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TENSOR-BASED METHODS AND PROPER GENERALIZED
DECOMPOSITIONS FOR THE NUMERICAL SOLUTION OF HIGH

DIMENSIONAL PROBLEMS: ALTERNATIVE DEFINITIONS

G. BONITHON∗ AND A. NOUY†

Abstract. Tensor-based methods are receiving a growing interest in computational science
and engineering for the numerical solution of problems de�ned in high dimensional tensor spaces.
A family of methods called Proper Generalized Decomposition (PGD) methods have been recently
proposed. They introduce alternative de�nitions of tensor approximations, not based on natural
best approximation problems, for the approximation to be computable without a priori information
on the solution of problems. In this paper, we provide a general presentation of PGD methods
in an abstract variational framework and we introduce and compare di�erent de�nitions of tensor
approximations. Convergence results are provided for some classes of variational problems and some
variants of PGD. We also present how the PGD can be judiciously coupled with classical iterative
methods where it is used as a solver of successive linear problems, thus allowing the use of a wider
class of iterative methods compared to other classical tensor-based methods.

Key words. High-dimensional problems, Tensor approximation, Proper Generalized Decompo-
sition, Greedy Algorithms, Model Reduction.

AMS subject classi�cations. 15A69, 41A63, 65N99, 65D15, 90C06

1. Introduction. Tensor-based methods are receiving a growing interest in com-
putational science and engineering for the numerical solution of problems de�ned in
high dimensional tensor spaces

A(u) = b, u ∈ V1 ⊗ . . .⊗ Vd (1.1)

Typical examples include partial di�erential equations arising in stochastic calculus
(e.g. Fokker-Planck equations),stochastic parametric partial di�erential equations
in uncertainty quanti�cation with functional approaches, and many mechanical or
physical models involving extra parameters (for parametric analyses, optimization or
inverse problems). Classical numerical methods consists in searching an approxima-
tion of the solution in approximation spaces which are tensor products of pre-de�ned
approximation spaces. These approximation methods su�er from the so called curse
of dimensionality associated with the dramatic increase of the dimension of the re-
sulting approximation spaces when d increases. The idea of tensor-based methods is
to construct an approximation of the solution under the form

um =

m∑
i=1

w1
i ⊗ . . .⊗ wdi , wki ∈ Vk (1.2)

which is called a rank-m separated representation or rank-m canonical tensor decom-
position. The interest of representation (1.2) is that its dimensionality only grows
linearly with the dimension d. The construction of a separated representation um of
a given element of a tensor space has been extensively studied over the past years
and di�erent de�nitions and associated algorithms have been proposed [25]. These
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de�nitions can be seen as multidimensional versions of the Singular Value Decompo-
sition (SVD). The question of �nding an optimal decomposition of a given rank m is
not a trivial question. Indeed, in general, an optimal representation um can not be
simply de�ned as an optimization problem on the set of rank-m tensors Rm (elements
of the form (1.2)) since it may lead to an ill-posed problem (for d ≥ 3) [10]. Various
alternative de�nitions of separated representations have been proposed, leading to
well posed tensor approximation problems. They are based on progressive construc-
tions of separated representations, consisting in successive well-posed approximation
problems in small tensor subsets (e.g. rank-one tensors) [9], or on the introduction
of suitable tensor subsets such as rank-m tensors with orthogonality or boundedness
constraints [7, 37], Tucker tensors [17], Hierarchical tensors [20, 16], or tensor-train
tensors [38].

A �rst family of numerical methods based on the construction of tensor approx-
imations have been recently proposed for the solution of high-dimensional partial
di�erential equations [19, 3, 24, 29]. They rely on the use of classical tensor approx-
imations inside classical iterative methods for the solution of (1.1) (e.g. Gradient or
Krylov-type iterative methods, Newton methods for nonlinear equations, power itera-
tions for eigenproblems...). These strategies are currently receiving a growing interest
and their analysis is closely related to the analysis of the impact of perturbations on
the behavior of iterative methods [18].

Another family of methods, called Proper Generalized Decomposition (PGD)
methods, have been introduced for the a priori construction of approximations of
the solution of problems de�ned in tensor spaces [27, 2, 30, 28, 8, 33, 32, 11]. PGD
methods introduce alternative de�nitions of tensor approximations, not based on nat-
ural best approximation problems, for the approximation to be computable without a
priori information on the solution u. Formally, PGD methods can be summarized as
the construction of a sequence {um} of approximations um ∈ Sm, where Sm is a given
tensor subset (subset of the algebraic tensor space). Let us note that this de�nition
is quite general and does not justify the terminology �Proper Generalized Decomposi-
tion�. However, the particular nature of the tensor subsets Sm (typically Sm = Rm)
and some of the proposed de�nitions of sequences of approximations make this con-
struction a generalization of Proper Orthogonal Decomposition (or Singular Value
Decomposition) [13]. For this reason, PGD was initially called Generalized Spectral
Decomposition [30, 31, 34] in the context of stochastic partial di�erential equations,
where it can be seen as a generalization of the Karhunen-Loève decomposition.

In recent years, di�erent versions of PGDs have been proposed in di�erent con-
texts and some convergence results have been obtained for some versions and for some
particular problems [5, 1, 6, 15, 13, 14]. In this paper, we provide a general presen-
tation of PGD methods in an abstract variational framework and we introduce and
compare alternative de�nitions of a priori tensor approximations. Some theoretical
results are provided for some classes of variational problems. We also present how the
PGD can be coupled with classical iterative methods where it is used as a solver of
successive linear problems, thus allowing the use of a wider class of iterative methods
compared to classical tensor-based methods mentioned above.

The di�erent versions of PGD di�er by the choice of tensor subsets Sm and the
de�nition of an approximation um ∈ Sm. We �rst distinguish direct constructions
from progressive constructions. Direct constructions consist in de�ning um ∈ Sm
independently of the other uk ∈ Sk, k 6= m. These constructions may become com-
putationally expansive when increasing approximation sets Sm, so that constructive
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approximations based on progressive decompositions are generally preferred. Progres-
sive constructions consist in de�ning Sm = Sm−1 + S, with S a small tensor subset,
and um = um−1 + wm, with wm ∈ S a �good correction� of um−1.

1 Progressive de�-
nitions of PGDs can be considered as Greedy algorithms [36] for constructing tensor
decompositions (with S as a dictionary of functions). The di�culty in the de�nition
of progressive PGDs is that a correction wm ∈ S must be de�ned in such a way that it
is computable without a priori information on the solution. The correction wm can be
de�ned by a minimization problem if the variational problem is equivalent to the min-
imization of a certain functional (e.g. convex optimization problems). In particular,
for general variational problems, the correction can be obtained by a minimization of
the residual of (1.1). This minimal residual formulation is robust in the sense that the
sequence um monotonically converges with respect to the residual norm. However,
the convergence properties are closely related to the choice of residual norms. There-
fore, the main di�culty resides in the choice of good residual norms that can be easily
computed within the present tensor format. The correction wm can also be de�ned by
Galerkin orthogonality conditions. The progressive PGD based on Bubnov-Galerkin
orthogonality conditions was historically the �rst version of PGD and it has proved
e�cient in many applications. However, it is not robust in the sense that monotone
convergence is not guaranteed for general non-symmetric problems and the sequence
um may diverge in some situations. Another possible de�nition of a good correction
wm can be introduced, based on Petrov-Galerkin orthogonality conditions.2 This
de�nition can signi�cantly improve convergence properties of progressive PGD with
respect to some chosen norms.

The above progressive de�nitions are here presented in a general and uni�ed
framework. Convergence results are provided for some classes of variational problems
and some versions of progressive PGDs. A particular class of problems involving so-
called S-tangent operators is introduced. For these problems, a monotone decrease
of some residual norm is proved for PGD based on Bubnov-Galerkin orthogonality
conditions, even for non-symmetric problems. A possible improvement of purely pro-
gressive decompositions consists in introducing some updating steps by taking part at
step m of the previously generated information, i.e. of {uk}1≤k≤m. This allows cap-
turing a better approximation of an optimal decomposition which could be obtained
by a direct construction. For many applications, it allows recovering good convergence
properties of separated representations. In this paper, di�erent strategies of updates
are introduced and compared.

The paper is organized as follows. In section 2, we introduce general notions
about tensors and their approximations. In section 3, we present an abstract setting
for variational problems formulated in high dimensional tensor spaces. We also present
classical iterative methods and present possible strategies based on a posteriori tensor
approximation. In section 4, we introduce a general presentation of PGD methods for
the a priori construction of a tensor approximation of the solution of high-dimensional
variational problems. The particular case of convex optimization problems serves as
a guideline in this general presentation. We also discuss the possible use of PGD

1A typical choice for S, which is the most widely used, is the set of rank-one tensors R1, thus
yielding the progressive construction of a rank-m decomposition um ∈ Rm.

2This idea has been recently introduced in [32] in the context of time-dependent partial di�erential
equations, where it was interpreted as a Petrov-Galerkin model reduction technique, where test and
trial reduced basis functions are related by an adjoint problem.
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methods inside classical iterative solvers (e.g. for the solution of nonlinear problems).
In section 5, we propose alternative de�nitions of progressive PGDs for more general
variational problems. We also discuss an interesting property of some di�erential
operators, called S-tangency, which yields good convergence properties of progressive
PGD for a large class of applications. Finally, in section 6, di�erent variants of PGDs
are illustrated and compared on numerical examples.

2. Tensor product spaces and tensors representations.

2.1. Tensor Hilbert spaces. We consider Hilbert spaces Vk, 1 ≤ k ≤ d,
equipped with inner products 〈·, ·〉k and associated norms ‖ · ‖k. We de�ne the set of
elementary tensors (or rank-one tensors)

R1 = {w = w1 ⊗ . . .⊗ wd : wk ∈ Vk for 1 ≤ k ≤ d}

The algebraic tensor space is de�ned as the span of elementary tensors

a⊗dk=1Vk = span{v : v ∈ R1}

For each element v ∈ a⊗dk=1Vk, there exists m ∈ N such that v =
∑m
i=1 vi with some

vi ∈ R1. The algebraic tensor space is now equipped with an inner product 〈·, ·〉 and
associated norm ‖ · ‖. The resulting normed vector space a⊗dk=1Vk is a pre-Hilbert
space. A Hilbert space V‖·‖ equipped with inner product 〈·, ·〉 and associated norm
‖ · ‖ is obtained by the completion of the algebraic tensor space

V‖·‖ = a⊗dk=1Vk
‖·‖
.

If there is no ambiguity on the choice of norm, we will simply denote V = V‖·‖.
Note that in the �nite dimensional case, since all norms are equivalent, the resulting
topological space V‖·‖ is independent of the choice of norm.

Canonical norm and inner product. We now introduce a particular but natural
inner product. For elementary tensors w = ⊗dk=1w

k ∈ R1 and v = ⊗dk=1v
k ∈ R1, we

let 〈w, v〉V = 〈⊗dk=1w
k,⊗dk=1v

k〉V =
∏d
k=1〈wk, vk〉k This de�nition is then extended

by linearity on the whole algebraic tensor product space. In the sequel, 〈·, ·〉V is called
the canonical inner product. The norm associated with 〈·, ·〉V is denoted ‖ · ‖V and
will be called the canonical norm. For an elementary tensor w = ⊗dk=1w

k ∈ R1, this

norm veri�es ‖ ⊗dk=1 w
k‖V =

∏d
k=1 ‖wk‖k, which is the property of a crossnorm.

2.2. Tensor subsets.

2.2.1. Rank-m tensors. The set of tensors with canonical rank m, called rank-
m tensors for brevity, is de�ned by

Rm = {v =

m∑
i=1

wi : wi ∈ R1 for 1 ≤ i ≤ m} (2.1)

Note that
⋃
m≥1Rm = a⊗dk=1Vk.

2.2.2. Tucker tensors. For r = (r1, . . . , rd) ∈ Nd, we de�ne the Tucker tensors
set Tr as follows:

Tr =

{
v ∈ V such that there exist linear subspaces Uk ⊂ Vk
with dim(Uk) = rk such that v ∈ a⊗dk=1Uk

}
=

{
v =

∑
i∈Ir αiwi ∈ V ; αi ∈ R, wi = ⊗dk=1w

k
ik
∈ R1,

with 〈wki , wkj 〉k = δij for all k and 1 ≤ i, j ≤ rk

}
(2.2)
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where Ir = {i = (i1, . . . , id) ∈ Nd; 1 ≤ ik ≤ rk for all k ∈ {1, . . . , d}} is a set of
multi-indices. In the Tucker representation (2.2), α = (αi)i∈Ir ∈ Rr1×...×rd is called
the core tensor3. Note that Tr ⊂ Rr∗ with r∗ = r1 . . . rd. Let us also note that
T(1,...,1) = R1 and, for d = 2, T(m,m) = Rm for all m ≥ 1. However, for m ≥ 2 and
for d ≥ 3, we have Rm  T(m,...,m) with strict inclusion.

2.2.3. Other tensor formats. Other tensors formats have been recently in-
troduced, such as hierarchical tensor format [16] or tensor train format [35]. These
formats can be seen as subsets of the Tucker tensors set with a particular structure of
the core tensor. These particular formats allow circumventing the curse of dimension-
ality in the representation of the core tensor (dimensionality grows only linearly with
d). Other tensors sets are also available, such as rank-m tensors with orthogonality
constraints (see [37] for some properties of these tensors sets).

2.3. Best approximation in tensor subsets. Let u ∈ V‖·‖ and let S ⊂ V
denote a tensor subset. The best approximation of u in S in the sense of the ‖ · ‖ can
be naturally de�ned by the problem

inf
v∈S
‖u− v‖ (2.3)

This problem is a minimization problem of a convex and continuous (and hence weakly
lower semi-continuous) and coercive functional on the subset S. The existence of a
minimizer is then conditioned by the properties of S. In particular, we have that the
best approximation problem (2.3) is well-posed (i.e. admits at least one solution) if
the set S is weakly closed, or simply closed in the �nite dimensional framework.

Rank-1 approximation. In the �nite dimensional case, the set R1 is a closed set.
In the in�nite dimensional case, the set R1 is weakly closed in V‖·‖ if the norm ‖ · ‖
is stronger than a certain crossnorm. In [12], it can be found other conditions on the
norm ‖ · ‖ that ensure that R1 is weakly closed. In particular, it can be proved that
R1 is weakly closed in Sobolev tensor spaces [14].

Rank-m approximations. It is well known that in the case when d ≥ 3 and m ≥ 2,
the set Rm is not weakly closed (nor even closed), so that the best approximation
problem (2.3) is ill-posed for S = Rm (see e.g. [10]).

Remark 2.1. It is proved in [37] that if the norm is associated with the canonical
inner product, the best approximation problem (2.3) is well-posed when choosing for
S subsets of Rm with orthogonality constraints between rank-one elements.

Tucker approximation. In the �nite dimensional framework, the Tucker set Tr is
a closed set. In the in�nite dimensional case, it can be proved that Tr is weakly closed
in V‖·‖ under quite technical assumptions on the norm ‖ · ‖ (see [12]). In particular,
it is true if the norm ‖ · ‖ is not weaker than the injective norm, which is a property
veri�ed by the canonical norm in Hilbert tensor spaces. For the case of Sobolev spaces,
it can also be proved that the Tucker set is weakly closed by using other arguments
(using properties of intersections of tensor spaces) [12].

2.4. Progressive de�nition of a best approximation. A way of constructing
tensor approximations consists in de�ning a sequence of approximations {um}m≥1

such that um = um−1 + wm, with u0 = 0 and with wm ∈ S de�ned by a best

3Note that the number of components r1 . . . rd in the core tensor grows exponentially with d
(except if #{k ∈ {1, . . . , d} : rk ≥ 2} remains bounded as d → ∞), which makes Tucker format
intractable for high-dimensional applications.
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approximation problem on a suitable set S:

‖u− um−1 − wm‖ = min
v∈S
‖u− um−1 − v‖ = min

v∈um−1+S
‖u− v‖ (2.4)

We then obtain a progressive construction of a series um =
∑m
i=1 wi which provides a

better and better approximation of u as m increases. The well-posedness of successive
best approximation problems (2.4) still depends on the properties of the set S. We
have the following convergence result, which is a direct extension of the proof in
[13], and which can be seen as a particular case of a more general result on greedy
algorithms [36].

Theorem 2.2. Under the following conditions on the subset S
• S is weakly closed in V‖·‖,
• span{v : v ∈ S} is dense in V‖·‖,
• for each v ∈ S, λv ∈ S for all λ ∈ R,

we have the convergence of the sequence {um}m≥1 de�ned by (2.4) towards u

lim
m→∞

‖u− um‖ = 0

We now give some possible choices for S.
Progressive rank-m approximation. The basic choice for S consists in the set of

elementary tensors R1. We then obtain a progressive construction of rank-m approxi-
mations um ∈ R1+. . .+R1 = Rm. In [13], it is given an interpretation of the obtained
sequence um as a generalized multidimensional singular value decomposition, even for
the case where ‖ · ‖ is not the canonical norm (nor even a crossnorm).

Other progressive constructions. As discussed in section 2.3, other choices are also
possible for S, such as the Tucker set Tr for some r ∈ Nd, or the set of tensors in
Rm with orthogonality constraints. The interest of this progressive construction is to
formulate successive optimization problems in spaces with moderate dimension (low
m or low r), thus avoiding the direct costly computation of a high rank representation.
Note that for S = Tr, we have um ∈ Tr + . . .+ Tr ⊂ Tr+...+r = Tmr.

3. Multidimensional problems and tensor-based solution methods.

3.1. Variational problems in tensor product spaces. Let V = V‖·‖ a tensor
Hilbert space de�ned as the tensor product of Hilbert spaces Vk, 1 ≤ k ≤ d, and
endowed with a norm ‖ · ‖ and associated inner product 〈·, ·〉.

3.1.1. A general problem. We consider an abstract formulation of a problem

u ∈ V, A(u, v) = L(v) ∀v ∈ V (3.1)

where A is a bilinear or eventually semilinear form on V , and L is a linear form on
V . We introduce the operator A : V → V and the element b ∈ V associated with A
and L respectively, de�ned by

A(u, v) = 〈A(u), v〉, L(v) = 〈b, v〉,

for all u, v ∈ V .

3.1.2. A particular class of convex optimization problems. In the paper,
we will sometimes refer to a particular class of problems associated with an optimiza-
tion problem. For these problems, we consider that A(u) − b is the gradient of a
convex functional J : V → R, that means

〈A(u)− b, v〉 = 〈J ′(u), v〉
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for all u, v ∈ V . Equation (3.1) then appears as the Euler equation associated with
the minimization problem

J(u) = min
v∈V

J(v) (3.2)

3.2. Solution methods using a posteriori tensor product approxima-
tions.

3.2.1. Principle. Tensor-based methods can be used in association with tradi-
tional iterative methods for solving problem (3.1). Classical iterative solvers (Newton
iterations, conjugate gradient, ...) can be summarized into the construction of a
sequence {un}n∈N iteratively de�ned by

un+1 = B(un), (3.3)

with u0 given and the mapping B such that for ‖u0 − u‖ ≤ δ, we have limn→∞ ‖u−
un‖ = 0. The idea is then to introduce tensor approximations at each iteration of this
algorithm, which is equivalent to the use of an approximate iteration mapping Bε. It
thus results in the construction of an approximate sequence {vn}n∈N de�ned by

vn+1 = Bε(vn), (3.4)

with v0 an approximation of u0.

3.2.2. Some requirements and properties. In order for this strategy to make
sense, some requirements must be ful�lled:

• Application of mapping Bε must preserve tensor formats and must prevent
from a dramatic increase of tensor ranks.

• Algorithm must be stable with respect to perturbations. The approximate
sequence should yield an error which depends continuously on the error ε on
the iteration mapping.

The �rst requirement limits the choice of algorithms. In practice, simple algorithms
have to be used4. The following theorem gives a typical situation where the second
requirement is ful�lled. For further results on the e�ect of approximations on iterative
solvers, see [18].

Theorem 3.1. Assume that B is contractive on a δ-neighborhood of u:

‖B(w)−B(v)‖ ≤ ρ‖w − v‖ ∀v, w ∈ Vδ(u) = {v ∈ V : ‖v − u‖ < δ}

with ρ < 1 the contractivity constant. Assume that Bε is such that

‖Bε(v)−B(v)‖ ≤ ε ∀v ∈ Vδ(u)

Then, if v0 ∈ Vδ(u) and if ε < δ(1− ρ), we have

lim sup
n→∞

‖u− vn‖ ≤
ε

1− ρ

Proof. We have v0 ∈ Vδ(u). Suppose that vn ∈ Vδ(u). Then,

‖vn+1 − u‖ = ‖Bε(vn)−B(u)‖ ≤ ‖Bε(vn)−B(vn)‖+ ‖B(vn)−B(u)‖
≤ ε+ ρ‖vn − u‖

4Note that regarding the �rst requirement, the use of the PGD method within iterative solvers
allows to consider a wider class of iterative methods, as explained in section 4.5.
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Since ε < δ(1−ρ), we have ‖vn+1−u‖ < δ, which implies vn+1 ∈ Vδ(u). By induction,
we then have vn ∈ Vδ(u) for all n ≥ 0. Now,

‖vn − u‖ ≤ ε+ ρ‖vn−1 − u‖ ≤ ε
n−1∑
k=0

ρk + ρn‖v0 − u‖

=
ε(1− ρn)

1− ρ
+ ρn‖v0 − u‖ ≤

ε

1− ρ
+ ρn‖v0 − u‖

and therefore

sup
n≥N
‖vn − u‖ ≤

ε

1− ρ
+ ρN‖v0 − u‖ →

ε

1− ρ
as N →∞

In other words, for all γ > 0, there exists N such that for all n ≥ N , vn ∈ Vγ′(u) with
γ′ = ε

1−ρ + γ.

3.2.3. An example involving a monotone operator. As an example, let us
consider the case of a strongly monotone and Lipschitz continuous mapping A, and
let us consider the simple algorithm (3.3) with iteration mapping

B(u) = u− α(A(u)− b),

with α su�ciently small5 to ensure the contractivity of B. We then introduce an ap-
proximation map Tε : V → a⊗dk=1Vk which associates to any v ∈ V an approximation
Tε(v) in a suitable subset of the algebraic tensor space. Mapping Tε is supposed to
verify

‖Tε(v)− v‖ ≤ γ(ε) ∀v ∈ Vδ(u)

A basic approximation would consist in using

Bε(v) = Tε(B(v))

For this choice, theorem 3.1 applies for γ(ε) = ε. In practice, the introduction of
further approximations may be required in order to preserve low rank decompositions
and therefore to preserve computational e�ciency. For example, one could consider
the following iteration mapping Bε(v) = Tε(v − Tε(α(Aε(v)− b)), with Aε a low rank
approximation of A which preserves tensor format. In this case, further assumptions
are required on Aε and γ(ε) in order for theorem 3.1 to be still valid. In conclusion,
this type of approximation strategy requires a good analysis of iterative algorithms
and a careful approximation of the di�erent steps of these algorithms in order to
preserve convergence properties of the approximate sequence.

4. Solution methods using a priori tensor product approximations:
Proper Generalized Decompositions.

5‖B(v)−B(w)‖2 = ‖v−w−α(A(v)−A(w))‖2 = ‖v−w‖2−2α〈A(v)−A(w), v−w〉+α2‖A(v)−
A(w)‖2 ≤ ‖v−w‖2(1− 2γAα+ α2C2

A), with γA the strong monotonicity constant of A and CA the

continuity constant of A. Denoting ρ2 = (1− 2γAα+ α2C2
A), then for α < 2γA

C2
A

, we have ρ < 1 and

therefore a contractive mapping B.
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4.1. Principle. Proper Generalized Decomposition (PGD) methods introduce
alternative de�nitions of tensor approximations, not based on natural best approxima-
tion problems, for the approximation to be computable without a priori information
on the solution u. PGD consists in constructing a sequence {um} of approximations
um ∈ Sm, where Sm is a given tensor subset (subset of the algebraic tensor space).
Let us note that this de�nition is quite general and does not justify the terminology
Proper Generalized Decomposition. However, the particular nature of the subsets
Sm and some of the proposed de�nitions of sequences of approximations make this
construction a generalization of singular value decomposition (or Proper Orthogonal
Decomposition). This will be clari�ed later. Di�erent versions of Proper Generalized
Decompositions can be de�ned according to

(i) the choice of tensor subsets Sm, and
(ii) the de�nition of an approximation um ∈ Sm.

4.2. Choice of tensor subsets. The sequence of sets Sm will be classically
chosen such that:

(c1) Sm ⊂ Sm+1,
(c2) for all v ∈ V , there exists a sequence {vm ∈ Sm}m≥1 that strongly converges

to v.
Condition (c1) is necessary for um+1 being potentially better than um (if um is de�ned
using an optimality criterium). Condition (c2) is a necessary condition for having the
convergence of the sequence um in all cases. These two conditions are ful�lled with
the following choices:

• Sm = Rm−1 +R1 = Rm,
• Sm = Sm−1 + Tr,
• Sm = T(m,...,m).

4.3. De�nitions of tensors approximations. Di�erent de�nitions of an ele-
ment um ∈ Sm are possible. We can distinguish direct or progressive de�nitions. A
direct construction, detailed in section 4.3.1, consists in de�ning um ∈ Sm indepen-
dently of the other uk ∈ Sk, k 6= m. A progressive construction, detailed in section
4.3.2, consists in de�ning um as a correction of um−1. A progressive construction with
updates consists in de�ning um by taking part of previously generated information,
i.e. knowing {uk}1≤k≤m−1. It will be detailed in sections 4.3.3 and 4.3.4. In this
section, we present possible de�nitions for the particular class of problems associ-
ated with optimization problem (3.2). For more general problems, the de�nition of a
�good� sequence um is less trivial and will be discussed in section 5.

4.3.1. Direct constructions. A direct PGD can formally be seen as the con-
struction of a sequence of approximations {um}m≥1, with um such that

um ∈ ΠSm(u) ⊂ Sm

where {Sm}m≥1 is a sequence of tensor subsets satisfying conditions (c1) and (c2),
and where ΠSm(u) is a set of �good candidates� in Sm for the approximation of u.

The particular case of optimization problems. For the case of optimization prob-
lem (3.2), the direct PGD can be naturally de�ned by choosing um ∈ Sm such that

J(um) ≤ inf
v∈Sm

J(v) + εm (4.1)

with {εm}m≥1 a bounded positive sequence. This sequence may re�ect an error in
the solution of the optimization problem or may re�ect the fact that the optimization
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problem of J on Sm does not admit a solution. Note that if Sm is weakly closed,
there exists a minimizer in Sm and therefore, εm = 0 makes sense. The candidates
set ΠSm(u) is the set of elements satisfying (4.1), i.e.

ΠSm(u) = {vm ∈ Sm : J(vm) ≤ inf
v∈Sm

J(v) + εm}

We have the following convergence result.
Theorem 4.1. Assume J : V → R is strongly convex, coercive and Fréchet

di�erentiable, with Fréchet di�erential Lipschitz continuous on bounded sets. Fur-
ther assume that for any sequence um that weakly converges to v ∈ V , we have
(J ′(um), um) → (J ′(v), v) and J ′(um) ⇀ J ′(v) (weak convergence in V ). Then a
sequence {um}m≥1 with um ∈ Sm satisfying (4.1) veri�es

lim sup
m→∞

‖u− um‖2 ≤ Cε∗

with ε∗ = lim infm→∞ εm and C a constant depending on the properties of J . In
particular, if ε∗ = 0, then um strongly converges towards the unique minimizer u of J
in V .

Proof. Since u1 ∈ S1 ⊂ . . . ⊂ Sm, we have J(um) ≤ J(u1) + εm. Therefore J(um)
is bounded since J(u1) is �nite and εm is a convergent and therefore bounded sequence.
Then, we can extract a subsequence that weakly converges to an element u∗ ∈ V ,
still denoted um for simplicity. J being continuous and convex, it is weakly lower
semi-continuous. Therefore, J(u∗) ≤ lim infm→∞ J(um). Introducing a sequence
{vm ∈ Sm}m≥1 that converges strongly to u (which is possible thanks to condition
(c2) on Sm), we have J(vm) → J(u) (by continuity of J) and J(um) ≤ J(vm) + εm.
Therefore

J(u∗) ≤ lim inf
m→∞

J(um) ≤ lim inf
m→∞

(J(vm) + εm) = J(u) + ε∗

Strong convexity of J implies

α‖u− um‖2 ≤ 〈J ′(um)− J ′(u), um − u〉 = 〈J ′(um), um〉 − 〈J ′(um), u〉

where we have used J ′(u) = 0. Then, we have that

lim sup
m→∞

α‖u− um‖2 ≤ 〈J ′(u∗), u∗ − u〉 = 〈J ′(u∗)− J ′(u), u∗ − u〉

≤ ‖J ′(u∗)− J ′(u)‖‖u∗ − u‖

Again using the strong convexity of J , we have

α

2
‖u∗ − u‖2 ≤ 〈J ′(u), u− u∗〉+ J(u∗)− J(u) ≤ ε∗

Denoting by M the Lipschitz continuity constant of J on the bounded set {v ∈
V ; ‖v‖ ≤ max{‖u‖, ‖u∗‖}}, we obtain

lim sup
m→∞

‖u− um‖2 ≤
M

α
‖u∗ − u‖2 ≤ 2Mε∗

α2

Finally, if ε∗ = 0, we obtain limm→∞ ‖u− um‖ = 0.
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4.3.2. Progressive constructions. For progressive constructions, we intro-
duce a (small) tensor subset S (typically the set of rank-one tensors R1) and we
de�ne Sm = Sm−1 + S. We then de�ne the sequence um in a greedy fashion by

um = um−1 + wm

where wm ∈ S is a correction of um−1 ∈ Sm−1 such that

wm ∈ ΠS(u− um−1) ⊂ S

where ΠS(v) denotes a set of �good candidates� for the approximation of v.
The particular case of optimization problems. For optimization problem (3.2), a

natural de�nition is

J(um−1 + wm) = min
w∈S

J(um−1 + w) (4.2)

which corresponds to the following de�nition of the set of �good candidates�:

ΠS(u− um−1) = arg min
w∈S

J(um−1 + w)

For each minimization problem to have a solution, the set S should be chosen as
a weakly closed set. Then, under classical assumptions on functional J (Fréchet
di�erentiable and elliptic functional, with Fréchet di�erential uniformly bounded on
bounded sets), the sequence strongly converges to u (see [6] for a convergence proof in
the case S = R1 in Hilbert Sobolev tensor spaces, and see also [14] for a more general
result with tensor subsets S in tensor Banach spaces).

4.3.3. Progressive construction with updates. Updated progressive PGD
methods consist in constructing a sequence um obtained by �rst computing a �good
correction� wm ∈ S of um−1 and then by updating um−1 +wm using the information
generated at steps k ≤ m. Formally, we �rst de�ne

wm ∈ ΠS(u− um−1)

with ΠS de�ned as previously. Then, we construct a linear space Vm based on the
information generated at previous iterations and we de�ne

um ∈ PVm(u)

with PVm(u) ∈ V being a suitable approximation of u in Vm. In practice, we choose
Vm such that

um−1 + wm ∈ Vm (4.3)

in order for um to be potentially better than um−1 +wm. The construction of spaces
Vm will be discussed below.

Sequence of updates at each iteration. A sequence of updates can also be per-

formed, by de�ning a sequence of linear subspaces V(k)
m and approximations v

(k)
m ∈ V(k)

m

as follows: we let v
(0)
m = um−1 + wm,

v(k)
m = PV(k)

m
(u), 1 ≤ k ≤ Nm,

with Nm the number of updates, and �nally, we let um = v
(Nm)
m . The linear spaces

should be constructed such that v
(k−1)
m ∈ V(k)

m .
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De�nition of updates. For optimization problem (3.2), PVm(u) is naturally chosen
as the unique minimizer of J on the linear subspace Vm, i.e.

um = PVm(u) = arg min
v∈Vm

J(v)

uniquely characterized by

〈J ′(um), v〉 = 0 ∀v ∈ Vm

or equivalently by

A(um, v) = L(v) ∀v ∈ Vm (4.4)

For more general problems (3.1), um = PVm(u) can typically be selected as the
Galerkin projection of u on Vm, de�ned by (4.4).

4.3.4. Strategies for updates. We here consider the case where S = R1 (rank-
one updates) and we denote by {wi}mi=1 with wi ∈ R1 the set of rank-one updates
that have been generated from iterations 1 to m. We now propose di�erent ways of
constructing linear subspaces Vm:

1. Vm = {
∑m
i=1 αiwi;αi ∈ R}. In this case, we have um ∈ Rm and dim(Vm) =

m.
2. Vm = Rlm(vm) =

{∑m
i=1 w

1
i ⊗ . . .⊗ δwli ⊗ . . .⊗ wdi ; δwli ∈ Vl

}
. It corresponds

to an actualization of all the functions in Vl that have been generated. In
this case, we have um ∈ Rm and dim(Vm) = m × dim(Vl). A sequence of

updates can be introduced by choosing successively V(k)
m = Rlkm(v

(k−1)
m ) with a

particular sequence l1, . . . , lNm
. It corresponds to updates of functions along

Nm selected dimensions.6

3. Vm = Um1 ⊗ . . . ⊗ Umd with Umk = span{wki }mi=1 ⊂ Vk. In this case, we have
um ∈ Trm , the set of rank-rm tensors, with rm = (rm1 , . . . , r

m
d ) and rmk ≤ m

for all k. We have dim(Vm) =
∏d
k=1 r

m
k ≤ md, which makes this updating

strategy tractable only for small d (typically d ≤ 3) or eventually for higher
d if most of the {rmk }dk=1 remain very small when increasing m, e.g. if the
Vk have very small dimensions or if the solution u admits a small minimal
subspace Uk,min(u) ⊂ Vk associated with dimension k (see [12] for a de�nition
of minimal subspaces).

Remark 4.2 (An alternative to the construction of linear spaces). Instead of
constructing a linear subspace Vm, any other subset satisfying um−1 +wm ∈ Vm could
also be introduced. Let us consider the case where um−1 + wm =

∑m
i=1 wi ∈ Rm. A

possible strategy consists in de�ning Vm =
∑m
i=1,i6=l wi + S. The updating step then

corresponds to the actualization of the term wl ∈ S. Several successive updates can be
performed in order to update other rank-one elements. A succession of such updating
steps at iteration m can be seen as an iterative procedure for approximating a best
approximation in Rm.

4.4. SVD as a particular case of PGD. Let us consider the particular case
where

J(v) =
1

2
A(v, v)− L(v)

6Note that the updating step along a particular dimension l could be una�ordable in some
practical applications, because of the possibly high dimension of the space Vl.
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with A a symmetric coercive and continuous bilinear form on V ×V , and L a contin-
uous linear form on V . A de�nes a norm on V , denoted ‖ · ‖A, which is equivalent to
the norm ‖ · ‖. We have

J(v) =
1

2
‖v − u‖2A −

1

2
‖u‖2A

The direct PGD then corresponds to a best approximation of the solution on a par-
ticular tensor subset Sm in the following sense:

um ∈ arg min
v∈Sm

J(v) = arg min
v∈Sm

‖v − u‖A

The progressive PGD corresponds to successive best approximation problems on a
tensor subset S in the following sense:

wm ∈ arg min
w∈S

J(um−1 + w) = arg min
w∈S
‖um−1 + w − u‖A

For the case where S = R1, this problem has been interpreted as a generalization of a
singular value decomposition [13] and we have the following result: for the progressive
PGD,

‖u− um‖2A = ‖u‖2A −
m∑
i=1

σ2
i −→
m→∞

0

where σm can be interpreted as the (generalized) dominant singular value of (u −
um−1), de�ned by

σm = arg max
w∈R1,‖w‖A=1

〈w, u− um−1〉A

with 〈·, ·〉A the inner product associated with ‖·‖A. In the case where A is a rank-one
bilinear form, i.e.

A(⊗dk=1w
k,⊗dk=1v

k) =

d∏
k=1

Ak(wk, vk)

with the Ak : Vk × Vk → R being coercive symmetric continuous bilinear forms, then
it can be proved that for d = 2, the PGD (direct or progressive) is equivalent to a
classical singular value decomposition of u (see proposition 9 in [13]), where each space
Vk is equipped with the particular metric induced by the inner product associated with
Ak. In a more general case, this analogy with a generalization of a SVD has not been
explored rigourously (see [31] for some results and open questions in the case d = 2).
Nevertheless, it is clear that the above results make the PGD a little more speci�c than
a classical best approximation problem (because of the speci�c structure of the set
of optimization). It is also clear that a better understanding of these decompositions
could yield the development of new (and maybe more e�cient) algorithms for their
constructions.

4.5. Solution methods based on classical iterative solvers and PGD.
Proper Generalized Decomposition methods can be used in conjunction with classical
iterative solvers. Compared to solution methods using a posteriori tensor approxima-
tions (see section 3.2), it allows the introduction of a larger class of iterative solvers
based on the following de�nition of a sequence {un}n≥0:

Cn(un) = Dn(un−1) (4.5)
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with Cn : V → V andDn : V → V some suitable mappings. An approximate sequence
{vn}n≥0 is constructed as follows. vn−1 being given, we de�ne vn ∈ a⊗dk=1Vk as a
Proper Generalized Decomposition of the solution v∗n of

Cn(v∗n) = Dn(vn−1) (4.6)

and such that

‖v∗n − vn‖ ≤ ε

with ε a given precision. Iteration mappings Cn and Dn should satisfy the following
requirements:

• Cn and Dn must preserve tensor formats and application of Dn must prevent
from a dramatic increase of tensors ranks. Eventually, Cn and Dn could be
approximated in order to ful�ll this requirement.

• Cn should allow for the de�nition of a robust, convergent and controlled PGD.
• Algorithm must be stable with respect to perturbations. The approximate
sequence should yield an error which depends continuously on the error ε.

Note that the approximate sequence {vn} can be formally de�ned as in equation (3.4),
with iteration mapping Bε involving the approximation with a PGD algorithm. The
convergence result of Theorem 3.1 then also applies to this context.

A �rst example: Newton-type algorithm. Let us consider the case of a strongly
monotone mapping A. Newton algorithm consists in de�ning the iteration mappings
Cn and Dn as follows:

Cn(v) = A′(vn−1)(v),

with A′(vn−1) : V → V the Fréchet di�erential of A at vn−1, which is a linear coercive
operator, and

Dn(v) = Cn(v)− (A(v)− b)

It corresponds to the following de�nition of iteration mapping B:

B(v) = v −A′(v)−1(A(v)− b)

Quasi-Newton methods consist in using for Cn a reasonable approximation ofA′(vn−1).
They can allow the introduction of simpler operators Cn satisfying the desired require-
ments for an e�cient and robust application of PGD.

A second example: Operator splitting method. Operator splitting methods consist
in decomposing operator A as follows:

A = L−N

with L : V → V a linear operator satisfying the requirements for an e�cient and
robust application of PGD (e.g. a symmetric coercive continuous operator). Iteration
mappings can then be de�ned as follows:

Cn = L, Dn = N

corresponding to the following de�nition of iteration mapping B:

B(v) = L−1(N(v) + b)
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A third example: the LATIN method. Note that the PGD was initially introduced
in conjunction with an iterative method called the LATIN method [27]. The LATIN
method is a general nonlinear iterative solver for evolution problems encountered
in nonlinear solid mechanics. This iterative solver is de�ned on the whole space-
time domain and constructs a sequence of approximations that are solutions of a
sequence of linear evolution problems (4.6). The PGD was then introduced in the
early 80's in order to obtain an e�cient solution of these linear evolution problems and
an e�cient storage of intermediate space-time solutions. For quasi static problems,
LATIN algorithms can be seen as modi�ed Quasi-Newton algorithms, and the operator
Cn is usually a simple parabolic operator which makes robust the basic de�nitions of
PGD based on Galerkin orthogonality criteria (see the following section).

5. Alternative de�nitions of progressive PGDs. In this section, we answer
the questions: given an approximation um ∈ Sm, how to de�ne a correction w ∈ S
and which algorithm can we use to construct it ? In fact, di�erent possible answers
are introduced, depending on the properties of the considered variational problem.
For each de�nition, we will detail the important case S = R1 and introduce heuristic
alternated direction algorithms.

5.1. Convex optimization problems. We �rst recall the case of optimization
problem (3.2), already mentioned in the previous section 4.3.2.

5.1.1. De�nition of a candidates set. In this case, the natural de�nition of
an optimal correction w ∈ S is

w ∈ ΠS(u− um) = arg min
v∈S

J(um + v) (5.1)

The convergence of the resulting de�nition of PGD has been studied in [6] for the case
S = R1 in Hilbert Sobolev tensor spaces, and in [14] in a more general framework in
tensor Banach spaces. Let us now discuss the problem (5.1) and its resolution.

5.1.2. Necessary conditions of optimality. A necessary (but not su�cient)
condition of optimality of w ∈ S reads:

〈J ′(um + w), δw〉 = 0 ∀δw ∈ Tw(S)

where Tw(S) is the tangent space7 to the manifold S at w, or equivalently

A(um + w, δw) = L(δw) ∀δw ∈ Tw(S) (5.2)

For the particular case S = R1, one can prove that the tangent space Tw(R1) at
w = ⊗dk=1w

k is

Tw(R1) = R1
1(w) + . . .+Rd1(w) (5.3)

with the Rk1(w) being linear subspaces de�ned by

Rk1(w) =
{
w1 ⊗ . . .⊗ wk−1 ⊗ δwk ⊗ wk+1 ⊗ . . .⊗ wd ; δwk ∈ Vk

}
(5.4)

Necessary optimality condition (5.2) is then equivalent to a coupled system of d or-
thogonality conditions:

A(um + w, δw) = L(δw) ∀δw ∈ Rk1(w), 1 ≤ k ≤ d (5.5)

7We here de�ne the tangent space by Tw(S) = {z = αz∗ : α ∈ R, z∗ ∈ V, ∃{wk}k∈N ⊂
S such that w = limwk and z∗ = lim w−wk

‖w−wk‖}
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5.1.3. Construction for the particular case S = R1. For the case S = R1,
a possible way for trying to construct an optimal w = ⊗dk=1w

k ∈ R1 consists in using
an alternated direction algorithm, by solving successively minimization problems of
type

min
wl∈Vl

J(um +⊗dk=1w
k) (5.6)

for l ∈ {1 . . . d}. Equation (5.6) is then equivalent, for a given w = ⊗dk=1w
k ∈ R1, to

�nd w� ∈ Rl1(w) such that

w� = arg min
ŵ∈Rl

1(w)
J(um + ŵ) (5.7)

Euler-Lagrange equation associated with problem (5.7) is

w� ∈ Rl1(w), A(um + w�, δw) = L(δw) ∀δw ∈ Rl1(w) (5.8)

Let us denote by f lm(w) the unique solution of problem (5.8), where f lm : R1 → R1 is
a well-de�ned mapping. Starting from an initial guess w(0) ∈ R1, we then construct
a sequence {w(n)}n∈N de�ned by

w(n+1) = fdm ◦ . . . ◦ f1
m(w(n)) (5.9)

Remark 5.1. In practice, we often observe a relatively fast convergence of the
sequence {w(n)} towards an element w̌ which satis�es simultaneously the stationarity
conditions w̌ = f lm(w̌) for all l ∈ {1 . . . d}. The behavior of the algorithm can be
understood by the analogy between this alternated direction algorithm and a power
iteration algorithm for capturing the dominant singular value of a generalized singular
value decomposition [13]. This analogy is fully justi�ed for d = 2 and for a particular
structure of the problem [32]. However, to the knowledge of the authors, there is still
no theoretical result about the properties of this algorithm in the general case.

5.2. Minimal Residual PGD (MR-PGD).

5.2.1. De�nition of a candidates set. For general problems (3.1), nonsym-
metric or even nonlinear, a possible strategy consists in reformulating the problem as
an optimization problem with a minimal residual formulation. We introduce a sym-
metric coercive and continuous operator M : V → V , de�ning on V an inner product
〈·, ·〉M = 〈M(·), ·〉 and associated norm ‖ · ‖M , equivalent to the initial norm ‖ · ‖. We
then introduce the following de�nition of an optimal update w ∈ S:

w ∈ ΠS(u− um) = arg min
v∈S
‖A(um + v)− b‖M

Necessary conditions of optimality of w ∈ S reads:

〈A(um + w), A′(um + w)(δw)〉M = 〈b, A′(um + w)(δw)〉M ∀δw ∈ Tw(S)

with A′(um +w) : V → V the tangent operator of A at um +w. For linear problems,
since A′(v) = A, it is equivalent to

〈A∗MA(um + w), δw〉 = 〈A∗Mb, δw〉 ∀δw ∈ Tw(S) (5.10)

where A∗ is the adjoint operator of A.
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5.2.2. Construction for the particular case S = R1. For the construction
of an optimizer in S = R1, an alternated minimization algorithm can be applied.
It consists in constructing the sequence {w(n)}n∈N ⊂ R1 de�ned by iterations (5.9),
where for a given l ∈ {1, . . . , d}, w� = f lm(w) ∈ Rl1(w) is the minimizer of the residual
on subspace Rl1(w), solution of

〈A(um + w�), A′(um + w�)(δw)〉M = 〈b, A′(um + w�)(δw)〉M ∀δw ∈ Rl1(w)

For linear problems, w� = f lm(w) ∈ Rl1(w) is the solution of

〈A∗MA(um + w�), δw〉 = 〈A∗Mb, δw〉 ∀δw ∈ Rl1(w) (5.11)

This construction of PGD is robust in the sense that the residual norm monotically
decreases with m:

‖A(um+1)− b‖M ≤ ‖A(um)− b‖M
However, these reformulations are often uneasy from theoretical and technical point
of views. Moreover, they often lead to PGD decompositions with bad convergence
properties with respect to usual norms [32], as it will be illustrated in the examples.
Indeed, the convergence strongly depends on the choice of norm ‖ · ‖M and suitable
residual norms are often di�cult to compute in practice (�good� residual norms usually
do not preserve tensor format).

5.3. Galerkin PGD (G-PGD).

5.3.1. De�nition of a candidates set. Galerkin PGD consists in de�ning a
new element w ∈ S from a Galerkin orthogonality condition:

A(um + w, δw) = L(δw) ∀δw ∈ Tw(S) (5.12)

The set of solutions of (5.12) de�nes a candidate set ΠS(u− um) ⊂ S. The problem
with this de�nition is that there is no clear criterium for selecting a good solution.
Indeed, the set ΠS(u − um) not only contains good solutions. In fact, this selection
comes in practice from the proposed algorithms (see below).

5.3.2. Construction for the particular case S = R1. Knowing um ∈ Rm,
we construct a sequence {w(n)}n∈N ⊂ R1 de�ned by iterations (5.9), where w� =
f lm(w) ∈ Rl1(w) is the solution of equation

A(um + w�, δw) = L(δw) ∀δw ∈ Rl1(w) (5.13)

w� = f lm(w) is a Galerkin approximation of (u− um) on the subspace Rl1(w). If the
sequence w(n) converges towards an element w̌ ∈ R1, this element w̌ generally veri�es
simultaneously the Galerkin orthogonality conditions w̌ = f lm(w̌), for all l ∈ {1, ..., d}.
We may also observe a non convergence of the sequence w(n). However, after a few
iterations, the iterate w(n) can be selected as a good candidate. Note that in the
case where the problem is associated with the optimization of a functional J , this
algorithm is the same as the one presented in section 5.1.3 (alternated minimization
algorithm).
Although there is no guaranty for convergence of the sequence um with m, good
convergence properties of um are observed for a large class of linear problems [31, 32]
or nonlinear problems [34], for the case of stochastic/deterministic separation, and
for linear problems in the case of multidimensional separation [33]. However, for
some nonsymmetric problems, the decomposition may present very bad convergence
properties or even diverge [32].
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5.4. Minimax PGD (MM-PGD). An alternative de�nition of PGD, called
Minimax PGD, has been proposed in [32] in order to improve convergence properties of
progressive PGD with respect to a speci�ed metric. It can be interpreted as a Petrov-
Galerkin PGD. It has been initially introduced for time-dependent partial di�erential
equations. Here, it is extended to general non symmetric linear problems formulated
in tensor product spaces. The construction of the Minimax PGD leads to computation
times that are similar to those of the classical Galerkin PGD. Therefore, for a given
accuracy, it usually leads to lower rank approximations and lower computation times,
compared to Galerkin and Minimal Residual PGD.

5.4.1. De�nition of a candidates set. We here restrict the presentation to
linear problems. Let us introduce the functionalMm : V × V → R de�ned by

Mm(w, w̃) =
1

2
〈w,w〉∗ −A(um + w, w̃) + L(w̃) (5.14)

with 〈·, ·〉∗ an inner product on V with associated norm ‖ · ‖∗ equivalent to the norm
‖ · ‖. The choice of this norm will have a consequence on the constructed sequence
um. An optimal update w of um can then be de�ned with the following max-min
problem:

max
w̃∈S

min
w∈S
Mm(w, w̃) (5.15)

where two elements w and w̃ in S are constructed simultaneously. The candidates set
ΠS(u− um) can here be de�ned as

ΠS(u− um) = {w ∈ arg min
w∈S
Mm(w, w̃); w̃ ∈ arg max

w̃∈S
min
w∈S
Mm(w, w̃)}.

Let us note that the problem

Mm(v�, ṽ�) = max
ṽ∈V

min
v∈V
Mm(v, ṽ) (5.16)

admits a unique solution with v� = u−um (where u is the exact solution of the initial
problem) and ṽ� = A∗−1v�. Optimal w and w̃ can then be seen as approximations in
S of v� and ṽ� respectively.

Remark 5.2. Note that functionalMm can be equivalently written

Mm(w, w̃) =
1

2
‖w −A∗(w̃)‖2∗ −

1

2
‖A∗(w̃)− (u− um)‖2∗ +

1

2
‖u− um‖2∗

where A∗(ṽ) ∈ V denotes the Riesz representant of linear form A(·, ṽ) with respect to
inner product 〈·, ·〉∗, i.e. such that 〈v,A∗(ṽ)〉∗ = A(v, ṽ).

5.4.2. Construction for the particular case S = R1. A possible way for
constructing an optimal couple (w, w̃) ∈ R1 × R1 consists in using an alternated
direction algorithm, by solving successively problems of type

max
w̃l∈Vl

min
wl∈Vl

Mm(⊗dk=1w
k,⊗dk=1w̃

k) (5.17)

For given (w, w̃) ∈ R1 ×R1, problem (5.17) is equivalent to

max
w̃�∈Rl

1(w̃)
min

w�∈Rl
1(w)
Mm(w�, w̃�) (5.18)
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where linear spaces Rl1(w) and Rl1(w̃) are de�ned by (5.4). Equation (5.18) is a
classical saddle point problem which admits a unique solution (w�, w̃�) ∈ Rl1(w) ×
Rl1(w̃) characterized by

A(um + w�, δw̃) = L(δw̃) ∀δw̃ ∈ Rl1(w̃) (5.19)

A(δw, w̃�) = 〈δw,w�〉∗ ∀δw ∈ Rl1(w) (5.20)

Let us note that equations (5.19) and (5.20) can be solved one after the other. Equa-
tion (5.19) de�nes w� as a Petrov-Galerkin approximation of (u− um) in approxima-
tion space Rl1(w), with test space Rl1(w̃). Equation (5.20) is an adjoint problem. We
denote by (w�, w̃�) = F lm(w, w̃) the solution of the system of equations (5.19)-(5.20).
Starting for an initial guess (w(0), w̃(0)) ∈ R1 × R1, we then construct a sequence
{(w(n), w̃(n))}n∈N de�ned by

(w(n+1), w̃(n+1)) = F dm ◦ . . . ◦ F 1
m(w(n), w̃(n)) (5.21)

In practice, we often observe a convergence of the sequence {(w(n), w̃(n))}n∈N. How-
ever, this algorithm requires further theoretical investigations and possible improve-
ments.

5.5. S-tangent problems. In this section, we introduce a particular class of
problems for which we can ensure a priori the monotonic decrease of some residual
error for the Galerkin PGD. We �rst describe the prototypical case of S-tangent
linear operators, before to generalize S-tangency to bilinear forms. Then we detail
the particular case S = R1 and we give a class of practical examples of R1-tangent
problems.

5.5.1. S-tangent operators. Definition 5.3. An operator A : V 7→ V is said
S-tangent if for all w ∈ S, Aw ∈ Tw(S), where Tw(S) is the tangent space at w of
the manifold S. We now give the basic result about Galerkin PGD in the case of an
S-tangent operator.

Proposition 5.4. Let um = um−1 + wm be a m-term progressive Galerkin
PGD approximation of u, with wm ∈ S satisfying the following Galerkin orthogonality
condition:

〈A (um−1 + wm) , δw〉 = 〈b, δw〉 ∀δw ∈ Twm
(S) (5.22)

We assume that the operator A is linear and S-tangent. Then, we have

‖b−Aum‖2 = ‖b−Aum−1‖2 − ‖Awm‖2 (5.23)

Proof. As the operator A is S-tangent, we can take δw = Awm as a test function
in equation (5.22), which yields ‖Awm‖2 = 〈b−Aum−1, Awm〉. Therefore, we obtain

‖b−Aum‖2 = ‖b−Aum−1‖2 + ‖Awm‖2 − 2〈b−Aum−1, Awm〉
= ‖b−Aum−1‖2 − ‖Awm‖2

Example 5.5. A basic example of S-tangent operator is given by A = IV , the
identity of V . In this particular case, equation (5.23) gives the monotonic decrease
of um − u in V -norm. An example of such a practical situation is given by V =
H1

0 (Ω) equipped with the inner product 〈u, v〉 =
∫

Ω
∇u · ∇v, which corresponds to the

variational formulation of the Laplace equation with homogeneous Dirichlet boundary
conditions.
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5.5.2. S-tangent bilinear forms. Definition 5.6. Let A be a continuous
bilinear form on V ×V . Then A is said S-tangent if there exists a S-tangent operator
AT : V → V and a continuous, coercive and symmetric linear operator M : V → V
such that

A(u, v) = 〈MATu, v〉 ∀u, v ∈ V

In other words, A is S-tangent if there exists a metric ‖ · ‖M on V (an inner prod-
uct norm), equivalent to ‖ · ‖, in which A is represented by an S-tangent operator.
The following result generalizes proposition 5.4 to S-tangent bilinear forms. Roughly
speaking, it says that the Galerkin PGD will not diverge if it is applied to an S-tangent
problem.

Proposition 5.7. Let um = um−1 +wm be a m-term progressive Galerkin PGD
approximation of u, satisfying the following Galerkin orthogonality condition:

〈A(um−1 + wm), δw〉 = 〈b, δw〉 ∀δw ∈ Twm
(S) (5.24)

We suppose that the bilinear form A is S-tangent and can be associated with a couple
of operators (M,AT ) as de�ned in de�nition 5.6. Then, we have

‖b−Aum‖2M−1 = ‖b−Aum−1‖2M−1 − ‖Awm‖2M−1 (5.25)

Proof. We inject δw = ATwm = M−1Awm as test function in (5.24). This gives

〈A (um−1 + wm) ,M−1Awm〉 = 〈b,M−1Awm〉,

from which we deduce 〈Awm, Awm〉M−1 = 〈b − Aum−1, Awm〉M−1 . Equation (5.25)
follows immediately.

Remark 5.8. Note that proposition 5.7 does not provide a convergence result for
the sequence um constructed with the progressive Galerkin PGD.

Example 5.9. As a generalization of the basic example 5.5, we can consider
the case of a symmetric and coercive bilinear form A(u, v) = 〈Au, v〉. Then M = A
de�nes an equivalent metric on V and AT = IV is a S-tangent operator associated with
A. Thus, convex optimization problems of section 5.1 appear as particular cases of
S-tangent problems. An example of such a practical situation is given by V = H1

0 (Ω)
equipped with the inner product 〈u, v〉 =

∫
Ω
∇u·∇v, and A(u, v) =

∫
Ω
∇u·∇v+

∫
Ω
αuv

for any positive function α. This corresponds to the variational formulation of a
di�usion-reaction equation with homogeneous Dirichlet boundary conditions.

5.5.3. The particular case of R1-tangent problems. We remind that for
the particular case S = R1, the tangent space Tw(R1) at w = ⊗dk=1w

k is de�ned by
(5.3). Thus, the general form of an R1-tangent operator AT is given by

AT =

d∑
i=1

I1 ⊗ · · · ⊗AiT ⊗ · · · ⊗ Id

with Ii the identity operator on Vi and AiT : Vi → Vi an arbitrary operator on Vi.
This kind of operator is known in the literature as the tensor sum of the AiT , or
the kronecker sum in the �nite dimensional case. Algebraic properties and various
applications of kronecker sum can be found for instance in [21] and [4]. Some of the
spectral properties of kronecker sum extend to the in�nite dimensional case [22, 23],



TENSOR-BASED METHODS FOR HIGH DIMENSIONAL PROBLEMS 21

and preservation properties of tensor sum have been recently investigated [26]. We
denote this operation by �, so that AT = �di=1A

i
T .

Examples 5.5 and 5.9 of S-tangent problems are quite trivial. They correspond to
the most simple case of bilinear forms associated with S-tangent operators AT = IV
and transformation operators M = IV and M = A respectively. We now give a
more interesting and representative class of S-tangent problems in the particular case
S = R1, as a proposition whose proof is straightforward.

Proposition 5.10. For each i ∈ {1, . . . , d}, let Ai be a bounded linear operator
on Vi and Mi be a linear bounded coercive symmetric operator on Vi. Suppose that the
norm ‖·‖ on V is a crossnorm, that is ‖⊗dk=1w

k‖ =
∏d
k=1 ‖wk‖k for all ⊗dk=1w

k ∈ R1.
We de�ne the bilinear form A for v = ⊗dk=1v

k ∈ R1 and w = ⊗dk=1w
k ∈ R1 by

A(v, w) =

d∑
i=1

〈Aivi, wi〉i
d∏
k=1
k 6=i

〈Mkv
k, wk〉k

and we extend this de�nition by linearity to the entire tensor space V . Then, A is
R1-tangent and an associated couple (M,AT ) (in the sense of de�nition 5.6) is given

by M =
⊗d

i=1Mi and AT = �di=1M
−1
i Ai.

Example 5.11. In the case of �nite dimensional tensor spaces, where all norms
are equivalent to each other, we can always choose for ‖·‖ the canonical norm which is
a crossnorm. Thus proposition 5.10 corresponds to many discretized versions of vari-
ational problems encountered in practical applications. A typical example is the dis-
cretized version, through Galerkin approximation, of the advection-di�usion-reaction
equation

−∆u+ β · ∇u+ αu = f,

when α(x1, · · · , xd) =
∑d
i=1 αi(xi) and β(x1, · · · , xd) =

∑d
i=1 βi(xi). This example is

discussed in section 6. However, even in such a particular case, the question of the
R1-tangency of A in the continuous framework remains open.

6. Examples.

6.1. Notations. In this section, we consider progressive PGDs with the set S =
R1. For the di�erent de�nitions of PGDs, we use the notation (λ)µ−PGD with µ =G,
MR, and MM respectively for the Galerkin PGD, the Minimal Residual PGD and the
MiniMax PGD (see section 5). λ refers to the type of updates eventually performed
(see sections 4.3.3 and 4.3.4 for details). We remind that after having computed a
correction wm ∈ R1 of um−1, performing an update consists in constructing a subspace
Vm and in de�ning um as an approximation of the solution in Vm. We denote by
{wi}mi=1, with wi = ⊗kk=1w

k
i ∈ R1, the set of rank-one corrections that have been

generated from iterations 1 to m of the progressive construction. λ = S corresponds
to the update of the �rst kind, i.e. Vm = span {wi}mi=1). λ = T corresponds to the
update of the third kind, i.e. Vm = Um1 ⊗ . . .⊗Umd with Umk = span{wki }mi=1. For the
second kind of updates, all the dimensions of the problem will be updated (successive
updates in Rkm(um) for 1 ≤ k ≤ d) and λ = n ∈ N will indicate the number of times
these updates are performed.

6.2. Example 1: a linear symmetric problem. As a �rst example, we con-
sider a linear symmetric partial di�erential equation on a hyper-rectangular domain
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Ω = Ω1 × . . .× Ωd: {
−∆u+ αu = f in Ω
u = 0 on ∂Ω

(6.1)

We here introduce piecewise linear �nite element approximations space Vk ⊂ H1
0 (Ωk),

with 201 elements. We then work in a �nite dimensional tensor space V = V1 ⊗
. . . ⊗ Vd ⊂ H1

0 (Ω) with dimension 2d102d. The only exception occurs when we use a
�nite element reference solution for d = 3. In this case, for memory usage reasons, we
reduce the meshing to 30 elements, so that the dimension of the approximation space
becomes 3d10d.

We here focus on the behavior of the G-PGD and the impact of updates for dif-
ferent types of problems: elliptic, non elliptic, and R1-tangent. Di�erent source terms
will be selected in order to illustrate typical situations and corresponding behaviors of
PGD methods. We will �rst consider �nite rank source terms. We will then consider
source terms built from manufactured solutions of su�ciently high representation
rank. Finally, we will consider source terms built from manufactured solutions with
low rank. This latter case deserves additional comments and will be treated separately.
When studying the impact of the dimension d on the convergence of (λ)G-PGD, we
often distinguish the d-dimensional cases for d ≥ 3 and the 2-dimensional case, this
latter case presenting some speci�cities.

6.2.1. Elliptic problems. We �rst consider the favorable case of elliptic prob-
lems, for which the G-PGD converges monotonically in operator norm (see section
4.4). In order to naturally extend to non elliptic and R1-tangent problems in the fol-
lowing, we take for α the elementary tensor α(x1, . . . , xd) = a |cos(bπx1)| . . . |cos(bπxd)|,
with a = 30 and b = 10.

Low rank source terms. We here consider a source term f =
∑rf
i=1⊗dk=1f

k
i , with

rf = 10 and fki (xk) monomials of degree pki randomly selected in {0, . . . , pmax}. The
error is computed in residual norm. Figure 6.1 compares the convergence of G-PGD,
(S)G-PGD, (T)G-PGD and (1)G-PGD for the 2-dimensional case.
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Fig. 6.1: (λ)G-PGD convergence. Error in residual norm. d = 2.

We remark that (S)update does not improve signi�cantly the convergence of the
G-PGD. This is observed in many applications. (T)update is more e�cient but,
as mentioned in section 4.3.4, this kind of update is dedicated to low dimensional
problems (typically d ≤ 3). (1)update is not limited to low dimensional problems,
and it gives the most signi�cant convergence improvement. In the following, for higher
dimensional problems, we will restrict ourselves to this latter kind of updates.

Remark 6.1. We remind that a (1)update, in order to compute a rank-m approx-
imation um, requires the solution of a succession of problems in (Vk)m, for k = 1 . . . d.
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In the present application, it corresponds to linear problems of dimension 2.102 ×m.
These updates become more and more computationally expansive as m increases.

Figures 6.2a, 6.2b and 6.2c compare the convergence of (n)G-PGD for 0 ≤ n ≤ 3
respectively for d = 3, 4 and 5. Again, we observe a signi�cant improvement of
the convergence with the (1)G-PGD, but no signi�cant further improvement with
additional updates (n ≥ 2). However, we observe that the error increases with the
dimension for a �xed decomposition rank. Furthermore, convergence of G-PGD in
residual norm becomes non monotonic for high dimensions.
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Fig. 6.2: (n)G-PGD convergence. Error in residual norm.

Manufactured solutions. For a better analysis of the behavior of algorithms when
increasing the dimension, we will now consider manufactured solutions in order to have
a reference solution and to measure convergence properties in usual norms. We now
consider a source term f built from a manufactured solution u =

∑ru
i=1⊗dk=1u

k
i , with

uki (xk) monomials of degree pki randomly selected in {0, . . . , 10}. The representation
rank ru is �rst set to 20. The error is computed in operator norm (equivalent to theH1

norm in the present case), for which we can expect monotonic decrease. Figures 6.3a,
6.3b and 6.3c illustrate this fact by plotting convergences of (n)G-PGDs respectively
for d = 3, 4 and 5. Figure 6.4 gives the evolution of error with respect to the dimension
for a �xed decomposition rank m = 10. When increasing dimension, one observes a
slowly increasing gap between G-PGD and (1)G-PGD. However, we observe that for
high dimension, the error for �xed rank m = 10 is quite insensitive to the dimension
d. Figure 6.5a (resp. �gure 6.5b) plots the evolution with d of the approximation
rank m required to reach a �xed error ε = 10−2 (resp. ε = 10−3), for a solution rank
ru = 30 (resp. ru = 50). The interest of performing updates is very clear in both
cases. Figure 6.5b shows that a second update allows to slightly improve convergence
from dimension d = 5, although this is not necessarily a relevant choice in terms of
computational cost.

6.2.2. Non elliptic problems. We now consider a non elliptic version of the
above problem, where we choose α(x1, . . . , xd) = a cos(bπx1)⊗. . .⊗cos(bπxd), and f =
1. PGD approximations are compared to the reference �nite element approximation
u and the error is measured in L2 norm. Figure 6.6a plots the convergence of (λ)G-
PGD for dimension d = 2. For this choice of α, we no longer have any property of
convergence for the G-PGD and actually, we here observe a divergence. This �gure
also shows that it is possible to recover convergence by performing updates. We
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Fig. 6.3: (n)G-PGD convergence. Error in operator norm.

2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Dimension

E
rr

or

 

 
G−PGD
(1)G−PGD

Fig. 6.4: (n)G-PGD error in operator norm versus d at �xed m = 10.

remark that a S-update is su�cient to recover convergence8, T-update and (1)-update
signi�cantly improve the convergence. Figure 6.6b plots the convergence of G-PGD
for d = 3. It shows that for dimension d = 3, convergence is no longer recoverable
with the proposed updates9.

We then propose to use the MR-PGD (PGD based on minimal residual formula-
tion). Figure 6.7 shows the convergence of (λ)MR-PGD for the same case d = 3. We
observe a slow convergence rate for MR-PGD, and only a slight improvement with
updates of type (S). Updates of type (T ) are una�ordable in this case because they
lead to prohibitive memory costs. However, we observe that (1)MR-PGD presents
nice convergence results, thus showing again the signi�cant improvement obtained
with the second strategy of update.

6.2.3. R1-tangent problems. As seen in section 5.5, in the particular case of
equation (6.1), the operator A associated with the di�erential operator (−∆ + αI)

is R1-tangent if and only if α (x1, . . . , xd) =
∑d
i=1 αi (xi). To illustrate the impact

of R1-tangency, we choose such an α with αi(xi) = a cos(bπxi). It leads to a non-
elliptic but R1-tangent operator A. We choose a source term f = 1. Figures 6.8a,
6.8b and 6.8c illustrate the convergences of (n)G-PGDs in residual norm respectively
for d = 3, d = 4 and d = 5. We observe that the property of R1-tangency yields good
convergence properties.

Figure 6.9 plots the evolution of the error (in residual norm) with respect to the

8In our knowledge, it is the only typical case where this S-update is really helpful.
9We make the same observation for higher dimensions d.
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(b) ε = 10−3

Fig. 6.5: (n)G-PGD rank vs d for reaching a �xed error ε.
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Fig. 6.6: (λ)G-PGD convergence. Error in L2 norm.

dimension d for a �xed approximation rank m = 10. In this case, which is perhaps
more persuasive than that of section 6.2.1 where we have used manufactured solutions,
we have let the dimension goes to d = 50. Thus it con�rm the stabilization of the
error when the dimension grows, and it shows the capacity of G-PGD to solve really
high-dimensional problems. Figure 6.10a (resp. �gure 6.10b) plots the evolution with
respect to the dimension d of the approximation rank m which is required to reach a
residual norm of ε = 10−2 (resp. ε = 10−3). When increasing dimension, we observe
a slowly increasing gap between G-PGD and (1)G-PGD, and also between (1)G-
PGD and (2)G-PGD on �gure 6.9. The above �gures clearly illustrate the interest of
performing updates.

6.2.4. The particular case of low rank solutions. Up to now, we have solved
problems with low rank source terms, or manufactured solutions with a relatively high
representation rank. This corresponds to typical situations and the previous results
are representative of a general behavior of PGD methods. Now, we want to address
the particular case where the solution is low rank and see if the proposed algorithm
are able to e�ciently capture this low rank solution.

First, we consider a solution u =
∑ru
i=1 ai ⊗dk=1 φ

k
i , with ⊗dk=1φ

k
i being orthonor-

mal eigenfunctions of the operator D = (−∆ + αI), and φki 6= φkj for i 6= j. It can
be proved that in this case, the Singular Value Decomposition (SVD) (or its multidi-
mensional counterpart for d ≥ 3 [13]), the G-PGD and the proposed updated G-PGD
are equivalent to each other and return the exact separated representation of u. Fig-
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Fig. 6.7: (λ)MR-PGD convergence. Error in L2 norm. d = 3.
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Fig. 6.8: (n)G-PGD convergence. Error in residual norm.

ure 6.11 illustrates an example of such a case for a solution rank ru = 10 and for
dimension d = 3.

More generally, if we do not enforce φki 6= φkj for all i 6= j, or if we take for ⊗dk=1φ
k
i

eigenfunctions of (−∆) in place of eigenfunctions of D, then SVD, G-PGD and up-
dated G-PGD will partially match, giving non representative convergence properties.

Contrariwise, if the functions ⊗dk=1φ
k
i are not close to eigenfunctions of D, (n)G-

PGD may fail to �nd the expected approximation rank m = ru if n is not su�ciently
high. Figure 6.12 illustrates this observation in the 2-dimensional case with ru = 2,
the φki being monomials of degree pki randomly selected in {0, . . . , 5}. The case d ≥ 3,
not plotted here, is generally worse, that is (n)G-PGD may fail to reach an arbitrarily
small precision for m = ru. Let us mention that this behavior seems related to the
progressive character of the construction, and not to the particular de�nitions of rank-
one corrections. Indeed, MR-PGD or MM-PGD give similar results in this particular
case of low rank solutions.

6.3. Example 2 : a linear non symmetric problem. Let's now consider
the following linear non symmetric partial di�erential equation de�ned on a domain
Ω = Ω1 × . . .× Ωd ⊂ Rd: {

−ε∆u+ β · ∇u = f in Ω
u = 0 on ∂Ω

(6.2)

We here introduce piecewise linear �nite element approximations space Vk ⊂ H1
0 (Ωk),

with 1001 elements. We then work in a �nite dimensional tensor space V = V1⊗ . . .⊗
Vd ⊂ H1

0 (Ω) with dimension 103d. Such a meshing becomes necessary only for low
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Fig. 6.9: (n)G-PGD error vs dimension at �xed rank m = 10
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(b) ε = 10−3

Fig. 6.10: (n)G-PGD rank vs d for reaching a �xed error ε.

values of ε, but we have kept it for all the simulations of this section by the sake of
simplicity.

We will �rst analyze the in�uence of the parameter ε and of the dimension d on
the convergence of the (λ)µ−PGDs on an elliptic problem. We will then investigate an
non elliptic R1-tangent problem. These examples will show the interest of introducing
the MM-PGD and will also illustrate the utility (and sometimes the necessity) of
performing updates.

6.3.1. In�uence of ε. We here focus on the in�uence of ε, and we simply take
β = (1, . . . , 1) and f = 1. The error is measured in residual norm. Figure 6.13a (resp.
�gure 6.13b) gives the behavior of (n)G-PGD (resp (n)MM-PGD) for ε varying from 1
to 10−4 for the case d = 2. As the operator of the problem is R1-tangent, G-PGD can
not diverge but for ε = 10−3, it presents very small convergence rates. Thus, when
using G-PGD for these cases, performing updates is not only advised but mandatory.
On the contrary, we notice a signi�cant improvement with MM-PGD, which presents
a good convergence rate down to ε = 10−4. When performing updates, we observe
similar behaviors for (n)MM-PGD and (n)G-PGD (see �gure 6.14, where (n)G-PGD
and (n)MM-PGD coincide for ε = 10−4).

When dimension increases, we observe a rather di�erent behavior: while updated
versions of G-PGD and MM-PGD still give similar results, non updated MM-PGD is
no longer better than non updated G-PGD. This is illustrated by �gures 6.15a, 6.15b
and 6.15c (resp. �gures 6.16a, 6.16b and 6.16c) which plot the behavior of (n)G-PGD
(resp. (n)MM-PGD) for ε varying from 1 to 10−4 in dimension d = 3, d = 4 and
d = 5.
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Fig. 6.11: (n)G-PGD convergence. Error in L2 norm. d = 3. The solution u is of
rank ru = 3 and is a sum of eigenfunctions of (−∆ + αI).
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Fig. 6.12: G-PGD convergence. Error in L2 norm. d = 2. The solution u is of rank
ru = 10 and is a sum of rank-one polynomial functions.

However, even if the error of G-PGD monotonically decreases due to the
R1-tangency property, it decreases too slowly in practice for small values of ε. This
makes updates mandatory both for G-PGD and MM-PGD in these cases. For higher
values of ε, G-PGD and MM-PGD present similar results, both in their non updated
and updated versions. Thus we can consider that MM-PGD is at worst as good as
G-PGD from the convergence point of view. Furthermore, we must mention that the
alternated direction algorithm, which is used to compute the order m correction wm,
fails to converge for most m in the case of G-PGD, while it converges for all m in the
case of MM-PGD (at least in the present application).10 This makes MM-PGD a more
robust algorithm than G-PGD, even if it does not signi�cantly improve convergence
properties in all cases.

Finally, concerning the similarity of G-PGD and MM-PGD in their updated ver-
sions, we can mention that the de�nitions of updates that are used for MM-PGD
are not really appropriate. Indeed, a Galerkin projection is used in both cases, while
the natural de�nition in the case of the MM-PGD would rather be a Petrov-Galerkin
projection, from which we could expect a more signi�cant convergence improvement.
However, the way to introduce a pertinent de�nition of updates based on Petrov-
Galerkin projections for MM-PGD is still an open question.

6.3.2. A non elliptic R1-tangent problem. We now consider a non elliptic
but R1-tangent version of problem (6.2). We take ε = 1 and βi = a cos(bπxi) with

10This can explain the loss of monotonic convergence in residual norm which is sometimes observed
for G-PGDs, as illustrated in �gure 6.15a.
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Fig. 6.13: Convergence of µ-PGDs (solid lines) and (1)µ-PGDs (dashed lines). Error
in residual norm. d = 2.
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Fig. 6.14: Convergence of (n)µ-PGDs. d = 2, ε = 10−4.

a = 30 and b = 10. In the case d = 2, �gure 6.17a and 6.17b shows that G-PGD and
MM-PGD give very similar results. They can be used without performing updates,
although updates signi�cantly improve their convergence. In both cases, we also
observe that performing more than one update (n ≥ 2) does not signi�cantly improve
the convergence.

For this example, the increase in dimension d does not have a signi�cant impact on
the behavior of the algorithms. We then restrict the following analysis to d = 3. Again,
�gure 6.18a and 6.18b show that G-PGD and MM-PGD give very similar results, both
for updated and non updated versions. We can also check that performing more than
one update does not improve the convergence. Finally, we see that in the case of a
non elliptic and non symmetric R1-tangent problem, there is no need to introduce
MM-PGD since G-PGD posseses good convergence properties.

6.4. Example 3 : a convex non linear problem. We consider the following
non linear partial di�erential equation de�ned on a hyper-rectangular domain Ω =
Ω1 × . . .× Ωd: {

−ε∆u+ u3 = f in Ω
u = 0 on ∂Ω

(6.3)

We choose ε = 10−4. We use piecewise linear �nite element approximation spaces
Vk ⊂ H1

0 (Ωk), with 1001 elements. We then work in a �nite dimensional tensor
space V = V1 ⊗ . . . ⊗ Vd ⊂ H1

0 (Ω) with dimension 103d. Note that the Galerkin
approximation of this problem is the unique minimizer on V of the convex functional
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Fig. 6.15: Convergence of G-PGD (solid lines) and (1)G-PGD (dashed lines). Error
in residual norm.
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Fig. 6.16: Convergence of MM-PGD (solid lines) and (1)MM-PGD (dashed lines).
Error in residual norm.

given by

J(v) =
ε

2

∫
Ω

∇v · ∇v +
1

4

∫
Ω

v4 −
∫

Ω

fv (6.4)

Thus we are in the framework of section 4, where PGD approximations are clearly
de�ned by optimization problems.

We here compare two solution strategies. First, we will use a Newton algorithm,
leading to a sequence of linear problems that are solved using a PGD algorithm
(strategy of section 4.5). Secondly, we will construct a unique progressive PGD by
computing successive corrections in R1 (with eventual additional updates) obtained
by minimization problems in R1 (see section 5.1).

6.4.1. Newton algorithm and PGD method for linear problems. We
denote by F (u) = J ′(u) ∈ V the (discrete) representant in V of the residual −ε∆u+
u3 − f . We apply the Newton algorithm for solving F (u) = 0. Given an initial guess
u0 = 0, we construct a sequence {uk}k≥0 ⊂ V de�ned by

F ′(uk)uk+1 = F ′(uk)uk − F (uk) (6.5)
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Fig. 6.17: Convergence of (n)µ-PGDs. Error in residual norm. d = 2.
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Fig. 6.18: Convergence of (n)µ-PGDs. Error in residual norm. d = 3.

that is uk+1 is the approximation in V of the solution of{
−ε∆uk+1 + 3u2

kuk+1 = f + 2u3
k in Ω

uk+1 = 0 on ∂Ω
(6.6)

At each iteration, we apply a PGD algorithm for the construction of a decomposition
of uk+1. The obtained decomposition have to be compared with the PGD construction
which will be introduced in section 6.4.2. In the present non incremental version of the
Newton algorithm, the precision required for the PGD algorithm will determinate the
precision that can be expected on the �nal approximation11. Equation (6.6) involves
a symmetric and elliptic operator −ε∆ + 3u2

kI represented by F ′(uk) = J ′′(uk), and

uk+1 = arg min
v∈V

Gk(v), Gk(v) =
1

2
〈J ′′(uk)(v), v〉 − 〈J ′′(uk)(uk)− J ′(uk), v〉

which is a convex optimization problem. A progressive PGD of uk+1 is then de�ned
as described in section 4. It consists in constructing a sequence {umk+1}m≥0, with
u0
k+1 = 0, by computing successive corrections wm ∈ R1 de�ned by

Gk(um−1
k+1 + wm) = min

w∈R1

Gk(um−1
k+1 + w) (6.7)

11Note that another way to use Newton algorithm is to look for the increment δk+1 = uk+1 − uk
as a solution of F ′(uk)δk+1 = −F (uk). This strategy will be used in the example of section 6.5.
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and by letting umk+1 equal to um−1
k+1 + wm or an update of this latter approximation.

Remark 6.2. Note that if an exact PGD were computed at each Newton iteration,
then the sequence uk would converge to the exact solution. Therefore, when uk would
approach u, we would obtain a PGD decomposition of u whose optimality is de�ned
with the metric induced by the symmetric elliptic operator −ε∆ + 3u2I (represented
by F ′(u) = J ′′(u)).

Problem (6.7) is solved using an alternated minimization algorithm, described in
section 5.1.3. Note that the resulting algorithm is no more than the G-PGD algorithm
presented in section 5.3 applied to equation (6.5). We must remark that the operator
h 7→ J ′′(uk)(h) has to be computed once at each Newton iteration. Therefore, it
remains constant during the G-PGD construction. As we will see, this is the main
di�erence with the PGD construction presented in section 6.4.2, which will require
much more actualizations of tangent operators.

In the following, we �x the decomposition rank of the G-PGD to m = 10 for
each Newton iteration. The errors are measured in residual norm, both for Newton
algorithm and G-PGD. We �rst consider the 2-dimensional case. Figure 6.19a shows
the convergence of the Newton algorithm, while �gure 6.19b gives the convergence of
the G-PGD for each Newton iteration. We �rst observe a stagnation of the Newton
iterates at a �nite precision. It is explained by the fact that by imposing a maximal
rank m for each PGD, the iterates of the Newton algorithm are approximated with
a �nite precision. On �gure 6.19b, we observe that convergence properties of rank-
m PGDs tend to stabilize with increasing Newton iterates. For the last Newton
iterate k = 5 and for the maximum rank m = 10, we obtain an approximation umk
corresponding to a residual error of 10−7. This error is related to the residual error
of the Newton algorithm (up to a normalization factor of the residual).
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Fig. 6.19: Convergence of Newton algorithm (a) and of G-PGD for each Newton
iteration (b). Error in residual norm. d = 2.

Figures 6.20a and 6.20b give the same convergence curves when an update is
performed in the G-PGD construction. We observe the same qualitative behavior
with a quantitative gain of two orders of magnitude. We can make similar comments
for higher dimensional problems (see �gures 6.21a and 6.21b for d = 5 and the updated
G-PGD).

6.4.2. Construction of a unique progressive PGD. Now, we will directly
construct a unique progressive PGD of the solution of (6.3), as described in section 4
for the case of convex optimization problems. It consists in constructing a sequence
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Fig. 6.20: Convergence of Newton algorithm (a) and of (1)G-PGD for each Newton
iteration (b). Error in residual norm. d = 2.
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Fig. 6.21: Convergence of Newton algorithm (a) and of (1)G-PGD for each Newton
iteration (b) for d = 5. Error in residual norm.

{um}m≥0, with u0 = 0, by computing successive corrections wm ∈ R1 de�ned by

J(um−1 + wm) = min
w∈R1

J(um−1 + w) (6.8)

and by letting um equal to um−1 + wm or an update of this latter approximation.
This best approximation problem has been discussed in section 5.1. We recall that a
necessary condition of optimality for wm ∈ R1 reads

〈J ′(um−1 + wm), δw〉 = 0 ∀δw ∈ Twm
(R1)

We use an alternated minimization algorithm for solving (6.8) (see section 5.1.3). At
each iteration of the alternated algorithm associated with a dimension j ∈ {1, . . . , d},
for a current iterate wm ∈ R1, we look for a new iterate wm ∈ Rj1(wm) de�ned by

〈J ′(um−1 + wm), δw〉 = 0 ∀δw ∈ Rj1(wm)

This equation is solved with a Newton algorithm, which consists in constructing a
sequence {wkm}k≥1 de�ned by

〈J ′′(um−1 + wkm)(wk+1
m − wkm), δw〉 = −〈J ′(um−1 + wkm), δw〉 ∀δw ∈ Rj1(w) (6.9)



34 GAEL BONITHON AND ANTHONY NOUY

Remark 6.3. Note that contrary to equation (6.7), the tangent operator h 7→
J ′′(um−1 +wkm)(h) must be recomputed for each direction of the alternated algorithm
and for each Newton iteration. Therefore, the present progressive construction of
a PGD is more computationally expensive than the construction of a succession of
PGD approximations, as presented in section 6.4.1. However, in order to reduce
computational costs, a quasi-Newton algorithm could be introduced, e.g. by replacing
J ′′(um−1 + wkm) by J ′′(um−1).

For a given dimension d, we compare the convergence of the present PGD with
that of the G-PGD of the last Newton iteration in the strategy presented in section
6.4.1 (see remark 6.2 for the interpretation of this PGD). When d = 2, we obtain
relatively close convergence curves, as shown in �gure 6.22a. But for d ≥ 3, results
are quite di�erent, especially when the decomposition rank grows, as shown by �gure
6.22b and 6.22c. Performing updates do not change this qualitative behavior (corre-
sponding curves are not plotted here). As a conclusion, the present approach (pro-
gressive construction of a unique PGD) appears less e�cient than the �rst approach
(construction of a sequence of PGD approximations of the iterates of an iterative
algorithm), in terms of precision and computational costs.
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Fig. 6.22: Comparison between the PGD obtained with a progressive construction
and the PGD obtained with a Newton algorithm coupled with PGD algorithm for ap-
proximating the Newton iterates (convergence of the PGD of the last Newton iterate).
Error in residual norm.

6.5. Example 4 : a non linear and non convex problem. We consider
the following non linear partial di�erential equation de�ned on a hyper-rectangular
domain Ω = Ω1 × . . .× Ωd:{

−∇ ·
(
ε+ u2)∇u

)
= f in Ω

u = 0 on ∂Ω
(6.10)

We choose ε = 10−1. We use piecewise linear �nite element approximation spaces
Vk ⊂ H1

0 (Ωk), with 1001 elements. We then work in a �nite dimensional tensor space
V = V1⊗ . . .⊗Vd ⊂ H1

0 (Ω) with dimension 103d. This problem is not associated with
the minimization of a convex functional, so that we have no guaranty for convergence
of a progressive PGD as de�ned in section 5.3. Therefore, we only focus on the
following numerical strategy. We apply a Newton algorithm for the solution of (6.10)
and we use the G-PGD algorithm for the solution of the sequence of associated linear
problems. Let us detail this strategy.
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Here, we use an incremental version of the Newton algorithm. We denote by
F (u) ∈ V the (discrete) representant in V of the residual −∇ ·

(
(ε+ u2)∇u

)
− f .

Given an initial guess u0 = 0, we construct a sequence {uk}k≥0 ⊂ V de�ned by
uk+1 = uk + δk+1, with δk+1 ∈ V such that

F ′(uk)δk+1 = −F (uk) (6.11)

that is δk+1 ∈ V is the approximation of the solution of{
−ε∆δk+1 − 2∇ · (δk+1uk∇uk)−∇ ·

(
u2
k∇δk+1

)
= −F (uk) in Ω

uk+1 = 0 on ∂Ω
(6.12)

Note that equation (6.11) involves a nonsymmetric operator F ′(uk). MM-PGD would
be a priori a better choice than G-PGD in this context. However, for the present exam-
ple, we observe similar convergence properties for G-PGD and MM-PGD. Therefore,
we only consider the use of G-PGD: at each Newton iteration, we apply a G-PGD
algorithm for constructing a rank-m approximation δmk+1 of δk+1. We here impose a
�xed decomposition rank m. The approximation uk+1 = uk + δmk+1 will be a rank-
(k + 1)m tensor. Note that with this incremental procedure, even for a �xed rank
m, if the resulting rank-m approximation δmk+1 is a good approximation of the exact
increment δk+1, we can expect the convergence of the sequence uk towards the exact
solution u of the initial problem12. This is illustrated below. In the following, we will
impose the decomposition rank m and analyze the in�uence of m on the convergence
of the global Newton algorithm.

Remark 6.4. Obviously, in terms of computational costs, there will be an interest
in limiting the maximum rank m for the approximations δmk of successive increments
δk, or even in choosing an adaptive rank mk so that the precision of δmk

k is of the
order of the error of the current Newton iterate.

First, we analyze the 2-dimensional case. Figure 6.23a gives the convergence
of Newton algorithm for di�erent m, and �gure 6.23b gives the convergence of the
successive G-PGDs of increments δk for m = 5. We observe that, contrary to section
6.4.1, the Newton algorithm converges to the exact solution (no stagnation), with a
convergence rate increasing withm (convergence rate of Newton algorithm is improved
when increasing the precision of the approximations of increments). We note that the
convergence rate of G-PGD decreases with k. This re�ects the fact that the tensor
decomposition of increments δk is more and more di�cult as k increases (it can be
understood by analyzing the spectral content of the δk).

Figure 6.24a and �gure 6.24b illustrate the convergence of Newton algorithm
and of the PGDs of successive increments, where a (1)G-PGD algorithm is used (1
update). Again, results are quite di�erent from those of section 6.4.1. We observe
a very small in�uence of updates, up to a rank m = 5. As a higher decomposition
rank would be unnecessary in this incremental context, we can conclude that updates
are not really useful for the present solution strategy. These comments remain valid
for higher dimensional problems: in the 5-dimensional case, �gures 6.25a and 6.25b
illustrate the non updated version of G-PGD, while �gures 6.26a and 6.26b illustrate
the updated version of G-PGD.

7. Conclusion. We have presented in a general framework a class of tensor-
based approximation methods called Proper Generalized Decompositions (PGD) for

12This is an important di�erence with the construction of section 6.4.1, where the approximations
uk were tensors of �xed rank m for all k, thus yielding a stagnation of the global Newton algorithm.



36 GAEL BONITHON AND ANTHONY NOUY

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

10
0

k

E
rr

or

 

 

m = 1
m = 2
m = 3
m = 4
m = 5

(a) Newton algorithm

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−3

10
−2

10
−1

10
0

Rank

E
rr

or

 

 

G−PGD, k=1
G−PGD, k=2
G−PGD, k=3
G−PGD, k=4
G−PGD, k=5

(b) G-PGD

Fig. 6.23: Convergence of Newton algorithm using G-PGD solvers with di�erent max-
imum ranks m (a) and convergence of the successive G-PGDs (with m = 5) for each
Newton iteration (b). Error in residual norm. d = 2.
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Fig. 6.24: Convergence of Newton algorithm using (1)G-PGD solvers with di�erent
maximum ranks m (a) and convergence of the successive (1)G-PGDs (with m = 5)
for each Newton iteration (b). Error in residual norm. d = 2.

the a priori construction of a tensor decomposition of the solution of high-dimensional
variational problems. We have introduced alternative de�nitions of tensor approxi-
mations, based on direct or progressive (greedy-type) constructions, the latter ones
consisting in computing successive corrections in suitable tensor subsets. In the con-
text of progressive constructions, we have introduce di�erent updating strategies that
uses the previously generated information and allows to signi�cantly improve the
quality of progressive decompositions. The prototypical case of convex optimization
problems has served as a guideline in this general presentation of the PGD. Then,
for the solution of more general variational problems, di�erent de�nitions of progres-
sive PGD have been introduced, corresponding to di�erent de�nitions of corrections
in tensor subsets. In the �rst one, MR-PGD, successive corrections are de�ned by a
minimization of the residual norm. This de�nition is generally robust but it is compu-
tationally expensive and it may yield to poor convergence properties for bad choices
of residual norms. In the second one, G-PGD, the successive corrections are de�ned
using Galerkin projections. It presents a lack of robustness but it is less computa-
tionally expensive than minimal residual formulations. In the third one, MM-PGD,
corrections are de�ned using Petrov-Galerkin projections. It tries to overcome the lack
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Fig. 6.25: Convergence of Newton algorithm using G-PGD solvers with di�erent max-
imum ranks m (a) and convergence of the successive G-PGDs (with m = 5) for each
Newton iteration (b). Error in residual norm. d = 5.
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Fig. 6.26: Convergence of Newton algorithm using (1)G-PGD solvers with di�erent
maximum ranks m (a) and convergence of the successive (1)G-PGDs (with m = 5)
for each Newton iteration (b). Error in residual norm. d = 5.

of robustness of G-PGD by improving convergence with respect to a speci�ed metric.
Several numerical examples have shown the interest (and sometimes the need) of per-
forming updates while using progressive PGDs. We have also introduced a particular
class of operators, called S-tangent, for which we can ensure the monotonic decrease
of some residual error for the G-PGD. In this context, G-PGD appears as robust as
MR-PGD. S-tangency covers a particular class of applications, and it especially ap-
pears as a natural property in the convergence analysis of G-PGD's, independently of
classical properties of PDEs like ellipticity or symmetry. However, at that time, many
questions remain open concerning this notion of S-tangency, in particular concerning
the characterization of S-tangent bilinear forms for in�nite dimensional tensor spaces.

We have also presented how the PGD can be coupled with classical iterative
methods where it is used as a solver of successive linear problems. Compared to
classical tensor approximation methods, the PGD allows the use of a larger class of
iterative methods. For nonlinear problems, di�erent solution strategies have been
introduced and compared, that is strategies based on the construction of a unique
PGD of the solution (with direct or progressive algorithms) or strategies based on
the use of PGD as linear solvers in classical nonlinear iterative algorithms. Although
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both strategies seem to yield nice convergence properties for the tested numerical
applications, the latter one appears to be the most e�cient from a computational
point of view.
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