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Symbolic preconditioning techniques
for linear systems of partial differential
equations

T. Cluzeau1, V. Dolean2, F. Nataf3, and A. Quadrat4

1 Introduction

Some algorithmic aspects of systems of PDEs based simulations can be better
clarified by means of symbolic computation techniques. This is very impor-
tant since numerical simulations heavily rely on solving systems of PDEs.
For the large-scale problems we deal with in today’s standard applications,
it is necessary to rely on iterative Krylov methods that are scalable (i.e.,
weakly dependent on the number of degrees on freedom and number of sub-
domains) and have limited memory requirements. They are preconditioned
by domain decomposition methods, incomplete factorizations and multigrid
preconditioners. These techniques are well understood and efficient for scalar
symmetric equations (e.g., Laplacian, biLaplacian) and to some extent for
non-symmetric equations (e.g., convection-diffusion). But they have poor per-
formances and lack robustness when used for symmetric systems of PDEs, and
even more so for non-symmetric complex systems (fluid mechanics, porous
media. . . ). As a general rule, the study of iterative solvers for systems of
PDEs as opposed to scalar PDEs is an underdeveloped subject.

We aim at building new robust and efficient solvers, such as domain de-
composition methods and preconditioners for some linear and well-known
systems of PDEs. In particular, we shall concentrate on Neumann-Neumann
and FETI type algorithms which are very popular for scalar symmetric posi-
tive definite second order problems (see, for instance, [9, 8, 10]), and to some
point to different other problems, like the advection-diffusion equations [1],
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plate and shell problems [14] or the Stokes equations [12]. This work is mo-
tivated by the fact that, in some sense, these methods applied to systems
of PDEs (such as Stokes, Oseen, linear elasticity) are less optimal than the
domain decomposition methods for scalar problems. Indeed, in the case of
two subdomains consisting of the two half planes, it is well-known that the
Neumann-Neumann preconditioner is an exact preconditioner (the precondi-
tioned operator is the identity operator) for the Schur complement equation
for scalar equations like the Laplace problem. Unfortunately, this does not
hold in the vector case.

In order to achieve this goal, we use algebraic methods developed in con-
structive algebra, D-modules (differential modules) and symbolic computa-
tion such as the so-called Smith or Jacobson normal forms and Gröbner basis
techniques for transforming a linear system of PDEs into a set of independent
PDEs. These algebraic and symbolic methods provide important intrinsic in-
formation (e.g., invariants) about the linear system of PDEs to solve. These
build-in properties need to be taken into account in the design of new numer-
ical methods, which can supersede the usual ones based on a direct extension
of the classical scalar methods to linear systems of PDEs.

By means of these techniques, it is also possible to transform the linear
system of PDEs into a set of decoupled PDEs under certain types of invertible
transformations. One of these techniques is the so-called Smith normal form
of the matrix of OD operators associated with the linear system. This normal
form was introduced by H. J. S. Smith (1826-1883) for matrices with integer
entries (see, e.g., [15], Theorem 1.4). The Smith normal form has already
been successfully applied to open problems in the design of Perfectly Matched
Layers (PML). The theory of PML for scalar equations was well-developed
and the usage of the Smith normal form allowed to extend these works to
systems of PDEs. In [11], a general approach is proposed and applied to the
particular case of the compressible Euler equations that model aero-acoustic
phenomena.

For domain decomposition methods, we have obtained several preliminary
results on compressible Euler equations [6], Stokes and Oseen systems [7].
For example, in the new algorithm developed in [7], problems with boundary
conditions using tangential stress and normal velocity are solved in each
subdomain. In this work, we aim at finding a systematic way to build optimal
algorithms for given PDE systems, while in previous studies the computations
were performed heuristically.

Notations. If R is a ring, then Rp×q is the set of p × q matrices with
entries in R and GLp(R) is the group of invertible matrices of Rp×p, namely
GLp(R) = {E ∈ Rp×p | ∃ F ∈ Rp×p : E F = F E = Ip}. An element
of GLp(R) is called an unimodular matrix. A diagonal matrix with elements
di’s will be denoted by diag(d1, . . . , dp). If k is a field (e.g., k = Q, R, C),
then k[x1, . . . , xn] is the commutative ring of polynomials in x1, . . . , xn with
coefficients in k. In what follows, k(x1, . . . , xn) will denote the field of rational
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functions in x1, . . . , xn with coefficients in k. Finally, if r, r′ ∈ R, then r′ | r
means that r′ divides r, i.e., there exists r′′ ∈ R such that r = r′′ r′.

2 Smith normal form of linear systems of PDEs

We first introduce the concept of Smith normal form of a matrix with polyno-
mial entries (see, e.g., [15], Theorem 1.4). The Smith normal form is a math-
ematical technique which is classically used in module theory, linear algebra,
symbolic computation, ordinary differential systems, and control theory. It
was first developed to study matrices with integer entries. But, it was proved
to exist for any principal ideal domain (namely, a commutative ring R whose
ideals can be generated by an element of R) [13]. Since R = k[s] is a principal
ideal domain when k is a field, we have the following theorem only stated for
square matrices.

Theorem 1. Let k be a field, R = k[s], p a positive integer and A ∈ Rp×p.
Then, there exist two matrices E ∈ GLp(R) and F ∈ GLp(R) such that

A = E S F,

where S = diag(d1, . . . , dp) and the di ∈ R satisfying d1 | d2 | · · · | dp. In par-
ticular, we can take di = mi/mi−1, where mi is the greatest common divisor
of all the i×i-minors of A (i.e., the determinants of all i×i-submatrices of A),
with the convention that m0 = 1. The matrix S = diag(d1, . . . , dp) ∈ Rp×p is
called a Smith normal form of A.

We note that E ∈ GLp(R) is equivalent to det(E) is an invertible polyno-
mial, i.e., det(E) ∈ k \ {0}. Also, in what follows, we shall assume that the
di’s are monic polynomials, i.e., their leading coefficients are 1, which will
allow us to call the matrix S = diag(d1, . . . , dp) the Smith normal form of
A. But, the unimodular matrices E and F are not uniquely defined by A.
The proof of Theorem 1 is constructive and gives an algorithm for computing
matrices E, S and F . The computation of Smith normal forms is available
in many computer algebra systems such as Maple, Mathematica, Magma or
Sage.

Consider now the following model problem in Rd with d = 2, 3:

Ld(w) = g in Rd, |w(x)| → 0 for |x| → ∞. (1)

For instance, Ld(w) can represent the Stokes/Oseen/linear elasticity opera-
tors in dimension d. Moreover, if we suppose that the inhomogeneous linear
system of PDEs (1) has constant coefficients, then it can be rewritten as

Ad w = g, (2)
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where Ad ∈ Rp×p, R = k[∂x, ∂y] (resp., R = k[∂x, ∂y, ∂z]) for d = 2 (resp.,
d = 3) and k is a field.

In what follows, we shall study the domain decomposition problem in
which Rd is divided into subdomains. We assume that the direction normal
to the interface of the subdomains is particularized and denoted by ∂x. If
Rx = k(∂y)[∂x] for d = 2 or Rx = k(∂y, ∂z)[∂x] for d = 3, then, computing
the Smith normal form of the matrix Ad ∈ Rp×p

x , we obtain Ad = E S F ,
where S ∈ Rp×p

x , E ∈ GLp(Rx) and F ∈ GLp(Rx). In particular, the entries
of the matrices E, S, F are polynomials in ∂x, and E and F are unimodular
matrices, i.e., det(E), det(F ) ∈ k(∂y) \ {0} if d = 2 or det(E), det(F ) ∈
k(∂y, ∂z) \ {0} if d = 3. We recall that the matrices E and F are not unique
contrary to S. Then, using the Smith normal form of Ad, we have:

Ad w = g ⇔ {ws := F w, Sws = E−1 g}. (3)

In other words, (3) is equivalent to the uncoupled linear system:

Sws = E−1 g. (4)

Since E ∈ GLp(Rx) and F ∈ GLp(Rx), the entries of their inverses are still
polynomial in ∂x. Thus, applying E−1 to the right-hand side g of Ad w = g

amounts to taking k-linear combinations of derivatives of g with respect to
x. If Rd is split into two subdomains R− × Rd−1 and R+ × Rd−1, then the
application of E−1 and F−1 to a vector can be done for each subdomain
independently. No communication between the subdomains is necessary.

In conclusion, it is enough to find a domain decomposition algorithm for
the uncoupled system (4) and then transform it back to the original one (2)
by means of the invertible matrix F over Rx. This technique can be applied
to any linear system of PDEs once it is rewritten in a polynomial form. The
uncoupled system acts on the new dependent variables ws, which we shall
further call Smith variables since they are issued from the Smith normal form.

Remark 1. Since the matrix F is used to transform (4) to (2) (see the first
equation of the right-hand side of (3)) and F is not unique, we need to find a
matrix F as simple as possible (e.g., F has minimal degree in ∂x) so that to
obtain a final algorithm whose form can be used for practical computations.

Example 1 Consider the two dimensional elasticity operator defined by
E2(u) := −µ∆u − (λ + µ)∇ divu. If we consider the commutative poly-
nomial rings R = Q(λ, µ)[∂x, ∂y], Rx = Q(λ, µ)(∂y)[∂x] = Q(λ, µ, ∂y)[∂x] and

A2 =

(

(λ+ 2µ) ∂2
x + µ∂2

y (λ+ µ) ∂x ∂y

(λ+ µ) ∂x ∂y µ∂2
x + (λ+ 2µ) ∂2

y

)

∈ R2×2

the matrix of PD operators associated with E2, i.e., E2(u) = A2 u, then the
Smith normal form of A2 ∈ R2×2

x is defined by:
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SA2
=

(

1 0

0 ∆2

)

. (5)

The particular form of SA2
shows that, over Rx, the system of PDEs for the

linear elasticity in R2 is algebraically equivalent to a biharmonic equation.

Example 2 Consider the two dimensional Oseen operator defined by

O2(w) = O2(v, q) := (cv − ν ∆v + b · ∇v +∇q,∇ · v),

where b is the convection velocity. If b = 0, then we obtain the Stokes operator
S2(w) = S2(v, q) := (cv − ν ∆v + ∇q,∇ · v). If R = Q(b1, b2, c, ν)[∂x, ∂y],
Rx = Q(b1, b2, c, ν)(∂y)[∂x] = Q(b1, b2, c, ν, ∂y)[∂x] and

O2 =







−ν (∂2
x + ∂2

y) + b1 ∂x + b2 ∂y + c 0 ∂x

0 −ν (∂2
x + ∂2

y) + b1 ∂x + b2 ∂y + c ∂y

∂x ∂y 0







the matrix of PD operators associated with O2, i.e., O2(w) = O2 w, then the
Smith normal form of O2 ∈ R3×3

x is defined by:

SO2
=







1 0 0

0 1 0

0 0 ∆L2






, L2 = c− ν ∆+ b · ∇. (6)

From the form of SO2
we can deduce that the two-dimensional Oseen equa-

tions can be mainly characterized by the scalar fourth order PD operator
∆L2. This is not surprising since the stream function formulation of the
Oseen equations for d = 2 gives the same PDE for the stream function.

Remark 2. The above applications of Smith normal forms suggest the follow-
ing conclusion: One should design an optimal domain decomposition method
for the biharmonic operator ∆2 (resp., L2 ∆) in the case of linear elasticity
(resp., the Oseen/Stokes equations) for the two-dimensional problems, and
then transform it back to the original system.

3 An optimal algorithm for the biharmonic operator

The Neumann-Neumann or FETI methods are very well-known for some
symmetric scalar equations such as Laplace equations. We can give an ex-
ample of such a method in its iterative version. For simplicity, consider a
decomposition of the domain Ω = R2 into two half planes Ω1 = R− ×R and
Ω2 = R+ × R. Let the interface {0} × R be denoted by Γ and (ni)i=1,2 be
the outward normal of (Ωi)i=1,2. We consider the following problem:
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−∆u = f in R2, |u(x)| → 0 for |x| → ∞. (7)

The following algorithm is optimal in the sense that it converges in two iter-
ations.

Algorithm 1 Let un
Γ be the interface solution at iteration n. We obtain un+1

Γ

from un
Γ by the following iterative procedure

{

−∆ui,n = f, in Ωi,

ui,n = un
Γ , on Γ,







−∆ũi,n = 0, in Ωi,

∂ũi,n

∂ni

= −
1

2

(

∂u1,n

∂n1
+

∂u2,n

∂n2

)

, on Γ,
(8)

and then un+1
Γ = un

Γ + 1
2

(

ũ1,n + ũ2,n
)

.

Since the biharmonic operator seems to play a key role in the design of a new
algorithm for both Stokes and elasticity problem in two dimensions, we need
to build an optimal algorithm for it. We consider the following problem:
Find φ : R2 → R such that:

∆2φ = g in R2, |φ(x)| → 0 for |x| → ∞. (9)

An optimal algorithm is given by (the proof can be found in [7]):

Algorithm 2 Let (φn
Γ , Dφn

Γ ) be the interface solution at iteration n (sup-
pose also that φ0

Γ = φ0|Γ , Dφ0
Γ = (∆φ0)Γ ). We obtain (φn+1

Γ , Dφn
Γ ) from

(φn
Γ , Dφn

Γ ) by the following iterative procedure











−∆2φi,n = f, in Ωi,

φi,n = φn
Γ , on Γ,

∆φi,n = Dφn
Γ , on Γ,



























−∆2φ̃i,n = 0, in Ωi,

∂φ̃i,n

∂ni

= −
1

2

(

∂φ1,n

∂n1
+

∂φ2,n

∂n2

)

, on Γ,

∂∆φ̃i,n

∂ni

= −
1

2

(

∂∆φ1,n

∂n1
+

∂∆φ2,n

∂n2

)

, on Γ,

(10)

and then φn+1
Γ = φn

Γ +
1
2

(

φ̃1,n + φ̃2,n
)

, Dφn+1
Γ = Dφn

Γ +
1
2

(

∆̃φ1,n + ∆̃φ2,n
)

.

This is a generalization of the Neumann-Neumann algorithm for the ∆ op-
erator. Now, in the case of the two dimensional linear elasticity, φ rep-
resents the second component of the vector of Smith variables, that is,
φ = (ws)2 = (Fu)2, where u = (u, v) is the displacement field. Hence,
we need to replace φ with (Fu)2 into Algorithm 2, and then simplify it using
algebraically admissible operations. Thus, one can obtain an optimal algo-
rithm for the Stokes equations or linear elasticity depending on the form of
F . From here comes the necessity of choosing in a proper way the matrix
F (which is not unique), used to define the Smith normal form, in order to
obtain a “good” algorithm for the systems of PDEs from the optimal one
applied to the biharmonic operator. In [6] and [7], the computation of the
Smith normal forms for the Euler equations and the Stokes equations was
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done by hand or using the Maple command Smith. Surprisingly, the corre-
sponding matrices F have provided good algorithms for the Euler equations
and the Stokes equations even if the approach was entirely heuristic.

4 Relevant Smith variables: A completion problem

The efficiency of our algorithms heavily relies on the simplicity of the Smith
variables, that is on the entries of the unimodular matrix F used to compute
the Smith normal form of the matrix A. In this section, within a construc-
tive algebraic analysis approach, we develop a method for constructing many
possible Smith variables. Taking into account physical aspects, the user can
then choose the simplest one among them. We are going to show that the
problem of finding Smith variables can be reduced to a completion problem.
First of all, we very briefly introduce some notions of module theory [13].

Given a ring R (e.g., R = k[∂1, . . . , ∂d], where k is a field (e.g., Q, R, C)),
the definition of a R-module M is similar to the one of a vector space but
where the scalars are taken in the ring R and not in a field as for vector
spaces. If A ∈ Rp×p, then the kernel of the R-linear map (R-homomorphism)
.A : R1×p −→ R1×p, defined by (.A)(r) = rA, is the R-module defined by:

kerR(.A) = {r ∈ R1×p | rA = 0}.

The image imR(.A) of .A, simply denoted by R1×p A, is the R-module defined
by all the R-linear combinations of the rows of A. The cokernel cokerR(.A) of
.A is the factor R-module defined by cokerR(.A) = R1×p/(R1×p A). To sim-
plify the notation, we shall denote this module by M . M is nothing more than
the R-module of the row vectors of R1×p modulo the R-linear combinations of
rows of A. Let R1 = k(∂2, . . . , ∂d)[∂1], Ri = k(∂1, . . . , ∂i−1, ∂i+1, . . . , ∂d)[∂i],
i = 2, . . . , d − 1, and Rd = k(∂1, . . . , ∂d−1)[∂d] be the polynomial rings in ∂i
with coefficients in the field of rational functions in all other PD operators.

Since the R-module M = R1×p/(R1×p A) plays a fundamental role in
what follows, let us describe it in terms of generators and relations. Let
{fj}j=1,...,p be the standard basis of R1×p, namely fj is the row vector of
R1×p defined by 1 at the jth position and 0 elsewhere, and mj the residue
class of fj in M . Then, {mj}j=1,...,p is a family of generators of the R-module
M , i.e., for any m ∈ M , then there exists r = (r1, . . . , rp) ∈ R1×p such that
m =

∑p
j=1 rj mj [2]. The family of generators {mj}j=1,...,p of M satisfies the

relations
∑p

j=1 Aij mj = 0 for all i = 1, . . . , p [2]. For more details, see [2, 13].
Let E, F ∈ GLp(R) be two unimodular matrices such that A = E S F ,

where S = diag(1, . . . , 1, dr+1, . . . , dq) is the Smith normal form of A. More-
over, let us split F ∈ GLp(Ri) into two parts row-wise, i.e., F = (FT

1 FT
2 )T ,

where F1 ∈ Rr×p
i , F2 ∈ R

(p−r)×p
i , and r is the number of ones in S. Then:
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A = E S F ⇔

(

F1

S2 F2

)

= E−1 A, S2 = diag(dr+1, . . . , dp). (11)

Cleaning the denominators of the entries of S2, we can assume without loss
of generality that the dj ’s belong to R. Then, (11) shows that the jth row of
F2 must be an element of M annihilated by dj . Consequently, the possible
F2’s can be found by computing a family of generators of the R-modules
annM (dj) = {m ∈ M | dj m = 0} for j = r + 1, . . . , p. These R-modules can
be computed by means of Gröbner basis techniques (see, e.g., [5]). For more
details, see [4]. Hence, we get S2 F2 = G2 A for some G2 ∈ R(p−r)×p. Then,
for each choice for F2, we are reduced to the following completion problem:

Find F1 ∈ Rr×p
i such that F = (FT

1 FT
2 )T ∈ GLp(Ri) and F1 = G1 A

for some G1 ∈ Rr×p
i .

(12)

Example 3 Let R = Q(λ, µ)[∂x, ∂y, ∂z] be the commutative polynomial ring
of PD operators in ∂x, ∂y and ∂z with coefficients in the field Q(λ, µ),

A =







−(λ+ µ) ∂2
x − µ∆ −(λ+ µ) ∂x ∂y −(λ+ µ) ∂x ∂z

−(λ+ µ) ∂x ∂y −(λ+ µ) ∂2
y − µ∆ −(λ+ µ) ∂y ∂z

−(λ+ µ) ∂x ∂z −(λ+ µ) ∂y ∂z −(λ+ µ) ∂2
z − µ∆






∈ R3×3

the matrix of PD operators defining the elastostatic equations in R3, where
∆ = ∂2

x + ∂2
y + ∂2

z , and the associated R-module M = R1×3/(R1×3 A). The
Smith normal form of A with respect to x is given by S = diag(1, ∆,∆2).
With the above notations, we get r = 1 and S2 = diag(∆,∆2) ∈ R2×2.
Let Rx = Q(λ, µ)(∂y, ∂z)[∂x], F1 ∈ R1×3

x and F2 ∈ R2×3
x . Then, the first

(resp. second) row of F2 must be an element of M annihilated by ∆ ∈ R
(resp. ∆2 ∈ R). Using the OreModules package [3], we find that families of
generators of annM (∆) and annM (∆2) are respectively defined by the residue
classes of the rows of the following matrices in M :

A∆ =











0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

∂x ∂y ∂z











, A∆2 = I3.

That simply means that a family of generators of annM (∆) is given by the
divergence and the curl of the displacement field and for annM (∆2) by the
components of the displacement fields. Now, the first (resp., second) row of
F2 must be a R-linear combination of the rows of A∆ (resp., A∆2). We thus
have several choices and for each of them, we are reduced to a completion
problem (12). For instance, choosing the 3th row of A∆ (resp., the 3rd row of
A∆2) as first (resp., second) row of F2, namely
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F2 =

(

0 −∂z ∂y

0 0 1

)

,

we then have to find a row vector F1 ∈ R1×3
x such that F1 = G1 A for some

G1 ∈ R1×3
x and F = (FT

1 FT
2 )T ∈ GL3(Rx). If such a row vector F1 exists,

then the matrix F = (FT
1 FT

2 )T provides a good choice of Smith variables.

We first give two necessary conditions for a choice of F2 to provide a solution
of the completion problem (straightforward from the relation A = E S F ):

Lemma 1. With the above notations, given F2 ∈ R(p−r)×p, necessary condi-
tions for the solvability of the completion problem (12) are:

1. F2 admits a right inverse over Ri, i.e. ∃ S2 ∈ R
p×(p−r)
i : F2 S2 = Ip−r.

2. There exists a matrix G2 ∈ R
(p−r)×p
i such that S2 F2 = G2 A.

Since Ri is a principal ideal domain (namely, every ideal of Ri can be gen-
erated by an element of Ri), Condition 1 of Lemma 1 is equivalent to the

condition that the Ri-module cokerRi
(.F2) = R1×p

i /(R
1×(p−r)
i F2) is free of

rank r, i.e. cokerRi
(.F2) admits a basis of cardinality r [2, 13]. It is equiva-

lent to the existence of two matrices Q2 ∈ Rp×r
i and T2 ∈ Rr×p

i such that

kerRi
(.Q2) = R

1×(p−r)
i F2 and T2 Q2 = Ir [2]. Such a matrix Q2 is called an

injective parametrization of cokerRi
(.F2). Matrices Q2 and T2 can be com-

puted by Gröbner basis techniques [2]. The corresponding algorithms are im-
plemented in the OreModules package [3]. The next theorem characterizes
the solvability of the completion problem (12).

Theorem 2 ([4]). Let F2 ∈ R(p−r)×p admit a right inverse over Ri and sat-

isfy S2 F2 = G2 A for some G2 ∈ R
(p−r)×p
i . If Q2 is an injective parametriza-

tion of the free Ri-module cokerRi
(.F2) of rank r, and T2 ∈ Rr×p

i a left
inverse of Q2, then a necessary and sufficient condition for the existence
of a solution of the completion problem (12) is the existence of two matri-

ces H ∈ R
r×(p−r)
i and G1 ∈ Rr×p

i such that T2 = G1 A − H F2. Then,
F1 = T2 + H F2 = G1 A is a solution of the completion problem (12), i.e.,
F = ((T2 + H F2)

T FT
2 )T ∈ GLp(Ri) is such that A = E S F for some

E ∈ GLp(Ri), where S is the Smith normal form of A.

From the explanations above, we deduce the following algorithm that,
given A, S2 = diag(dr+1, . . . , dp), and a choice for F2 computed from the
calculations of annM (dj) for dj ∈ R, find (if it exists) a completion of F2.

Algorithm 3 Input: A ∈ Rp×p, S2 ∈ R(p−r)×(p−r) and F2 ∈ R(p−r)×p.
Output: A completion F = (FT

1 FT
2 )T of F2 or “No completion exists”.

1. Compute a right inverse of F2 over Ri;
2. If no right inverse exists, then RETURN “No completion exists”, Else

a. Factorize S2 F2 with respect to A over Ri;
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b. If no factorization exists, then RETURN “No completion exists”, Else
i. Compute an injective parametrization Q2 of cokerRi

(.F2);
ii. Compute a left inverse T2 of Q2 over Ri;
iii. Factorize T2 with respect to (FT

2 AT )T over Ri;
iv. If no factorization exists, then RETURN “No completion exists”,

Else note T2 = (−H G1)

(

F2

A

)

and RETURN F =

(

T2 +H F2

F2

)

.

Algorithm 3 was implemented in Maple based on the OreModules package.

Example 4 Consider again the elastostatic equations introduced in Exam-
ple 3. For the choice of F2 given at the end of Example 3, our implementation
succeeds in finding a completion and we get the following completion of F2:

F =







1 −
∂x ∂y

∂2
y+∂2

z
−

∂x ((λ+2µ) (∂2

x+∂2

y)+(2λ+3µ) ∂2

z)

(λ+µ) ∂z (∂2
y+∂2

z)

0 −∂z ∂y
0 0 1






∈ GL3(Rx).

5 Reduction of the interface conditions

In the algorithms presented in the previous sections, we have equations in the
domains Ωi and interface conditions on Γ obtained heuristically. We need to
find an automatic way to reduce the interface conditions with respect to the
equations in the domains. In this section, we show how symbolic computations
can be used to perform such reductions. The näıve idea consists in gathering
all equations and compute a Gröbner basis [5]. However, one has to keep in
mind that the independent variables do not play the same role. More precisely,
the interface conditions cannot be differentiated with respect to x since the
border of the interface is defined by x = 0. Consequently, we have developed
and implemented an alternative method in Maple using the OreModules

package, which can be sketched as follows:

1. Compute a Gröbner basis of the polynomial equations inside the domain
for a relevant monomial order;

2. Compute the normal forms of the interface conditions with respect to the
latter Gröbner basis;

3. Write these normal forms in the jet notations with respect to the inde-
pendent variable x, i.e., rewrite the derivatives ∂i

x yk of the dependent
variables yk as new indeterminates yk,i;

4. Perform linear algebra manipulations to simplify the normal forms.

For more details and explicit computations, we refer the reader to [4].
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6 Some optimal algorithms

After performing the completion and the reduction of the interface conditions,
we can give examples of optimal algorithms (elasticity and Stokes equations).

Example 5 Consider the elasticity operator:

Ed u = − div σ (u), σ(u) = µ (∇u+ (∇u)T ) + λ div u Id.

If d = 2, then the completion algorithm gives two possible choices for F :

F =

(

−
∂x (µ ∂2

x−λ ∂2

y)

(λ+µ) ∂3
y

1

1 0

)

, F =

(

1 −
(λ+µ)∂x ((3µ+2λ) ∂2

y+(2µ+λ) ∂2

x)

∂3
y

0 1

)

.

(13)
By replacing φ into (2) by (Fu)2 and re-writing the interface conditions, using
the equations inside the domain like in [7], we get two different algorithms
for the elasticity system. Note that, in the first case of (13), φ = u, and, in
the second one, φ = v (where u = (u, v)). Below, we shall write in detail the
algorithm in the second case. To simplify the writing, we denote by uτ = u·τ ,
un = u · n, σnn(u) = (σ(u) · n) · n, σnτ (u) = (σ(u) · n) · τ .

Algorithm 4 Let (un
Γ , σ

n
Γ ) be the interface solution at iteration n (suppose

also that u
0

Γ
= (u0

τ
)|Γ , σ

0

Γ
= (σsnn(u0))|Γ ). We obtain (un+1

Γ , σn
Γ ) from (un

Γ , σ
n
Γ )

by the following iterative procedure











E2(u
i,n) = f, in Ωi,

u
1,n
τi

= un
Γ , on Γ,

σnini
(ui,n) = σn

Γ , on Γ,



























E2(ũ
i,n) = 0, in Ωi,

ũi,n
τi

= −
1

2

(

u1,n
n1

+u2,n
n2

)

, on Γ,

σniτi
(ũi,n) = −

1

2

(

σn1τ1
(u1,n) + σn2τ2

(u2,n)
)

,

on Γ,
(14)

and un+1
Γ = un

Γ+
1
2

(

ũ1,n
τ1

+ ũ2,n
τ2

)

, σn+1
Γ = σn

Γ+
1
2

(

σn1n1
(ũ1,n) + σn2n2

(ũ2,n)
)

.

Remark 3. We found an algorithm with a mechanical meaning: Find the tan-
gential part of the normal stress and the normal displacement at the interface
so that the normal part of the normal stress and the tangential displace-
ment on the interface match. This is very similar to the original Neumann-
Neumann algorithm, which means that the implementation effort of the new
algorithm from an existing Neumann-Neumann is negligible (the same type of
quantities − displacement fields and efforts − are imposed at the interfaces),
except that the new algorithm requires the knowledge of some geometric
quantities, such as normal and tangential vectors. Note also that, with the
adjustment of the definition of tangential quantities for d = 3, the algorithm
is the same, and is also similar to the results in [7].
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