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Epidemic prediction and control in clustered populations

There has been much recent interest in modelling epidemics on networks, particularly in the presence of substantial clustering. Here, we develop pairwise methods to answer questions that are often addressed using epidemic models, in particular: on the basis of potential observations early in an outbreak, what can be predicted about the epidemic outcomes and the levels of intervention necessary to control the epidemic? We find that while some results are independent of the level of clustering (early growth predicts the level of 'leaky' vaccine needed for control and peak time, while the basic reproductive ratio predicts the random vaccination threshold) the relationship between other quantities is very sensitive to clustering.

Introduction

There has been much recent interest in modelling infectious diseases on contact networks [START_REF] Keeling | Networks and epidemic models[END_REF][START_REF] Bansal | When individual behaviour matters: homogeneous and network models in epidemiology[END_REF]. The incorporation of population structure that deviates from homogeneous mixing is most generally conceptualised as a network of epidemiologically relevant contexts, and an increasing amount of data is available on these contacts, either from surveys [START_REF] Mossong | Social contacts and mixing patterns relevant to the spread of infectious diseases[END_REF] or socio-demographic data [START_REF] Eubank | Modelling disease outbreaks in realistic urban social networks[END_REF]. One observed feature of realistic contact networks is the presence of an appreciable number of short closed loops in the network, often called clustering.

Through construction of networks with special structure, it has recently been shown possible to derive some exact results for clustered networks based on households [START_REF] Ball | Threshold behaviour and final outcome of an epidemic on a random network with household structure[END_REF][START_REF] Ball | Analysis of a stochastic SIR epidemic on a random network incorporating household structure[END_REF] and non-overlapping triangles [START_REF] Newman | Random graphs with clustering[END_REF][START_REF] Miller | Percolation and epidemics in random clustered networks[END_REF]. It has also been possible to write down and integrate dynamical systems that capture transient epidemic behaviour on such networks [START_REF] Volz | Dynamics of infectious disease in clustered networks with arbitrary degree distributions[END_REF][START_REF] House | Exact epidemic dynamics for generally clustered, complex networks[END_REF].

At the same time, a more established approach to epidemics on clustered networks exists in the form of pairwise equations, where an approximation is made to produce a system of ordinary differential equations (ODEs) that depend on a small number of real-valued parameters for the network [START_REF] Keeling | The effects of local spatial structure on epidemiological invasions[END_REF]. These approximations have been consistently found to be in good qualitative agreement with stochastic simulations [START_REF] House | Insights from unifying modern approximations to infections on networks[END_REF], and the lack of rigorous justification for the closure used is compensated for in several ways. For example, a system of ODEs can easily be integrated, involves few parameters, and has a rigorous definition of critical intervention thresholds. There is also the benefit that analytic manipulations can be performed on the equations involved to aid theoretical understanding [START_REF] Trapman | Reproduction numbers for epidemics on networks using pair approximation[END_REF].

One of the key uses of epidemic modelling is to predict outcomes and critical intervention thresholds on the basis of observables, which can be done analytically for the special case of household models [START_REF] Goldstein | Reproductive numbers, epidemic spread and control in a community of households[END_REF]. In this paper we consider the insights that can be gained for epidemic dynamics on networks with a general clustered structure from consideration of pairwise equations. We start by reviewing standard epidemic and network theory. We then outline our pairwise methodology, including the definition of observable reproduction numbers and control thresholds. We then consider the implication of this for intervention and outcome prediction.

The SIR model

One of the simplest approaches to the problem of epidemic prediction is the SIR model, developed over 80 years ago [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF]. This basic paradigm has been extended and applied fruitfully to a wide range of diseases [START_REF] Anderson | Infectious Diseases of Humans[END_REF]. In the absence of births and deaths, the dynamics for this model can be written in terms of the proportions of the population susceptible, S(t), infectious, I(t), and removed, R(t), as

Ṡ(t) = -βS(t)I(t) , İ(t) = βS(t)I(t) -γI(t) , Ṙ(t) = γI(t) . (1) 
This model has two parameters: γ, the rate of recovery from the infectious state; and β, the rate at which new cases are created when susceptible and infectious individuals interact. An important quantity that emerges from analysis of many epidemic models is the basic reproductive ratio, R 0 , which we define (standardly) as the average number of secondary cases produced by an average infectious individual early on, once the epidemic dynamical system has settled onto its dominant eigenvector. In the simple SIR model given by equations 1, this quantity as defined is equal to β/γ.

Strictly speaking, since the system is non-linear, we should also consider I(0), the initial proportion of the population that is infectious, and S(0), the initial proportion of the population that is susceptible (since they are proportions, the dynamical variables obey S + I + R = 1 at all times). In this work, we take I(0) 1, and furthermore assume S(0) ≈ 1. Given these assumptions, for SIR dynamics in a homogeneous population with arbitrary recovery time distribution, the final size of the epidemic, R ∞ , will be given by a solution to the transcendental equation below [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF]:

R ∞ = 1 -e -R 0 R∞ . ( 2 
)
We can also write down exact expressions for the peak height and time in the simple SIR model, which are

I * = 1 - 1 R 0 (1 + ln(R 0 )) , t * = 1-1 R 0 -I * 0 dR 1 -R -e -R 0 R . ( 3 
)
It is another relevant standard result that, if a small amount of infection I(0) is introduced into an otherwise susceptible population then this model predicts that at early times, the proportion of infectious individuals in the population will be given by I(t) ≈ I(0)e γ(R 0 -1)t [START_REF] Anderson | Infectious Diseases of Humans[END_REF].

Network theory

We consider a network of N nodes labelled i, j . . . to be defined by its adjacency matrix G ij , which takes the value 1 when nodes i, j are connected and the value 0 otherwise. We define this also to be symmetric and without self-edges, so G ij = G ji and G ii = 0. Since we are considering the impact of clustering, we try to remove the impact of node degree heterogeneity, which can confound the effects of clustering [START_REF] Kiss | Comment on "Properties of highly clustered networks[END_REF], by assuming that every individual has the same neighbourhood size n ∀i,

j G ij = n . ( 4 
)
It is worth noting that there is no reason why our methodology should not be extended to heterogeneous degree distributions; our choice of neighbourhood regularity is simply to consider the impact of clustering independently of other network statistics. The clustering coefficient φ is defined by

φ = i,j,k G ij G jk G ki i,j,k G ij G jk (1 -δ ik ) ∈ [0, 1] , ( 5 ) 
where δ ik is the Kronecker delta. If the dynamical state of a node i is indicated by A i , then we also use a notation where:

[A] = i A i , [AB] = i,j A i B j G ij , [ABC] = i,j,k A i B j C k G ij G jk . (6) 

Methods

Pairwise equations

The pairwise equations for an SIR epidemic are standardly given by

[S] = -τ [SI] , [I] = τ [SI] -γ[I] , [R] = γ[I] , [SS] = -2τ [SSI] , [SI] = τ ([SSI] -[ISI] -[SI]) -γ[SI] , [II] = 2τ ([ISI] + [SI]) -2γ[II] , [SR] = -τ [ISR] + γ[SI] , [IR] = τ [ISR] + γ([II] -[IR]) , [RR] = γ[IR] . ( 7 
)
These equations are exact but unclosed. While we restrict ourselves to the simple SIR model, it is possible to include more complex disease natural histories such as the SEIR model presented in [START_REF] Rand | Correlation equations and pair approximations for spatial ecologies[END_REF]. To close this system, we approximate the triples using the standard approximation for clustered systems [START_REF] Keeling | The effects of local spatial structure on epidemiological invasions[END_REF],

[ABC] ≈ n -1 n [AB][BC] [B] (1 -φ) + φ N n [CA] [A][C] . ( 8 
)
While there are several ways to recover the standard SIR model from network systems, for the pairwise approach the most natural limit is to take n → ∞ while holding β = nτ constant. We therefore compare the scaled transmission rate (nτ /γ) to other quantities, since this converges to all other reproduction numbers in the appropriate limit. Another quantity that converges to other reproduction numbers in the homogeneous limit is nτ /(τ + γ), which is R 0 for an unclustered network. Since this is a closed function of the scaled transmission rate, we do not present additional results, but note that it is a quantity that may well be estimated or inferred from data. The system of equations ( 7) can be numerically integrated using standard methods such as Runge-Kutta, although our experience is that sophisticated solvers capable of switching to stiff methods are significantly more accurate and numerically efficient.

The closure (8) can be used for any graph where the parameters N , n and φ are known. This closure is intended to be applied to graphs where each node has degree close to n, although closures appropriate to more heterogeneous systems do exist [START_REF] House | Insights from unifying modern approximations to infections on networks[END_REF]. Since the first application of this closure to epidemic systems, attempts have been made to provide rigorous justification of their validity [START_REF] Rand | Correlation equations and pair approximations for spatial ecologies[END_REF]. While there are no exact results at present, from previous work we expect that the agreement is likely to be best for regular (degreehomogeneous) configuration-model networks where a small amount of clustering has been introduced through rewiring [START_REF] House | Insights from unifying modern approximations to infections on networks[END_REF], and that agreement will be poor in the presence of degree heterogeneity [START_REF] Eames | Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases[END_REF][START_REF] Bansal | When individual behaviour matters: homogeneous and network models in epidemiology[END_REF], where shortest path lengths are long [START_REF] Sharkey | Deterministic epidemiological models at the individual level[END_REF] or when the network motif structure is not well captured by the single parameter φ [START_REF] House | A motif-based approach to network epidemics[END_REF].

Solution by linearising Ansatz

One way to gain analytic traction on equations ( 7) is through linearisation of the system, representing the situation early in the epidemic when the number of susceptibles has not been significantly depleted. A straightforward method is to define an Ansatz representing the intuition that all dynamical variables should have their behaviour determined by the prevalence of infection, and then to confirm that this Ansatz is indeed a consistent solution.

We start by defining the early growth reproduction number r 0 through early asymptotic growth in the proportion of infectious individuals.

I(t) =: I start e γ(r 0 -1)t , ( 9 
)
where I start is the proportion of infectious individuals at the start of the period of exponential growth. r 0 can therefore be measured by fitting an exponential curve to the early growth in the number of cases at the start of an epidemic, e.g. [START_REF] Chowell | The 1918-1919 influenza pandemic in England and Wales: spatial patterns in transmissibility and mortality impact[END_REF]. Where I start 1, we propose linearisation of the system of epidemic equations using the following Ansatz:

İ(t) = γ(r 0 -1)I(t) , [A] = [A] 0 + k A I(t) , [AB] = [AB] 0 + k AB I(t) . ( 10 
)
Putting these substitutions into the system (7) closed by [START_REF] Eames | Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases[END_REF] and solving algebraically for {r 0 , k A , k AB } at given τ, γ, n and φ allows us to parameterise the dynamical system. Algorithmically, this offers significant advantages over, say, an iterative scheme that involves repeated integration and modification of underlying parameters to match an early growth curve.

Definition of R 0

The primary difficulty of defining a 'true' basic reproductive ratio that is both a threshold and corresponds to the verbal definition in a clustered population is that, even early in the epidemic, infectious individuals share susceptible contacts and this competing risk does not allow the argumentation used for locally tree-like networks or well-mixed populations.

In [START_REF] Trapman | Reproduction numbers for epidemics on networks using pair approximation[END_REF], reproduction numbers were defined analytically for clustered systems based on moment closure. We consider a different, complementary method that can be applied to any epidemic model (including stochastic and individual-based simulations) based on generation counting, but which is numerical rather than analytic. Figure 1 shows the method schematically. Firstly, the system is run until the early network correlation structure has equilibrated and the dynamical system sits on its dominant eigenvalue. We then relabel all infecteds as 0-th generation I 0 , and label two subsequent generations of infection I 1 , I 2 , which recover to R 1 , R 2 respectively, before letting the epidemic proceed until no infectious individuals of type I 1 and I 2 remain. The basic reproduction number R 0 is given by the final value of R 2 /R 1 . To demonstrate this technique applied to the standard SIR model, consider the linearised equations

İ0 = -γI 0 , İ1 = βI 0 -γI 1 , İ2 = βI 1 -γI 2 . ( 11 
)
The solution to this system is

I 0 = I(0)e -γt , I 1 = I(0)βte -γt , I 2 = 1 2 I(0)(βt) 2 e -γt , (12) 
which reproduces the standard R 0 = β/γ when the ratio of the area under the I 2 and I 1 curves is evaluated in the limit t → ∞.

There are, of course, some epidemic models such as simulations based on lattices or highly complex individual behaviour where there is not an obvious dynamical system underlying the model, and early behaviour of the epidemic does not involve exponential growth. In these systems, the method of generation counting will still give an answer that closely matches the standard definition of R 0 [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations[END_REF], but with spatial structure playing a comparable role to risk structure. For example, if a disease is sufficiently transmissible to invade a square lattice then the quantity R 2 /R 1 will asymptote to unity, as would be expected of R 0 . Furthermore, if there is a phase in a system's early dynamics (before the proportion of susceptibles in the whole population has been significantly reduced) where the ratio R 2 /R 1 reaches quasi-equilibrium, then this constant quantity will provide a threshold for epidemic invasion.

Vaccination

The parameters nτ /γ, r 0 and R 0 as defined above are observable early in an epidemic, but do not directly lead to critical intervention thresholds for network epidemic models in the same way as in the standard SIR model.

In this paper, we consider two distinct interventions: reducing transmission by a proportion ε so τ → (1ε)τ , and placing a proportion of the population v, chosen randomly at the individual level, in the recovered class at the start of the epidemic, so that

[S] 0 = (1 -v) , [SS] 0 = (1 -v) 2 . ( 13 
)
We preserve the degree distribution of the network by placing nodes in the dynamically inert recovered class, so that e.g.

[R] 0 = v; this is in contrast to modelling vaccination by modification of the network topology, and allows ( 8) to remain valid. The critical values sufficient to contain an epidemic, ε c and v c can be calculated by the use of linearising Ansatz as above, then finding values at which the predicted r 0 (v, ε) is 1. So that we are comparing similar quantities, we use these critical values to define 'leaky' and 'vaccination' reproduction numbers

R L = 1 1 -ε c , R V = 1 1 -v c . ( 14 
)
This terminology is taken from household models, where analytic results can be obtained relating different reproduction numbers [START_REF] Goldstein | Reproductive numbers, epidemic spread and control in a community of households[END_REF].

Results

Analytic results

We start by considering some analytic results that can be obtained from the pairwise system. Our methods are developed with numerical solution in mind, however some closed expressions can be derived by substituting ( 8) and ( 10) into [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations[END_REF]. At small clustering in a regular graph with n links per node we can calculate the first-order impact of clustering on r 0 ,

r 0 = τ γ (n -2) - 2(n -1) (2(n -1)(n -2)τ + nγ) n 2 ((n -2)τ + γ) φ + O φ 2 , ( 15 
)
which demonstrates the standard result that, leaving other parameters constant, clustering reduces epidemic potential. Unclosed expressions to all orders in φ can be found in [START_REF] Trapman | Reproduction numbers for epidemics on networks using pair approximation[END_REF]Eqns. (14,[START_REF] Mossong | Social contacts and mixing patterns relevant to the spread of infectious diseases[END_REF] with r * → r 0 ]. In structured populations, there is a conceptual difference between an intervention that reduces transmission by a fraction ε and a random, completely protective, vaccination of a proportion v of the population. In the absence of clustering, this is reflected in the difference between leaky and vaccinated early growth reproduction numbers as below

r 0 (ε) = (1 -ε) τ γ (n -2) , r 0 (v) = τ γ ((n -1)(1 -v) -1) . (16) 
Interestingly, where φ = 0, this means that R L = r 0 , and also

R V = 1 1 -v = (n -1) τ τ + γ = R 0 . (17) 
In the clustered case these relationships between observables and intervention-related thresholds do not hold exactly, however we will show that they can remain numerically close.

Reproduction numbers

We now consider numerical integration of the pairwise system [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations[END_REF]. This requires parameters to be chosen, and so we consider a network with small neighbourhood size n = 4 and vary clustering from 0 to 0.3. We consider two sets of results: in Figure 2, we consider the relationship between different observable and intervention reproduction numbers; and in Figure 3, we consider the relationship between different observables and epidemic outcomes. Looking at Figure 2, we see a consistent ordering (nτ /γ) > R L ≥ r 0 ≥ R V ≥ R 0 , as would be expected from exact results for household models [START_REF] Goldstein | Reproductive numbers, epidemic spread and control in a community of households[END_REF]. We also find, however, that even when they do not agree, the early growth observable r 0 is strongly predictive of the leaky vaccination threshold R L , while the basic reproductive ratio R 0 is strongly predictive of the random, effective vaccination threshold R V . This is the case despite the fact that other pairs of reproduction numbers (e.g. r 0 and R 0 ) can differ very significantly at different levels of clustering.

Outcomes

We now consider the predictive power of different quantities that are observable early in the epidemic: the transmission rate, early growth rate and basic reproduction number. Our selection of outcomes is the final size (also called attack rate), which determines the overall proportion of the population that has suffered from the disease, the peak prevalence, which is important for assessing the maximum burden of clinical disease during an epidemic, and the time to peak, which determines how much time is available to prepare for the peak burden.

Looking at Figure 3, we see several features. At a constant transmission rate (top row) epidemic peaks are lower and occur later as clustering is increased. At low transmission rates, clustering decreases attack rate, but at higher transmission rates, clustering increases attack rate. This latter, counter-intuitive effect is seen exact results for special clustered network types [START_REF] House | Exact epidemic dynamics for generally clustered, complex networks[END_REF], but due to the extremely high attack rates involved, this effect is not easy to reproduce in simulation. It is possible that this effect may be much larger for different disease natural histories, and so it may be of practical as well as theoretical interest.

At constant r 0 (middle row) epidemics in clustered populations have larger attack rates and peaks. While peak times are also slightly reduced, the early growth rate is strongly predictive of peak time. This predictive power can be understood by considering the implications of exponential early growth. When an epidemic peaks, this is due to depletion of susceptibles below the level required for continued transmission of infection. Exponential growth, by its nature, places strong bounds on the range of times for which susceptible depletion can be appreciable and hence the rate of such growth is strongly predictive of peak time. It is worth noting that the absolute times to peak will be strongly dependent on the small initial number infectious, which we take as I(0) = 10 -6 . Where r 0 is held constant as I(0) is varied, different peak time curves will all be shifted right or left by the same amount, since each epidemic experiences the same early growth rate. For other rows of Figure 3, the shift will need to be determined from the value of r 0 at a given R 0 or nτ /γ as shown in Figure 2.

Similarly to the case of r 0 , at constant R 0 (bottom row) the consequences of introducing clustering are uniformly larger epidemics, with larger, earlier peaks. This reversal of outcome prediction for r 0 , R 0 as compared to transmission rate can be understood in the following way. Clustering frustrates the epidemic process early on in an outbreak, as infectious individuals compete locally for shared susceptibles. Compared to a locally treelike network, however, a clustered network offers more routes for infection to travel from one node to another and so its effect on final outbreak size is non-trivial to predict. Once we have adjusted the underlying transmission rate upwards compared to an unclustered model to give similar r 0 or R 0 , the outbreak will definitely have a larger size than in the unclustered scenario.

Discussion

We have argued in this paper for the merits of a pairwise approach to understanding epidemics in clustered populations that complements simulations and exact results for special network structures. Pairwise models allow simply interpretable conclusions to be drawn with little numerical effort, and involve a small number of real parameters.

Our results show that for some modelling tasks, clustering does not need to be considered to get accurate results. In particular, early growth rate predicts the critical leaky vaccine level and peak time; and R 0 predicts the critical vaccination threshold. For other important calculations, however, the presence of significant clustering in a population must be modelled to give an accurate prediction.

The problem of epidemic prediction and model misspecification is, of course, also posed for many other extensions of the standard SIR model. What appears to be unique about clustering is that it predicts smaller epidemics at constant transmission rate and larger epidemics at constant early growth rate as clustering is increased, in contrast to other forms of population structure [START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation[END_REF], where heterogeneity leads to larger epidemics at constant transmission rate and smaller epidemics at constant R 0 . Another way of looking at our results is, therefore, that if an epidemic has an attack rate lower than would be expected from the SIR model, and the population is clustered, then standard forms of heterogeneity must be even more significant than an unclustered model would predict-although a mathematical model of the interaction between clustering and heterogeneity (partially addressed by [START_REF] Volz | Dynamics of infectious disease in clustered networks with arbitrary degree distributions[END_REF][START_REF] House | Insights from unifying modern approximations to infections on networks[END_REF]) would help to make this intuition clearer. 

Figure 1 :

 1 Figure 1: Calculating the actual basic reproduction number through generation counting. Susceptible individuals are not labelled for clarity. The basic reproductive number R 0 is given by the value of R 2 /R 1 at the end of the epidemic.

Figure 2 :

 2 Figure 2: Observables and reproduction numbers for a clustered network with n = 4. The scaled transmission rate nτ /γ, early growth r 0 , full R 0 , vaccination R V and leaky R L are all plotted against each other, showing a diversity of relationships.

Figure 3 :

 3 Figure 3: Outcomes for different observables for a clustered network with n = 4. The outcomes of final size, peak height and time are shown in columns, while rows correspond to constant scaled transmission rate nτ /γ, early growth r 0 and full R 0 .
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