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Abstract: We consider the rate of convergence of the expected loss of empirically optimal vector

quantizers. Earlier results show that the mean-squared expected distortion for any fixed distribution

supported on a bounded set and satisfying some regularity conditions decreases at the rate O(logn/n).
We prove that this rate is actually O(1/n). Although these conditions are hard to check, we show that

well-polarized distributions with continuous densities supported on a bounded set are included in the

scope of this result.
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1. Introduction

Clustering is the problem of identifying groupings of similar points that are relatively far one from each
others, or, in other words, to partition the data into dissimilar groups of similar items. For a comprehensive
introduction to this topic, the reader is referred to the monograph of Graf and Luschgy [8]. Isolate meaningful
groups from a cloud of data is a topic of interest in many fields, from social science to biology. In fact this
issue originates in the theory of signal processing in the late 40’s, known as the quantization issue, or lossy
data compression (see Gersho and Gray [7] for a comprehensive approach of this topic). More precisely, let
X1, . . . , Xn denote n random variables, independent and identically distributed, drawn from a distribution P
over Rd, equipped with its Euclidean norm ‖.‖, and let Q denote a k-quantizer, that is a map from R

d to R
d

such that Card(Q(Rd)) ≤ k. Let c ∈ (Rd)k be a concatenation of k d-dimensional vectors c1, . . . , ck. Without
loss of generality we only consider quantizers of the type x 7−→ ci, where ‖x−ci‖ = minj=1,...,k ‖x− cj‖. The
ci’s are called clusters. To measure how well the quantizer Q performs in representing the source distribution,
a possible way is to look at

R(c) = E‖X −Q(X)‖2 = E min
j=1,...,k

‖X − cj‖2,

when EX2 < ∞. The goal here is to find a set of clusters ĉn, drawn from the data X1, . . . , Xn, whose
distortion is as close as possible to the optimal distortion R∗ = infc∈(Rd)k R(c). To solve the problem,
most approaches to date attempt to implement the principle of empirical error minimization in the vector
quantization context. According to this principle, good clusters can be found by searching for ones that
minimize the empirical distortion over the training data, defined by

R̂n(c) =
1

n

n
∑

i=1

(Xi −Q(Xi))
2 =

1

n

n
∑

i=1

min
j=1,...,k

‖Xi − cj‖2.

The existence of such empirically optimal clusters has been established by Graf an Luschgy [8, Theorem
4.12]. Let us denote by ĉn one of these vectors of empirically optimal clusters. If the training data represents
the source well, ĉn will hopefully perform near optimally also on the real source. Roughly, this means that
we expect R(ĉn) ≈ R∗. The problem of quantifying how good empirically designed clusters are, compared
to the truly optimal ones, has been extensively studied, see for instance Linder [10].

To reach the later goal, a standard route is to exploit the Wasserstein distance between the empirical
distribution and the source distribution, to derive upper bounds on the average distortion of empirically
optimal clusters. Following this approach, Pollard [14] proved that if E‖X‖2 < ∞, then R(ĉn) − R∗ −→ 0
almost surely, as n → ∞. More recently, Linder, Lugosi and Zeger [11], and Biau, Devroye and Lugosi [3]
showed that if the support of P is bounded, then E (R(ĉn)−R∗) = O(1/

√
n), using techniques borrowed
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from statistical learning theory. Bartlett, Linder and Lugosi [2] established that this rate is minimax over
distributions supported on a finite set of points.

However, faster rates can be achieved, using methods inspired from statistical learning theory. For example,
it is shown by Chou [6], following a result of Pollard [16], that R(ĉn)−R∗ = OP (1/n), under some regularity
conditions on the source distribution. Nevertheless, this consistency result does not provide any information
on how many training samples are needed to ensure that the average distortion of empirically optimal clusters
is close to the optimum. Antos, Györfi and György established in [1] that E(R(ĉn)−R∗) = O(log n/n) under
the same conditions, paying a logn factor to derive a non-asymptotic bound. It is worth pointing out that
the conditions cannot be checked in practice, and consequently remain of theoretical nature. Moreover, the
rate of 1/n for the average distortion can be achieved when the source distribution is supported on a finite
set of points. Consequently, an open question is to know wether this optimal rate can be attained for more
general distributions.

In the present paper, we improve previous results of Antos, György and Györfi [1], by getting rid of the logn
factor. Besides, we express Pollard’s condition in a more reader-friendly framework, involving the density
of the source distribution. To this aim we use statistical learning arguments and prove that the average
distortion of empirically optimal clusters decreases at the rate O(1/n). To get this result we use techniques
such as the localization principle borrowed from Massart, Blanchard and Bousquet [4] or Koltchinskii [9].
The condition we offer can be easily interpreted as margin-type condition, similar to the ones of Massart
and Nedelec in [13], showing a clear connection between statistical learning theory and vector quantization.

The paper is organized as follows. In Section 2 we introduce notation and definitions of interest. In Section
3 we offer our main results. These results are discussed in Section 4, and illustrated on examples such as
Gaussian mixtures or quasi-finite distribution. Finally, proofs are gathered in Section 5.

2. The quantization problem

Throughout the paper, X1, . . . , Xn is a sequence of independent R
d-valued random observations with the

same distribution P as a generic random variable X. To frame the quantization problem as a statistical
learning one, we first have to consider quantization as a contrast minimization issue. To this aim we introduce
the following notation. Let c = (c1, . . . , cn) be the set of possible clusters. The contrast function γ is defined
as

γ :

{
(

R
d
)k × R

d −→ R

(c, x) 7−→ min
j=1,...,k

‖x− cj‖2 .

Within this framework, the risk R(c) takes the form R(Q) = R(c) = Pγ(c, .), where Pf(.) means
inegration of the function f with respect to P . In the same way, if Pn denotes the empirical distribution that
is induced on R

d by the n-sample X1, . . . , Xn, we can express the empirical risk R̂n(Q) as Pnγ(c, .).
Note that, within this context, an optimal c∗ minimizes Pγ(c, .), whereas ĉn ∈ argminc∈(Rd)k Pnγ(c, .). It

is worth pointing out that the existence of both c and c
∗ are guaranteed by Graf and Luschgy [8, Theorem

4.12]. In the sequel we denote by M the set of such minimizers of the true risk Pγ(c, .), so that c
∗ ∈ M. To

measure how well a vector of clusters c performs compared to an optimal one, we will make use of the loss

ℓ(c, c∗) = R(c)−R(c∗) = P (γ(c, .)− γ(c∗, .)) .

Troughout the paper we will use the following assumptions on the source distribution. Let B(0,M) denote
the closed ball of radius M , with M ≥ 0.

Assumption 1 (Peak Power Constraint). The distribution P is such that P (B(0, 1)) = 1,

Note that Assumption 1 is stronger than the requirement E
∥

∥X2
∥

∥ < ∞, as it imposes a L∞-boundedness
condition on the random variable X . For conveniency we assume that the distribution is bounded by 1.
However, it is important to note that our results hold for random variables X bounded from above by an
arbitrary M . We will also need the following regularity requirement, first introduced by Pollard [16].
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Assumption 2 (Pollard’s regularity condition). The distribution P satisfies the following two condi-
tions:

1. P has a continuous density f with respect to Lebesgue measure on R
d,

2. The Hessian matrix of c 7−→ Pγ(c, .) is positive definite for all optimal vector of clusters c
∗.

One can point out that Condition 1 of Assumption 2 does not guarantee the existence of a second derivative
for the expectation of the contrast function. Nevertheless Assumption 1 and Condition 1 of Assumption 2 are
enough to guarantee that the map c 7−→ Pγ(c, .) is twice differentiable. Let Vi be the Voronoi cell associated
with ci, for i = 1, . . . , k. In this situation, the Hessian matrix is composed of the following d× d blocks:

H(c)i,j =

{

2P (Vi)− 2
∑

ℓ 6=i r
−1
iℓ σ

[

f(x)(x − ci)(x− ci)
t
1∂(Vi∩Vℓ)

]

for i = j

−2rij
−1σ

[

f(x)(x − ci)(x − cj)
t
1∂(Vi∩Vj)

]

for i 6= j
,

where rij = ‖ci − cj‖, ∂(Vi ∩ Vj) denotes the possibly empty common face of Vi and Vj , and σ means
integration with respect to the (d−1)-dimensional Lebesgue measure. For a proof of that statement, we refer
to Pollard [16].

When Assumption 1 and Assumption 2 are satisfied, Chou [6] proved that ℓ(ĉn, c
∗) = OP(1/n), whereas

Antos, Györfi, and György established that Eℓ(ĉn, c
∗) ≤ C logn

n , where C is a constant depending on the
distribution P .

The proof of these two results are both based on arguments which have a connection with the localization
principle ([12], [9]), which provides faster rates of convergence when the expectation and the variance of
γ(c, .) − γ(c∗, .) are connected. To prove his result, Pollard used conditions under which the distortion and
the Euclidean distance are connected, and used chaining arguments to bound from above a term which
looks like a Rademacher complexity, constrained on an area around an optimal vector of clusters. Note that
Koltchinskii [9] used a similar method to apply the localization principle. On the other hand, Antos, Györfi
and György exploited Pollard’s condition, and used a concentration inequality based on the fact that the
variance and the expectation of the distortion are connected to get their result. Interestingly, this point
of view has been developped by Blanchard, Bousquet and Massart [4] to get bounds on the classification
risk of the SVM, using the localization principle. That is the approach that will be followed in the present
document.

3. Main results

We are now in a position to state our main result.

Theorem 3.1. Assume that Assumption 1 and Assumption 2 are satisfied. Then, denoting by ĉn an empirical
risk minimizer, we have

Eℓ(ĉn, c
∗) ≤ C0

n
,

where C0 is a positive constant depending on P , k and d.

This result improves previous non-asymptotic results of Antos, Györfi and György [1], Linder, Lugosi and
Zeger [11], showing that a convergence rate of 1/n can be achieved in expectation. To prove Theorem 3.1, the
key result is based on a version of Talagrand’s inequality due to Bousquet [5] and its application to localiza-
tion, following the approach of Massart and Nedelec [13]. The main point is to connect Var (γ(c, .)− γ(c∗, .))
to P (γ(c, .)− γ(c∗, .)) for all possible c. To be more precise, Pollard’s condition involves differentiability of
the distortion, therefore γ(c, .) − γ(c∗, .) is naturally linked to ‖c − c

∗‖, the Euclidean distance between c

and c
∗. However, it is noteworthy that, mimicing the proof of Antos, Györfi and György [1, Corollary 1], we

have in fact:

Proposition 3.1. Suppose that Assumption 1 and Assumption 2 are satisfied. Then there exists two positive
constants A1 and A2, depending on the distribution P , such that
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1. (H1) : ∀c ∈ B(0, 1)k ‖c− c
∗(c)‖2 ≤ A1ℓ(c, c

∗(c)),
2. (H2) : ∀c ∈ B(0, 1)k ∀c∗ ∈ M Var(γ(c, .)− γ(c∗, .)) ≤ A2‖c− c

∗‖2,
where c

∗(c) ∈ argmin
c∗∈M

‖c− c
∗‖.

When considering several possible optimal vector of clusters, we have to choose one to be compared with
our empirical vector ĉn. A nearest optimal vector of clusters c

∗(ĉn) is a natural choice. It is important
to note that, for every c ∈ (Rd)k and c

∗ ∈ M, ℓ(c, c∗(c)) = ℓ(c, c∗). Consequently, Theorem 3.1 holds
for every possible c

∗ ∈ M. Besides it is easy to see, using the compacity of B(0, 1), that there is only
a finite set of optimal clusters c

∗ when Assumption 1 is satisfied and the Hessian matrixes H(c∗) are
definite positive for every possible c

∗. This compacity argument is also the key to turn respectively the
local positiveness of H(c∗) into property (H1) and the regularity of the contrast function γ into the global
property (H2). These two properties are exactly matching the two parts of the proof of Antos, Györfi and
György [1, Corollary 1], which in turn implies Proposition 3.1. Note also that, from Proposition 3.1 we get
Var(γ(c, .)−γ(c∗(c), .)) ≤ A1A2ℓ(c, c

∗(c)). This allows us to use localization techniques such as in the paper
of Blanchard, Bousquet and Massart [4].

Pollard’s regularity condition (Assumption 2) involves second derivatives of the distortion. Consequently,
checking Assumption 2, even theoretically, remains a hard issue. We give a more general condition regard-
ing the L∞-norm of the density f on the boundaries of Voronoi diagram, for the distribution to satisfy
Assumption 2. We recall that M denotes the set of all possible optimal clusters c

∗.

Theorem 3.2. Denote by V ∗
i the Voronoi cell associated with c∗i in the Voronoi diagram associated with

c
∗, by N∗ the union of all possible boundaries of Voronoi cells with respect to all possible optimal vector of

clusters c
∗, and by Γ the Gamma function. Let B = inf

c∗∈M,i6=j
‖c∗i − c∗j‖. Suppose that

‖f|N∗ ‖∞ ≤ Γ( d
2 )B

2d+5πd/2 inf
c∗∈M,i=1,...,k

P (V ∗
i ).

Then P satisties Assumption 2.

The proof is given in Section 5. It is important to note that, for general distributions supported on
B(0,M), we can state a similar theorem, involving Md+1 in the right-hand side of the inequality in Theorem
3.2. However, a source distribution supported on B(0,M) can be turned into a distribution supported on
B(0, 1), using an homothetic transformation. Therefore we will only state results for a distribution supported
on B(0, 1).

This theorem emphasizes the idea that if P is well concentrated around its optimal clusters, then some
localization conditions can hold and therefore it is a favorable case. The intuition behind this result is given
by the extremal case where Voronoi cells boundaries are empty with respect to P . This case is described in
detail in Section 4. Moreover, the notion of a well-concentrated distribution looks like margin-type conditions
for the classification case, as described by Massart and Nedelec [13]. This confirms the intuition of an easy-
to-quantize distribution, when the poles are well-separated.

4. Discussion and examples

4.1. Minimax lower bound

Let P denote the set of probability distributions on B(0, 1). Bartlett, Linder and Lugosi [2] offered a minimax
lower bound for general distributions:

sup
P∈P

Eℓ(ĉn, c
∗) ≥ c0

√

k
1−4/d
n

n
.

Consequently, for general distributions, this minimax bound mathches the upper bound on Eℓ(ĉn, c
∗) Linder,

Lugosi, and Zeger [11] obtained. A question of interest is to know whether the rate of 1/n we get in Theorem
3.1 is minimax over the set of distributions which satisfies Assumption 1 and Assumption 2. Proposition 4.1
below answers this question.
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Proposition 4.1. Let n be an integer, and denote by D the set of distributions P satisfying Assumption 1
and Assumption 2. Then there exists a constant c0 and an integer kn such that, for any kn-point quantizer
cn

sup
P∈D

Eℓ(ĉn, c
∗) ≥ c0

√

k
1−4/d
n

n
.

There is no contradiction between Theorem 3.1 and Proposition 4.1. In fact, in Theorem 3.1, k is fixed,
whereas, in Proposition 4.1, kn strongly depends on n. Therefore, it is an interesting point to know whether
we can get such a minimax bound when k is fixed.

The proof of Proposition 4.1 follows the proof of Bartlett, Linder and Lugosi [2, Theorem 1], and it is
therefore omitted in this paper. The main idea is to replace the distribution supported on 2n points proposed
by these authors in Step 3 of the proof, with a distribution supported on 2n small balls satisfying Assumption
1 and Assumption 2.

4.2. Assumption 1 is necessary

The original result of Pollard [16] assume only that E‖X‖2 < ∞, to get an asymptotic rate of OP (1/n).
Consequently, it is an interesting question to know whether Assumption 1 can be replaced with the assump-
tion E‖X‖2 < ∞ in Theorem 3.1. In fact, Assumption 1 is useful to get a global localization result from a
local one, through a compacity argument. This is precisely the result of Proposition 3.1, which provides us
with the global argument required for applying some localization result from a local regularity condition.
However, following the idea of Antos, Györfi and György [1], it is possible to suppose only that E‖X‖2 < ∞
and nevertheless get (H2) in Proposition 3.1, as expressed in the following result.

Proposition 4.2. Suppose that E‖X‖2 < ∞ and that the set of all possible optimal clusters c
∗ is finite.

Then there exists a constant A2, depending on P , such that

∀c 6= c
∗ Var(γ(c, .) − γ(c∗, .)) ≤ A2‖c− c

∗‖2.
A proof of Proposition 4.2 can be directly deduced from the proof of [1, Theorem 2]. Consequently it is

omitted in this paper. According to Proposition 4.2, we can expect to control the variance of our process
indexed by c and c

∗ with the Euclidean distance ‖c− c
∗‖, even if the support of P is not contained within

a ball. Unfortunately, when the distribution is not supported on a bounded set, there are cases where the
term ℓ(c, c∗(c)) cannot dominate ‖c − c

∗(c)‖2 for all c, as expressed in the following counter-example. Let

η > 0, q(η) = eη/2+2R−1

3 , and define the density f of the distribution P supported on R by

f(x) =















1
3η if x ∈ [0, η]
1
3η if x ∈ [R,R+ η]

q(η)e−x if x > 2R− 1 + η
2

0 elsewhere

.

Proposition 4.3. Set η = 2, R = 10, and define cn = (0, n, n2). Then

(i) P satisfies Assumption 2.
(ii) We have ℓ(cn, c

∗(cn))−→P‖x‖2 < ∞ as n −→ ∞.
(iii) We have ‖cn − c

∗(cn)‖2∼n4 as n −→ ∞.

One easily deduces from Proposition 4.3 that the distribution P satisfies Assumption 2, but fails to satisfy
(H1) in Proposition 3.1. Therefore Assumption 1 is necessary to get the result of Theorem 3.2. The intuiton
behind this counter-example is that two phenomenons prevent ℓ(c, c∗(c)) from being at most proportional to
‖c− c

∗(c)‖2 when c is arbitrarily far from 0. Firstly, the underlying measure "erase" the Euclidean distance
in the expression of ℓ(c, c∗(c)), which implies that ℓ(cn, c

∗(cn)) converges. Therefore, a suitable criterion
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to link ℓ(c, c∗(c)) and Var(γ(c, .) − γ(c∗‘(c), .)) should probably involve a weight drawn from the tail of P .
Typically we expect such a criterion to be a function of ‖c − c

∗(c)‖2, taking into account a tail constraint
on the distribution P we consider. Secondly, this example shows that, if for instance we take the 3-quantizer
cn = (n, n2, n4), the relative loss ℓ(cn, c∗(cn)) will mostly depend on the contribution of the smallest cluster
n, when n grows to infinity, whereas ‖cn− c

∗(cn)‖2 essentially depends on the distance to the most far from
0 cluster n4.

To conclude, the Euclidean distance does not take into account the weight induced by the underlying
distribution over the space. Thus, when Assumption 1 is released, dominant clusters for the Euclidean
distance from c

∗ are essentially the most far ones. On the other hand, when integrating with respect to P ,
far-from-zero clusters loose their influence in the loss ℓ(cn, c

∗(cn)).

4.3. A toy example

In this subsection we intend to understand which conditions on the density f can guarantee that the Hessian
matrixes H are positive. To this aim we consider an extremal case, in which the probability distribution is
supported on small balls scattered in B(0, 1). Roughly, if the balls are small enough and far one from each
others, the optimal quantization points should be the center of these balls. These are the ideas which are
behind the following proposition.

Proposition 4.4. Let z1, . . . , zk be vectors in R
d. Let ρ be a positive number and R = inf

i6=j
‖zi − zj‖ be the

smallest possible distance between these vectors. Let the distribution P be defined as follows

∀i ∈ {1, . . . , k}







P (B(zi, ρ)) =
1

k
P|B(zi,ρ) ∼ U|B(zi,ρ)

,

where U|B(zi,ρ) denotes the uniform distribution over B(zi, ρ). Then, if
(

R
2 − 3ρ

)2 ≥ 2ρ2d
d+2 , the optimal k-

centroid vector is (z1, . . . , zk).

The proof of Proposition 4.4, which is given in Section 5, is inspired from a proof of Bartlett, Linder
and Lugosi [2, Step 3]. It is interesting to note that Proposition 4.4 can be extended to the situation where
we assume that the underlying distribution is supported on k small enough subsets. In this context, if each
subset has a not too small P -measure, and if those subsets are far enough one from each others, it can be
proved in the same way that an optimal quantizer has a point in every small subset.

Let us now consider the distribution described in Proposition 4.3, with relevant values for ρ and R. We
immediatly see that if R/2 > ρ, then every boundary of the Voronoi diagram for the optimal vector of
clusters lies in a null-measured area. Thus, for this distribution,

H(c∗) =







1
k Id · · · 0
...

. . .
...

0 · · · 1
kId






,

which is clearly positive.
This short example illustrates the idea behind Theorem 3.2. Namely, if the density of the distribution is

not too big at the boundaries of the Voronoi diagram associated with every optimal k-quantizer, then the
Hessian matrix H will roughly behave as a positive diagonal matrix. Thus Pollard’s condition (Assumption
2) will be satisfied. This most favorable case is in fact derived from the special case where the distribution is
supported on k points. Antos, Györfi and György [1] proved that if the distribution has only a finite number
of atoms, then the expected distortion ℓ(ĉn, c

∗) is at most C/n, where C is a constant. Here we spread the
atoms into small balls to give a density to the distribution and match regularity conditions.

4.4. Quasi-Gaussian mixture example

The aim of this subsection is to apply our results to the Gaussian mixtures in dimension d = 2. However,
since the distribution support of a Gaussian random variable is not bounded, we will restrict ourselves to
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the "quasi-Gaussian mixture" model, which is defined as follows.
Let the density f of the distribution P be defined by

f(x) =

k
∑

i=1

pi
Ni

1

2πσ2
e−

‖x−mi‖
2

2σ2 1B(0,1),

where Ni denotes a normalization constant for each Gaussian variable. To ensure this model to be close to
the Gaussian mixture model, we assume that there exists a constant ε ∈ [0, 1] such that, for i = 1, . . . , k,
Ni ≥ 1 − ε. Denote by B̃ = infi6=j‖mi −mj‖ the smallest possible distance between two different means of
the mixture. To avoid boundary issues we suppose that, for all i = 1, . . . , k, B(mi, B̃/3) ⊂ B(0, 1). For such
a model, we have:

Proposition 4.5. Suppose that

pmin

pmax
≥ max

(

288kσ2

(1− ε)B̃2(1 − e−B̃2/288σ2)
,

96k

(1− ε)σ2B̃(eB̃/72σ2 − 1)

)

.

Then P satisfies Assumption 2.

The inequality we propose as a condition in Proposition 4.5 can be decomposed as follows. If

pmin

pmax
≥ 288kσ2

(1− ε)B̃2(1 − e−B̃2/288σ2)
,

then the optimal vector of clusters c
∗ is close to the vector of means of the mixture m = (m1, . . . ,mk).

Knowing that, we can locate the Voronoï boundaries of the Voronoï diagram associated to c
∗ and apply

Theorem 3.2. This leads to the second term of the maximum in Proposition 4.5.
This condition can be interpreted as a condition on the polarization of the mixture. A favorable case for

vector quantization seems to be when the poles of the mixtures are well-separated, which is equivalent to
σ is small compared to B̃ when considering Gaussian mixtures. Proposition 4.5 just explained how σ has
to be small compared to B̃, in order to satisfy Assumption 2 and therefore apply Theorem 3.1, to reach an
improved convergence rate of 1/n for the loss ℓ(ĉn, c

∗). Notice that Proposition 4.5 can be considered as an
extension of Proposition 4.4. In these two propositions a key point is to locate c

∗, which is possible when
the distribution P is well-polarized. The definition of a well-polarized distribution takes two similar forms
when looking at Proposition 4.4 or Proposition 4.5. In Proposition 4.4 the favorable case is when the poles
are far one from each other, separated by an empty area with respect to P , which ensures that the Hessian
matrixes H(c∗) are positive definite (in this case they are diagonal matrixes). When slightly disturbing the
framework of Proposition 4.4, it is quite natural to think that the Hessian matrixes H(c∗) should remain
positive definite. Proposition 4.5 is an illustration of this idea: the empty separation area between poles is
replaced with an area where the density f is small compared to its value around the poles. The condition
on σ and B̃ we offer in Proposition 4.5 gives a theoretical definition of a well-polarized distribution for
quasi-Gaussian mixtures.

It is important to note that our result holds when k is known and match exactly the number of components
of the mixture. When the number of cluster k is larger than the number of components k̃ of the mixture,
we have no general idea of where the optimal clusters can be placed. Moreover, suppose that we are able to
locate the optimal vector of clusters c

∗. As explained in the proof of Proposition 4.5, the quantity involved
in Proposition 4.5 is in fact B = infi6=j ‖c∗i − c∗j‖. Thus, in this case, we expect B to be much smaller than

B̃. Consequently, a condition like in Proposition 4.5 could not involve the natural parameter of the mixture
B̃.

The two assumptions Ni ≥ 1− ε and B(mi, B̃/3) ⊂ B(0, 1) can easily be satisfied when P is constructed
via an homothetic transformation. To see this, take a generic Gaussian mixture on R

2, denote by m̄i, i =
1, . . . , k, its means and by σ̄2 its variance. For a given ε > 0, choose M > 0 such that, for all i = 1, . . . , k,
∫

B(0,M) e
−‖x−mi‖2/2σ2

dx ≥ 2πσ2(1 − ε) and B(mi, B̃/3) ⊂ B(0,M). Denote by P0 the "quasi-Gaussian
mixture" we obtain on B(0,M) for such an M . Then, applying an homothetic transformation with coefficient
1/M to P0 provides a quasi-Gaussian mixture on B(0, 1), with means mi = m̄i/M, i = 1, . . . , k and variance
σ2 = σ̄2/M2. This distribution satisfies both Ni ≥ 1− ε and B(mi, B̃/3) ⊂ B(0, 1).
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5. Proofs

5.1. Proof of Theorem 3.1

The proof strongly relies on the localization principle and its application by Blanchard, Bousquet and Massart
[4]. We start with the following definition.

Definition 5.1. Let Φ be a real-valued function. Φ is called a sub-α function if and only if Φ is non-decreasing
and if the map x 7→ Φ(x)/xα is non-increasing.

The next theorem is an adaptation of the result of Blanchard, Bousquet and Massart [4, Theorem 6.1].
For the sake of clarity its proof is given in Subsection 5.2.

Theorem 5.1. Let F be a class of bounded measurable functions such that

(i) ∀f ∈ F ‖f‖∞ ≤ b,
(ii) ∀f ∈ F Var(f) ≤ ω(f).

Let K be a positive constant, Φ a sub-α function, α ∈ [1/2, 1[. Then there exists a constant C(α) such that,
if D is a constant satisfying D ≤ 6KC(α) and r∗ is the unique solution of the equation Φ(r) = r/D, the
following holds. Assume that

∀r ≥ r∗, E

(

sup
ω(f)≤r

(P − Pn)f

)

≤ Φ(r).

Then, for all x > 0, with probability larger than 1− e−x,

∀f ∈ F , Pf − Pnf ≤ K−1

(

ω(f) +

(

6KC(α)

D

)
1

1−α

r∗ +
(9K2 + 16Kb)x

4n

)

.

This theorem emphasizes the fact that if we are able to control the variance and the complexity term
controlled by the variance, we can get a possibly interesting oracle inequality. Obviously the main point is
to find a suitable control function for the variance of the process. Here the interesting set is

F =
{

γ(c, .)− γ(c∗, .), c ∈ B(0, 1)k, c∗ ∈ M
}

.

According to Section 3 the relevant control function for the variance of the process γ(c, .) − γ(c∗, .) is
proportional to ‖c− c

∗‖2. Thus it remains to bound from above the quantity

E

(

sup
c∗∈M,‖c−c∗‖2≤δ

(Pn − P )(γ(c∗, .)− γ(c, .))

)

.

This is done in the following proposition.

Proposition 5.1. Suppose that P satisfies Assumption 1. Then

E

(

sup
c∗∈M,‖c−c∗‖2≤δ

(Pn − P )(γ(c∗, .)− γ(c, .))

)

≤
√
δ
C

n
,

where C is a constant depending on k, d, and P .

Assuming that Assumption 1 and Assumption 2 are satisfied, we can apply Theorem 5.1, with w(c, c∗) =
A2‖c− c

∗‖2 and b = 2.

Lemma 5.1. Let D > 0. For all c∗ ∈ M, x > 0 and K > D/7, if r∗ is the (unique) solution of Φ(δ) = δ/D,
then we have, with probability larger than 1− e−x,

(P − Pn)(γ(c, .)− γ(c∗, .)) ≤ K−1A2‖c− c
∗‖2 + 50K

D2
r∗ +

K + 18

n
x.

8



We are now in a position to prove Theorem 3.1. Take c
∗ = c

∗(c), a nearest optimal vector of clusters to
c, and use (H2) to connect ‖c−c

∗(c)‖2 to ℓ(c, c∗(c)). Introducing the explicit form r∗ = C2D2

n , we get, with
K = 2A1A2, D = 6K, and probability larger than 1− e−x

1/2(P − Pn)(γ(ĉn, .)− γ(c∗(c), .)) ≤ 50C2D2

36Kn
+

K + 18

n
x.

Observing that Pn(γ(ĉn, .)− γ(c∗(c), .)) ≤ 0, and taking expectation leads to, for all c∗ ∈ M,

Eℓ(ĉn, c
∗) ≤ C0

n
,

for some constant C0 > 0 depending only on k, d, and P .

5.2. Proof of Theorem 5.1

This proof is a modification of the proof of Blanchard, Bousquet and Massart [4, Theorem 6.1]. For r ≥ 0,
set

Vr = sup
f∈F

(P − Pn)
f

ω(f) + r
.

We start with a modified version of the so-called peeling lemma:

Lemma 5.2. Under the assumptions of Theorem 5.1, there exists a constant C(α) depending only on α such
that, for all r > 0,

E (Vr) ≤ C(α)
Φ(r)

r
.

Furthermore, we have C(α) −→
α→1

∞.

Proof of Lemma 5.2. Let x > 1 be a real number. Because 0 ∈ Conv(F),

sup
f∈F

(P − Pn)
f

ω(f) + r
≤ sup

ω(f)≤r

(P − Pn)
f

ω(f) + r
+
∑

k≥0

sup
rxk<ω(f)≤rxk+1

(P − Pn)
f

ω(f) + r
.

Taking expectation on both sides leads to

E(Vr) ≤
Φ(r)

r
+
∑

k≥0

Φ(rxk+1)

r(1 + xk)
.

Recalling that Φ is a sub-α function, we may write Φ(rxk+1) ≤ xα(k+1)Φ(r). Hence we get

E(Vr) ≤
Φ(r)

r
+

Φ(r)

r

∑

k≥0

xα(k+1)

1 + xk

≤ Φ(r)

r

(

1 + xα

(

1

2
+

1

x1−α − 1

))

.

Taking C(α) = inf
x>1

(

1 + xα
(

1
2 + 1

x1−α−1

))

proves the result.

We are now in a position to prove Theorem 5.1. Using the inequality of Talagrand for a supremum of
bounded variables that Bousquet [5] offered, we have, with probabilty larger than 1− e−x,

Vr ≤ E(Vr) +

√

x

2rn
+ 2

√

xbE(r)

nr
+

bx

3rn
.
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Using Lemma 5.2 and the inequality (a+ b)2 ≤ 2(a2 + b2),

Vr ≤ 2C(α)Φ(r)

r
+

√

x

2rn
+

4

3

bx

rn
.

Let r∗ be the solution of Φ(r) = r
D . If r ≥ r∗, then Φ(r)

r ≤
(

r∗

r

)1−α
1
D . For such an r we have

Vr ≤ A1r
−(1−α) +A2r

−1/2 +A3r
−1,

with






























A1 =
2C(α)(r∗)1−α

D

A2 =

√

x

2n

A3 =
4bx

3n

.

We want to find a suitable r such that r ≥ r∗ and Vr ≤ 1/K. To this aim, it suffices to see that if
r ≥ (3KA1)

1
1−α + (3KA2)

2 + 3KA3, and r ≥ r∗, then Vr ≤ 1/K using the previous upper bound on Vr.
It remains to check that the condition (3KA1)

1
1−α + (3KA2)

2 + 3KA3 ≥ r∗ holds. To see this just recall
that

(3KA1)
1

1−α = r∗ ×
(

6KC(α)

D

)
1

1−α

.

Thus, we deduce that, if D ≤ 6KC(α), the choice r = (3KA1)
1

1−α +(3KA2)
2 +3KA3 guarantees Vr ≤ K−1

and, consequently,

Pf − Pnf ≤ 1

K

(

ω(f) +

(

6KC(α)

D

)
1

1−α

r∗ +
(9K2 + 16Kb)x

4n

)

.

5.3. Proof of Proposition 5.1

Using the differentiability of Pγ(c, .), we get, for any c ∈ (Rd)k and c
∗ ∈ M,

γ(c, x) = γ(c∗, x) + 〈c− c
∗),∆(c∗, x)〉 + ‖c− c

∗‖R(c∗, c− c
∗, x),

where, with use of Pollard’s [16] notation










∆(c∗, x) = −2((x− c∗1)1V ∗
1
, ..., (x− c∗k)1V ∗

k
)

R(c∗, c− c
∗, x) =

∑

i,j=1,...,k

1V ∗
i
1Vj‖c− c

∗‖−1
[

2(ci − cj)
∗x+ ‖c∗i ‖2 − 2(c∗i )

∗ci + ‖cj‖2
] .

Observe that, because M is a finite set, by dominated convergence Theorem,

R(c∗, c− c
∗, .)

L2−→
a.s

0 when (c− c
∗) → 0.

Splitting the expectation in two parts, we obtain

E

(

sup
c∗∈M,‖c−c∗‖2≤δ

(Pn − P )(γ(c∗, .)− γ(c, .))

)

≤ E

(

sup
c∗∈M,‖c−c∗‖2≤δ

(Pn − P ) 〈−(c− c
∗),∆(c∗, .)〉

)

+
√
δE

(

sup
c∗∈M,‖c−c∗‖2≤δ

(Pn − P )(−R(c∗, c− c
∗, .))

)

(1)

:= A+B.
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5.3.1. Term A: complexity of the model

Term A in inequality (1) is at first sight the dominant term in the expression Φ(δ). The upper bound we
obtain below is rather accurate, due to the finite-dimensional Euclidean space structure. Indeed, we have to
bound a scalar product when the vectors are contained in a ball, thus it is easy to see that the largest value
of the product matches in fact the largest value of the coordinates of the gradient term. We recall that M
denotes the finite set of optimal vector of clusters. Let x = (x1, . . . , xk) be a vector in (Rd)k. We denote by
xir the r-th coordinate of xi, and name it the (i, r)-th coordinate of x. We may write

sup
c∗∈M,‖c−c∗‖≤

√
δ

〈c− c
∗, (Pn − P )(−∆(c∗))〉 ≤ 2 sup

c∗∈M
sup

j=1,...,k,r=1,...,d

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − c∗j )1V ∗
j
(Xi)

∣

∣

∣

∣

∣

r

×
√
δ

≤ 〈cj,r,ε,c∗ − c
∗, (Pn − P )(−∆(c∗, .))〉 ,

where c
∗ expresses the maximum and thus, have the largest possible coordinate absolute value for (Pn −

P )(−∆(c∗))). Moreover, we denote by (j, r) the coordinate of this largest possible absolute value, ε the sign
of its (j, r)-th coordinate, and cj,r,ε,c∗ = c

∗+ej,r,ε, where ej,r,ε is the vector with ε
√
δ for its (j, r) coordinate,

0 elsewhere. Therefore we can reduce the set of the c’s of interest to a finite set, writing

sup
c∗∈M,‖c−c∗‖≤

√
δ

〈c− c
∗, (Pn − P )(−∆(c∗))〉 ≤ sup

c∗∈M
sup

j=1,...,k,r=1,...,d,ε=±1
〈cj,r,ε,c∗ − c

∗, (Pn − P )(−∆(c∗, .))〉.

Taking into account that for every c
∗ in M, P∆(c∗, .) = 0, and that for every fixed c and c

∗, the quan-
tity 〈c− c

∗, Pn(−∆(c∗, .))〉 is a sub-Gaussian random variable with variance 16δ/n, we get, by a maximal
inequality (Massart, [12, Part 6.1]):

E

(

sup
c∗∈M,‖c−c∗‖2≤δ

(Pn − P ) 〈−(c− c
∗),∆(c∗, .)〉

)

≤
(

4
√

2 log(2 |M|)
√
kd

n

)

×
√
δ.

Therefore, the expected dominant term involves the complexity of the model in a way which is proportional
to the square root of the complexity. In our case, this complexity is the dimension of the vector of clusters
space.

5.3.2. Bound on B

To bound the second term in inequality (1), we follow the approach of Pollard [16], using complexity argu-
ments such as Dudley’s entropy integral.

Let F be a set of functions defined on X with envelope F . Let S be a finite set and f a function. We

denote ‖f‖l2(S) =
(

1/n
∑

x∈S f2(x)
)1/2

, where n = Card(S), and by NF (ε, S,F) the smallest integer m such
that there exists φ1, . . . , φm, m functions on X satisfying mini=1,...,m‖f − φi‖l2(S) ≤ ε2‖F‖2l2(S). Also define
H(ε) = supS<∞logNF (ε, S,F).

According to [16] and [15, Theorem 7], for the class of functions

F =
{

R(., c∗, c− c
∗), c∗ ∈ M, ‖c− c

∗‖ ≤
√
δ
}

,

there exists C > 0 depending on k and d such that F (x) = C(1 + ‖x‖) is an envelope for F . Furthermore,
for this envelope, we have

H(ε) ≤ log(A)−W log(ε),

where A is a positive constant, and W depends only on the pseudo-dimension of F , in a way which will
not be described here (see the result of Pollard [15, Theorem7]). We will use a classical chaining argument
to bound term B. Let c̃ denote the pair (c, c∗) ∈ (B(0, 1))k ×M. For practical, let fc̃ denote the function
R(., c∗, c− c

∗). We set ε0 = 1 and εj = 2−jε0.
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For any fc̃, let fc̃j be a function such that ‖f − fc̃j‖2l2(S) ≤ ε2j‖F‖2l2(S), for every finite set S. Since
Assumption 1 holds, F is bounded from above by a constant CF . By dominated convergence Theorem we

have fc̃j
L1,a.s−→
j→∞

fc̃, and thus

(Pn − P )fc̃ = (Pn − P )fc̃0 +

∞
∑

j=1

(Pn − P )(fc̃j − fc̃j−1
).

Therefore

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

(Pn − P )fc̃

)

≤ E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

(Pn − P )fc̃0

)

+
∑

j>0

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

(Pn − P )(fc̃j − fc̃j−1
)

)

.

Using a symmetrization inequality and introducing some Rademacher random variables σ (σ = ±1 with
probability 1/2), we get, for the first term:

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

(Pn − P )fc̃0

)

≤ 2EXEσ

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

1

n

n
∑

i=1

σifc̃0(Xi)

)

≤ 2
√
2EX

(

√

sup
c∗,c

‖fc̃0‖2L2(Pn)
log(m(ε0))

)

≤ 2
√
2EX

(√

‖F‖2L2(Pn)
log(m(ε0))

)

≤ 2
√
2EX

(

√

C2
F log(m(ε0))

)

≤ κA√
n
,

where κA depends on k, d and P . In the second line of this inequality, we used the maximal inequality for
random processes depending only on Rademacher variables given by Massart [12, part 6.1]. It remains to
bound the second term. Using the same approach (symmetrization and maximal inequality for Rademacher
variables) we get, for every j > 0,

E

(

sup
c,c∗

(Pn − P )(fc̃j − fc̃j−1
)

)

≤ 2EX

(√

2

n
log(m(εj)m(εj−1)) sup

c,c∗
‖fc̃j − fc̃j−1

‖2L2(Pn)

)

.

However ‖fc̃j − fc̃‖L2(Pn) ≤ εj‖F‖L2(Pn), consequently

‖fc̃j − fc̃j−1
‖2L2(Pn)

≤ 4ε2j−1‖F‖2L2(Pn)

≤ 4C2
F ε

2
j−1.

Comparing a sum with an integral, we obtain

∑

j>0

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

(Pn − P )(fc̃j − fc̃j−1
)

)

≤ 32√
n

∫ ε1

0

√

log(m(ε))dε,

which, by assumption on m(ε), can be bounded from above by κB√
n
, where κB depends on k, d and P .

We are now in position to prove Proposition 5.1. From the two above subsections we deduce that
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Φ(δ) = E

(

sup
c∗∈M,‖c−c∗‖2≤A2δ

(Pn − P )(γ(c∗, .)− γ(c, .))

)

≤
√
δ
C√
n
.

This concludes the proof.

5.4. Proof of Theorem 3.3

Let x = (x1, . . . , xk) be a k × d vector, V1, . . . , Vk the Voronoi diagram associated with an optimal vector
of clusters c

∗. We state here a sufficient condition for the Hessian matrix H(c∗) to be positive. Denote
ri,j = ‖c∗i − c∗j‖. It holds

〈Hx,x〉 =
k
∑

i=1



〈Hi,ixi, xi〉+
∑

i6=j

〈Hi,jxj , xi〉



,

where, for all i = 1, . . . , k,

〈Hi,ixi, xi〉+
∑

i6=j

〈Hi,jxj , xi〉 = 2P (Vi)‖xi‖2 − 2xt
i





∑

j 6=i

r−1
i,j

∫

∂(Vi∩Vj)

f(u)(u− c∗i )(u− c∗i )
tdu



xi

+ 2xt
i

∑

i6=j

r−1
i,j

(

∫

∂(Vi∩Vj)

f(u)(u− c∗i )(u − c∗j )
tdu

)

xj .

The support of P is included in B(0, 1), thus we can replace ∂(Vi ∩ Vj) with ∂(Vi ∩ Vj) ∩ B(0, 1) in the
equations above. However, to lighten notation we will omit the indication and implicitly assume that every
set we consider is contained in B(0, 1). Let pi,j =

∫

∂(Vi∩Vj)
f(u)du be the d−1-dimensional P -measure of the

boundary between Vi and Vj . Recalling that the underlying norm is the Euclidean norm, even for matrixes,
we may write

〈Hi,ixi, xi〉+
∑

i6=j

〈Hi,jxj , xi〉 ≥ 2P (Vi)‖xi‖2 − 2‖xi‖2
∥

∥

∥

∥

∥

∥

∑

j 6=i

r−1
i,j

∫

∂(Vi∩Vj)

f(u)(u− c∗i )(u− c∗i )
tdu

∥

∥

∥

∥

∥

∥

− 2‖xi‖

∥

∥

∥

∥

∥

∥

∑

j 6=i

r−1
i,j

(

∫

∂(Vi∩Vj)

f(u)(u− c∗i )(u− c∗j )
tdu

)

xj

∥

∥

∥

∥

∥

∥

,

with
∥

∥

∥

∥

∥

∥

∑

i6=j

r−1
i,j

(

∫

∂(Vi∩Vj)

f(u)(u− c∗i )(u− c∗j )
tdu

)

xj

∥

∥

∥

∥

∥

∥

≤
∑

j 6=i

r−1
i,j

∥

∥

∥

∥

∥

(

∫

∂(Vi∩Vj)

f(u)(u− c∗i )(u − c∗j )
tdu

)

xj

∥

∥

∥

∥

∥

≤
∑

j 6=i

r−1
i,j

(

∫

∂(Vi∩Vj)

f(u)‖u− c∗i ‖‖u− c∗j‖du
)

‖xj‖

≤
∑

j 6=i

r−1
i,j pi,j4‖xj‖.
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Next,

〈Hi,ixi, xi〉+
∑

i6=j

〈Hi,jxj , xi〉 ≥



2P (Vi)−
8

B

∑

i6=j

pi,j



 ‖xi‖2

−





8

B

∑

i6=j

pi,j



 ‖xi‖‖xj‖,

where we recall that ‖xi‖‖xj‖ ≤ 2
(

‖xi‖2 + ‖xj‖2
)

and B = inf
i6=j,c∗∈M

‖c∗i − c∗j‖. Summing with respect to i

leads to

〈Hx,x〉 ≥
k
∑

i=1



2P (Vi)−
40M2

B

∑

j 6=i

pi,j



 ‖xi‖2.

The last step is to derive bounds for pi,j from conditions on f . Denote λ = ‖f‖∞, we see that

∑

j 6=i

pi,j =

∫

∂Vi

f(u)du.

Vi is a regular convex set included in B(c∗i , 2). Therefore, by a direct application of Stokes Theorem, the
surface of ∂Vi is smaller than the surface of Sd−1(c

∗
i , 2) (the sphere of radius 2). Consequently

∑

j 6=i

pi,j ≤ λ
2πd/2

Γ(d/2)
(2)d−1.

It follows that λ ≤ BΓ(d/2)
2d+5πd/2 inf

i=1,...,k
P (Vi) is enough to ensure that the Hessian matrix H(c∗) is positive

definite.

5.5. Proof of Proposition 4.4

We take a distribution uniformly distributed over small balls far one from each others. Denote by Vi the
Voronoi cell associated with zi in (z1, . . . , zk). Let Q be a k-quantizer, Q∗ the expected optimal quantizer
which maps Vi to zi for all i. Denote finally, for all i = 1, . . . , k, Ri(Q) =

∫

Vi
‖x−Q(x)‖2dx the contribution

of the i-th Voronoi cell to the risk of Q.
First we compute

Ri(Q
∗) =

1

kρdV

∫ ρ

0

Srd+1dr

=
ρ2d

k(d+ 2)
,

where S and V are the unit surface and the volume of the unit ball in R
d.

Let i be an integer between 1 and k. Let min
i = |Q(Bd(zi, ρ)) ∩ Vi| be the number of images of Vi sent

by Q inside Vi, and let mout
i = |Q(Bd(zi, ρ)) ∩ V c

i | be the number of images of Vi sent outside Vi. The three
situations of interest are the following ones:

→ If min
i = 1 and mout

i = 0, it is clear that Ri(Q) ≥ Ri(Q
∗).

→ If min
i ≥ 2 and mout

i = 0, then we just can see that Ri(Q) ≥ Ri(Q
∗)− ρ2d

k(d+2) = 0.

→ At last, suppose that mout
i ≥ 1. Then there exist x ∈ Bd(zi, ρ) such that











‖Q(x)− x‖ ≤ inf
c∈Q(Bd(zi,ρ))

‖x− c‖

‖Q(x)− x‖ ≥ d(zi, V
c
i )− ρ ≥ R

2
− ρ

.
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Let c ∈ Q(Bd(zi, ρ)). Then
‖c− zi‖ ≥ ‖c− x‖ − ρ

≥ ‖Q(x)− x‖ − ρ

≥ R

2
− 2ρ.

Then, we deduce that, for every y ∈ Bd(zi, ρ) and c ∈ Q(Bd(zi, ρ)), ‖y − c‖ ≥ r
2 − 3ρ. Therefore

Ri(Q) ≥
(

R
2 − 3ρ

)2

k

≥ Ri(Q
∗) +

1

k

(

(

R

2
− 3ρ

)2

− ρ2d

d+ 2

)

.

Now suppose that min
i ≥ 2. Then at least two clusters of Q lies in Vi. Therefore, there exists j such that no

cluster of Q lies in Vj , so that mout
j ≥ 1. We straightforward deduce that the number of cells Vi for which

min
i ≥ 2 is smaller than the number of cells for which mout

j ≥ 1.
Taking into account all contributions of Voronoi cells, we get

Pγ(c, .) = R(Q) =
∑

{i;min
i ≥2,mout

i =0}
Ri(Q) +

∑

{i;mout
i ≥1}

Ri(Q) +
∑

{i;min
i =1,mout

i =0}
Ri(Q)

≥ R(Q∗) +
∑

{i;min
i ≥2,mout

i =0}

1

k

(

(

R

2
− 3ρ

)2

− 2ρ2d

d+ 2

)

,

from which we deduce a sufficient condition to get R(Q) ≥ R(Q∗).

5.6. Proof of Proposition 4.3

Using the same method as in the proof of Proposition 4.4, we prove that, for η = 2 and R = 10, the optimal
vector of clusters is (η2 ,

η
2 +R, η2 +2R). Thus the density f is zero-valued on each boundary of every Voronoi

cell of the optimal vector of centroids. Consequently Assumption 2 is satisfied. For n large enough,

Pγ(cn, .) =
1

3η

∫ η

0

x2dx+
1

3η

∫ R+η

R

x2dx+ q

∫ n
2

η+2R−1

x2e−xdx

+ q

∫
n2+n

2

n
2

(x− n)2e−xdx+ q

∫ +∞

n2+n
2

(

x− n2
)2

e−xdx.

Hence, by the dominated convergence Theorem for the three first terms of the right-hand side and through
computation for the remaining terms, Pγ(cn, .) −→

n−→∞
P‖x‖2.

5.7. Proof of Proposition 4.5

We begin with a lemma which ensures that every possible optimal centroid c∗i is close to at least one mean
mj of the mixture when the ration pmin/pmax is large enough.

Lemma 5.3. Let c∗ be an optimal vector of clusters. Suppose that

pmin

pmax
≥ 288kσ2

(1− ε)B̃2(1 − e−B̃2/288σ2)
.

Then, for every j = 1, . . . , k there exists i ∈ {1, . . . k} such that ‖mj − c∗i ‖ ≤ B̃
6 .
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Proof of Lemma 5.3. Denote by m the vector of clusters (m1, . . . ,mk), and by Mi the Voronoi cell associated
with mi. We bound from above the quantity Pγ(m, .):

Pγ(m, .) =
k
∑

i=1

pi
2πσ2Ni

∫

Mi

‖x−mi‖2e−‖x−mi‖2/2σ2

dx

≤
k
∑

i=1

pi
2πσ2Ni

∫

R2

‖x−mi‖2e−‖x−mi‖2/2σ2

dx

≤ 2kpmaxσ
2

(1 − ε)
.

Let c be a vector of clusters such that there exists j satisfying, for all i = 1, . . . , k, ‖mj − ci‖ > B̃/6. We
will prove that Pγ(c, .) > Pγ(m, .), which implies that c /∈ M. In fact we have, for all i = 1, . . . , k and for
all x ∈ B(mj, B̃/12), ‖x− ci‖ > B̃/12. Hence, a lower bound for Pγ(c, .) is

Pγ(c, .) ≥
∫

B(mj ,B̃/12)

min
i=1,...,k

‖x− ci‖2f(x)dx

>
B̃2

144

k
∑

i=1

pi
2πσ2Ni

∫

B(mj ,B̃/12)

e−‖x−mi‖2/2σ2

dx

>
B̃2pj

288πσ2Nj

∫

B(mj ,B̃/12)

e−‖x−mj‖2/2σ2

dx

>
pminB̃

2

144

(

1− e−B̃2/288σ2
)

> Pγ(m, .).

Hence we deduce that every optimal vector of clusters has a centroid close to every mean mj of the mixture,
of at most B̃/6.

Suppose that the ratio pmin/pmax satisfies the assumption of Proposition 4.5. In particular pmin/pmax

satisfies the assumption of Lemma 5.3. Then we deduce that, up to a reindexation, for every c
∗ ∈ M,

‖c∗i −mi‖ ≤ B̃/6. We conclude that 2B̃/3 ≤ B ≤ 4B̃/3.
Since, for all i = 1, . . . , k, B(c∗i , B/2) ⊂ V ∗

i , it is easy to see that B(mi, B/4) ⊂ B(c∗i , B/2) ⊂ V ∗
i , which

leads to N∗ ⊂
(

k
⋃

i=1

B(mi, B/4)

)c

. Consequently, in order to apply Theorem 3.2, we just have to prove that

‖f∣
∣

∣

∣

∣

(

k
⋃

i=1

B(mi,B/4)

)c ‖∞ ≤ Γ (1)B

27π
inf

i=1,...,k
P (B(mi, B/4)) .

First we derive a lower bound for the right-hand side. For every i = 1, . . . , k,

P (B(mi, B/4)) ≥ pi
Ni

1

2πσ2

∫

B2(0,B/4)

e−
‖x‖2

2σ2 dx

≥ pi
Ni

1

2πσ2
× 2π

∫ B/4

0

re−
r2

2σ2 dr

≥ pmin

(

1− e−
B2

32σ2

)

.

Then, we deal with the left-hand side. Let x be at distance from every mi of at least B/4. Then

f(x) ≤
k
∑

i=1

pi
Ni

1

2πσ2
e−

B2

32σ2

≤ kpmax

2πσ2(1− ε)
e−

B2

32σ2 .
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The rest of the proof follows from straightforward computation, using the assumption of Proposition 4.5 and
the relationship between B and B̃: 2B̃/3 ≤ B ≤ 4B̃/3.

Remark A careful reader should have noticed that the k factor is suboptimal in the previous inequality.

In fact we are able in this case to bound from above f(x) with 1
2πσ2(1−ε)e

− B2

32σ2 . However, this bound does
not involve pmax, and so involve a condition not on the ratio of extremal proportions of the mixture, but
rather on the minimal proportion of the mixture, which is less natural. Moreover, the pmax-free bound is
valid only in the equal variance case, (ie), when the variance σ2

i of any element of the mixture is the same.
In general it is not the case and a condition as in Proposition 4.5 for that kind of mixture would naturally
involve the ratio pmin/pmax.
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