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Abstract

Model reduction techniques based on the construction of separated representations
are receiving a growing interest in scientific computing. A family of methods, recently
called Proper Generalized Decomposition (PGD) methods, have been introduced for
the a priori construction of separated representations of the solution of problems de-
fined in tensor product spaces. Different definitions of PGDs and associated algo-
rithms have been proposed. Here, we review classical definitions of progressive PGDs
and we introduce several variants in order to improve convergence properties. In par-
ticular, we introduce the Minimax PGD, recently proposed for evolution problems,
which can be interpreted as a Petrov-Galerkin model reduction technique. The differ-
ent variants are presented in an abstract setting. Model examples will illustrate some
properties of the different variants of PGDs.

Keywords: Proper Generalized Decomposition (PGD), Model reduction, Separated
representations, Tensor product approximation, Galerkin PGD, Minimal Residual PGD,
Minimax PGD

1 Introduction

Model reduction techniques based on the construction of separated representations
are receiving a growing interest in scientific computing. A family of methods, re-
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cently called Proper Generalized Decomposition (PGD) methods [1, 2, 3], have been
introduced for the a priori construction of separated representations of the solution u
of problems defined in tensor product spaces:

u ∈ V = V1 ⊗ . . .⊗ Vd, A(u) = l

PGD methods can be interpreted as generalizations of Proper Orthogonal Decompo-
sition (or Singular Value Decomposition, or Karhunen-Loève Decomposition) for the
a priori construction of a separated representation um of the solution u (i.e. without
knowing u a priori):

u ≈ um =
m∑
i=1

w1
i ⊗ . . .⊗ wdi , wki ∈ Vk (1)

Several definitions of PGDs have been proposed. Basic PGDs are based on a pro-
gressive construction of the sequence um, where at each step, an additional rank-one
element ⊗dk=1w

k
m is added to the previously computed decomposition um−1 [4, 5, 6].

These progressive definitions of PGDs can then be considered as Greedy algorithms
for constructing separated representations (analogy introduced in [7]). The additional
rank-one element is classically defined by using Galerkin or Minimal Residual criteria.
On one hand, the progressive PGD based on a minimal residual formulation is robust
in the sense that the sequence um monotically converges with respect to the resid-
ual norm. However, the convergence with respect to useful norms can be very slow.
On another hand, the progressive PGD based on Galerkin orthogonality is not robust
since monotonic convergence is not guaranteed for general non-symmetric problems.
Moreover, the sequence um may diverge in some situations. However, when con-
vergent, Galerkin PGD should be preferred since it relies on classical formulations
of problems, it requires less computational efforts and it classically leads to better
convergence properties with respect to standard metrics. A possible improvement of
these progressive decompositions consists in introducing some updating steps in order
to capture an approximation of the optimal decomposition [8, 3], obtained by defining
the whole set of functions simultaneously (and not progressively). For many applica-
tions, it allows recovering good convergence properties of separated representations.
However, for some large scale applications, these updating steps may be computa-
tionally expansive or simply unaffordable. A new definition of PGD, called Minimax
PGD, has been recently proposed in the context of time-dependent partial differen-
tial equations. It can be interpreted as a Petrov-Galerkin model reduction technique,
where “test’ and “trial” reduced basis functions are related by an adjoint problem in-
volving a predefined scalar product on Hilbert space V . Knowing an approximation
um−1, an additional rank-one element ⊗dk=1w

k
m (the trial function) is computed along

with another rank-one element ⊗dk=1w̃
k
m (the test function). These two elements are

defined as the solutions of a saddle-point problem. This new definition can signifi-
cantly improve convergence properties of progressive separated representations with
respect to the norm associated with the chosen scalar product.
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In this paper, we present the above alternative definitions for general problems for-
mulated in tensor product Hilbert spaces. The abstract setting is presented in section 2.
Section 3 presents different definitions of progressive PGDs, based on a progressive
construction of decomposition (1). In section 5, the behavior of the different vari-
ants of PGDs is illustrated on two model examples: separation of spatial coordinates
for partial differential equations defined on hyper-rectangular domains, separation of
physical variables and random parameters in stochastic partial differential equations.

2 Problems defined in tensor product spaces

2.1 Abstract formulation

We consider an abstract formulation of a problem defined in a Hilbert space V :

u ∈ V, A(u, v) = L(v) ∀v ∈ V (2)

whereA is a bilinear or eventually semilinear form on V , and L is a linear form on V .
We consider V = V1⊗ . . .⊗Vd as a tensor product of Hilbert spaces Vk. We introduce
on V an inner product (·, ·) and associated norm ‖ · ‖, constructed from inner products
(·, ·)i and norms ‖ · ‖i on Hilbert spaces Vk:

(⊗dk=1wk,⊗dk=1w̃k) =
d∏

k=1

(wk, w̃k)k, ‖ ⊗dk=1 wk‖ =
d∏

k=1

‖wk‖k (3)

We introduce the operator A : V → V and element l ∈ V associated with A and L
respectively, defined by

A(u, v) = (v, Au), L(v) = (v, l),

for all u, v ∈ V .

2.2 Separated representations

We introduce the set of rank-one tensors

S1 = {z = w1 ⊗ . . .⊗ wd ; wk ∈ Vk, k ∈ {1 . . . d}}, (4)

and the set of rank-m tensors

Sm = {v =
m∑
i=1

zi ; zi ∈ S1, i ∈ {1 . . .m}} (5)

The construction of a separated representation um ∈ Sm of a given element u ∈ V has
been extensively studied over the past years in multilinear algebra community and dif-
ferent definitions and associated algorithms have been proposed [9, 10, 11, 12]. These
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definitions can be seen as multidimensional versions of the Singular Value Decompo-
sition (SVD). The question of finding an optimal decomposition of a given rank m is
not a trivial question and has led to various definitions of separated representations.
An optimal representation um ∈ Sm can not be simply defined as an optimization
problem on Sm since it may lead to an ill-posed problem (for d ≥ 3). In fact, suitable
constraints (orthogonality or boundedness constraints) must be imposed in order to
define an optimization problem in a suitable subset of Sm (see section 4).

In this paper, we address the more difficult problem of finding a separated repre-
sentation of the solution u of problem (2), without computing the solution u a priori,
which is simply impossible for high dimensional problems. It is the aim of the Proper
Generalized Decomposition (PGD) method, which can be seen as a generalization of
a multidimensional SVD. In the following sections, we propose and compare different
possible definitions of PGD.

2.3 Model examples

2.3.1 Example 1

As a first example, we consider a linear elliptic partial differential equation on a hyper-
rectangular domain Ω = Ω1 × . . .× Ωd, with Vk = H1

0 (Ωk), and

A(u, v) =

∫
Ω

ν∇u · ∇vdµ+

∫
Ω

v c · ∇udµ (6)

L(v) =

∫
Ω

fvdµ (7)

where dµ = dx1 . . . dxd, f ∈ L2(Ω), c ∈ L∞(Ω)d, 0 < ν, ν−1 ∈ L∞(Ω). A separated
representation um ∈ Sm reads

um(x) ≡
m∑
i=1

w1
i (x1) . . . wdi (xd)

2.3.2 Example 2

As a second example, we consider a parameterized partial differential equation defined
on a domain Ω = ×nk=1Ωk and a parameter space Ξ = ×sk=1Ξk ⊂ Rs. It means that the
operator and right-hand side depend on a finite set of parameters ξ ∈ Ξ. The parameter
space is endowed with a product probability measure Pξ = ⊗sk=1Pξk . The parameters
ξ = (ξ1, . . . , ξs) are then considered as independent real-valued random variables. We
let Vk ⊂ H1(Ωk) for k ∈ {1 . . . n}, and Vn+k = L2

Pξk
(Ξk) for k ∈ {1 . . . s}. We then

4



let

A(u, v) =

∫
Ω×Ξ

(ν(x, y)∇u · ∇v + v c(x, y) · ∇u+ σ(x, y)u v) dµ(x, y) (8)

L(v) =

∫
Ω×Ξ

v f(x, y) dµ(x, y) (9)

where dµ(x, y) = dxdPξ(y) = dx1 . . . dxndPξ1(y1) . . . dPξs(ys), f ∈ L2(Ω × Ξ),
c ∈ L∞(Ω × Ξ)n, 0 < ν, ν−1 ∈ L∞(Ω × Ξ), 0 ≤ σ ∈ L∞(Ω × Ξ). A separated
representation um ∈ Sm reads

um(x, ξ) ≡
m∑
i=1

w1
i (x1) . . . wni (xn)wn+1

i (ξ1) . . . wn+s
i (ξs)

3 Progressive Proper Generalized Decomposition

In this section, we present different definitions of PGDs for some classes of linear
and nonlinear problems. We here focus on progressive PGDs, based on a progressive
construction of the separated representation

um =
m∑
i=1

zi, zi ∈ S1 (10)

We suppose that a rank-m decomposition um ∈ Sm has been determined. The aim
is then to define a new function zm+1 ∈ S1, leading to the following rank-(m + 1)
decomposition:

um+1 = um + zm+1, zm+1 ∈ S1 (11)

This progressive construction can be interpreted as a Greedy algorithm for construct-
ing a separated representation. We begin in section 3.1 with the well-established case
of problems associated with convex optimization problems, for which there is a natural
definition of the progressive PGD. Then, in section 3.2, we present different alternative
definitions for more general cases.

3.1 Variational problems associated with convex optimization

We first consider the particular case where equation (2) is the Euler-Lagrange equation
of a convex optimization problem, i.e. such that

A(u, v)− L(v) = (J ′(u), v)

where J ′ : V → V is the differential of a strongly convex, coercive and differentiable
functional J : V → R. Equation (2) is then equivalent to the following minimization
problem:

J (u) = min
v∈V
J (v) (12)
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3.1.1 Definition of progressive PGD.

The progressive PGD (10) is naturally defined as follows:

J (um + zm+1) = min
z∈S1
J (um + z) (13)

The existence of a minimizer follows from the properties of J (convexity, continuity,
coercivity) and from the fact that S1 is weakly closed in V [13]. For general nonlinear
convex problems, convergence results on the sequence um can be found in [14].

3.1.2 Linear case: interpretation as a generalized multidimensional SVD.

For the particular case of linear elliptic problems, where A is a symmetric continuous
coercive bilinear form on V , we classically have

J (v) =
1

2
A(v, v)− L(v) (14)

A proof for the strong convergence of um to u can be found in [13]. In this particular
case, the PGD can be interpreted as a generalization of the Singular Value Decompo-
sition (SVD) in the following sense. A defines a norm ‖ · ‖A : v 7→ A(v, v)1/2, which
is equivalent to usual norm ‖ · ‖ defined in (3). Then, definition (13) is equivalent to

‖u− um − zm+1‖2
A = min

z∈S1
‖u− um − z‖2

A (15)

and therefore, zm+1 is the optimal rank-one correction of um with respect to the norm
induced by A. We have

‖u− um‖2
A = ‖u− um−1‖2

A − σ2
m = ‖u‖2

A −
m∑
i=1

σ2
i −→
m→∞

0 (16)

where σm = ‖zm‖A can be interpreted as the dominant singular value of (u − um)
associated with the metric induced by A, characterized by

σm = max
w∈S1;‖w‖A=1

(u− um−1, w)A

In this context, the progressive PGD appears as a generalization of a multidimensional
SVD, which satisfies an optimality property with respect to the metric induced by the
operator of a linear symmetric elliptic problem.

3.1.3 Alternated direction algorithm.

A possible way for constructing zm+1 ∈ S1 consists in using an alternated direction
algorithm, by solving successively problems of type

min
wl∈Vl

J (um +⊗dk=1w
k) (17)
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For a given z = ⊗dk=1w
k, we introduce the linear subspace S l1(z) ⊂ S1 ⊂ V defined

by

S l1(z) = w1 ⊗ . . .⊗ Vl ⊗ . . .⊗ wd (18)

Equation (17) is then equivalent, for a given z = ⊗dk=1w
k ∈ S1, to find z� ∈ S l1(z)

such that

z� = arg min
ẑ∈Sl1(z)

J (um + ẑ) (19)

Euler-Lagrange equation associated with problem (19) is

z� ∈ S l1(z), A(um + z�, z∗) = L(z∗) ∀z∗ ∈ S l1(z) (20)

Let us denote by f lm(z) the unique solution of problem (20), where f lm : S1 → S1 is
a well-defined mapping. Starting from an initial guess z(0) ∈ S1, we then construct a
sequence {z(n)}n∈N defined by

z(n+1) = fdm ◦ . . . ◦ f 1
m(z(n)) (21)

In practice, we often observe a relatively fast convergence of the sequence {z(n)} to-
wards an element ž which satisfies simultaneously ž = f lm(ž) for all l ∈ {1 . . . d}.
This behavior can be understood by the analogy between this alternated direction al-
gorithm and a power iteration algorithm for capturing the dominant singular value
[6].

3.2 Alternative definitions for general problems

3.2.1 Galerkin PGD

A direct application of PGD algorithm presented in section 3.1.3 is feasible, even
for non-symmetric problems (2), with no associated convex optimization problem.
Knowing um ∈ Sm, we construct a sequence {z(n)}n∈N defined by iterations (21),
where f lm(z) is the solution of equation (20). z� = f lm(z) is then a Galerkin approx-
imation of (u − um) on the subspace S l1(z). If the sequence z(n) converges towards
an element ž ∈ S1, it verifies simultaneously the Galerkin orthogonality conditions
ž = f lm(ž), for all l ∈ {1, ..., d}. We then take zm+1 = ž. We may also observe a non
convergence of the sequence z(n). However, after a few iterations, the iterate z(n) can
be selected as a good candidate for zm+1.
Although there is no guaranty for convergence of the sequence um with m, good con-
vergence properties of um are observed for a large class of linear problems [8, 15] or
nonlinear problems [16], for the case of stochastic/deterministic separation, and for
linear problems in the case of multidimensional separation [3]. However, for some
nonsymmetric problems , the decomposition may present very bad convergence prop-
erties or even diverge [15]. This lack of robustness of Galerkin PGD has led to the
proposition of other definitions of PGD, presented below.
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3.2.2 Minimal Residual PGD

For non symmetric problems, a possible strategy consists in reformulating the problem
as an optimization problem with a minimal residual formulation. Let us define the
residual R(u) = A(u)− l ∈ V . The progressive Minimal Residual (MinRes) PGD is
naturally defined by equation (13), with

J (v) = ‖R(v)‖2 = (Au− l, Au− l) (22)

An alternated minimization algorithm can then be applied in order to find a minimizer
zm+1. It consists in constructing the sequence {z(n)}n∈N ⊂ S1 defined by (21), where
for linear problems, mappings f lm are such that z� = f lm(z) is the solution of

z� ∈ S l1(z), (A∗A(um + z�), z∗) = (A∗l, z∗) ∀z∗ ∈ S l1(z) (23)

where A∗ is the adjoint operator of A. This construction of PGD is robust in the sense
that the residual norm J (um) monotically decreases with m. However, these refor-
mulations are often uneasy from theoretical and technical point of views. Moreover,
they often lead to PGD decompositions with bad convergence properties with respect
to usual norms [15], as it will be illustrated in the examples.

3.2.3 Minimax PGD

An alternative definition of PGD, called Minimax PGD, has been proposed in [15] in
order to improve convergence properties of progressive PGD with respect to a spec-
ified metric. It can be interpreted as a Petrov-Galerkin PGD. It has been initially
introduced for time-dependent partial differential equations. Here, it is extended to
general non symmetric linear problems formulated in tensor product spaces. The con-
struction of the Minimax PGD leads to computation times that are similar to those
of the classical Galerkin PGD. Therefore, for a given accuracy, it usually leads to
lower rank approximations and lower computation times, compared to Galerkin and
Minimal Residual PGD.

Definition of the Minimax PGD. Let us introduce the functionalMm : V ×V → R
defined by

Mm(z, z̃) =
1

2
(z, z)−A(um + z, z̃) + L(z̃) (24)

Let us note that inner product (·, ·) on V can be arbitrarily chosen. This choice has a
consequence on the convergence properties of um. The progressive PGD um is then
defined by

Mm(zm+1, z̃m+1) = max
z̃∈S1

min
z∈S1
Mm(z, z̃) (25)
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where two rank-one elements zm+1 and z̃m+1 are constructed simultaneously. Let us
note that the problem

Mm(v�, ṽ�) = max
ṽ∈V

min
v∈V
Mm(v, ṽ) (26)

admits the solutions v� = u − um, where u is the exact solution of the initial prob-
lem, and ṽ� = A∗−1v� (for A linear). zm+1 and z̃m+1 can then be seen as rank-one
approximations of v� and ṽ� respectively.

Alternated direction algorithm. A possible way for constructing (zm+1, z̃m+1) ∈
S1 × S1 consists in using an alternated direction algorithm, by solving successively
problems of type

min
wl∈Vl

max
w̃l∈Vl

Mm(⊗dk=1w
k,⊗dk=1w̃

k) (27)

For given (z, z̃) ∈ S1 × S1, problem (27) is equivalent to

max
z̃�∈Sl1(z̃)

min
z�∈Sl1(z)

Mm(z�, z̃�) (28)

where linear spaces S l1(z) and S l1(z̃) are defined by (18). For linear problems, the
stationarity conditions associated with saddle point problem (28) are: find (z�, z̃�) ∈
S l1(z)× S l1(z̃) such that

A(um + z�, z̃∗) = L(z̃∗) ∀z̃∗ ∈ S l1(z̃) (29)

A(z∗, z̃�) = (z∗, z�) ∀z∗ ∈ S l1(z) (30)

Let us note that equations (29) and (30) can be solved one after the other. Equation
(29) defines z� as a Petrov-Galerkin approximation of (u − um) in approximation
space S l1(z), with test space S l1(z̃). Equation (30) requires the solution of an adjoint
problem. We denote by (z�, z̃�) = f lm(z, z̃) the solution of the system of equations
(29)-(30). Starting for an initial guess (z(0), z̃(0)) ∈ S1, we then define a sequence
{(z(n), z̃(n))}n∈N defined by

(z(n+1), z̃(n+1)) = fdm ◦ . . . ◦ f 1
m(z(n), z̃(n)) (31)

In practice, we often observe a convergence of the sequence {(z(n), z̃(n))}n∈N. How-
ever, this algorithm requires further theoretical investigations and possible improve-
ments.

3.2.4 Use of traditional iterative solvers

An alternative way of addressing non symmetric or even nonlinear problems is to
apply a standard global (nonlinear) iterative strategy for solving (2). Let us denote
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by {u(n)}n∈N the sequence of iterates which are the solutions of the following linear
problems:

u(n+1) ∈ V, Bn(u(n+1), v) = Bn(u(n), v)− (R(u(n)), v) ∀v ∈ V

where Bn is chosen as a symmetric continuous and coercive bilinear form on V . The
PGD for linear symmetric problems presented in section (3.1.2) can then be applied for
constructing a separated representation of u(n+1). From properties of Bn, we have that
the PGD strongly converges towards the exact iterate u(n+1). In fact, when introducing
the PGD approximation, we only construct an approximate sequence û(n), which can
be seen as a perturbation of the original sequence u(n). The selection of a robust
global iterative solver is then important. This solver must be robust with respect to
perturbations in order to avoid a divergence of the sequence û(n). This point will be
investigated in a subsequent paper.

4 Updated Proper Generalized Decomposition

In many applications, a classical a posteriori tensor product approximation of the so-
lution u reveals that a low rank approximation can be sufficient to obtain a good accu-
racy. However, in some cases, the progressive PGDs could lead to much higher rank
approximations for the same accuracy, as it will be illustrated in the examples.

“Optimal” decompositions. In the case where problem (2) is equivalent to the op-
timization problem (12), a rank-m approximation um ∈ Sm could be naturally defined
by

J (um) = min
vm∈S̃m⊂Sm

J (vm) (32)

where S̃m is a suitable subset of Sm ensuring the existence of a minimizer depends (see
[10, 12] for further discussions on the well-posedness of rank-m approximations in
high dimension). In practice, a natural algorithm for computing such a minimizer still
consists in using an alternated minimization procedure. However, the minimization
along a direction l requires a minimization on (Vl)

m. Depending on the application,
this problem may be unaffordable for large m. If the aim is to obtain the lowest rank
approximation, this minimization problem should be tackled with. However, in the
context of the solution of equations, we generally need an approximation with a good
accuracy and not necessarily with the lowest rank.

Updates along selected directions. Even if we do not try to solve problem (32),
updates along some selected directions may significantly improve the convergence of
progressive PGDs. For a given element um =

∑m
i=1 zi ∈ Sm, with zi = ⊗dk=1w

k
i ∈ S1,
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and for a given direction l ∈ {1 . . . d}, we introduce the linear subspace S lm(um)
defined by

S lm(um) = {
m∑
i=1

w1
i ⊗ . . .⊗ ŵli ⊗ . . .⊗ wdi ; ŵli ∈ Vl}

For a given um ∈ Sm, the following problem can be solved in order to improve the
quality of the rank-m decomposition:

u�m ∈ S lm(um), A(u�m, vm) = L(vm) ∀vm ∈ S lm(um) (33)

It appears as an update of functions {wli}mi=1 ∈ (Vl)
m in the decomposition um. When

problem (2) corresponds to optimization problem (12), equation (33) is the Euler-
Lagrange equation associated with the minimization of functional J on the linear
subspace S lm(um). Even if there is no underlying optimization problem, the solution
u�m of the update problem (33) is a Galerkin projection, which is well defined and
usually allows to significantly improve the approximation um (see [8, 16, 15]).

5 Illustrations

5.1 Example 1

We consider the example of section (2.3.1) with d = 2 and Ω1 = Ω2 = (0, 1). We
take ν = 1/500, c = (1, 2), and f = 1. We introduce a finite element approximation
space Vh = V1,h ⊗ V2,h, where the Vl,h ⊂ Vl = H1

0 (Ωl) are linear one-dimensional
finite element spaces, with 500 nodes. We compute a reference Galerkin finite ele-
ment approximation u ∈ Vh of problem (2). Let us note that a stabilized finite ele-
ment formulation could be adopted for this advection dominant equation. However,
since we use a sufficiently fine mesh along each dimension, this stabilization is not
required. The separation of spatial coordinates allows the introduction of very fine
one-dimensional meshes and therefore, for some classes of problems, the PGD allows
to circumvent the question of stabilization. We introduce the classical inner product in
L2(Ω), defined by (u, v) =

∫
Ω
uv dx, and the associated norm ‖ · ‖. For estimating the

convergence of PGD, we compute the error indicator εm = ‖u−um‖/‖u‖, where u is
the reference Galerkin finite element approximation. This inner product is also used
in the Minimax PGD for the definition of functionalMm in equation (24). A classical
SVD of the reference solution is also computed. This SVD is defined with respect
to the above inner product (·, ·). In dimension d = 2, the rank-m SVD um ∈ Sm is
defined by ‖u− um‖ = minvm∈Sm ‖u− vm‖.

Convergence of PGDs. On figure 1, we plot the reference solution u and approx-
imations um obtained with the three different progressive PGDs, for different ranks
m. The three PGDs capture relatively quickly the main features of the solution but we
clearly observe the superiority of the Minimax PGD in the present application.
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(Galerkin) u1 (Galerkin) u5 (Galerkin) u10 (Galerkin) u30 u

(MinRes) u1 (MinRes) u5 (MinRes) u10 (MinRes) u30 u

(Minimax) u1 (Minimax) u5 (Minimax) u10 (Minimax) u30 u

Figure 1: Convergence of progressive PGDs um (contour plots), compared with refer-
ence solution u.

Figure 2 shows the convergence curves of the different PGDs. On figure 2(a), we
observe that progressive Galerkin and MinRes PGD have similar and relatively slow
convergences, while the progressive Minimax PGD presents a much faster conver-
gence. On Figure 2(b), we observe that updated PGDs (and especially Galerkin and
Minimax PGDs) generate a decomposition which is very close to the SVD. However,
as we will see below, the updating step significantly increases the computation time of
the PGD in this application.

Convergence of the alternated direction algorithm. Figures 3 and 4 show the con-
vergence of sequence z(n) generated by the alternated direction algorithm, for the com-
putation of successive rank-one elements zi ∈ S1, respectively for progressive PGDs
(figure 3) and updated progressive PGDs (figure 4). The sequences z(n) are defined
by equation (21) for the Galerkin and MinRes PGDs and by equation (31) for the
Minimax PGD. On Figure 3, we observe a fast convergence of alternated direction
algorithm for Galerkin and Minimax PGDs, for all the modes of the decomposition.
For Galerkin (resp. Minimax) PGD, only n = 3 (resp. n = 2) iterations are suffi-
cient in order to obtain a convergence with a precision of 10−2 for the computation
of each modes zi. However, we notice that for MinRes PGD, the sequence converges
very slowly. The same conclusions are made on Figure 4 for the updated versions of
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(a) Progressive PGDs (b) Updated PGDs

Figure 2: Convergence of progressive (a) and updated (b) PGDs. Reference SVD is
also plotted.

PGDs. However, we notice that the update improves the convergence of the alternated
direction for subsequent modes.

(a) Galerkin PGD (b) MinRes PGD (c) Minimax PGD

Figure 3: Convergence of the alternated direction algorithm for progressive PGDs.
Stagnation error ‖z(n+1)−z(n)‖/‖z(n)‖ is plotted for n = 1 . . . 5 (the different curves)
and for modes 1 to 60 (abscissa).

Computation times. The construction of the different PGDs leads to different com-
putation times. On Figure 5 is plotted the error εm with respect to computation time
for the different PGDs. We already noticed on figure 2 that the updating step (only
one update along each direction) can significantly improve the convergence with m
for all PGDs. However, this updating step significantly increases computation times
and therefore, updated PGDs are not necessarily the fastest solution techniques. In
this application, it appears that the progressive Minimax PGD (without update) is the
fastest technique. This optimality is due to the relatively fast convergence of sequence
um and the fast computation of alternated direction iterations. Updated Galerkin and
Minimax PGDs lead also to quite good results. We note that MinRes PGD leads to
higher computation times, although it leads to a good convergence of um. This is due
to the fact that operator A∗A and right-hand sides A∗(b − Aum) have much higher
ranks than operator A and right-hand sides b− Aum.
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(a) Updated Galerkin PGD (b) Updated MinRes PGD (c) Updated Minimax PGD

Figure 4: Convergence of the alternated direction algorithm for updated progressive
PGDs. Stagnation error ‖z(n+1)− z(n)‖/‖z(n)‖ is plotted for n = 1 . . . 5 (the different
curves) and for modes 1 to 60 (abscissa).

Figure 5: Error versus computation time for progressive and updated PGDs
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5.2 Example 2

We consider the example of section (2.3.2). We let d = 2, with Ω1 = Ω2 = (0, 1), and
consider periodic boundary conditions, with Vl = H1

per(Ωl) for l = 1, 2. We choose
for the diffusion parameter ν = 10ξ1 , with Ξ1 = (0, 1) with uniform probability mea-
sure Pξ1 . It corresponds to a log-uniform distribution on (1, 10) for random variable
ν. We choose for the advection parameter c = 125(ξ2, 1), with Ξ2 = (0, 1) with
uniform probability measure Pξ2 . We choose σ = 10 and f(x, y) = exp(−300(x1 −
1/4)2) exp(−300(x2 − 1/2)2). We introduce continuous linear finite elements for ap-
proximation spaces Vl,h ⊂ Vl, for l = 1, 2 (with 70 elements in each dimension),
and finite elements with polynomial degree 4 for approximation spaces Vl,h ⊂ Vl, for
l = 3, 4 (14 elements in each dimension). The dimension of approximation space
Vh = ⊗4

l=1Vl,h is 704 ≈ 2.4 107. We introduce a classical inner product in L2(Ω× Ξ),
defined by (u, v) =

∫
Ω×Ξ

uv dµ, and the associated norm ‖ · ‖. For estimating the
convergence of PGDs, we compute the error indicator εm = ‖u− um‖/‖u‖, where u
is a reference solution, which is a fine approximation of the Galerkin approximation
of problem (2) in Vh. The above inner product is also used in the Minimax PGD for
the definition of functionalMm in equation (24).

Convergence of PGDs. Figure 6 illustrates the convergence curves of the different
progressive and updated PGDs. It also illustrates the convergence of multidimen-
sional singular value decompositions (MSVD). The progressive MSVD is defined by
um =

∑m
i=1 zi, with ‖u− um+1‖ = minz∈S1 ‖u− um − z‖. An alternated minimiza-

tion algorithm is used for computing each zi ∈ S1. The updated progressive MSVD is
defined in the same way, with additional updates minvm∈Slm(um) ‖u − vm‖ along each
direction l. Let us note that in dimension d = 2, progressive and updated MSVDs
coincide, and coincide with a classical SVD. On figure 6(a), for progressive PGDs,
we observe that Galerkin PGD does not converge and that the progressive Minimal
Residual PGD has very poor convergence properties. The Minimax PGD has a better
behavior and leads to a decomposition which is closer to progressive MSVD. Figure
6(b) illustrates a much better behavior of updated variants of PGDs (and MSVD). Let
us note that even for the MSVD, the updating step leads to a significant improvement
of the convergence. The three definitions of updated PGDs lead to quite similar con-
vergence properties. However, we observe that MinRes PGD gives higher errors for a
given rank. Even if MinRes PGD seems relatively robust with respect to convergence,
it seems inefficient from a computational point of view, as illustrated on Figure 7.

On Figure 8, we plot rank-100 approximations u100 obtained with the three different
progressive PGDs, for three samples of the parameters ξ. Figure (9) (resp. (10))
shows the approximations u30 (resp. u50) obtained with updated PGDs for the same
three samples. The reference solutions correspond to classical Galerkin finite element
approximations in V1,h⊗V2,h for the two-dimensional problems associated with given
values of the parameters ξ. For this application, we clearly notice the importance of the
updating step and the necessity of computing high-rank representations for obtaining
a good accuracy.
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(a) Progressive PGDs (b) Updated PGDs

Figure 6: Convergence of progressive (a) and updated (b) PGDs and MSVDs

Figure 7: Error versus computation time for progressive and updated PGDs

6 Conclusion

We have presented and tested several definitions of Proper Generalized Decomposi-
tions (PGDs) for the a priori construction of separated representations of the solution
of variational problems defined in tensor product spaces. These methods constitute
very promising tools for circumventing the curse of dimensionality when addressing
the numerical simulation of high dimensional models in computational science and
engineering. The PGD method is relatively well mastered from a theoretical point
of view for particular classes of problems associated with convex optimization prob-
lems. However, even for this class of problems, it appears that the different definitions
of PGDs may lead to very different behaviors in practical applications. For more
general problems, as illustrated in this paper, some variants of PGDs may lead to rel-
atively poor convergence properties or even to non convergence. Many theoretical
investigations are still necessary for a better understanding of the different variants of
PGD methods and the introduction of more efficient algorithms for their construction.
For many problems, the proposed PGD variants may fail at constructing a convergent
separated representation of the solution. That proves the necessity of proposing new
definitions of PGDs and associated robust algorithms, and also ad-hoc error estimation
techniques dedicated to PGD methods.
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(Galerkin) (MinRes) (Minimax) (Reference)

Figure 8: Progressive PGDs u100 (contour plots) for 3 samples of parameters ξ (from
top to bottom).
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