):

(1) βi and Ci intersect minimally, that is, i(Ci, βi) = 1 or 2;
(2) βi does not intersect any Cj , j 6= i.

Figure 1. In each case, we have represented the curve Ci and its dual

curve βi.

The following result is proved in [2].

Lemma 2.1. Suppose that the pants decomposition {Ci} is upper-bounded by M ,
that is, supi{ℓX(Ci)} ≤ M . Then there exists a positive constant ρ depending only
on M such that for each i, βi can be chosen so that the intersection angle(s) θi of
Ci and βi (there are one or two such angles for each curve Ci) satisfy sin θi ≥ ρ.
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We shall need some background material on the conformal moduli of quadrilater-
als. Recall that a quadrilateralQ(z1, z2, z3, z4) consists of a Jordan domain Q in the
complex plane and a sequence of ordered vertices z1, z2, z3, z4 on the boundary of Q.
The vertices of a quadrilateral Q(z1, z2, z3, z4) divide its boundary into four Jordan
arcs, called the sides of the quadrilateral. The arcs z1z2 and z3z4 are called the
a-sides and the other two arcs, the b-sides of Q. Two quadrilaterals Q(z1, z2, z3, z4)
and Q′(w1, w2, w3, w4) are said to be conformally equivalent if there is a conformal
map from Q to Q′ which carries each zi to wi.

Every quadrilateral Q(z1, z2, z3, z4) is conformally equivalent to a rectangle

R(0, a, a+ ib, ib) = {x+ iy : 0 < x < a, 0 < y < b}.
It is easy to see that two rectangles R(0, a, a + ib, ib) and R′(0, a′, a′ + ib′, ib′)
are conformally equivalent if and only if there is a similarity transformation be-
tween them. Therefore, we can define the (conformal) modulus of the quadrilateral
Q(z1, z2, z3, z4) by

mod(Q(z1, z2, z3, z4)) =
a

b
.

It follows from the definition that the modulus of a quadrilateral is a conformal
invariant and that mod(Q(z1, z2, z3, z4)) = 1/mod(Q(z2, z3, z4, z1)).

The modulus of a quadrilateral Q(z1, z2, z3, z4) can be described in terms of
extremal length in the following way. Let F = {γ} be the family of curves in Q
joining the a-sides. The extremal length of the family F, denoted by Ext(F), is
defined by

Ext(F) = sup
ρ

infγ∈F ℓρ(γ)
2

Areaρ

where the supremum is taken over all conformal metrics ρ on Q of finite positive
area. Then it can be shown [1] that

mod(Q(z1, z2, z3, z4)) =
1

Ext(F)
.

3. A lower bound for the quasiconformal dilatation under a twist

The aim of this section is to prove Corollary 3.3, which is important for Section
5. For a hyperbolic metric X and a simple closed geodesic α on X , we denote by
τ tα(X), t ∈ R the hyperbolic metric obtained from X by a Fenchel-Nielsen twist of
magnitude t along α. We fix the simple closed curve α and, to simplify the notation,
we set Xt = τ tα(X).

For a small ǫ > 0, let Nǫ be an ǫ-neighborhood of α. We denote by gtǫ : X → Xt

a homeomorphism that is the natural isometry outside of Nǫ, and that is homotopic
to the identity.

It is convenient to work in the universal cover of the surface. In the case where X
has no boundary, its universal cover is the hyperbolic planeH2. We let f t

ǫ : H2 → H
2

be a lift of gtǫ. In the case where X has non-empty boundary, we take the double
of X and Xt, extend the map gtǫ to Xd → Xd

t and we then let f t
ǫ be the lift of the

extended map to H
2. Thus, in any case, the map f t

ǫ is defined on the plane H
2.

Let α̃ be the lift of the closed geodesic α to the universal cover. Then α̃ can be
seen as a lamination with discrete leaves.

When ǫ tends to zero, the maps f t
ǫ coneverges pointwise on H

2 \ α̃ to a map
f t that is an isometry on every connected component of H2 \ α̃. We choose an
orientation on α. Now every connected component of α̃ divides the plane into
two parts, a left part and a right part. We extend f t to α̃ by requiring that this
extension is continuous on the left part. We denote the extended map again by f t,
a piecewise isometry from H

2 to H
2.
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To make some explicit computations, we work in the upper-half model of the
hyperbolic plane H

2. Up to conjugation in the domain and in the codomain, we
can assume that the geodesic iR+ is a leaf of α̃ that is fixed pointwise by f t. In
particular, f t fixes 0, i,∞.

Lemma 3.1. For any bi-infinite geodesic in the upper-half plane model of H2 with
endpoints x1 < 0 < x2 on R and intersecting iR+ at i (see Figure 2), we have

f t(x1) < −
√

e2t + (
x1 + x2

2
)2 + (

x1 + x2

2
) < 0 and 0 < f t(x2) < x2, ∀ t > 0.

x y

i

Figure 2.

Proof. This follows from the construction of the Fenchel-Nielsen twist deformation.
See, for example, the proof of Lemma 3.6 in Kerckhoff [9]. We give here the proof
for the sake of completeness.

Let γ be the bi-infinite geodesic connecting x1 and x2. By assumption, iR+ and γ
intersect at the point i. Under the twist deformation, γ is deformed into a sequence
of disjoint geodesic arcs {Ai}, each coming from γ under the twist deformation. Let
γ̄ be the infinite piecewise geodesic arc, which is the union of {Ai} and of pieces of
leaves of α̃. See Figure 3 in the case where x1 = −1 and x2 = 1.

t
e 

1 0 1

0
A

1
A

2
A

 

Figure 3. The image of γ under a twist.

Note that one such arc A0 passes through the point i. If A0 is continued to a
bi-infinite geodesic, its endpoints will be precisely those of γ. Move along γ̄ in the
left direction, running along the leaf iR+ (with hyperbolic distance t) until coming
to the next arc A1. If the arc is continued in the forward direction, one of its

endpoints is −
√

e2t + (x1+x2

2 )2 +(x1+x2

2 ) (this can be shown by the cosine formula



TEICHMÜLLER SPACE 9

for triangles). Similarly, the forward endpoint of the next arc, A2, is strictly to

the left of −
√

e2t + (x1+x2

2 )2 + (x1+x2

2 ). In fact, the forward endpoint of each arc

Ai+1 is strictly to the left of Ai. Since the forward endpoints of the A,
is converge

to f t(x1), we see that f t(x1) is strictly less than −
√

e2t + (x1+x2

2 )2 + (x1+x2

2 ).

An analogous (and simpler) argument shows that 0 < f t(x2) < x2. �

As before, assume that P = {Ci} is a geodesic pants decomposition of the hy-
perbolic metric R.

Let t = (t1, t2, . . .) be a sequence of real numbers. Fix X ∈ Tqc(R). We say
that Xt is a multi-twist deformation of X along P if Xt is obtained from X by
the composition of ti-twists along Ci. Let us set ‖t‖ = supi |ti|. In the following
theorem, the simple closed curves (βi) are chosen as in Section 2. We assume that
the intersection angle(s) θi of Ci and βi satisfy sin θi ≥ ρi.

Since each βi intersects Ci and no Cj , j 6= i, then under the multi-twist defor-
mation, the image of βi depends only on the twist along Ci.

We now denote by H(∞,−1, 0, t), t > 0 the quadrilateral where the Jordan
domain H is the upper half-plane. Let h(t) = mod(H(∞,−1, 0, t)). Then, h(t) is
related to the modulus of the Grötzch ring (the ring domain obtained by deleting
the interval [0, r] from the unit disk) µ(r) by the following equality (see Page 60–61
in [11]):

h(t) =
2

π
µ(

√

1

1 + λ
), where λ = t.

From the known properties of µ(r), it follows that h(t) is a strictly increasing
function and lim

t→+∞
h(t) = ∞.

Theorem 3.2. For the hyperbolic surface Xt defined above, we have

dqc(X,Xt) ≥
1

2
log sup

i

h(Kie
|ti|)

h(
1+

√
1−ρ2

i

1−
√

1−ρ2

i

)
,

where

Ki =
1−

√

1− ρ2i
(

1 +
√

1− ρ2i

)

(
√

1 + (

√
1−ρ2

i

1−
√

1−ρ2

i

)2 +

√
1−ρ2

i

1−
√

1−ρ2

i

) .

Proof. For each Ci, consider the twist ti. Without loss of generality, we assume
that ti > 0.

Assume that iR+ is a lift of Ci to the universal cover and that βi has a lift γ
which intersects iR+ at the point i. Denote by x1 < 0 < x2 the two endpoints of
γ. The intersection θ of iR+ and γ satisfies:

sin θ =
2

|x1|+ |x2|
.

Applying Lemma 3.1, we have

(1) f t(x1) < −
√

e2ti + (
x1 + x2

2
)2 + (

x1 + x2

2
) < 0, 0 < f t(x2) < x2.

Let us set −
√

e2ti + (x1+x2

2 )2 + (x1+x2

2 ) = −Aeti , where

A =
1

√

1 + e−2ti(x1+x2

2 )2 + e−ti(x1+x2

2 )
.
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By the geometric definition of quasiconformal maps,

K(f t) ≥ mod (H(f t(x1), f
t(0), f t(x2), f

t(∞)))

mod(H(x1, 0, x2,∞)
.

By (1) and the monotonicity of conformal modulus, we have

mod(H(f t(x1), 0, f
t(x2),∞)) ≥ mod(H(−Aeti , 0, x2,∞)).

Note that

mod(H(−Aeti , 0, x2,∞)) = mod(H(∞,−x2, 0, Ae
ti))

= mod(H(∞,−1, 0,
Aeti

|x2|
).

Therefore

(2) K(f t) ≥
mod(H(∞,−1, 0, Aeti

|x2|
))

mod(H(∞,−1, 0, |x1

x2

|)) .

We can use the cross ratio to estimate |x1

x2

| in terms of the lower bound ρi(X)

of sin θi. Let χ(a, b, c, d) = (a−c)(b−d)
(a−d)(b−c) be the cross ratio of a, b, c, d ∈ R ∪ {∞}.

We can map H
2 conformally to the unit disc, and iR+ and γ to the geodesics with

endpoints ±1 and ±eiθ respectively. It is easy to show that

cos2(θ/2) = χ(1, eiθ,−eiθ,−1).

By the conformal invariance of the cross ratio, we have

cos2(θ/2) = χ(0, x2, x1,∞) =
|x1|

|x1|+ |x2|
.

Since sin θ ≥ ρi, we have

(3)
1−

√

1− ρ2i
1 +

√

1− ρ2i
≤ |x1|

|x2|
≤ 1 +

√

1− ρ2i
1−

√

1− ρ2i
.

There are other restrictions on the values x1, x2. Since the geodesic γ passes
through the point i, we can show that |x2||x1| = 1.

If |x1| ≥ 1 ≥ |x2|, then
A

|x2|
≥ A ≥ 1

√

1 + ( |x1|/|x2|−1
2 )2 + |x1|/|x2|−1

2

.

Combined with the inequality (3), we obtain

A

|x2|
≥ 1

√

1 + (

√
1−ρ2

i

1−
√

1−ρ2

i

)2 +

√
1−ρ2

i

1−
√

1−ρ2

i

.

If |x2| ≥ 1 ≥ |x1|, then (using again Inequality (3)) we obtain

A

|x2|
≥ A

|x1|
|x2|

≥ 1−
√

1− ρ2i
(

1 +
√

1− ρ2i

)

(
√

1 + (

√
1−ρ2

i

1−
√

1−ρ2

i

)2 +

√
1−ρ2

i

1−
√

1−ρ2

i

) .

Denote

Ki =
1−

√

1− ρ2i
(

1 +
√

1− ρ2i

)

(
√

1 + (

√
1−ρ2

i

1−
√

1−ρ2

i

)2 +

√
1−ρ2

i

1−
√

1−ρ2

i

) .

We conclude that
A

|x2|
≥ Ki.
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It follows from inequality (2) that

K(f t) ≥ mod(H(∞,−1, 0,Kie
ti))

mod(H(∞,−1, 0,
1+

√
1−ρ2

i

1−
√

1−ρ2

i

))
.

Using the function h(t) already introduced for moduli of quadrilaterals, we get

K(f t) ≥ h(Kie
ti)

h(
1+

√
1−ρ2

i

1−
√

1−ρ2

i

)
.

By Teichmüller’s Theorem, there is an extremal quasiconformal map from X
to Xt that realizes the Teichmüller distance dqc(Xt, X). Lifting this map to the
universal cover, since it is homotopic to f t, it has the same boundary value as f t.
It follows that

2dT (X,Xt) ≥ log sup
i

h(Kie
ti)

h(
1+

√
1−ρ2

i

1−
√

1−ρ2

i

)
.

�

Corollary 3.3. If supi lX(Ci) < ∞ and if Xt is a multi-twist deformation of X
along P, then dqc(X,Xt) → ∞ as ‖t‖ → ∞.

Proof. By assumption, there is a positive constant M such that supi ℓX(Ci) < M .
By Lemma 2.1, there is a positive constant ρ (depending onM) such that infi ρi ≥ ρ.

It is easy to see that
(1−

√
1−ρ2)2

1+
√

1−ρ2
is an increasing function of ρ. For each i, we have

(1 +
√

1− ρ2i )
2

1−
√

1− ρ2i
≥ (1−

√

1− ρ2)2

1 +
√

1− ρ2
.

As a result, if follows from Theorem 3.2 that

(4) dqc(X,Xt) ≥
1

2
log sup

i

h(
(1−

√
1−ρ2)2

1+
√

1−ρ2
eti)

h(
1+

√
1−ρ2

1−
√

1−ρ2
)

.

As ‖t‖ → ∞, the properties of the function h(t) tell us that dqc(X,Xt) → ∞. �

4. Estimation of hyperbolic length under a twist deformation

The twist deformation is an important tool to understand the difference between
the quasiconformal metric and the length-spectrum metric. As in the previous
section, we fix a simple closed geodesic α and we set Xt = τ tα(X). In this section,
we give a upper bound and a lower bound for dls(X,Xt).

Proposition 4.1. For every t in R, we have

dls(X,Xt) ≤
1

2
max

{

sup
γ,i(α,γ) 6=0

i(α, γ)|t|
ℓX(γ)

, sup
γ,i(α,γ) 6=0

i(α, γ)|t|
ℓXt

(γ)

}

.

Proof. Without loss of generality, we can assume that t > 0. For any simple closed
curve γ intersecting α, let ℓt(γ) denote the hyperbolic length of γ in Xt. We have

ℓX(γ)− i(α, γ)t ≤ ℓt(γ) ≤ ℓX(γ) + i(α, γ)t.

Recall that the length-spectrum distance is given by

dls(X,Xt) = max

{

1

2
log sup

γ

ℓt(γ)

ℓX(γ)
,
1

2
log sup

γ

ℓX(γ)

ℓt(γ)

}

,

where the supremum is taken over all essential simple closed curves.
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For a simple closed curve γ satisfying i(α, γ) = 0, the hyperbolic length of γ is
invariant under the twist along α. As a result, we have

dls(X,Xt) = max

{

1

2
log sup

γ,i(α,γ) 6=0

ℓt(γ)

ℓX(γ)
,
1

2
log sup

γ,i(α,γ) 6=0

ℓX(γ)

ℓt(γ)

}

.

For any simple closed curve γ with i(α, γ) 6= 0, we have

log
ℓt(γ)

ℓX(γ)
≤ log

ℓX(γ) + i(α, γ)t

ℓX(γ)
≤ i(α, γ)t

ℓX(γ)

(using, for the right-hand side, the inequality log(1+x) ≤ x for x > 0), and likewise

log
ℓX(γ)

ℓt(γ)
≤

∣

∣

∣

∣

log
ℓt(γ) + i(α, γ)t

ℓt(γ)

∣

∣

∣

∣

≤ i(α, γ)t

ℓX(γ)
.

The result is thus proved. �

Note that if ℓX(α) ≤ L, then it follows from the Collar Lemma that there is
a constant C depending on L such that for any simple closed geodesic γ with
i(α, γ) 6= 0, we have ℓX(γ) ≥ Ci(α, γ)| log ℓX(α)| and ℓXt

(γ) ≥ Ci(α, γ)| log ℓX(α)|.
We deduce from the Proposition 4.1 the following

Corollary 4.2. If ℓX(α) ≤ L, then there is a constant C depending on L such that

dls(X,Xt) ≤
|t|

2C| log ℓX(α)| .

Now we need a lower bound. We use the idea of an (ǫ0, ǫ1)-decomposition of a
hyperbolic surface (Minsky [14, sec. 2.4], Choi-Rafi [6, sec. 3.1]).

Consider a hyperbolic metric X on a surface of finite type (we will need only the
case when X is homeomorphic to a one-holed torus or to a four-holed sphere).

Choose two numbers ǫ1 < ǫ0 less than a Margulis constant of the hyperbolic
plane. Assume that α is a closed geodesic in the interior of X with ℓX(α) ≤ ǫ1. Let
A be an annular (collar) neighborhood of α such that the two boundary components
of A have length ǫ0. We can choose ǫ1 and ǫ0 small enough such that any simple
closed geodesic on X that intersects α is either the core curve of A or crosses A (this
upper bound for ǫ1, ǫ0 can be chosen in a way that is independent on the surface
X).

Let Q = X − A. For any simple closed geodesic γ on X , its restriction to Q is
homotopic (relative to ∂Q ) to a shortest geodesic, which we denote by γQ.

Lemma 4.3 ( Choi-Rafi [6, prop. 3.1] ). There is a constant C depending on ǫ0, ǫ1
and on the topology of X, such that

|ℓX(γ ∩Q)− ℓX(γQ)| ≤ Ci(γ, ∂Q),

|ℓX(γ ∩ A)− [2 log
ǫ0

ℓX(α)
+ ℓX(α)|twX(γ, α)|]i(γ, α)| ≤ Ci(γ, α).

In the second formula, the quantity twX(γ, α) is called the twist of γ around
α. This quantity is defined in [14, sec. 3]. Its difference with the Fenchel-Nielsen
twist coordinate is given by the following estimate (For the proof, see Minsky [14,
Lemma 3.5]).

Lemma 4.4 ( Minsky [14, lemma 3.5] ). Suppose that Xt is the twist deformation
of X by a twist of magnitude t = τXt

(α)− τX(α) along α. We normalize the twist

coordinate by setting s(Xt) =
τXt

(α)

ℓX(α) and s(X) = τX(α)
ℓX (α) . Then

|twXt
(γ, α)− twX(γ, α)− (s(Xt)− s(X))| ≤ 4.
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Now assume that X is homeomorphic to a one-holed torus or to a four-holed
sphere, with the pair of pants decomposition α. Consider the simple closed curve
β we constructed in Lemma 2.1. Note that |twX(β, α)| is less than 4, and i(β, α)
is 1 or 2. The following is a direct corollary of Lemma 4.3 and 4.4.

Lemma 4.5. If Xn is the hyperbolic metric obtained from X by a twist deformation

along α, with normalized twist coordinates n =
τXn

(α)−τX(α)
ℓX(α) , then

ℓXn
(β)

ℓX(β)
≥

2 log ǫ0
ℓX (α) + ℓX(α)(n − 8) + 1

2ℓXn
(βQ)− 2C

2 log ǫ0
ℓX(α) + 2ℓX(α) + ℓX(βQ) + 2C

,

where C is the same constant as in Lemma 4.3, hence it only depends on ǫ0, ǫ1 and
on the topology of X.

Proof. We know that i(β, α) and i(β, ∂Q) are 1 or 2, and that |twX(β, α)| ≤ 4. By
Lemma 4.4 we see that n− 8 ≤ |twX(β, α)| ≤ n+ 8. We also know that ℓXn

(α) =
ℓX(α). We can express ℓX(β) as ℓX(β ∩ Q) + ℓX(β ∩ A), and we do the same for
ℓXn

(β). We then use Lemma 4.3 to estimate separately ℓX(β∩Q), ℓX(β∩A), ℓXn
(β∩

Q), ℓXn
(β ∩ A). Finally, we estimate the ratio, and we get the formula. �

Consider now a hyperbolic metric X with a geodesic pants decomposition P =
{Ci} satisfying supCi

ℓX(Ci) ≤ M . Suppose there exists a geodesic α ∈ P which
is in the interior of X and which has length less than ǫ1. Let Xt = τ tα(X). Here
we set t = ℓR(Ci)n, for a sufficiently large number n. With these assumptions,
we now apply Lemma 4.5 to give a lower bound for the length-spectrum distance
dls(X,Xt).

As we have done before, choose a simple closed curve β which intersects α once
or twice but does not intersect any other curves in P. Under the upper-boundedness
assumption on the pants decomposition, there is also a constant K depending on
ǫ0, ǫ1,M such that the length ℓX(βQ) is bounded as

1/K ≤ ℓX(βQ) ≤ K.

Moreover, we may choose the constant ǫ0 with upper and lower bounds which only
depend on M . Then an analysis of the formula in Lemma 4.5 leads to the following

Theorem 4.6. If supCi
ℓX(Ci) ≤ M and ℓX(α) ≤ ǫ1, then there is a constant D

depending on ǫ1,M such that

dls(X,Xt) ≥ 1

2
log

ℓXt
(β)

ℓX(β)

≥ 1

2
log

2| log ℓX(α)| + |t| −D

2| log ℓX(α)| +D
.

Proof. We can choose ǫ0 and ǫ1 such that they satisfy ǫ0 = 2ǫ1. Then log(ǫ0) can
be put in the constant. We remark that the constant ǫ0 is less than the Margulis
constant that is less than 1. In particular ℓX(α) is less than 1 and it can be put in
the constant. The terms ℓX(βQ) and ℓXn

(βQ) can be estimated with K as above.
Moreover, nℓX(α) = t. Transforming the formula of Lemma 4.5 in this way, we get
the conclusion. �

In fact, Theorem 4.6 is a particular case of Choi-Rafi’s product region formula for
the length-spectrum metric. Their proof requires a more detailed and complicated
analysis, see Lemma 3.4 and Theorem 3.5 of [6]. Since we only need to consider a
particular curve β to give a lower bound, we don’t need the general formula.
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5. Structure on the length-spectrum Teichmüller space

The goal of this section is to show how bad can be the inclusion (Tqc, dqc) →
(Tls, dls). In Section 6, we will use some of the results of this section to prove
connectedness of (Tls, dls)

Given a surface S, we define a proper subsurface S′ of S to be an open subset
of S such that the frontier ∂S is a union of simple closed essential curves of S. If
X is a complex structure on S and if S′ is a proper subsurface of S, the restriction
of X to S′ is the complex structure that we have on the proper subsurface X ′ that
is homotopic to S and such that the boundary curves of X ′ are geodesics for the
intrinsic hyperbolic metric of X . The intrinsic metric of X ′ is the restriction of the
intrinsic metric of X .

Proposition 5.1. Consider an exhaustion of S by a sequence of subsurfaces with
boundary:

S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · · and S = ∪∞
n=1Sn.

Given two complex structures X,Y on S, let Xn and Yn be the complex structures
obtained by restriction of X and Y to Sn respectively. Then

(5) dls(X,Y ) = lim
n→∞

dls(Xn, Yn).

Proof. From the definition, for any ǫ > 0, there exists a simple closed curve γ on
Σ such that

dls(X,Y ) <
1

2

∣

∣

∣

∣

log
ℓX(γ)

ℓY (γ)

∣

∣

∣

∣

+ ǫ.

Such a curve γ must lie in some subsurface Σn0
. As a result,

dls(X,Y ) < dls(Xn0
, Yn0

) + ǫ.

Since dls(Xn, Yn) is increasing and ǫ is arbitrary, we conclude that

dls(X,Y ) ≤ lim
n→∞

dls(Xn, Yn).

The other side of (5) is obvious. �

LetR be a hyperbolic surface of infinite type with a geodesic pants decomposition
P = {Ci}. In the rest of this section, we always assume that the pair (R,P)
is upper-bounded and that it admits short interior curves, i.e. that there is a
sequence of curves of the decomposition αk = Cik contained in the interior of R
with ℓR(αi) → 0. Note that for any pointX ∈ Tls(R), the geodesic representative of
P satisfies the same upper-boundedness property and admits short interior curves.

The following result was proved in [13] (see also [3, Example 5.1]). The proof
here is simpler.

Proposition 5.2. Under the above assumptions, the inverse of the inclusion map
I restricted to Tqc(R): (Tqc(R), dls) → (Tqc(R), dqc) is nowhere continuous. More
precisely, for any X ∈ Tqc(R), there is a sequence Xn ∈ Tqc(R) with dqc(X,Xn) →
∞ while dls(X,Xn) → 0.

Proof. Let X ∈ Tqc(R). Assume that ℓX(αn) = Cin = ǫn → 0. Let Xn = τ tnαn
(X),

with tn = log | log ǫn| → ∞.
By Corollary 4.2,

dls(X,Xn) ≤
log | log ǫn|
2C| log ǫn|

,

which tends to 0 as n → ∞. On the other hand, Corollary 3.3 shows that
dqc(X,Xn) → ∞. �
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Remark 5.3. There exist hyperbolic surfaces R with no pants decomposition satis-
fying Shiga’s property, but where the space (Tqc(R), dqc) is topologically equivalent
to the space (Tqc(R), dls), see Kinjo [10]. It would be interesting to know that
whether the two metrics in Kinjo’s examples are locally bi-Lipschitz.

Proposition 5.4 (Boundary point). Under the above assumptions, there exists a
point in Tls(R) \ Tqc(R) that can be approximated by a sequence in Tqc(R) with the
length-spectrum metric.

Proof. Let X ∈ Tqc(R). By assumption, there exists a sequence of simple closed
curves αn such that ℓX(αn) = ǫn → 0. Let Xn = τ tnαn

(Xn−1) = τ tnαn
◦ · · · ◦ τ t2α2

◦
τ t1α1

(X), with tn = log | log ǫn| → ∞. Define X∞ as the surface obtained from X by
a twist of magnitude ti along αi for every i.

By Inequality (4), dqc(X,Xn) → ∞ and dqc(X,X∞) = ∞.
For any simple closed curve γ on X , by an argument similar to that of the proof

of Proposition 4.1 and Corollary 4.2, we have

dls(X,X∞) ≤ sup
γ∈S

∑∞
n=1 i(γ, αn) log | log ǫn|

2C
∑∞

n=1 i(γ, αn)| log ǫn|
.

To see that the right hand side is uniformly bounded (independently of γ), we
can use the inequality

∑∞
n=1 xi

∑∞
n=1 yi

≤
∞
∑

n=1

xi

yi
,

that holds for positive values of xi and yi. To see this just note that all terms of

∑k
n=1 xi also appear in the product

k
∑

n=1

xi

yi

k
∑

n=1

yi. With this inequality we can see

that
∑∞

n=1 i(γ, αn) log | log ǫn|
∑∞

n=1 i(γ, αn)| log ǫn|
≤

∞
∑

n=1

log | log ǫn|
| log ǫn|

.

Moreover, the last sum is controlled by
∫∞

log | log ǫ1|
e−xxdx, which is bounded.

Note that

dls(Xn, X∞) ≤ sup
γ∈S

∑∞
k=n+1 i(γ, αk) log | log ǫk|

2C
∑∞

k=n+1 i(γ, αk)| log ǫn|
.

Since the interval
∫∞

log | log ǫn|
e−xxdx tends to zero as n tends to infinity, we have

dls(Xn, X∞) → 0. �

The above proposition shows that dls is not complete when restricted to Tqc(R).
This result was already obtained in [3] and the proof we give here is more direct.

Proposition 5.5 (Nowhere open). With the assumptions above, in the metric
space (Tls(R), dls), any open neighborhood of a point X ∈ Tqc(R) contains a point
in Tls(R) \ Tqc(R).

Proof. As above, fix tk = log | log ǫk| → ∞ and assume that ℓX(αn) = ǫn → 0. We
let Yn be the surface obtained from X by a twist of magnitude ti along αi for every
i ≥ n. Then we can apply the proof of Proposition 5.4. �

Proposition 5.5 is also a consequence of Theorem 5.8 below.

Theorem 5.6. With the assumptions above, the space (Tqc(R), dls) is not dense in
the space (Tls(R), dls).
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Proof. We will show that there exists a point in Tls(R) which is not a limit point
of Tqc(R) with the length-spectrum metric.

Start with a point X ∈ Tqc(R). Assume that ℓX(αn) = ǫn → 0. Let Yn =
τTn

αn
(Xn−1) = τTn

αn
◦ · · · ◦ τT2

α2
◦ τT1

α1
(X), with Tn = N | log ǫn| → ∞ where N is a fixed

positive constant. In this proof, we could have taken N = 1, but taking a general
N is important for the proof of Proposition 5.7 below. Define Y∞ as the surface
obtained from X by a twist of magnitude Ti along αi for every i. It is not hard to
see that Y∞ ∈ Tls(R) and, in fact,

(6) dls(X,Y∞) ≤ N

2C
.

Suppose that there is a sequence of Xk ∈ Tqc(R), such that dls(Y∞, Xk) → 0 as
k → ∞. Denote the difference of the twist coordinates of each Xk from X (with
respect to the pants decomposition P) by (τk(Ci)). Since the pants decomposition
is upper-bounded and Xk ∈ Tqc(R), we have supi |τk(Ci)| < ∞, since otherwise,
Corollary 3.3 would imply dqc(X,Xk) = ∞.

Note that for each Xk, its difference of twist coordinates with Y∞ is equal to

(1) Tn − τk(αn), for each αn;
(2) −τk(Ci), for each Ci ∈ P \ {αn}.

For each αn, choose a simple closed curves βn as in the construction before Theorem
4.6; then, by theorem 4.6 we have

dls(Xk, Y∞) ≥ sup
n

1

2
log

(N + 2)| log ǫn| − C − τk(αn)

2| log ǫn|+ C
.

The right hand side of the above inequality has a positive lower bound that is
independent of k (because τk(αn) is bounded). As a result, the sequence Xk cannot
approximate Y∞ in the length-spectrum metric. �

Denote the closure of Tqc(R) in Tls(R) (with the length-spectrum metric) by

Tqc(R). By Theorem 5.6, Tls(R)− Tqc(R) is not empty.

Proposition 5.7. Under the assumptions above, for any X ∈ Tqc(R), there is a

sequence of points Zk ∈ Tls(R)− Tqc(R), such that dls(X,Zk) → 0.

Proof. For any X ∈ Tqc(R), we let Zk be the same as Y∞, which we constructed in
the proof of Theorem 5.6, by setting N = 1

k for each k.

As we have shown before, Zk ∈ Tls(R) − Tqc(R). Moreover, by inequality (6),
we have

dls(X,Zk) ≤
1

2Ck
,

which tends to 0 as k tends to ∞. �

Using the previous proposition, we can prove now the following result:

Theorem 5.8. Under the assumptions above, the space (Tqc(R), dls) is nowhere
dense in (Tls(R), dls).

Proof. This is equivalent to prove that Tqc(R) has no interior point. Consider an

arbitrary Y ∈ Tqc(R) and an arbitrary ǫ > 0. If Y ∈ ∂Tqc(R), then we let X be a
point in Tqc(R) such that dls(X,Y ) < ǫ

2 . If Y ∈ Tqc(R), we just set X = Y . By

Proposition 5.7, there is a point Z ∈ Tls(R)− Tqc(R) such that dls(X,Z) < ǫ
2 . By

the triangle inequality, dls(Y, Z) < ǫ. �
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6. Connectedness of the length-spectrum Teichmüller space

In this section, we will prove that, if (R,P) is upper-bounded but does not satisfy
Shiga’s property, then (Tls(R), dls) is path-connected.

Assume that supi ℓR(Ci) ≤ M . We associate to R the Fenchel-Nielsen coordi-
nates

((ℓR(Ci), τR(Ci)))i=1,2,··· ,

and we choose the twist coordinates in such a way that |τR(Ci)| < ℓR(Ci).
Consider now an arbitrary X ∈ Tls(R), with Fenchel-Nielsen coordinates

((ℓX(Ci), τX(Ci)))i=1,2,··· .

We write X = (ℓX(Ci), τX(Ci)) for simplicity.

Lemma 6.1. Suppose that dls(R,X) < 2K. We can find a hyperbolic metric
Y ∈ Tqc(R), with Fenchel-Nielsen coordinates Y = (ℓY (Ci), τY (Ci)), such that
ℓY (Ci) = ℓX(Ci) and |τY (Ci)− τR(Ci)| < 2eKℓR(Ci) ≤ 2eKM .

Proof. Using a theorem of Bishop [5], for any two geodesic pair of pants P and Q,
there is a quasiconformal map from P to Q, which satisfies

(1) The quasiconformal dilatation of the map is less than 1+Cdls(P,Q), where
C > 0 depends on an upper bound of dls(P,Q) and the boundary length of
P .

(2) The map is affine on each of the boundary components.

Cut R into pairs of pants along P. We use Bishop’s construction [5] to deform
each hyperbolic pair of pants, with boundary lengths ℓR(·) into a pair of pants
with boundary lengths ℓX(·). Then we patch together the new hyperbolic pairs of
pants to get a new hyperbolic metric Y homeomorphic to R, in the following way.
Suppose two pairs of pants P1, P2 are joined at α ∈ P and deformed into Q1, Q2.
Then we patch together Q1 and Q2 by identifying the common image α by an
affine map. In this way, the quasiconformal map between pairs of pants provided
by Bishop can be extended to a global quasiconformal map between R and Y , with
dilatation bounded by

1 + C sup
i

| log ℓX(Ci)

ℓR(Ci)
|,

where C is a positive constant depending on K,M .
As a result,

2dqc(R, Y ) ≤ log(1 + C sup
i

| log ℓX(Ci)

ℓR(Ci)
|) ≤ C sup

i
| log ℓX(Ci)

ℓR(Ci)
|.

Let Y = (ℓY (Ci), τY (Ci)). Then, it follows from our construction that |τY (Ci)| ≤
eKℓR(Ci) and |τY (Ci)− τR(Ci)| ≤ 2eKℓR(Ci). �

Now we construct a continuous path in Tls(R) from Y to X by varying the twist
coordinates. First we need the following result.

Theorem 6.2. The hyperbolic structure X = (ℓX(Ci), τX(Ci)) lies in Tls(R) if and
only if there is a constant N > 0 such that for each i,

∣

∣

∣

∣

log
ℓX(Ci)

ℓY (Ci)

∣

∣

∣

∣

< N

and

|τX(Ci)− τR(Ci)| < N max{| log ℓR(Ci)|, 1}.
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Proof. By Lemma 6.1, we only need to consider the case where ℓX(Ci) = ℓR(Ci)
for each i. In this case, X is a multi-twist deformation of R along P. If for each i,

|τX(Ci)− τR(Ci)| < N max{| log ℓR(Ci)|, 1},
then we can use the proof of Theorem 5.6 to show that dls(R,X) < ∞.

Conversely, suppose that dls(R,X) < ∞ and that there is a subsequence {αn}
of P, such that

|τX(αn)− τR(αn)| > N max{| log ℓR(αn)|, 1}.
If there is a subsequence of {αn}, still denoted by {αn}, with length ℓR(αn)

tending to zero, then, by Theorem 4.6, we have dls(R,X) = ∞, which contradicts
our assumption. If {ℓR(αn)} is bounded below (and bounded above by assumption),
then it also follows from Proposition 3.3 of [4] that dls(R,X) = ∞. As a result,
there is a sufficiently large constant N such that for each i,

|τX(Ci)− τR(Ci)| < N max{| log ℓR(Ci)|, 1}.
�

Now we can prove the following:

Theorem 6.3. If (R,P) is upper-bounded but does not satisfy Shiga’s property,
then (Tls(R), dls) is path-connected.

Proof. Given any X = (ℓX(Ci), τX(Ci)) in Tls(R) with dls(R,X) < 2K, we first
construct the point Y = (ℓY (Ci), τY (Ci)) as we did in Lemma 6.1. Then we have
ℓY (Ci) = ℓX(Ci) and |τY (Ci)− τR(Ci)| < 2KM for each Ci. By Theorem 6.2, we
also have

|τX(Ci)− τY (Ci)| < N max{| log ℓR(Ci)|, 1},
if we choose N sufficiently large (depending on K,M).

Now we use the multi-twist deformation to construct a path in Tls(R) connecting
Y and X , by letting Yt = (ℓX(Ci), (1− t)τY (Ci)+ tτX(Ci), 0 ≤ t ≤ 1. Theorem 6.2
shows that Yt lies in Tls(R).

Moreover, we can use the proof of Proposition 5.4 to prove that

dls(Ys, Yt) ≤
(N + 2eKM)|s− t|

2C
.

If we take the Teichmüller geodesic path from R to Y , and then take the path
obtained by the multi-twist deformations from Y to X , then we get a continuous
(in fact, Lipschitz) path in Tls(R) connecting R and X . �

The following question remains open:

Question 6.4. Suppose that (R,P) is upper-bounded but does not satisfy Shiga’s
condition. Is (Tls(R), dls) contractible?
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