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Influence of Dispersion in Myosin Filament Orientation
and Anisotropic Filament Contractions in Smooth
Muscle

Martin Kroon

Department of Solid Mechanics, Royal Institute of Technology,
Osquars backe 1, 100 44, Stockholm

Abstract

A new constitutive model for the biomechanical behaviour of smooth muscle
tissue is proposed. The active muscle contraction is accomplished by the
relative sliding between actin and myosin filaments, comprising contractile
units in the smooth muscle cells. The orientation of the myosin filaments,
and thereby the contractile units, are taken to exhibit a statistical dispersion
around a preferred direction. The number of activated cross-bridges between
the actin and myosin filaments governs the contractile force generated by
the muscle and also the contraction speed. A strain-energy function is used
to describe the mechanical behaviour of the smooth muscle tissue. Besides
the active contractile apparatus, the mechanical model also incorporates a
passive elastic part. The constitutive model was compared to histological
and isometric tensile test results for smooth muscle tissue from swine carotid
artery. In order to be able to predict the active stress at different mus-

cle lengths, a filament dispersion significantly larger than the one observed
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experimentally was required. Furthermore, a comparison of the predicted
active stress for a case of uniaxially oriented myosin filaments and a case
of filaments with a dispersion based on the experimental histological data
shows that the difference in generated stress is noticeable but limited. Thus,
the results suggest that myosin filament dispersion alone cannot explain the
increase in active muscle stress with increasing muscle stretch.

Keywords:

biomechanics, soft biological tissue, smooth muscle, myosin, statistical

dispersion

1. Introduction

Muscle tissue is an important component in several parts of the human
body and appears in three different forms: skeletal muscle, cardiac muscle,
and smooth muscle. Smooth muscle tissue is found in organs such as the
stomach, the intestines, the urinary bladder, the airways, and blood vessels.
In the intestines, for example, the function of the muscle component is to
mix and propel intraluminal contents to enable efficient digestion of food,
progressive absorption of nutrients, and evacuation of residues. In vascular
tissue, smooth muscle in the arterial wall regulates the diameter of the vessel
and thereby the blood flow. In contrast to skeletal muscle, smooth muscle
tissue contracts without conscious control. The ability to maintain prolonged
contractions without showing fatigue is a property of smooth muscle that
sets it apart from skeletal and cardiac muscle (Morgan et al., 1989). The
reason is that the energetics of smooth muscle working at constant length is

characterized by low energy consumption, ranging from 100 to 500-fold less



than skeletal muscle (Brophy, 2000; Paul, 1990; Walker et al., 1994). Smooth
muscle is able to develop the same isometric force per cross-sectional area as
skeletal muscle, but smooth muscle contractions are far slower (Bitar, 2003).
In fact, smooth muscle shortens one to two orders of magnitude more slowly
than skeletal muscle (Walker et al., 1994). Abnormal contractility of smooth
muscle is an important cause of many diseases, such as hypertension and
asthma (Hai and Kim, 2005). It is therefore of great interest to understand
the biomechanics of smooth muscle contraction.

The physiology of smooth muscle contraction is a complex interaction
between electrical, biochemical and mechanical processes. Smooth muscle is
normally organized in thin layers or sheets made up of spindle-shaped cells
with a single nuclei, see Fig. 1. In general, smooth muscle cells are about 200-
300um in length and 5-15um wide (Bitar, 2003). The contractile apparatus
in smooth muscle cells consists mainly of thick filaments (myosin) and thin
filaments (actin). Another important component in the structure of smooth
muscle cells is the cytoskeletal domain, which contains non-muscle actin and
intermediate filaments. The contractile and cytoskeletal domains are con-
nected at two other domains: the focal contact points on the membrane,
dense plaques, and the focal contact points inside the cell, dense bodies.
These are the points where the contractile and cytoskeletal domains connect.
In vascular smooth muscle, thin filaments are far more numerous than thick
filaments, giving a thin-to-thick ratio of 15:1. The average length of the thick
filament in vascular smooth muscle is about 2.2um (Fung, 1993), which is
larger than for a skeletal muscle.

It appears that the myosin/actin complexes in the contractile apparatus
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Figure 1: Structure of smooth muscle cells and a close up of a contractile filament/unit
composed of a myosin (thick) filament surrounded by actin (thin) filaments. Cross-bridges

(myosin heads) connect the two filament types. (From Kroon (2010a).)

have a preferred direction, coinciding with the long axis of the cell (Bitar,
2003; Herrera et al., 2005; Hodgkinson et al., 1995; Kuo and Seow, 2004;
Seow and Par, 2007). Some dispersion around this direction does, however,
exist (Walmsley and Murphy, 1987). Like striated muscle, smooth muscle
is composed of numerous contractile units arranged in series and in paral-
lel. The structural details of smooth muscle cells make this type of muscle
compatible with a side polar model of the acto-myosin interaction and with
the sliding filament mechanism of muscle contraction (Herrera et al., 2005;

Hodgkinson et al., 1995). According to the sliding filament theory (Hux-



ley, 1953; Huxley and Niedergerke, 1954; Huxley and Hanson, 1954; Huxley,
1957), force is produced by cycling cross-bridges that extend from the myosin
to the actin filaments. Furthermore, the side polar model implies that actin
filaments on opposite sides of a myosin filament slide in opposite directions
relative to each other.

The ability of smooth muscle to generate force over a large range of lengths
— if given enough time to adjust — suggests that the structure of contractile
units in smooth muscle is time-dependent rather than static (Bai et al., 2004;
Seow and Par, 2007). This would imply that a continuous restructuring of
the internal contractile apparatus and cytoskeleton takes place in the smooth
muscle cells in response to the external load and the deformation imposed
on the cells.

Contraction of smooth muscle cells can be initiated by mechanical, elec-
trical, and chemical stimuli, but all of these pathways lead to an increase in
intracellular Ca?* concentration. An increase in intracellular free [Ca?*] trig-
gers Ca?" binding to calmodulin. The calcium/calmodulin complex binds to
and thereby activates myosin light chain kinase (MLCK). The MLCK then
in turn must activate each myosin head independently. Activation of myosin
heads triggers cycling of myosin cross-bridges along the actin filaments, which
induces force development or shortening of the contractile units and thereby
of the muscle cell (Bitar, 2003).

Several experimental investigations on different types of smooth muscle
from animals have been performed, for example smooth muscle from guinea
pig taenia coli (Arner, 1982; Lofgren et al., 2001; Peterson, 1982), porcine
carotid artery (Hai and Murphy, 1989; Kamm et al., 1989; Rembold and



Murphy, 1990a; Roy et al., 2005; Silver et al., 2003), porcine coronary artery
(Makujina et al., 1995), porcine tracheal (Herrera et al., 2005), canine carotid
artery (Takamizawa and Hayashi, 1987), ferret aorta (Jiang and Morgan,
1989), bovine tracheal (Tang et al., 1992), rat aorta (Tosun et al., 1997),
and rat pulmonary artery (McIntyre Jr. et al., 1996). Several theoretical
approaches, aiming at modelling different parts of the electrical-biochemical-
mechanical chain in smooth muscle activation, have also been proposed (Fay
and Delise, 1973; Gestrelius and Borgstrom, 1986; Herrera et al., 2005; Lee
and Schmid-Schonbein, 1996a,b; Miftakhov and Abdusheva, 1996; Rachev
and Hayashi, 1999; Rosenbluth, 1965; Stalhand et al., 2008; Yang et al.,
2003a,b; Zulliger et al., 2004).

In the present paper, a theoretical model for the constitutive behaviour
of smooth muscle tissue, undergoing large deformations, is proposed. The
approach is based on a previous model (Kroon, 2010a), which has now been
expanded to include a statistical dispersion of the orientation of myosin fil-
aments in space. The model accounts for the calcium-activated response of
smooth muscle as well as the passive response. The active response is gov-
erned by the apparatus of contractile (acto-myosin) units. These are taken to
have a preferred direction but to exhibit a statistical dispersion. The influ-
ence of this statistical dispersion is the main subject of the present paper. In
Sections 2 and 3, the chemical and mechanical parts of the proposed model
are presented. The model is assessed using uniaxial tensile test results, and a
uniaxial formulation of the model is derived in Section 4. The model is then
calibrated and assessed in Section 5 using experimental results for smooth

muscle from swine carotid arteries. In Section 6, the results are discussed



and summarised.

2. Chemical model

According to the sliding filament theory (Huxley, 1953; Huxley and Niederg-
erke, 1954; Huxley and Hanson, 1954; Huxley, 1957), muscle contraction is
caused by the relative sliding of myosin and actin filaments within the muscle
cells. As discussed in the previous section, the myosin and actin filaments
are connected by cross-bridges, and the relative sliding between the filaments
is caused by cycling of these cross-bridges, see Fig. 1. This cycling implies
that cross-bridges repeatedly attach and detach. During this process, they
perform a so-called power-stroke (a peddling-like movement), by which a rel-
ative sliding between the myosin and actin filaments is accomplished. In the
present work, Hai and Murphy’s four-state model (Hai and Murphy, 1988)
is adopted, in which a cross-bridge may exist in one of four states, denoted
S1, S9, S3, S4, see Fig. 2. In state sy, the cross-bridge is passive and unable
to attach to the actin filament. The MLCK enables phosphorylation of the
myosin head, implying that an ATP molecule is attached to the myosin head
(state sy). In state so, the myosin head/cross-bridge is ready to attach to
the actin filament but has not yet done so. As the cross-bridge attaches to
a binding site on the actin filament, it goes to state s3. The cross-bridge
may then cycle between states s; and s3, and during this cycling process, the
cross-bridge performs the power-stroke. Some myosin heads may also go to a
dephosphorylated state, s4. In this state, the cross-bridge remains attached
to the actin filament but does not cycle any more. The cross-bridge still gen-

erates a passive resisting force, but does not actively contribute to relative



filament sliding. Thus, states s3 and s; are the only states that generate

force between the filaments.

kr

Figure 2: Four-state chemical model for cross-bridges between myosin and actin filaments

proposed by Hai and Murphy (1988).

It is assumed, that a myosin filament has a total number of my,; myosin
heads that may potentially bind to an actin filament, and m; denotes the
number of myosin heads that, at a particular time, exist in state s;. The
fraction of the total number of myosin heads that exists in state s; is then
expressed as n; = m;/myy, where n; are used as state variables in the chem-
ical model. The transition of cross-bridges between the different states is

taken to follow a system of linear equations:

—ky ks 0 ks
d by —ky —k k 0
o ' 2 ! n = Kn. (1)
dt 0 ks kg — ks ke
0 0 ks —ke — ky




The vector n = (ny ng ng n4)T holds the four state variables, and the
parameters ki, ..., k; are rate constants, describing the rate of transition
between the different states. The rate constants are contained in the system
matrix K. The state variables ni-n, change according to the conservation
law ny + ny + n3 +ny = 1. Smooth muscle contraction is triggered by an

increase in cytosolic [Ca®"], and k; and k¢ depend directly on [Ca®*].

3. Mechanical model

3.1. Prerequisites

The constitutive behaviour of smooth muscle tissue can be decomposed
into an active and a passive part. The active part derives from the contraction
of myosin/actin units in the muscle cells. The passive part is associated
with the rest of the smooth muscle cells (cell membrane, cytosol, passive
networks of actin, intermediate filaments, cell nuclei) and with extracellular
components, such as elastin and collagen.

The constitutive behaviour of the smooth muscle is described by use of a
strain-energy function W, which is split into an active and a passive part ¥,

and ¥, respectively:
U=U,+¥,— (pa+p,)J—1). (2)

Two Lagrangian multipliers p, and p, have also been introduced to model
incompressibility.

A set of basis vectors eq, e,, e3, defining a Cartesian coordinate system,
is introduced. The position vector in the reference configuration €2y and in

the current configuration €2 is denoted X = X,e; and x = z;e;, respectively.



The deformation gradient is defined as F = 0x/0X (J = detF), and the
associated right Cauchy-Green deformation tensor as C = F'F.
The second Piola-Kirchhoff stress S is defined as
oV O(W, —pa(J - 1))

_ _ 8(\pr _pp(J - 1))
S=25572 aC +2 oC

=S.+S,, (3

where S, and S, are the contributions from the active and passive parts,

respectively. From this, the first Piola-Kirchhoff stress P is obtained as
P=FS=F(S.+S,) =P, +P,. (4)

3.2. Constitutive behaviour for contractile apparatus

The active behaviour of smooth muscle is governed by an apparatus of
contractile filaments, as illustrated in Fig. 1. These contractile filaments
exist in series and in parallel inside the smooth muscle cells, and they also
align with each other across cell boundaries. Smooth muscle tissues tend to
have a main direction in which they contract (Bitar, 2003; Herrera et al.,
2005; Hodgkinson et al., 1995; Kuo and Seow, 2004; Seow and Par, 2007).
The orientation of these series of contractile filaments can therefore be de-
scribed by a statistical distribution with a preferred (average) direction and
an associated dispersion.

Based on the considerations above, a mechanical model for the active
contractile apparatus in smooth muscle is proposed where the constitutive
behaviour of this apparatus is modelled by use of a representative micro-
sphere, illustrated in Fig. 3. This micro-sphere has a radius R,,,s and includes
series of contractile filaments (myosin/actin units). The orientation of a

filament series is defined by a unit vector M (|[M| = 1), defined in the

10



reference configuration. Each contractile unit is separated by a dense body,
see Fig. 1. The statistical dispersion of the orientation of the filament series
in the micro-sphere in Fig. 3 is described by a density function p = p(M),

where p(M) fulfils a normalisation criterion, say

/Sp(M)dS = 1. (5)

The density function is defined over some surface domain S, for example a

half unit sphere.

e PY |

2erS
< >

Figure 3: Representative micro-sphere with radius R;ps.

The mechanical behaviour of the myosin/actin units is modelled by use
of an "active” dashpot in series with an elastic spring. The dashpot accounts
for the relative sliding between myosin and actin filaments, and the spring
accounts for the elasticity of the cross-bridges (the myosin and actin filaments
themselves are considered rigid). A contractile filament is oriented in a direc-
tion defined by the vector M. The stretching of the tissue in the direction of a
contractile filament is denoted )\ and is defined as A = MCM. Fig. 4 shows

11



a principle sketch of a contractile unit. In the undeformed configuration, the
length of the unit is L.,. In the deformed state, the length of the contractile
unit has changed to A¢ - L.,. The myosin and actin filaments are treated as
rigid bars, and the myosin filament has a length of L,,;. The stretch A¢ is
decomposed according to A = A¢Are. The relative sliding between myosin
and actin filaments is accounted for by Mg, and A, accounts for the elastic
stretching of the cross-bridges. (Index ”fc” stands for filament contraction.)
The strain energy for the contractile apparatus is computed as the strain en-
ergy per unit reference volume of the representative micro-sphere, according

to:

]‘ cu
S

rms

= Lr(ns + ) / p(M) (% > 1)2d57 (6)

where Vi = 47 R3

3 15/ 3 1s the volume of the micro-sphere, p, is the stiffness

that an actin/myosin unit will exhibit if all cross-bridges are attached, N,
is the number of contractile (myosin/actin) units per unit reference volume,
and 1, = peyNey. The factor (A2(M) — 1)? accounts for the strain energy
stored in the cross-bridges. The exponent 2 outside the brackets is necessary
because stresses, which are obtained by differentiation of Eq. (6), should
also be zero for A\, = 1. The factor (n3 + n4) accounts for the fraction of
cross-bridges that are attached and thus contribute to the stiffness of the
filaments. Only cross-bridges in states s3 and s, are attached, and these two
types of cross-bridges are assumed to have the same elastic stiffness. Note

that, since the overlap between actin and myosin filaments is constant (L)

12



for moderate contractions, the number of cross-bridges that may contribute

to force generation depends only on the activation level (ns + ng).

Undeformed contractile unit: Deformed contractile unit:
I Dense
ense
hody dsassstis . 2z .
< Lcu > < )‘f : Lcu >

Figure 4: Undeformed and deformed contractile unit.

The thermomechanical state of the contractile apparatus is thus deter-
mined by the state variables n3, ng, C, and A\.(M). Note that A\i.(M) is a
function of the orientation vector M, and that anisetropic muscle contraction
therefore is possible.

The resulting second Piola-Kirchhoff stress for the active part is

An evolution equation for Ai(M) is required. The internal mechanical

dS —p,CL. ()

dissipation per unit reference volume is defined as D;,; = Peoyt — \i!|n, where
P..: is the external mechanical power imposed on the volume and \i!|n is
the associated increase in free energy for a given (constant) chemical state.
External work is imposed in terms of the external stress P and in terms of
the work performed by the cross-bridges in the smooth muscle. It is assumed
that the active contracting force from the cross-bridges in a myosin/actin

unit is 7' = T'(n3, ny). The external power input can then be expressed as

P.=P: F+

V. / p(M)Ncu‘/rmsTLcu)“fc(M)dS- (8)
rms J S

13



The increase in free energy can be expressed as

. ov . MCM MCM .
Uln=——=:F—pu, M)| — - 1] —Ac(M)dS. (9
=g F o+ [0 (37755 1) g enas. o
Making use of the definition P = 0¥ /0F, D;,; may be expressed as
_ MCM MCM ) .
Diny = M) < P a S~ L) o ¢ Me(M)dS >0,
= oo P st ) (S5 1) Sy f s >

(10)
where the definition P, = N, T L, has been introduced. An evolution equa-

tion for Ag.(M) is now adopted according to

NAie(M) = P.. + R(M), (11)

where 7 is a positive material parameter, and the reaction stress R is

MCM ) MCM

0 = s+ (75~ Sy

(12)

(For an introduction to thermodynamics, see for example Holzapfel (2000).)
For this choice of evolution equation, the integrand in Eq. (10) always be-
comes non-negative, and thermodynamic consistency is ensured. We empha-
sise that Eq. (11) is the evolution law not just for a single-valued variable
but for the function A (M).

It is the stress P, that causes muscle contraction, and P.. should be
interpreted as an average contractile stress caused by the cross-bridges in
the myosin/actin units. It is assumed that only cross-bridges in state s3
contribute to filament contraction, i.e. actual contractile sliding between
the myosin and actin filaments. However, when the cycling cross-bridges
are too weak to contract the filaments further, attached (but non-cycling)
cross-bridges in state s, will assist the cycling cross-bridges in state s in

preventing backsliding in the contractile filaments.

14



When the total resistance from cycling and non-cycling cross-bridges is
weaker than R in Eq. (11), the non-cycling cross-bridges in state s, break and
no longer contribute to the strength of the filament. Cross-bridges in state
s3 may also break, but since they cycle relatively fast, they will continuously
reattach to the actin filaments, and thereby continue to resist (i.e. slow down)
the extension of the contractile filament. The processes outlined above are

accounted for by using an active stress P.. on the following form:

P, = —k3ng, for k3ng> R(M),
P, = —RM), for rsng < R(M) < k3ns + KNy, (13)
P, = —ksng, for ksng+ kyng < R(M).

Above k3 and k4 are material parameters related to the driving force of cy-
cling cross-bridges in state s3 and the passive strength of cross-bridges in state
s4, respectively. Thus, in the intermediate range rk3n3 < R(M) < k3ng—+kqny,
no sliding occurs in filaments oriented along M, implying Ae(M) = 0 (but
sliding may well occur in filaments oriented in other directions).

We may then summarise the parameters in the active part of the me-
chanical model: four material constants u,, k3, k4, and 7, one statistical
distribution for the contractile apparatus p(M), and one internal variable

function Ag(M).

3.3. Passive mechanical response

The passive term U, in Eq. (2) pertains to the passive response of the
muscle cells and their physiological surrounding, such as extracellular pro-

teins. In general, soft biological tissues appear to have a viscous component

15



in their constitutive response. However, in the present study the main fo-
cus is on the relatively slow activation of the contractile apparatus in smooth
muscle, and the passive behaviour is therefore considered to be purely elastic.

Thus, a neoHookean model is adopted for ¥, according to
_ Mo
\pr—?(C.I—?)), (14)

where I'is the identity tensor and f, is the stiffness of the passive components
in the tissue.
The contribution to the second Piola-Kirchhoff stress from the passive

part becomes

Sp = ppl - ppc_l- (15)

4. Model formulation for uniaxial tension and axisymmetric myosin

filament distribution

4.1. Deformation state in uniazial tension

The proposed constitutive model for smooth muscle tissue is compared
to experimental results for smooth muscle from swine carotid media. In
these experimental investigations, uniaxial tensile tests of tissue specimens
are performed. A uniaxial formulation of the proposed model is therefore
derived in this section.

It is assumed that the material behaviour is transversely isotropic with
e; defining the axis of symmetry. The tissue is exposed to uniaxial tension,
where the force is applied in the es-direction. The resulting deformation

state can then be expressed as

F = )\161 e + )\262 X eq + )\383 X es. (16)

16



Due to symmetry and incompressibility, \; = Ay = 1/y/A3. The homoge-
neous mechanical state is then fully characterised by the stretch A3 together

with a single function Ag.(M).

4.2. Azisymmetric distribution of contractile filaments

The unit vector M is defined by use of spherical coordinates 6 and ¢, i.e.
M = sinfcosge; + sinflsinge; + cosbes, see Fig. 5(a). We assume that the
density function p(M) is axisymmetric with respect to the es-direction, i.e.

p = p(f). The following density function is used:

p0) = c(a®>—6%) for 0<6<a,

p(d) = 0 otherwise. (17)

The density function is defined over the upper half of a unit sphere, i.e. for

6 €[0,7/2], ¢ € [0,27], and it is subject to the normalisation

w/2 21 /2
/ / p(0)sinfdpdf = 27?/ p(0)sinfdf = 1. (18)
6=0 J¢=0 0=0

Thus, the variance of the filament dispersion is set by a, and c is adjusted so

that the normalisation condition in Eq. (18) is fulfilled.

4.83. Stress components
For the transversely isotropic material exposed to uniaxial tension con-
sidered here, the first Piola-Kirchhoff stresses P;; and P»; may be expressed

as

i
Py = Pp=—7+

I
T s (N3 + ny) /2 MCM 1 3

v e ’“”(Aﬁc@ ‘w))“‘ 946~ (19)

— (pp + 1)V s
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Figure 5: (a) Spherical coordinates used to describe vectors M and m. (b) Alternative
angular coordinates a and f used to describe the conditional density function for contrac-
tile filaments in the deformed configuration. The indicated plane is defined by the basis
vector e and m, and « is the angle between basis vector es and this plane. The angle

is the angle between m and the e; — es-plane.

The boundary conditions P;; = Py = 0 enable the determination of the

Lagrange multipliers:

T/La(ng —|‘TL4) /7T/2 (MCM 1 ) .. 3
. = FReT " 0 — sin”6d#, 20
P T AL SHORTD) 20

Py = ’;—‘3’ (21)

The first Piola-Kirchhoff stress in the ez-direction, P33, then takes on the

form



 mpna(na + ) /:mm(“f;gf—@)- (22

1
(2)\3C05295in9 - Fsin39> dé.

3

4.4. Conditional density function for filaments in deformed state

There are experimental results for the statistical distribution of myosin
filaments in smooth muscle. In this histological examination, the distribution
of myosin filaments in a single plane in the tissue is given. In order to facil-
itate a comparison between these experimental histological results and the
proposed model, a conditional density function for the contractile filament
distribution in a deformed state is now derived.

The density function p is a function of the unit vector M. When loading
the material uniaxially in the esz-direction, a unit vector M maps to the
deformed vector m according to m = FM, see Fig. 5(a). The deformed
vector may be expressed as m = 7r'sinf'cosge, + r'sinf'singe, + r'cost'es,
where ' = |m| and ' are two new spherical coordinates. Note that the
angle ¢ remains the same during the deformation. By use of the relations
m = FM, |m X e;| = |m||e3|sinf’ and m - e3 = |m||ez|cos#’, the angles 0

and ' may be related to each other as tanf = )\g/ztanﬁ’. Thus,
0 = g(0') = arctan(\Y*tand’). (23)

Two stochastic variables, © and ©’, are now introduced, where © has the

distribution function Fg(6) defined as

/ / 0)sinfdpdd = 27r/ p(0)sinfdf, (24)
=0 J g= 0 6=0

where 6 is an integration variable. Thus, Fg(f) gives the probability of
finding the stochastic variable © in the angular range [0, §]. The associated

19



density function fg(#) is obtained by differentiation according to

fo(0) = % = 27p(0)sinf. (25)

The distribution function Fg/ (') for the stochastic variable ©' gives the
probability of finding a contractile filament in the deformed state in the

angular range [0, 6']. By use of Eqgs. (23) and (24), Fe/(6') may be expressed

as
g0y  _ _ _
For(0') = 2r / p(f)sinddd. (26)
6=0
The density function is obtained by differentiation:
dFe dg(6") , dg(0)
/ 91 — — 2 91 91 . 27
forl#) = ot g = 2mola(@))sin(o#) 47 (1)

The axisymmetric filament distribution in the deformed state may be
characterised by a density function p/(#'). Using the same procedure as in

Eq’s. (24) and (25), for(#') may also be expressed as
for(8') = 2mp'(6)sinf’. (28)

By use of Eq’s. (27) and (28), p/'(#') may be identified as

sin(g(#) dg(®")

pO)=rl90)— 0 —aw

(29)

Two new angular coordinates, o € [—n/2,7/2] and § € [-7/2,7/2],
are now introduced, and in these coordinates the vector m is written m =
r'sinacosSe; +1'sinffey +1'cosacosfes, see Fig. 5(b). Two associated stochas-
tic variables, A and B, are introduced, and the distribution function for these

variables is
o B B o
Pt = [ [ 0@ Beosiasan @
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where 0'(, 3) = arccos(cosacosf), and & and 3 are integration variables.

The associated density function is

_ 0*Fap(a, B)

Fap(e 8) = 5B L = (00, 9)eoss. (31)

The conditional density function fup=o(c) is then computed as

_fasl@B=0_  p(al
Fupeafe) = GG = et e (32)

a=-—7/2

where fg(() is the marginal density function of B. Note that for 5 = 0, the
expression for #' simplifies to #' = |a|. The value of p'(|a|) is obtained by
evaluating Eq. (29) for 8" = |a|. The conditional density function Eq. (32)

will be used for comparison with experimental results.

4.5. Discretisation

Time was discretised using a constant time increment A¢. For a computed
state ¢, the chemical state is defined by the variables n;;, ns;, ns;, and
ny,;. The evolution equation for the chemical state (1) is independent of the

mechanical state, and an Euler forward algorithm according to
n,.; =n; + AtKn, (33)

is adopted, where the vector n;; holds the updated chemical state variables
for state 7 + 1.

The deformation at the computational state 7 is defined by A3; together
with discrete values of the function Ar.(M). In general, the function Ag (M)
needs to be discretised and integrated over the (half) unit sphere (cf. Alastrue
et al., 2009; Bazant and Oh, 1986; Miehe et al., 2004), but due to the axisym-

metry in the present problem formulation, a discretisation in 6 is enough.
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Thus, the function Mg () is represented by the discrete values Al ... Af™,
where n;,; is the number of integration points used. The associated angles

6! ... 0" were distributed according to
0F = (k —1/2)A0, (34)

where A = 7/(2niyt). The evolution equation (11) was discretised and

evaluated for each Af according to

At -
)‘?c,i—l—l = A];c,i + T(Pcr,i + Ri(gk))a (35)
where the reaction force R is evaluated for the angle #¥. When evaluating

P33, Eq. (22) was discretised using the integration points defined by Eq. (34).

5. Comparison with experiments on smooth muscle from media of

swine carotid artery

The model is now compared to experimental data from smooth muscle
tissue from the media of swine carotid arteries. Histological data for myosin
filament dispersion was obtained from Walmsley and Murphy (1987) and
tensile test data from Rembold and Murphy (1990b).

5.1. Histological data

Walmsley and Murphy (1987) perform histological examinations of the
structural organisation of myosin filaments and dense bodies of smooth mus-
cle from the media of swine carotid arteries. They study cross-sections of me-
dia rings as illustrated in Fig. 6, and determine the distribution of the angle

a, defined as the angle between the circumferential direction and the myosin
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filament. Assuming that the distribution of myosin filaments is axisymmet-
ric with respect to the circumferential direction, the model distribution p(6)
may be compared to the experimental distribution of myosin filaments. Since
Walmsley and Murphy (1987) investigate the distribution of myosin filaments
within a cross-sectional plane, the conditional density function fip—o(c) in

Eq. (32) is the appropriate means of comparison.

Figure 6: Principle sketch of cross-section of media ring from carotid artery. The angle a
is defined as the angle between a myosin filament and the circumferential direction in the

cross-sectional plane.

The circumferential direction in Walmsley and Murphy (1987) corre-
sponds to the es-direction in the present study. Walmsley et al. investigate
the filament dispersion for two different (circumferential) stretches, corre-
sponding to A3 = 1.17 and A3 = 1.67. (The specimens were fixed chemically
to enable mechanical dissection and microstructural investigation.) In Fig. 7,
histological data for the two different stretches considered by Walmsley et
al. is compared with model predictions in terms of the conditional density
function fap—o(c). Model predictions are shown for a — 0, a = 0.44 rad,
a = 1.66 rad, and a — oc. The dispersion parameter a = 0.44 rad provides
the best agreement with histological data. For this case, the dispersion of

myosin filaments is accurately predicted for both A3 = 1.17 and A3 = 1.67.
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Figure 7: Conditional density function f4p—o(a) for stretches (a) Az = 1.17 and (b)
A3 = 1.67. Histological data from Walmsley and Murphy (1987) (bars) are shown together

with model predictions (solid lines) for four values of the dispersion parameter a.

The distributions for a — 0 (perfectly aligned myosin filaments) and a — oo

(isotropic distribution) are included as references.

5.2. Isometric tensile test results

In the tensile tests on smooth muscle from swine carotid media performed
by Rembold and Murphy (1990b), the test specimens were about lcm long
and the long axis of the test specimens coincided with the circumferential
direction of the original artery. The muscle tissue was activated by histamine,
and specimens were exposed to isometric (constant length) tensile testing.
Tests were performed at a temperature of 37°C.

When simulating the isometric tensile tests, a constant time increment of
At = 0.1s was used. For the function A, a total number of n;,; = 20 integra-

tion points were used. Further refinement of the spatial and time discretisa-
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tions did not change the outcome significantly, and this level of discretisation
was therefore considered adequate to give discretisation-independent results.

For the chemical model, described in Eq. (1), rate constants for swine
carotid media smooth muscle were obtained from Hai and Murphy (1988),
yielding ks = k5 = 0.5, k3 = 4ky, ks = 0.11, and k; = 0.01. The two
remaining rate constants k; and kg depend on the intracellular calcium ion
concentration in the smooth muscle cells. For a specific value of [Ca®"], k;
and kg may be determined by use of the steady-state stress in an isometric
test, since k; and kg govern the steady-state fraction of force-generating cross-
bridges in states s3 and ss. By use of results for the steady-state isometric
stress in Rembold and Murphy (1990b), the estimates k1 = kg = 0.045 were

obtained.

1.0

0.8 1

0.6 + Ty

0.0 — : :

Figure 8: Predicted evolution of the state variables ny, no, n3, and ny in an isometric test

in Rembold and Murphy (1990b).

In the isometric tensile test, the total first Piola-Kirchhoff stress (Ps3)

25



is registered as a function of time. The increase in stress depends both
on the evolution of the chemical state variables ny, ny, n3, ny and on the
mechanical state function A.(M). It is assumed, that at time ¢ = 0, the
contractile apparatus of the muscle tissue is completely inactivated (relaxed),
corresponding to the states ny = 1, nyg = ng = ny = 0, A\e(M) = vMCM,
where C = 1/)3(e; ® e; + €, ® €3) + A\le; ® e3. At time ¢ = 0, the muscle is
activated by histamine, which causes an increase in intracellular calcium ion
concentration. The predicted evolution of the chemical state variables in the
isometric tests is illustrated in Fig. 8. The chemical state variables stabilise
at their equilibrium levels roughly after 2 min. At steady-state, most of the
cross-bridges are predicted to be in state s4, where they contribute to force
generation in the latch-state. The fraction of cross-bridges in state s3 that
actively contributes to muscle contraction is estimated to be relatively small,
about 5%.

Rembold and Murphy (1990b) perform isometric tests for the two dif-
ferent stretches A3 = 1.17 and 1.67. Based on the information on the pas-
sive behaviour of the tissue provided by Rembold and Murphy (1990b), the
passive stiffness was estimated to p, = 14.1kPa. In Fig. 9, the resulting
evolution of stress is shown together with model predictions. Since both of
the stretches considered deviate from the load-free configuration of ¥, there
will be a contribution from the passive stiffness in Ps;3. Experimental results
are indicated by symbols and model predictions by lines. Different values of
the dispersion parameter a are investigated. For each value of a, the model
parameters (,, k3 and 1 were chosen to give the best fit to the stress data

for A3 = 1.17, and the curve for A\3 = 1.67 was thereafter predicted. Thus,
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Figure 9: Evolution of stress Ps3 in isometric tests. Experimental isometric test results
are shown for A3 = 1.17 (open symbols) and A3 = 1.67 (filled symbols). Model predictions
are shown for A3 = 1.17 (dashed line) using a = 1.66 rad, and for A3 = 1.67 (solid lines)

using a — 0, a = 0.44 rad, a = 0.8 rad, a = 1.66 rad, a = 2.5 rad, and a — co.

each value of a has its own set of u,, k3, 17 associated with it, and these sets
are summarised in Table 1. The information from a single isometric test is
not enough to uniquely determine all three of these model parameters, and
a fixed ratio u,/r3 =1 was therefore assumed. This ratio governs the mag-
nitude of change in A¢. during muscle contraction, where an increasing ratio
tends to decrease the change in Ag. (If k3 becomes too large compared to
[ta, it Will result in values of ¢ that correspond to cross-bridge deformations
that are too large to be physically plausible.) Since only isometric tests are
performed, the fourth model parameter x4 never comes into play and can
therefore not be determined.

The fittings to the stress data for A3 = 1.17 were virtually identical for the
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different values of a, and the dashed line in Fig. 9 pertains to a = 1.66. This
value of a proved to give the best prediction of the stress data for A3 = 1.67.

Fig. 9 shows that the steady-state stress increases with increasing filament
dispersion. The reason is that as the tissue deforms from A3 = 1.17 to A3 =
1.67, the contractile apparatus becomes more aligned in the es-direction, and
the force-generating capacity in this direction therefore increases. Thus, the
increase in steady-state stress is a geometrical effect associated with large
deformations. Interestingly, the curve for a = 0.44, which provided the best
prediction for the histological data, severely underestimates the stress curve

for A3 = 1.67. This will be further discussed subsequently.

Table 1: Model parameter sets for different levels of myosin filament dispersion.

a [rad] | p, [kPa] | k3 [kPa] | n [kPa-s]
0 1.23 1.23 41.1
0.44 1.33 1.33 44.3
0.8 1.59 1.59 53.0
1.66 4.21 4.21 140
2.5 7.31 7.31 244
00 11.1 11.1 370

In Table 1, parameters p,, k3 and 7 increase with dispersion a. Thus, in
order to be able to generate the same steady-state stress in uniaxial tension
for increasing myosin filament dispersion, the stiffness and strength of the

contractile filament fabric need to increase, which is reflected by the increase
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in p, and k3. This may be thought of as either an increase in cross-bridge
stiffness/strength or an increase in the number of contractile units per unit
volume. At the same time, the initial rate of stress increase in the isometric
test should be maintained, which requires that 7 increases with u, and k3.

The evolution of the function A¢. is now considered in some more detail,
and since a = 1.66rad provided the best fit to the isometric test data, this case
is investigated further. A total number of n;,; = 20 integration points were
used, corresponding to the state variables Al ... A\2". Thus, the variable \}, is
associated with muscle contraction in the ez-direction, A2’ with contraction
in the e;-e;-plane, and A\{? with the 45°-direction in-between. (To be more
specific, these three state variables pertains to the directions #' = 0.039 rad,
6% = 0.75 rad, and 6?° = 1.53 rad, respectively.) Fig. 10 shows the evolution
of these state variables for the two isometric test cases. For both values of A3,
M. and A0 start at values greater than 1, whereas A\¥ starts below 1. This
is due to the fact that stretches A3 > 1 cause contraction in the transverse
directions due to assumed incompressibility of the tissue. As the muscle is
activated, all values of A¢. decrease and stabilise after about 2 min. Thus,
the mechanical part of the constitutive model stabilises at about the same
time as the state variables ni-n4, see Fig. 8.

As the muscle is activated, the value of A\ decreases in all directions. This
is further illustrated in Fig. 11, where initial and steady-state distributions
of Ag are shown for the two stretch cases. The case for A3 = 1.67 shows a
greater variation both in initial distribution and in steady-state distribution
of Aie. This is due to the higher value of A3 and the associated higher degree

of transverse contraction. For A3 = 1.17, the contraction is fairly uniformly
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Figure 10: Predicted evolution of Mg in the isometric tests for A3 = 1.17 (dashed lines)
and A3 = 1.67 (solid lines). Solutions are shown for \¢. corresponding to directions §! =
0.039 rad (essentially the loading direction), #1° = 0.75 rad (45°-direction), and §%° =

1.53 rad (perpendicular to loading direction). Dispersion parameter: a = 1.66.

distributed over 6, whereas for A3 = 1.67, the contraction is clearly localised

in the direction of loading (6 = 0).

6. Discussion

A new constitutive model for the biomechanical behaviour of smooth
muscle tissue is proposed. The model is based on a previously proposed
approach by Kroon (2010a), which has now been expanded to include effects
of myosin filament dispersion. The model includes the active as well as the
passive components of smooth muscle response. The active part includes
a chemical model (Hai and Murphy, 1988), accounting for the cross-bridge

cycling that is the driving mechanism in smooth muscle contraction, and a
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Figure 11: Predicted distribution of Ag. in the isometric tests for A3 = 1.17 (open symbols)
and A3 = 1.67 (filled symbols). Initial distributions (¢ = 0) are located above the steady-
state distributions (¢ — oo) for the two stretch cases, respectively. Dispersion parameter:

a = 1.66.

mechanical model based on Hill’s three-component model (Hill, 1938). In the
active part of the model, the cytosolic [Ca®*] is the in-signal that triggers
cross-bridge cycling, which causes a contraction of the contractile apparatus
in the cells and thereby contraction of the muscle tissue.

Contraction of smooth muscle tissue involves a chain of electrical, bio-
chemical and mechanical events. Previous models have attempted to describe
different parts of this chain. For example, Rosenbluth (1965), Fay and Delise
(1973), and Herrera et al. (2005) mainly attempted to describe the struc-
tural organisation of the contractile apparatus in smooth muscle cells and
how and where contractile filaments were attached to the cell membrane. A

few studies (e.g. Miftakhov and Abdusheva (1996)) have focused on the elec-
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trical /biochemical couplings associated with smooth muscle activation. Me-
chanical modelling of smooth muscle has been dominated by Hill’s approach
(Hill, 1938) and variants thereof (e.g. Gestrelius and Borgstrom (1986) and
Yang et al. (2003a)). A few other approaches exist, though, for example Lee
and Schmid-Schénbein (1996b), who assume that the effect of muscle activa-
tion can be modelled in a phenomenological sense by changing the reference
configuration of the (passive) tissue. Rachev and Hayashi (1999) and Zulliger
et al. (2004) use a slightly similar approach. They include the effects of the
contractile apparatus explicitly, and muscle activation is taken to change the
reference configuration of the contractile units. However, in these models,
only mechanical aspects of smooth muscle contraction are modelled explic-
itly, and no biochemistry is included. The model proposed by Stalhand et al.
(2008) includes both a biochemical component (i.e. Hai and Murphy’s four-
state model (Hai and Murphy, 1988)) and a mechanical part with the same
basic components as Gestrelius and Borgstrom (1986). The model proposed
by Yang et al. (2003a,b) appears to be the most ambitious so far, since it
includes the whole chain from electrical activation, the biochemical processes
thus triggered, and the eventual mechanical contraction of the contractile ap-
paratus. In two studies, related to the present work, uniaxial (Murtada et al.,
2010a) and multiaxial (Murtada et al., 2010b) contraction of smooth muscle
were modelled. In the model allowing for multiaxial muscle contraction, a
statistical distribution for the orientation of contractile units was introduced,
but isotropic filament contraction was assumed, i.e. contractile units with
different orientations contracted equally. In the present study, anisotropic

muscle contractions are modelled. The outcome in terms of uniaxial iso-
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metric stress behaviour does not differ much from the previous study with
isotropic contractions (Murtada et al., 2010b).

The model proposed here is fairly simple, and the model parameters have
quite clear physical interpretations. The stiffness p, is related to the elastic
stiffness of the contractile apparatus. This includes first of all the elasticity of
the cross-bridges and the density of contractile units per unit cross-sectional
area. The assumption is made that cross-bridges in states s3 and s4 have
the same stiffness. The parameters k3 and k4 are related to the driving force
and strength of the cycling and non-cycling cross-bridges, respectively. Only
cross-bridges in state sz actively contribute to sliding between myosin and
actin filaments, but cross-bridges in state s; help cross-bridges in state s3 to
prevent back-sliding (reversed contraction). Finally, the dispersion parameter
a describes the statistical scatter in the orientation of myosin filaments.

The model accounts for the fact that myosin filaments and the associated
dense bodies exhibit a statistical dispersion in their orientation in space. This
dispersion has been verified in at least one histological examination (Walm-
sley and Murphy, 1987). The influence of this dispersion on the mechanical
behaviour of the tissue has been demonstrated in the present paper. An
axisymmetric density function was adopted for the filament dispersion, and
when compared to the experimental results for smooth muscle from arterial
media (Walmsley and Murphy, 1987), the adopted density function was fully
able to describe the dispersions of myosin filaments obtained from histologi-
cal examinations at two different uniaxial stretches. The model was also able
to predict the stress data in isometric tensile tests. However, the dispersion

estimated from histological data (a = 0.44 rad) was not the dispersion that
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gave the best prediction in the isometric tensile tests, but a higher degree of
dispersion (a = 1.66 rad) was required to predict the steady-state stress level
at the higher stretch. There are two probable explanations for this anomaly.
One explanation could be that the filament dispersion in the longitudinal di-
rection of the carotid artery is significantly larger than the dispersion in the
thickness direction (which was quantified in the histological examination by
Walmsley and Murphy (1987)), and that the assumption of an axisymmetric
filament dispersion therefore is unrealistic. The dispersion in the longitudinal
direction of the artery could then approach the value predicted by the model
(a = 1.66 rad). A second possible explanation is that there are additional
mechanical effects at work, not accounted for by the present model. For
example, Herrera et al. (2005) suggested that the overlap between myosin
and actin filaments in smooth muscle varies with muscle length, and that
this effect would give rise to the optimal length phenomenon observed in
smooth muscle. Thus, at the higher stretch (A3 = 1.67), the overlap in the
contractile filaments would be greater, resulting in a higher force-generating
capacity. This overlap effect has been addressed in a recent study by the
present author (Kroon, 2010b), where it was demonstrated that the optimal
length characteristics of smooth muscle to a large extent can be explained
by a variation in the overlap between actin and myosin filaments.

In general, an isotropic neoHookean model is too simplistic to fully char-
acterise the passive behaviour of smooth muscle tissue, since the tissue is
expected to be stiffer in the circumferential direction due to the preferred
directions of elastin and collagen fibres. However, the experimental results

at hand do not allow for assessment of a more advanced model for the pas-
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sive behaviour. More importantly, in the present paper focus is on the active
part of the model, and the main purpose is to demonstrate the possible influ-
ence of dispersion in contractile unit orientation on muscle behaviour. The
use of a more advanced model for the passive behaviour will not affect the
conclusions drawn here for the active behaviour.

The data used for evaluating the present model has relatively low com-
plexity (two isometric tests at different stretches), and in the stress vs. time
response, there are discrepancies between the model and the experiments,
especially during the transients. Hence, it is mainly the steady-state stress
that is being used to assess the influence of myosin filament dispersion.

During the last decade, it has also been recognised that above all airway
smooth muscle is able to remodel its internal structure of the contractile
apparatus and cytoskeleton (Bai et al., 2004). This remodelling occurs when
the muscle is exposed to changes in length over extended periods of time.
A few attempts have also been made to model this conjectured remodelling
and associated time-dependent mechanical response (Lambert et al., 2004;
Silveira et al., 2005; Silveira and Fredberg, 2005; Silveira et al., 2009). The
immediate contractile behaviour of the muscle is, however, governed by the
present internal structure of contractile units.

In summary, a new constitutive model for the biomechanical behaviour
of smooth muscle tissue has been proposed, where the statistical dispersion
of myosin filaments in the muscle cells is taken into account. The active
muscle contraction is accomplished by the relative sliding between actin and
myosin filaments, comprising contractile units in the smooth muscle cells. A

strain-energy function is used to describe the mechanical behaviour of the
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smooth muscle tissue. The constitutive model was compared to experiments
on smooth muscle tissue from swine carotid artery, both in terms of histo-
logical data and isometric tensile test results. The model was fully able to
reproduce both the histological and tensile test results well. However, the
filament dispersion obtained from the histological data severely underesti-
mated the steady-state stress in the isometric tensile tests. Two reasons for
this discrepancy were offered: the myosin filament dispersion may not be
perfectly axisymmetric (as was assumed in the present analysis), and there
may be additional mechanical processes involved, such as a varying overlap

between myosin and actin filaments.
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