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Abstract6

We synthesise traditional unstructured food webs, allometric body size scaling, trait-based mod-

elling, and physiologically structured modelling to provide a novel and ecologically relevant tool for

size-structured food webs. The framework allows food web models to include ontogenetic growth

and life-history omnivory at the individual level by resolving the population structure of each

species as a size-spectrum. Each species is characterised by the trait ’size at maturation’, and all

model parameters are made species independent through scaling with individual body size and size

at maturation. Parameter values are determined from cross-species analysis of fish communities

as life-history omnivory is widespread in aquatic systems, but may be reparameterised for other

systems. An ensemble of food webs is generated and the resulting communities are analysed at four

levels of organisation: community level, species level, trait level, and individual level. The model

may be solved analytically by assuming that the community spectrum follows a power law. The

analytical solution provides a baseline expectation of the results of complex food web simulations,

and agrees well with the predictions of the full model on 1) biomass distribution as a function of

individual size, 2) biomass distribution as a function of size at maturation, and 3) relation between

predator-prey mass ratio of preferred and eaten food. The full model additionally predicts the

diversity distribution as a function of size at maturation.

Keywords: community ecology, trait based model, life-history omnivory, ontogeny, size-spectrum

1. Introduction8

Food webs are typically modelled using unstructured species populations based on generalised

Lotka-Volterra equations. This unstructured formulation ignores individual life-history by as-10

signing a fixed trophic position to all individuals within a species. In aquatic ecosystems this

assumption is violated as fish offspring reside at a low trophic level and grow during ontogeny12

through multiple trophic levels before reaching maturation (Werner and Gilliam, 1984). Along

this journey, from the milligram range and up to several kilogram, fish change diet (as well as14

enemies) and consequently exhibit life-history omnivory through preying on different trophic levels

in different life-stages (Pimm and Rice, 1987). Thus the assignment of a unique trophic level and16

role (resource, consumer, predator, etc.) for species in unstructured models is incompatible with

systems where ontogenetic growth and life-history omnivory are pronounced. In the cases where18
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trophic level of individuals within a species is positively correlated with body size (Jennings et al.,

2002), individual size may be used as a proxy for trophic level. Models may therefore account for20

ontogenetic growth and life-history omnivory by resolving the size-structure within each species.

A general framework for large food webs that includes the size-structure for all species must ful-22

fil a set of requirements. It should: 1) be generic in the sense that large species-specific parameter

sets are not necessary, 2) be based on mechanistic physiological individual-level processes, where24

parameters represent measurable biological quantities, 3) resolve food dependent growth of indi-

viduals (Werner and Gilliam, 1984), 4) be practically solvable for species-rich systems over many26

generations, and 5) comply with empirical data on size-structured communities. In this work we

develop a food web framework complying with these requirements by resolving the life-history of28

individuals within species by a continuous size-spectrum. We parameterise the model for aquatic

systems as an example of a size-structured community with widespread life-history omnivory, but30

the framework may be parameterised for other system types (cf. Discussion). In fish communi-

ties the most prominent empirical patterns, which the model framework should comply with, are32

that individuals exhibit biphasic growth (Lester et al., 2004), and the Sheldon community spec-

trum. Sheldon et al. (1972) hypothesised that the community biomass spectrum, from bacteria34

to whales, as a function of body mass is close to constant. Empiric studies later showed that the

biomass for fish indeed is close to constant or slightly declining as a function of body mass (Ursin,36

1982; Boudreau and Dickie, 1992) with the complication that heavily fished systems have a steeper

decline in biomass (Jennings et al., 2002; Daan et al., 2005).38

The importance of resolving ontogenetic growth and life-history omnivory has long been re-

alised in fisheries science, where mechanistic individual-level size-structured food web models of40

fish communities were pioneered (Andersen and Ursin, 1977). Independently, the physiologically

structured population model (PSPM) framework (Metz and Diekmann, 1986; de Roos and Persson,42

2001) has been developed in the field of ecology. While providing the ecological realism needed for

a size-structured food web framework these approaches typically rely on large species-dependent44

parameter sets, which must be reduced for the approaches to be useful as generic frameworks.

Reduction to species-independent parameter sets has been achieved in unstructured models of46

interacting populations by scaling of physiological and demographic rates with body size (Yodzis

and Innes, 1992). By using body size as a trait this approach has resulted in several simple generic48

food web models for unstructured populations (Loeuille and Loreau, 2005; Virgo et al., 2006; Brose

et al., 2006b; Lewis and Law, 2007).50

In this work we combine the two approaches into one unified framework: We 1) use a physi-

ological based description of individual life-history, and 2) use a single trait (size at maturation)52

to characterise each species while using trait and body size scaling to get one condensed species-

independent parameter set. All processes are based on descriptions at the level of individuals, and54

interaction strengths among individuals are dynamic through the prescription of size-dependent

food selection. This leads to a realised effective food web structure which depends on the emergent56



size-spectrum composition of all species. In this manner we synthesise a general framework that in

a conceptually simple yet ecologically realistic way can be used to model food webs where the life58

cycle of individuals in each species is explicitly modelled from birth to reproduction and death.

Our primary objective is the formulation and parametrisation of the food web framework.60

Food webs generated by unstructured food web models may be analysed at the community level

in terms of distributions of biomass across species and trophic levels. Trait-based size-structured62

food webs allow a more detailed analysis of the community level as well as enabling analysis on

three additional levels of organisation: 1) at the community level, i.e., the distribution of total64

biomass as a function of body size of individuals regardless of their species identity, and the

distribution of biomass and diversity as a function of the trait size at maturation, 2) at the species66

level, i.e., distribution of biomass as a function of size within a given species, 3) at the trait level,

which in the case of a single trait equals the species level, and 4) at the individual level, i.e.,68

distribution of size of food in the stomachs. Due to this added complexity of size-structured food

webs, our secondary objective is to illustrate diversity and biomass distributions at different levels70

of organisation. To this end we generate an ensemble of food webs and analyse them in terms of

distributions of average community size-spectra, species size-spectra, trait biomass distributions,72

and trait diversity distributions. Finally, we develop an analytical solution of the model framework,

basically by assuming that the community spectrum follows a power-law (equilibrium size-spectrum74

theory, EQT). All distributions, except the diversity distribution, may be calculated from EQT,

and we demonstrate general accordance between EQT and the results from the full food web76

simulations. The accordance between EQT and the food web simulations validates the simplifying

assumptions behind EQT. EQT provides a “null-solution” to the size- and trait-distributions which78

may be used as a baseline expectation of the results of large size-structured food web simulations.

[Figure 1 about here.]80

2. Food web model

The model is based on a description of the processes of food encounter, growth, reproduction,82

and mortality at the level of an individual with body mass m (Fig. 1). The model is based on

two central assumptions: 1) Prey selection is determined at the individual level where individual84

predators select prey from the rule “big individuals eat smaller individuals”, and at the species

level through introduction of species-specific size-independent coupling strengths (Andersen and86

Ursin, 1977; Werner and Gilliam, 1984; Emmerson and Raffaelli, 2004). 2) In addition to species-

specific coupling strengths, species identity is characterised by a single trait: size at maturation88

m∗. Interactions among individuals are described by a food encounter process which leads to

consumption by predators and mortality on their prey. Food consumption leads to growth in90

body mass, and when an individual reaches size at maturation m∗ it starts allocating energy for



reproduction, as well as producing new offspring. Thus the model encapsulates the life-cycle of92

individuals from birth to maturity and death.

Population dynamics of species i is obtained from individual growth gi(m) and mortality μi(m)94

by solving the number conservation equation (McKendrick, 1926; von Foerster, 1959):

∂Ni

∂t
+

∂

∂m

(
giNi

)
= −μiNi. (1)

The population structure of species i is described by the size-spectrum Ni(m, t), denoted Ni(m)96

to ease notation. The size-spectrum represents the volumetric abundance density distribution

of individuals such that Ni(m) dm is the number of individuals per unit volume in the mass98

range [m; m + dm]. Similarly Bi(m) = mNi(m) denotes the biomass spectrum (biomass density

distribution), and Bi(m) dm the biomass per unit volume in the range [m; m+ dm]. The sum of100

all species’ size-spectra plus a resource spectrum NR(m) is the community spectrum (Fig. 1):

Nc(m) = NR(m) +
∑
i

Ni(m). (2)

The community spectrum represents the entire biotic environment providing individuals with food102

(from smaller individuals) as well as their predation risk from larger individuals. To include

species-specific preferences each species i has its own experienced community spectrum:104

Ni(m) = θi,RNR(m) +
∑
j

θi,jNj(m), (3)

where θi,j ∈ [0; 1] is the coupling strength of species i to species j. Coupling strengths are

independent of body size (cf. Discussion) since size-dependent food intake is described with a106

feeding kernel (below).

2.1. Food consumption108

The consumption of food by an individual depends on the available food from the experienced

community spectrum, on the volume searched per time, and on its functional response. The110

consumed food is assimilated and used to cover respiratory costs. Remaining available energy is

used for somatic growth by immature individuals and for a combination of somatic growth and112

reproduction by mature individuals.

We incorporate the rule of “big ones eat smaller ones” by assuming that predators have a114

preferred predator-prey mass ratio (PPMR). This assumption is inspired by stomach analyses of

marine fish (Ursin, 1973, 1974), and supported by stable isotope analyses (Jennings et al., 2001).116

The feeding kernel describing the size preference for prey is prescribed with a normalised log-normal

function (Fig. 1, Ursin, 1973):118

s(mp,m) = exp

[
−
(
ln

(
βmp

m

))2

/(2σ2)

]
, (4)



where mp is prey mass, m predator mass, β the preferred PPMR, and σ the width of the function.

The food available (mass per volume) for a predator of size m is:120

φi(m) =

∫
mpNi(mp)s(mp,m) dmp. (5)

Encountered food (mass per time) is the available food multiplied by the volumetric search rate

v(m) = γmq, where q is a positive exponent signifying that larger individuals search a larger122

volume per unit time (Ware, 1978). Satiation is described using a feeding level (number between

0 and 1, Kitchell and Stewart, 1977; Andersen and Ursin, 1977):124

fi(m) =
v(m)φi(m)

v(m)φi(m) + hmn
, (6)

where hmn is the maximum food intake. Feeding level times hmn corresponds to a type II func-

tional response.126

2.2. Somatic growth

Ingested food f(m)hmn is assimilated with an efficiency α accounting for waste products and128

specific dynamic action. From the assimilated energy an individual has to pay the metabolic costs

of standard metabolism and activity, kmp. Thus the energy available for growth and reproduction130

is:

Ei(m) = αfi(m)hmn − kmp. (7)

Of the available energy a fraction ψ(m,m∗) is used for reproduction, and the rest for somatic132

growth:

gi(m,m∗) =

⎧⎨
⎩

(
1− ψ(m,m∗)

)
Ei(m) Ei(m) > 0

0 otherwise
. (8)

If the intake is insufficient to cover respiratory costs (Ei(m) < 0) growth is halted. Body size does134

not shrink when costs cannot be covered, instead starving individuals are exposed to a starvation

mortality (see section 2.4). The maximum asymptotic size M an individual can obtain is reached136

when all available energy is used for reproduction (ψ(M,m∗) = 1).

2.3. Reproduction138

In order to generate growth trajectories with biphasic growth the allocation rule ψ(m,m∗) has

to change smoothly from 0 around size at maturation to 1 at the theoretical maximum asymptotic140

size M . The allocation rule ψ(m,m∗) is derived using two requirements: 1) that the size of

gonads is proportional to individual mass (Blueweiss et al., 1978), and 2) that size at maturation is142

proportional to asymptotic size (Beverton, 1992; Froese and Binohlan, 2000; He and Stewart, 2001).

To obtain an analytical solution as to how individuals allocate available energy to growth and144

reproduction we assume that the allocation rule is based on a constant feeding level f . Requiring

allocation to reproduction to be proportional to individual mass, ψ(m,m∗)E(m) = krm, gives146

ψ(m,m∗) = krm/E(m), where E(m) = αfhmn − kmp denotes the available energy when feeding



level is constant. The factor kr is found by the second requirement through ψ(M,m∗) = 1:148

kr = E(M)/M where M = m∗/η∗. The allocation can thus be described as:

ψ(m,m∗) =

[
1 +

(
m

m∗

)−u
]−1

E(m∗/η∗)

E(m)

m

m∗/η∗
, (9)

where the term in the square brackets is a smooth step function switching from zero to one around150

the size at maturation (u determines transition width).

The exponents of maximum consumption and standard metabolism are close to equal (cf. Ap-152

pendix E and Discussion). In the limit of n = p the available energy for growth and reproduction

becomesE(m) = �mn where � = αfh−k. This gives: ψ(m,m∗) = [1+(m/m∗)
−u]−1(η∗m/m∗)

1−n,154

meaning that the juvenile growth pattern is g = �mn whereas adults grow according to g =

�mn−�(m∗/η∗)
n−1m. Thus the growth model is a biphasic growth model where adults follow von156

Bertalanffy growth curves as advocated by Lester et al. (2004).

The total flux of offspring is found by integrating the energy allocated to reproduction ψ(m,m∗)Ei(m)158

over all individual sizes:

Ri =
ε

2m0

∫
Ni(m)ψ(m,m∗)Ei(m) dm, (10)

where m0 is the egg size, ε the efficiency of offspring production (Appendix C), and 1/2 takes into160

account that only females spawn (assuming equal sex distribution). Reproduction determines the

lower boundary condition of (1) for the size-spectrum of the species:162

gi(m0,m∗)Ni(m0) = Ri. (11)

2.4. Mortality

The mortality rate μ(m) of an individual has three sources: predation mortality μp(m), star-164

vation mortality μs(m), and a small constant background mortality μb(m∗). The background

mortality is needed to ensure that the largest individuals in the community also experience mor-166

tality as they are not predated upon by any individuals from the community spectrum.

Predation mortality is calculated such that all that is eaten translates into predation mortalities168

on the ingested prey individuals (Appendix A):

μp,i(mp) =
∑
j

∫
s(mp,m)(1 − fj(m))v(m)θj,iNj(m) dm. (12)

When food supply does not cover metabolic requirements kmp starvation mortality kicks in.170

Starvation mortality is proportional to the energy deficiency kmp − αf(m)hmn, and inversely

proportional to lipid reserves, which are assumed proportional to body mass:172

μs(m) =

⎧⎨
⎩ 0 Ei(m) > 0

−Ei(m)
ξm

otherwise
. (13)

Mortality from other sources than predation and starvation is assumed constant within a species

and inversely proportional to generation time (Peters, 1983):174

μb = μ0m
n−1
∗ . (14)



2.5. Resource spectrum

The resource spectrum NR(m) represents food items which are needed for the smallest individ-176

uals (smaller than βm0). The dynamics of each size group in the resource spectrum is described

using semi-chemostatic growth:178

∂NR(m, t)

∂t
= r0m

p−1
[
κm−λ −NR(m, t)

]
− μp(m)NR(m, t), (15)

where r0m
p−1 is the population regeneration rate (Fenchel, 1974; Savage et al., 2004) and κm−λ

the carrying capacity. We prefer semi-chemostatic to logistic growth since planktonic resources180

rebuild from depletion locally due to both population growth and invasions.

[Table 1 about here.]182

2.6. Derivation of parameters

Each species is characterised by a single trait, size at maturationm∗, and a species-independent184

parameter set is achieved through scaling with body size m and m∗. The model is parameterised

for marine ecosystems using cross-species analyses of fish communities (Appendix E and Table 1).186

The constant γ for the volumetric search rate is difficult to assess (Appendix E). However,

since the feeding level f(m) of small individuals is determined solely by the amount of encountered188

food from the resource spectrum, we may use initial feeding level f0 as a physiological measure of

food encounter; f0 is defined as the feeding level resulting from a resource spectrum at carrying190

capacity. The initial feeding level is used as a control parameter for food availability (enrichment),

through which the value of γ can be calculated (Appendix D):192

γi(f0) =
f0hβ

2−λ

(1− f0)
√
2πθi,Rκσ

, (16)

where it is noted that γ will be species dependent if species have different coupling strengths to

the resource.194

A critical feeding level fc can be formulated as the feeding level where all assimilated food is

used for metabolic costs (using values from Table 1):196

fc =
k

αh
mp−n =

k

αh
≈ 0.2. (17)

Individuals can only grow and reproduce if f > fc. Assuming that individuals experience an

average feeding level f , the growth (8) of juveniles is g = �mn (for n = p). The parameter

� = αhf − k can be estimated through the relation between observed von Bertalanffy growth rate

and asymptotic size yielding � ≈ 10 g0.25/year (Andersen et al., 2008). This allows an estimation

of the expected average feeding level of individuals in the field (Table 1):

f =
�+ k

αh
≈ 0.4, (18)

i.e. around twice the critical feeding level. As the initial feeding level f0 is calculated from a

resource spectrum at carrying capacity, the realised feeding level in the model will be smaller than198

f0. A value of f0 = 0.6 was seen to give realised feeding levels around 0.4.



3. Methods200

Stable food webs are constructed using the full dynamic food web model with random coupling

strengths θi,j . For each run, 30 species are assigned withm∗ evenly distributed on a logarithmic size202

axis (m∗ ∈ [0.25 g; 20 kg]), random θi,j matrices (mean 0.5), and a common θi,R = 0.5 coupling to

the resource spectrum. Numerical integration is performed by standard finite difference techniques204

(Appendix G). Food webs are simulated in 10 consecutive intervals covering 300 years each, where

species with a biomass less than 10−30g/m3 are eliminated after each interval. To eliminate food206

webs that still have not reached the final state each community is integrated for additional 500

years and discarded if any species has an absolute population growth rate larger than 1 logarithmic208

decade per 100 years. To ensure that each food web in the final ensemble spans multiple trophic

levels we only retain food webs where at least one species has m∗ larger than 2.5 kg. For statistics210

we use the mean of the last 250 years of the simulation with time steps saved in 0.1 year increments.

In this manner 204 food webs having a total number of 1016 species were collected. Each web212

contained between 2 and 9 species with a mean of 4.98 species.

We analyse the generated food webs in terms of distributions of average community size-214

spectrum, species size-spectra, trait biomass distributions, and trait diversity distributions. Ad-

ditionally we demonstrate the importance of distinguishing between what an individual prefers to216

eat and what is actually ingested (i.e. found in its stomach) by showing how emerging PPMRs

vary with food availability and differ from preferred PPMRs.218

An approximate steady-state solution to the food web model which neglects the dynamics of

reproduction can be found using two assumptions: 1) all species consume food and experience220

mortality from a scaling community size-spectrum Nc = κcm
−λ, and 2) constant feeding level f ,

which implies equal species coupling strengths θi,j = θ. Whereas the food webs in the full model222

are based on a discrete set of m∗, the analytical solution considers m∗ as a continuous distribution.

The procedure for deriving the analytical solution is similar to the derivation of equilibrium size-224

spectrum theory (Andersen and Beyer, 2006), but the results are slightly different as standard

metabolism is taken explicitly into account here. The food encountered by an individual is found226

using assumption 1): v(m)φ(m) = γmq
∫
Ncs(mp,m)mp dmp ∝ m2−λ+q. The feeding level is

calculated from (6), and the requirement that it is constant (assumption 2) leads to a constraint228

on the exponent of the community spectrum: λ = 2 + q − n. Feeding with a constant feeding

level generates a predation mortality of μp = αpm
n−1 (Appendix A). The size-spectrum of230

juvenile individuals is found as the steady state solution of (1) using the above predation mortality

and g = �mn (cf. (F.1)): N(m,m∗) = κ(m∗)m
−n−a, where a = αp/� is the physiological level232

of predation (Beyer, 1989; Andersen and Beyer, 2006), which can be calculated as a ≈ f/(f −
fc)β

2n−q−1/α = 0.86 (Appendix B). The constant κ(m∗) is found from the requirement that the234

sum of all species spectra should equal the community spectrum. Assuming a continuum of species

the requirement can be written as
∫
N(m,m∗) dm∗ = Nc(m) which leads to κ(m∗) ∝ m2n−q−3+a

∗236

(Fig. 1). This approximate solution of the model will be referred to as equilibrium size-spectrum



theory (EQT), and it will be compared to the output of the complete dynamic food web model.238

In dynamic models, as in nature, the lifetime reproductive success (fitness) has to be R0 = 1

for all coexisting species. Since EQT does not consider the boundary condition (11) life-time240

reproductive success becomes a function of size at maturation: R0 ∝ m1−a
∗ (Andersen et al.,

2008). One solution to making R0 independent of m∗ is to set a = 1, but that breaks the above242

employed mass balance between growth and mortality used to calculate a. Due to the R0 �= 1

inconsistency in EQT we have a specific focus on the realised values of a when comparing food244

web simulations with EQT predictions. To examine how the regulation of R0 occurs in the full

food web model R0 is split into two factors: 1) the probability of surviving to become adult, and246

2) lifetime reproduction per adult (Appendix F):

pm0→m =
N(m)g(m,m∗)

N(m0)g(m0,m∗)
, (19)

248

Radult(m∗) =

∫ M

m∗

pm∗→m

ψ(m,m∗)E(m)

g(m,m∗)
dm. (20)

Survival probabilities and reproductive outputs in the food web simulations are compared

with EQT predictions, which are calculated by inserting the EQT size-spectra into (19) and (20).250

Juvenile growth is g ∝ mn, which gives pm0→m∗
∝ m−n−a

∗ mn
∗ = m−a

∗ and Radult ∝ m∗.

[Figure 2 about here.]252

4. Model predictions

4.1. Growth trajectories254

In unstructured models fluctuations are manifested as oscillations in the biomass of species,

whereas the oscillations in structured models stem from oscillations in the size-spectrum compo-256

sition. Such oscillations give rise to fluctuating feeding levels as individuals encounter different

levels of food in different life-stages (Fig. 2.a). Variations in feeding levels between species and as258

a function of individual size lead to different emergent growth trajectories (Fig. 2.b). The growth

trajectories roughly follow the biphasic growth curve that is obtained if the feeding level is assumed260

to be constant.

[Figure 3 about here.]262

[Figure 4 about here.]

4.2. Biomass structure264

By pooling species from each food web into logarithmic evenly distributed m∗ groups, and

summing the size-spectra in each group, a size-spectrum is obtained for each m∗ group. Next,266

the logarithmic average of m∗ groups across all food webs is performed to produce the average

size-spectra of a m∗ group (Fig. 3). Average community biomass spectrum Nc(m)m follows the268



EQT prediction of a slope of 1 + q − n = 1.05, meaning that the biomass in logarithmically

evenly sized size-groups,
∫ cm

m
Nc(m)mdm, is a slightly declining function of body mass. The270

community spectrum oscillates around the EQT prediction due to a trophic cascade initiated

by a superabundance of the largest predators which do not experience any predation mortality272

(Andersen and Pedersen, 2010). The peaks of the oscillating pattern are roughly spaced by the

preferred PPMR. Biomass density within species is constant until individuals reach the end of the274

resource spectrum, and larger individuals, � 0.1 g, have a biomass spectrum slope flatter than

that of the community spectrum (Fig. 3). Thus, in contrast to EQT, the dynamic model produces276

species size-spectra that cannot be described as power laws. The number of small individuals

is inversely related to size at maturation. The scaling of offspring abundance can be calculated278

using EQT as N0 ∝
∫ cm∗

m∗

κ(m′∗)dm
′
∗ ∝ m2n−q−2+a

∗ , which fits the simulated results well for a = 1

(Fig. 3, inset).280

The distribution of species biomass as a function m∗ can be calculated from EQT as:

B(m∗) =

∫ cm∗

m∗

∫ M

m0

N(m,m′∗)mdmdm′∗ ∝ mn−q
∗ . (21)

As n and q are almost equal the biomass distribution B(m∗) as a function ofm∗ is almost constant.282

This result is also borne out by the dynamical simulations (Fig. 4.a) with some variation due to

uneven species distribution along the m∗ axis: peaks occur in species diversity separated by the284

preferred PPMR β (Fig. 4.b).

[Figure 5 about here.]286

4.3. PPMR and feeding level

The realised mean PPMR can be derived when prey concentrations are known: N (mp)s(mp,m)288

is the prey size distribution encountered by a m sized predator. Mean prey size encountered by a

m sized predator is
∫

∞

0
mpN (mp)s(mp,m)dmp∫

∞

0
N (mp)s(mp,m)dmp

. The realised mean PPMR is calculated as the predator290

size m divided by the mean prey size:

PPMR(m) =
m

∫∞
0
N (mp)s(mp,m)dmp∫∞

0 mpN (mp)s(mp,m)dmp

. (22)

Realised mean PPMR is always larger than the preferred PPMR β, due to higher abundance of292

smaller prey items (Fig. 5.a). The realised mean PPMR calculated from EQT (using N ∝ m−λ
p )

is exp[(λ− 3/2)σ2]β ≈ 1.7β. Realised PPMR from the simulations oscillate around this value due294

to the fluctuations in the community spectrum (Fig. 3).

As individuals grow to a size larger than βm0 they switch from eating food in the resource296

spectrum to feeding on other species. This leads to a decrease in the feeding level from f0 = 0.6

to about 0.45. The oscillations in feeding level increase in magnitude as body size increases due298

to larger fluctuations in prey availability (Fig. 5.b). Many large individuals periodically have a

feeding level below the critical feeding level fc (where starvation kicks in) since prey items in the300



preferred size range become scarce, which results in ingestion of smaller food items and therefore

increasing PPMR.302

[Figure 6 about here.]

4.4. Reproduction and survival304

Lifetime adult reproduction calculated from the simulated food webs fit the EQT prediction

since it scales linearly withm∗ (Fig. 6.b). The probability of surviving to a given size is independent306

ofm∗, as the survival curves of the differentm∗ groups lie on top of one another (Fig. 6.a). Survival

to m∗ scales inversely with m∗ (i.e. a = 1, crosses in Fig. 6.a), which ensures that R0 is constant.308

However, if the a = 1 scaling of survival to m∗ is extrapolated to m0 it is seen that it does not

intersect pm0→m0
= 1. Instead the survival curves change slope between m0 and around 10−1 g310

where predation mortality starts to dominate due to an abundance of fish individuals in the same

order of magnitude as the resource spectrum, which is intensified by reduced growth stemming312

from food competition (Fig. 3). In summary survival does not scale with m−a
∗ as predicted by

EQT. Instead adult survival scales with m−1
∗ (i.e. a = 1) whereas individuals smaller than ≈ 0.1 g314

have a higher survival (i.e. a smaller scaling exponent).

5. Discussion316

We have developed a generic food web framework suitable for analysing systems of interacting

size-structured populations. The framework increases ecological realism compared to traditional318

unstructured food web models by explicitly resolving the whole life-history of individuals, but

maintains simplicity by describing species with only one trait: maturation size m∗. Remaining320

parameters are made species-independent through inter- and intraspecies scaling with m∗ and

body mass m. The productivity of the system is characterised by one parameter, the initial322

feeding level f0. Feeding behaviour is assumed to be determined by a feeding kernel with a fixed

preferred PPMR (big individuals eat small individuals), multiplied by a species-specific coupling324

strength.

Only characterising the life-history and feeding preference of individuals of a species by body326

mass m and trait m∗ is clearly a simplification, but contemporary knowledge suggests that a large

part of the individual bioenergetics related to growth (Peters, 1983) and reproduction (Blueweiss328

et al., 1978) indeed can be described by such scaling. Additionally it is well-known that predators

often outsize their prey (Brose et al., 2006a) which justifies the use of the generalisation “big ones330

eat small ones”.

5.1. Model architecture332

The model was parameterised from cross-species analyses of fish communities, since aquatic sys-

tems constitute a group of strongly size-structured ecosystems. Other less strongly size-structured334



taxa can be modelled as well through reparametrisation and by allowing each species to have

its own offspring size m0,i. Additionally, the description of how available energy energy is divided336

between growth and reproduction may have to be reformulated since animals in other taxa may ex-

hibit determinate growth. Determinate growth can be modelled simply by replacing the allocation338

function (9) with only the part within the square brackets.

The proposed modelling framework is similar to physiologically structured models (Andersen340

and Ursin, 1977; Metz and Diekmann, 1986; de Roos and Persson, 2001), and as these based on

mechanistic individual-level processes. Our contribution is to employ a trait-based description342

of species identity, and a formulation of food preference which is split into a size- and a species-

based contribution, which renders the developed framework useful as a generic food web framework.344

Recently the PSPM approach has been reduced to a stage-structured model which facilitates multi-

species studies (de Roos et al., 2008a); however this is achieved at the cost of collapsing continuous346

size-structure to a discrete stage-structure. A first step towards multi-species PSPMs was carried

out with an intra-guild predation model, which showed that obtaining species coexistence between348

two size-structured populations is a difficult task (van de Wolfshaar et al., 2006); a result which is

probably due to insufficient ecological differentiation of the two species. In the proposed framework350

the trait maturation size provides a simple and logical way of representing ecological differentiation

of species, whereas this differentiation in PSPMs is less clear due to large species-specific parameter352

sets. Additional ecological differentiation and heterogeneity are obtained by also including food

web structure in the form of species coupling strengths.354

An alternative approach to model a size-structured community is the community size-spectrum

models (Silvert and Platt, 1980; Benôıt and Rochet, 2004). In these models the community is356

represented by a community size-spectrum of all individuals irrespective of species identity (Sheldon

and Parsons, 1967). As with the physiologically structured models these are based on individual-358

level descriptions of life-history. The community spectrum approach has the drawback that species

are not resolved, as all individuals are lumped together into one spectrum. Their advantage is their360

ability to make community-wide predictions with simple means (Blanchard et al., 2009) similarly

to the mean-field theory in unstructured food webs (McKane et al., 2000; Wilson et al., 2003).362

A central element in the model is the division of energy between somatic growth and repro-

duction through the allocation function ψ(m,m∗). As in PSPMs our bioenergetic model is a364

net-production model where it is assumed that metabolic costs are covered with highest priority

after which the remaining energy can be used for growth and reproduction. PSPMs are formu-366

lated either with one state variable: individual body weight (Kooijman and Metz, 1984; Claessen

and de Roos, 2003), or with two state variables: somatic weight and reserve weight (de Roos and368

Persson, 2001). In the latter case energy is divided between the two states such that the ratio

between the two state variables is aimed to be constant, and accumulated reserves are used for370

reproduction at the end of the growing season. In the case with only one state variable surplus

energy is divided between somatic growth and reproduction with a fixed ratio (κ-rule). When us-372



ing the κ-rule the maximum asymptotic size any species individual can obtain is M+ where intake

αhf(M+)M
n
+ equals the metabolic costs kMp

+ – meaning that all species would obtain the same374

asymptotic size if parameters are species independent as in our formulation. M+ is very sensitive

to the precise values of n and p, and they can therefore only be regarded as poor determinators for376

asymptotic size (Andersen et al., 2008). Our model deviates from the single-state PSPMs in this

partitioning of energy, as we assume that mature individuals allocate an amount proportional to378

their body size for reproduction (Blueweiss et al., 1978), and that asymptotic size depends on the

trait size at maturation (Beverton, 1992; Froese and Binohlan, 2000; He and Stewart, 2001). This380

ensures that the ratio between gonad size and somatic weight is constant within a species, which

is similar to the partitioning rule used in two-state PSPMs. The allocation function is derived382

under the assumption of a constant feeding level throughout adult life. Even though the feeding

level is assumed constant, the actual allocation still vary depending on the actual food availabil-384

ity, as ψ(m,m∗) only determines the fraction of available energy allocated to reproduction. An

alternative way to derive ψ(m,m∗) is to let it depend on actual feeding levels. This assumption,386

however, would imply that individuals adjust their allocation to reproduction such that asymptotic

size is always reached. This does not seem plausible as individuals in resource scarce environments388

probably obtain smaller maximum sizes, and therefore we find the most reasonable assumption to

be that of a constant feeding level. The exponents n and p are close to equal in nature, and for390

n = p the energy allocation function leads to biphasic growth where adults follow von Bertalanffy

growth curves (Lester et al., 2004). We fixed the yearly mass-specific allocation to reproduction392

(yearly gonado-somatic index, GSI) to be independent of individual body size within a species. The

obtained form of ψ(m,m∗), however, yields a m
n−1
∗ scaling of yearly GSI across species, which is394

consistent with empiric evidence (Gunderson, 1997). This means that the form of ψ(m,m∗) implies

a trade-off between m∗ and the mass-specific reproduction: large m∗ species can escape predation396

mortality via growth by paying the price of a lower mass-specific reproduction (Charnov et al.,

2001). When the exponents n and p differ, growth will still be biphasic and adult growth curves398

will be similar to von Bertalanffy curves (see also Andersen and Pedersen, 2010). In conclusion

the derived allocation rule leads to realistic growth patterns.400

5.2. Food web structure

Food web structure is the most essential part of a food web model, and in principle two ap-402

proaches can be taken to obtain a structure for a dynamic food web model: a top-down and a

bottom-up approach.404

The top-down method generates food web matrices from the desired number of species and

connectance using a static model (stochastic phenomenological models: Cohen and Newman (1985);406

Williams and Martinez (2000); Cattin et al. (2004); Allesina et al. (2008), or more mechanistic

approaches involving phylogenetic correlations (Rossberg et al., 2006) or foraging theory (Petchey408

et al., 2008)). Next, the food web matrix is used to drive a dynamic model, which is simulated



forward in time where some of the initial species will go extinct, and the remaining species set can410

be used for analysis. Note that in addition to a decreased species richness in the final community

other food web statistics as e.g. the final connectance may differ as well (Uchida and Drossel, 2007).412

In the bottom-up approach link strengths are determined from ecological relations, such as

e.g. a predator-prey feeding kernel: if the prey fits into a certain size range relative to the predator414

size, then interaction occurs between the nodes with a strength determined by the feeding kernel

(Loeuille and Loreau, 2005; Virgo et al., 2006; Lewis and Law, 2007). Predator preferences de-416

pend, in addition to ecological characters, on evolutionary history and recent approaches add this

component of phylogenetic correlations (Rossberg et al., 2008).418

For size-structured food webs a top-down algorithm for generating realistic food web matrices

does not exist. This is due to lack of data describing the three dimensional interaction matrix420

– dimension one and two is respectively predator and prey identity as in the classic interaction

matrix, and the third dimension is predator/prey body size. Thus one is confined to the bottom-up422

approach and/or random interaction matrices. In this study we use the bottom-up approach to

prescribe interactions to obey the pattern of “big ones eat smaller ones”. Life-history omnivory424

(Pimm and Rice, 1987) is therefore naturally incorporated in size-structured food webs through

the use of a feeding kernel. To obtain an ensemble of different communities we use the top-426

down approach of a classical two-dimensional predator-prey interaction matrix – that is we assume

that regardless of size individuals within a species have equal potential maximum link strength428

(coupling strengths in our model) to another species. As no top-down method exists for generating

this matrix we use random matrices. The actual link strength is the product of the coupling430

strength and the feeding kernel, meaning that link strengths indeed are dynamic as they depend

on the size-structure of both prey and predator.432

As we generate food webs from a fixed initial pool of only 30 species and use a random matrix

as coupling matrix we only obtain small food webs (maximum: 9 species). However, it should be434

noted that the number of resource species the resource spectrum represents is not included. To

obtain larger food webs a larger species pool is needed along with a sequential assembly algorithm436

(Post and Pimm, 1983), and a better method for obtaining coupling strengths between species.

Our primary interest in the food web analyses has been the size- and trait-structure of food webs438

with a finite number of species, and how these compare with EQT predictions, which are based

on the premise of a continuum of species. The general correspondence with EQT indicates that440

the broad-scale patterns are relatively insensitive to how the species-specific coupling strengths

(i.e. food web structure) are specified. Still, an interesting follow-up study would be focused on442

the coupling matrix structure, which may more generally be size-dependent, and how the effective

food web structure that emerges from the coupling strengths and feeding kernel compares with444

empiric food webs.



5.3. Community structure446

We generated an ensemble of size-structured food webs and used averages over these to make

general predictions of the structure of fish communities, in particular the size-structure of individual448

populations, and how these spectra “stack” to form the community size-spectrum. In accordance

with EQT we find the community spectrum to scale with λ = 2 + q − n ≈ 2 meaning that the450

distribution of biomass as a function of individual body size is close to constant when individuals are

sorted into logarithmically evenly sized bins. This prediction means that the biomass of individuals452

between e.g. 1 g and 10 g is the same as those present with body sizes between 1 kg and 10 kg, in

accordance with the Sheldon hypothesis (Sheldon et al., 1972).454

The distribution of biomass as a function of m∗ is predicted to be almost independent of

m∗ in accordance with EQT. The result is reminiscent of the Sheldon hypothesis, and it can be456

formulated as an extension of the Sheldon hypothesis: “The total biomass of individuals ordered

in logarithmically spaced groups of their maturation size is approximately constant”. This means458

that the total biomass of all species with m∗ between 1 and 10 g is approximately the same as

that of species with m∗ within 1 to 10 kg. This prediction is a novel extension and could be tested460

by size-based field data. In contrast to EQT the dynamic framework also provides predictions on

the distribution of the number of species as a function of m∗. Species tend to cluster in groups on462

the m∗ axis separated by a distance corresponding to the preferred PPMR β. This clustering is

partly a reflection of the use of a fixed value of β; more diversity in feeding strategies (i.e. different464

β) would probably smoothen the species distribution as well as making the feeding level more

constant.466

The size-spectra of individual species do not to follow power laws as predicted by EQT since

there is a change in spectrum slopes from small to medium sized individuals. This difference stems468

from different scaling relationships for the survival probability of small and larger individuals. The

less steep slope in survival for small individuals is due to a proportionally low mortality rate caused470

by their low abundance relative to similarly sized resource items. Incorporating mortality from

the resource spectrum on the smallest individuals may thus result in a single survival probability472

scaling. The probability of surviving to m∗ scale as m−a
∗ for a physiological predation constant

value of a = 1, which is conflicting with the value a = 0.86 predicted by EQT. The discrepancy474

about the value of a highlights an inconsistency within EQT: Enforcement of mass-balance between

growth and predation leads to a = 0.86, while the reproductive boundary condition can only be476

fulfilled if a = 1. The full food web simulations demonstrate that both the scaling of surviving to

m∗ and the scaling of the number of offspring are best predicted by a value of a = 1. This indicates478

that when EQT predictions depend on a, the value a = 1 should be used even though that breaks

mass conservation in EQT.480

Lastly we demonstrate that realised PPMRs (i.e. PPMRs based on ingested prey) emerge in

the model. Average realised PPMR is always larger than the preferred PPMR β since smaller prey482

items are more abundant than larger ones. It is found that the realised PPMR is proportional



to the preferred ratio (PPMR = 1.7β). Model predictions show that realised PPMR oscillates484

around this value due to fluctuations in the average community spectrum. PPMR displays large

fluctuations with size demonstrating that determination of PPMR from single measurements is486

problematic due to high prey abundance sensitivity. Empirical findings show that realised PPMRs

increase with body size (Barnes et al., 2010), but one should be careful about concluding that the488

preferred PPMR (which we put into models) shares this size scaling, since relative abundances

may cause the increase rather than actual behavioural prey preferences: even though we have a490

fixed preferred PPMR our model predicts that realised PPMR is an increasing function of body

size.492

5.4. Conclusion and outlook

The proposed food web framework increases ecological realism in food web models as it resolves494

the complete life-history of individuals by representing the size-structure of each species with a size-

spectrum. More specifically the framework complies with five requirements of (cf. Introduction):496

1) being generic with few parameters, 2) being mechanistic and utilising individual-level processes,

3) including food dependent growth, 4) being practically solvable for species-rich communities, and498

5) complying with data on community structure and individual growth curves.

Trait-based size-structured food webs can be examined at four levels of organisation: at com-500

munity level, at species level, at trait level, and at the individual level. We generated empirically

testable hypotheses of mainly biomass distributions at different levels of organisation.502

By assuming a power law community spectrum and a constant feeding level the full dynamic

model can be simplified to an EQT model (Andersen and Beyer, 2006). Correspondence of pre-504

dictions by EQT and the full model justifies the use of the simplifying assumptions. EQT is a

powerful analytical tool that in a simple manner yields insight to e.g. the biomass distributions506

within and across species in size-structured food webs. However, as EQT assumes steady-state,

the study of emerging effects, e.g. diversity and responses to perturbations, has to be conducted508

with the full model.

The PSPM framework has showed existence of alternative stable states where single populations510

can exist with different size-structure compositions (de Roos and Persson, 2002; Persson et al.,

2007; de Roos et al., 2008b). It is an open question whether such alternative states become more512

widespread or if they disappear when more species interact with each other. This question is

important since it tells whether such alternative states are expected to occur frequently or rarely514

in nature, and consequently whether exploitation can easily induce shifts between states. An

important future challenge is thus to study the possibilities of multiple states in complex food516

webs – not only of single individual populations, but of the ecosystem as a whole. The proposed

framework allows exactly this kind of studies since it provides a full ecologically realistic but518

conceptually simple model of size-structured ecosystems.

Natural future extensions of the model could be to allow the species coupling strengths to520



be size-dependent and make coupling strengths depend on vulnerability and forageability of prey

and predators (Rossberg et al., 2008) as well as on the spatial overlaps of the interacting species.522

Adding this extra level of mechanistic realism would allow the framework to be useful for studying

ecosystem consequences of spatial changes of species populations, which could be driven by climatic524

changes.
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spectra (thick dashed). The idealised community spectrum κcm

−λ (thin dashed) and the species maturation sizes
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for a fixed feeding level that equals 75% of the time and size averaged feeding level experienced by the species (thick
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comparison.
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Table 1: Default parameter values for a temperature of 10◦C (Appendix E).

Symbol Value Units Parameter

Individual growth
f0 0.6 - Initial feeding level
α 0.6 - Assimilation efficiency
h 85 g1−n/year Maximum food intake
n 0.75 - Exponent for max. food intake
k 10 g1−p/year Std. metabolism and activity
p 0.75 - Exponent of std. metabolism
β 100 - Preferred PPMR
σ 1 - Width of feeding kernel
q 0.8 - Exponent for search volume

Reproduction
m0 0.5 mg Offspring mass
η∗ 0.25 - m∗ rel. to asymptotic mass M
ε 0.1 - Efficiency of offspring production
u 10 - Width of maturation transition

Mortality
ξ 0.1 - Fraction of energy reserves
μ0 0.84 g1−n/year Background mortality

Resource spectrum
κ 5 · 10−3 gλ−1/m3 Magnitude of resource spectrum
λ 2− n+ q - Slope of resource spectrum
r0 4 g1−p/year Regeneration rate of resources
mcut 0.5 g Upper limit of resource spectrum



Appendix should be available as online material.670

Appendix A. Derivation of predation mortality

Predators with a size between m and m+ dm have a food intake rate of s(mp,m)f(m)hmnθN(m)dm672

for mp sized prey. The total density of food available from all prey sizes to the predators in [m ;m+ dm]

is φ(m) (5), meaning that the mortality experienced by a mp sized individual is:674

μp,i(mp) =
∑
j

∫
s(mp,m)fj(m)hmnθj,iNj(m)

φj(m)
dm. (A.1)

The maximum food intake may be expressed as a function of f(m), v(m), and φ(m) via (6), such that

the predation mortality can be written as:676

μp,i(mp) =
∑
j

∫
s(mp,m)(1− fj(m))v(m)θj,iNj(m) dm. (A.2)

By using the EQT assumptions of constant feeding level and a power law community spectrum (cf.

section 3) the mortality reduces to μp(mp) = θ(1 − f)
∫
s(mp,m)v(m)κcm

−λ dm, which can be solved678

analytically:

μp(mp) = αpm
n−1
p , (A.3)

where αp = θ(1− f)√2πκcγσβ
1+q−λ exp

[
1
2
σ2(1 + q − λ)2].680

Appendix B. Available food and the physiological level of predation a

Using the EQT assumption of a power law community spectrum allows calculation of the available682

food density φ(m) = θ
∫
s(mp,m)κcm

−λ
p mp dmp:

φ(m) = αφθκcm
2−λ, (B.1)

where αφ =
√
2πσβλ−2 exp

[
1
2
σ2(2− λ)2].684

Using the EQT assumption of constant feeding level yielding λ = 2 + q − n allows us to write θκc =

fh/(αφγ(1 − f)) by rearranging the expression of the feeding level (6). Using this and the definition686

of � allows writing αp = c(� + k)β2n−q−1/α where c = exp
[
1
2
σ2

(
(1 + q − λ)2 − (2− λ)2)] = 1.03 ≈ 1.

Ultimately using the definition of fc allows writing the physiological level of predation a = αp/� as:688

a = c
f

f − fc
β2n−q−1/α. (B.2)

Appendix C. Calculating efficiency ε of offspring production

The efficiency of turning energy into offspring is denoted ε. It includes losses due to behavioural aspects,690

pre-hatching mortality, and that the energy contents in gonadic tissue is higher than in somatic tissue. It

is a quantity that is difficult to measure, but for n = p its value can be derived.692

The energy (in units of mass) routed into reproduction (for n = p) is ψ(m,m∗)�m
n where � = αfh−k.

The energy of the produced offspring is then, Eo(m) = εψ(m,m∗)�m
n:694

Eo(m) = ε�η1−n
∗ mn−1

∗ m. (C.1)



From Gunderson (1997) we have the yearly mass-specific allocation to reproduction:

�(m∗) = �0η
1−n
∗ mn−1

∗ , (C.2)

where �0 = 1.2 g1−n/year is obtained using least sum of squares in fitting the curve to the data for696

oviparous fish in Gunderson (1997). Equalling (C.2) and Eo/m allow us to determine the efficiency of

offspring production ε:698

ε =
�0
�
≈ 0.12. (C.3)

Appendix D. Setting the search rate prefactor γ from initial feeding level f0

Food for the smallest individuals in the spectra will be supplied by the background spectrum. If we700

assume that the resource spectrum is at carrying capacity κ then an equilibrium initial feeding level f0 for

the small individuals can be calculated using (6).702

Alternatively we may specify an initial feeding level f0 and derive one other parameter. By solving

the feeding level for γ by using the analytical solution for the density of food φ(m) (B.1) we find γ as a704

function of f0:

γ =
f0h

(1− f0)αφθi,Rκ
≈ f0hβ

2−λ

(1− f0)
√
2πσθi,Rκ

. (D.1)

Appendix E. Parameter estimation706

Individual growth: From Kitchell and Stewart (1977) we obtain an estimate of specific dynamic action

on 15 % of food consumption, and conservative estimates of egestion and excretion on 15 % and 10 %708

respectively. This results in an assimilation efficiency of α = 0.6.

The maximum intake scales with a 0.6–0.8 exponent, with n = 0.75 being an approximate average710

value (Jobling, 1994). Andersen and Riis-Vestergaard (2004) provides a length-based relationship for the

maximum intake rate based on a whiting study adopted for saithe. Using m = 0.01l3 (m in g and l in cm)712

(Peters, 1983), and an energy content of 5.8 kJ/g (fish) or 4.2 kJ/g (invertebrates) (Boudreau and Dickie,

1992) yields a prefactor h for the maximal food intake on 83 g1−n/year or 114 g1−n/year (at 10◦C). These714

intake values overestimate the intake of large individuals since Andersen and Riis-Vestergaard (2004) use

an intake exponent of 0.67 instead of n = 0.75. Due to this a value of h = 85 g1−n/year is selected, which716

also provides reasonable fits to ’cod-like’ growth curves (m∗ = 5 kg).

The standard metabolism scaling exponent p for fish is slightly higher than for other taxa, around718

0.8 from intra- and interspecies measurements (Winberg, 1956; Killen et al., 2007). For simplicity we

assume p = n. The first term (acquired energy) in the growth model (8) is αf(m)hmn where the feeding720

level f(m) is a decreasing function of body size (see Results). This has the effect that even when n = p is

assumed the acquired energy term still effectively scale with a smaller exponent than the maintenance term722

kmp in accordance with the experimental data on food intake and standard metabolism. Furthermore it

is noted that this clearly makes the individuals in each functional species non-neutral. The bioenergetic724

consequences of n �= p has been explored in detail by Andersen et al. (2008).

The prefactor for standard metabolism can from Peters (1983) be determined to 6.5 g1−n/year if the726

diet is composed of only invertebrates and 4.7 g1−n/year if all the energy is from fish. Both values were

corrected to 10◦C using Q10 = 1.83 (Clarke and Johnston, 1999). It is assumed that energy costs due728



to activity can be described with an activity multiplier on the standard metabolic rate. Estimations of

activity costs are difficult to obtain, but activity multipliers are often reported in the range 1 to 3; e.g. 1.25730

for North Sea cod (Hansson et al., 1996), 1.7 for dace (Trudel and Boisclair, 1996), and 1.44-3.27 for saithe

(Andersen and Riis-Vestergaard, 2004) (however see also Rowan and Rasmussen (1996); He and Stewart732

(1997)). A reasonable value of the prefactor for the standard metabolism and activity costs is assumed to

be k = 10 g1−n/year corresponding to an activity multiplier in the range 1.5 to 2.1.734

Food encounter: The preferred predator-prey mass ratio is set to β = 100 (Jennings et al., 2002)

and the width of the selection function to σ = 1, which catches the general picture for at least cod and736

dab (Ursin, 1973). It should be noted that small organisms such as copepods have a larger σ of 3–4.5

(Ursin, 1974), but for simplicity and since focus is on species with rather large m∗ the width σ will be held738

constant.

The exponent for swimming speed is q = 0.8 (Andersen and Beyer, 2006). The prefactor γ for the740

volumetric search rate is difficult to assess from the literature. An alternative approach is to determine it

as a function of of initial feeding level f0 via (D.1). Experience with the model shows that feeding level is742

a decreasing function of body size. This means that it is sensible to use an initial feeding level f0 that is

larger than the expected average feeding level f . In this study a default value of f0 = 0.6 is used. This744

along with default parameters yields γ = 0.8 · 104 m3g
−q

/year (Table 1). An alternative estimate of γ

is possible by multiplying the prefactors for swimming speed (Ware, 1978) and swept reactive field area746

(reactive radius assumed equal to body length): γ = 20.3 · π · 0.01−2/3cm3g
−q
/s ≈ 4.3 · 104 m3g

−q
/year,

which indeed justifies the use of f0 = 0.6.748

Mortality: Realistic energy reserve sizes may be ξ ∈ [5%; 20%], and in the present study ξ = 0.1 is

used. A widely used background mortality for ’cod-like’ m∗ = 5kg fishes is μb = 0.1 year−1, which yields750

μ0 = 0.84 g1−n/year.

Reproduction: The efficiency of offspring production was not found in the literature. However, an752

analytical expression may be obtained (for n = p) by combining the calculation of yearly mass-specific

allocation to reproduction from the bioenergetic model (Appendix C) with empirical measurements (Gun-754

derson, 1997), which yields ε = �0/� ≈ 0.1. The fraction of asymptotic size to mature at is η∗ = 0.25

(Andersen et al., 2008). Offspring mass is m0 = 0.5 mg which corresponds to an egg diameter of 1 mm756

(Wootton, 1979; Chambers, 1997).

Resource spectrum: The carrying capacity of the resource spectrum should equal the magnitude of the758

community spectrum: κm−λ, with an exponent λ = 2 − n + q = 2.05 (Andersen and Beyer, 2006). The

magnitude of the resource spectrum is set to κ = 5 · 10−3 gλ−1/m3, which is comparable with findings760

from empirical studies (Rodriguez and Mullin, 1986). The constant for resource regeneration rate is r0 = 4

g1−p/year at 10◦C (Savage et al., 2004). The cut-off of the resource spectrum is set to include mesoplankton,762

mcut = 0.5 g.

Appendix F. Expected Lifetime Reproductive Success764

The expected lifetime reproductive success can be split into two components: 1) the probability of

surviving to become adult, and 2) lifetime reproduction per adult.766



Appendix F.1. Survival probability

If we set ∂N
∂t

= 0 in (1) we may obtain the steady-state solution as:768

N(m) =
K(m∗)

g(m,m∗)
exp

(
−

∫
μ(m)

g(m,m∗)
dm

)
, (F.1)

where K(m∗) is the constant from the integration along m. We notice that the probability of surviving

from size m0 to size m is pm0→m = exp
(
− ∫ m

m0

μ(m′)
g(m′,m∗)

dm′
)
, which along with pm0→m0

= 1 allow us to770

write the survival probability as:

pm0→m =
N(m)g(m,m∗)

N(m0)g(m0,m∗)
. (F.2)

Appendix F.2. Lifetime adult reproduction772

The amount of energy an adult belonging to a m∗ population will spend on reproduction throughout

its life is:774

Rlife(m∗) =

∫
∞

t∗

pt∗→tψ(m,m∗)E(m)dt,

where t∗ is maturation age, and ψ(m,m∗)Ei(m) the rate at which energy is allocated to reproduction.

Noting that g(m,m∗) =
dm
dt

allows us to write this as:776

Rlife(m∗) =

∫ M

m∗

pm∗→m
ψ(m,m∗)E(m)

g(m,m∗)
dm. (F.3)

Appendix G. Details of Numerical Methods

The model is in the form of a series of coupled partial-integro-differential equations (1), one for each778

species with the size preference function (4) being the integral kernel. The equations are of the first order

in mass (i.e. hyperbolic) in which case shocks could be formed in the solutions. However the integral kernel780

smooths out any discontinuities and the equations can be solved effectively and accurately using a standard

semi-implicit upwind finite-difference scheme for solving PDEs (Press et al., 1992). The McKendrick-von782

Foerster PDE (1) is discretised by calculating g(m,m∗) and μ(m) explicitly and making the time update

implicit, to yield:784

N i+1
w −N i

w

Δt
+
giwN

i+1
w − giw−1N

i+1
w−1

Δmw
= −μi

wN
i+1
w , (G.1)

where i denotes the time step, and w the grid index on the mass axis (i, w ∈ ℵ+). First order approximations

have been used for both the time and mass derivatives. The discretisation in mass is known as the upwind786

approximation since the derivative is calculated from w and w − 1, which is possible since the growth

function is non-negative. It is further noted that the ∂m approximation is semi-implicit since densities at788

time step i+ 1 are used. Equation (G.1) may be written as:

N i+1
w−1

(
− Δt

Δww
giw−1

)
︸ ︷︷ ︸

Aw

+N i+1
w

(
1 +

Δt

Δww
giw +Δtμi

w

)
︸ ︷︷ ︸

Bw

= N i
w︸︷︷︸

Cw

, (G.2)

which allows us to write an explicit solution for the density spectrum at the i+ 1 time step:790

N i+1
w =

Cw − AwN
i+1
w−1

Bw
, (G.3)

which can be solved iteratively since N i+1
1 is given by the boundary condition. The flux in the boundary

g(m0,m∗)N(m0, t) is equal to the reproduction flux of new recruits R (11) such that gi0N
i+1
0 = R, which792

yields: A1 = 0, and C1 = N i
1 +

Δt
Δm1

R.



This semi-implicit upwind scheme is very stable but diffusive. The third order QUICK (Quadratic794

Upwind Interpolation for Convective Kinematics) scheme along with the techniques by Zijlema (1996),

which prevents overshooting problems introduced by the QUICKmethod, were used to check that numerical796

diffusion poses no problem for Δt = 0.02 years, and a mw mass grid with 200 logarithmically evenly

distributed points. To ensure stability the Courant condition (i.e. Press et al. (1992)):798

|giw|Δt
Δmw

≤ 1, (G.4)

is prudent to fulfill. The essence of the criterion is that Δt should be small enough not to allow individuals

to skip any mass cells mw during their growth trajectory.800

The grid mw spans the offspring size m0 to 85 kg to include maturation sizes up to the order of 20 kg.

The grid for the background spectrum ends at mcut, and the lower limit should be low enough to ensure802

food items for the smallest individuals in the functional species, i.e. 3 decades lower than m0. Identical

Δmw is used for the background and species spectra to ease computations in the overlap [m0; mcut].804

To save computational time the ODEs for the background spectrum (15) are solved analytically. The

solution at time t0 +Δt for the semi-chemostatic equation is:806

NR(m, t0 +Δt) = K(m)−
(
K(m)−NR(m, t0)

)
e−[r0m

p−1+μp(m)]Δt, (G.5)

where K(m) = r0m
p−1κm−λ

r0mp−1+μp(m)
is the effective carrying capacity at resource size m.
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