N

N

Efficient generalized source field computation for
-oriented magnetostatic formulations
P. Dlotko, R. Specogna

» To cite this version:

P. Dlotko, R. Specogna. Efficient generalized source field computation for -oriented magnetostatic
formulations. European Physical Journal: Applied Physics, 2011, 53 (2), 10.1051/epjap/2010100270 .
hal-00663999

HAL Id: hal-00663999
https://hal.science/hal-00663999

Submitted on 28 Jan 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00663999
https://hal.archives-ouvertes.fr

EPJ manuscript No.
(will be inserted by the editor)

Efficient generalized source field computation for h-oriented

magnetostatic formulations

Pawel Dlotko! and Ruben Specogna?

1 Jagiellonian University, Institute of Computer Science, Lojasiewicza 4, 30348 Krakéw, Poland
2 Universita di Udine, Dipartimento of Ingegneria Elettrica, Gestionale e Meccanica, Via delle Scienze 208, 1-33100 Udine, Ttaly

pawel.dlotko@uj.edu.pl, ruben.specogna@uniud.it

Received: date / Revised version: date

Abstract. A technique based on a tree-cotree decomposition, called Spanning Tree Technique (STT) in
this paper, has been shown to be simple and efficient to compute the generalized source magnetic fields
for h-oriented magnetostatic formulations when solenoidal source electric currents over the faces of the
mesh are given as input. Yet, it has been recently shown that STT may frequently fail in practice. Other
techniques, which circumvent STT problems, have been proposed in literature. However, all of them greatly
worsen the computational complexity and memory requirements regarding the source field computation.
The aim of this paper is to present a generalization of STT called Extended Spanning Tree Technique
(ESTT), which is provably general and it retains the STT computational efficiency.

PACS. PACS-key 02.70.-c — PACS-key 41.20.Gz

1 Introduction

In h-oriented Finite Element Method (FEM) magneto-
static formulations, or in the corresponding ones obtained
by the Discrete Geometric Approach (DGA), Cell Method
or Finite Integration Technique (FIT), algorithms based
on the tree-cotree decomposition are commonly employed
to compute the so-called generalized source magnetic fields
[1] once the solenoidal source electric current over the faces
of the mesh is given as input. Beside all the proposed al-
gorithms, the one introduced in [2]—called Spanning Tree
Technique (STT) in this paper—is particularly attractive,
since it is simple to implement and exhibits an optimal
complexity, being the running time linear with the num-
ber of mesh elements.

Let us consider an array of Degrees of Freedom (DoFs)
h? one for each edge of the mesh, needed to represent the
rotational part of the magnetic field. The entry of the ar-
ray h® relative to each edge e, denoted as (h®, e), is defined
as the line integral of the generalized source magnetic field
h® on the edge e. Hence, the array h® contains the gen-
eralized source magneto-motive forces (m.m.f.s) produced
by the known source currents. The source currents are de-
scribed by means of an array of DoFs i® which contains
as entries the currents on each face of the mesh. The STT
is an algorithm which computes h® when i® is provided as
input.

In electromagnetic modeling, it is customary to assume
that the computational domain D is topologically trivial

Send offprint requests to:

(i.e. it has the same homology as a ball). Let us assume
that D is covered by a mesh whose incidence is encoded
in the simplicial complex K and let us fix a spanning tree
T using as graph the nodes and edges in K. After set-
ting the values of h® relative to the spanning tree edges
to zero, the STT enforces the discrete Ampere’s law itera-
tively on each face of the mesh [2]. In fact, if the boundary
edges of a face are all set but one, the h® on the missing
edge can be uniquely determined by using the discrete
Ampere’s law. This technique, recalled with more details
in Section 2 of this paper, has been presented in many pa-
pers as [2-5]. STT is frequently claimed to be general in
the literature, even though any attempt to rigorously an-
alyze and prove the STT termination has been reported.
The algorithm has been recently analyzed by the Authors
in [6] and it has been rigorously demonstrated—Dby con-
crete counter-examples—that various practical situations
in which the algorithm fails exist. In particular, there ex-
ist situations involving a topologically trivial complex (for
example, an arbitrary mesh of a cube or a ball) and a
spanning tree on which the STT algorithm “hangs” in
an infinite loop. Many different algorithms that do not
present this problem—reviewed in Section 2.2—have been
proposed in the literature. Nonetheless, none of them ex-
hibit a linear complexity. Better still, their running time is
frequently bigger than the time needed to solve the origi-
nal magnetostatic problem itself.

The aim of this paper is to introduce an extension of
STT, called Extended Spanning Tree Technique (ESTT),
which does not suffer from the failures of STT presented

2 P. Dlotko, R. Specogna: Efficient generalized source field computation

in [6] and in all practical cases it retains STT computa-
tional efficiency. The presented approach is based on the
idea of symbolic computations that can be easily imple-
mented in any object oriented programming language or
in Matlab®. The fundamental idea is, when STT hangs,
to declare the value of h® over one edge whose value is not
computed yet to a (unknown) symbolic value and continue
iterating with STT. At the end, some system of equations
needs to be solved to compute the unknown symbolic val-
ues. Each equation of the reduced system enforces the
discrete Ampere’s law locally on one face f and involve
in general some of the unknown symbolic values and some
of the h® already set. As it will be shown, in all practical
cases the system results void or consists of few unknowns.

The paper is structured as follows. In Section 2 a sur-
vey of the STT algorithm and other alternative algorithms
used for the generalized source field computation is ad-
dressed. Section 3 deals with the presentation of the Ez-
tended Spanning Tree Technique (ESTT), which elimi-
nates the STT failures retaining STT computational ef-
ficiency. Some statistics are presented in Section 4 which
enable to find the best spanning tree generation strat-
egy suitable with the STT algorithm. Once the presented
strategies are applied, the probability of STT failure is low
but still possible. When using ESTT, the optimal tree gen-
eration strategy allows to minimize the size of the small
linear system to be solved in ESTT. The impact of the
extension of the generalized source field support on the
computational time and on the quality of the solution is
investigated in addition. In Section 5, the conclusion are
drawn.

2 The Spanning Tree Technique (STT)

The array h® has to be constructed in such a way that the
discrete Ampere’s law holds on every faces of the mesh

Ch® =i, (1)

where C is the usual incidence matrix between the faces
and the edges of the mesh. i* is a given array having
an entry for each face of the mesh being a real (or com-
plex) number corresponding to the current associated to
the considered face!. To have a consistent solution, let us
assume that the given array i® represents a solenoidal cur-
rent. Namely, it verifies Di®* = 0, where D is the incidence
matrix between cells and faces. If this would not be the
case, since DC = 0, the following contradiction would
arise

0 # Di* = DCh*® = 0.

Therefore, a necessary condition in order to have a consis-
tent solution is that a solenoidal current has to be provided
as input. In cohomology theory such an array i® represents
a 2-cocycle, see for example [7], [8]. Since the cell complex

! In case of magnetostatic problems or eddy-current prob-
lems solved in time domain, the current array is real-valued.
In case of eddy-current problems solved in frequency domain,
the current array is complex-valued.

K is assumed to be homologically (and therefore coho-
mologically) trivial, each cocycle is a coboundary. Hence,
there has to exist a 1-cochain h® such that C h® = i*. Con-
sequently, the solenoidality of the current is a necessary
and sufficient condition for the existence of a solution.

The rank of the C matrix is obviously not maximal,
thus (1) has an infinite number of solutions. In fact, if
two different arrays, hi and hj which represent two cocy-
cles in the same cohomology class (i.e. which differ by the
coboundary G of a magnetic scalar potential §2), then the
following holds

Ch; = C(h} + G2) = 1", 2)

where G is the incidence matrix between the edges and
the nodes of the mesh. Equation (2) holds since CG = 0.
Now a tree-cotree decomposition is introduced. Let us
fix a spanning tree 7 using as graph the nodes and edges in
IC, together with the corresponding cotree C. Let us order
the edge’s labels in such a way that the edges belonging
to the cotree come first, followed by the edges in the tree.
Therefore, in what follows, the new basis obtained after
the reordering is considered in place of the old one. The
matrix C and the vector h® can be consequently parti-
tioned in
Cchi =i°* — Crhi. (3)

The coefficients h3- relative to tree edges can be fixed ar-
bitrarily. It is well known, in fact, that fixing the value
over the tree edges corresponds to eliminate the kernel
ker(C) of the incidence matrix [9, p. 106]. Let us fix the
coeflicients of h® relative to tree edges to zero. Since the
kernel of the system of equations (3) has been eliminated,
its rank becomes full and a unique solution of

Cchs =i° (4)

exists.

The STT algorithm is introduced as an attempt to
solve (4) by means of back-substitutions only [2]. In other
words, if the algorithm succeed, there is no need to use
a linear system of equation solver or even to explicitly
construct the matrix C by using a sparse matrix data
structure. In fact, h® may be obtained by means of the
STT algorithm presented in Table 1.

The STT termination has been taken for granted in
many papers and no rigorous proofs regarding its ter-
mination or—on the contrary—counter-examples of non-
termination have been provided. Recently, the Authors
have shown, by some concrete counter-examples, that var-
ious problems may arise [6].

2.1 A simple example of STT failure

To clearly see that the STT algorithm may fail, the follow-
ing counter-example is presented [6]. A three-dimensional
homologically trivial complex made by eight tetrahedra,
twenty-two faces, twenty-one edges and eight nodes is con-
sidered. An exploded view of the tetrahedra is visible on

P. Dlotko, R. Specogna: Efficient generalized source field computation 3

checkBoundary (simplex 7T)

1. int numOfEdg := 0, simplex F' := 0, double sum := 0;
2. for every simplex F being an edge of T'
(a) if (h°, E) is defined then
i. numOfEdg + +;
ii. sum :=sum + C[F, E|(h°, E);
(b) else F :=E;
3. return (numOfEdg, sum, F);

STT (simplicial complex K)

1. Generate 7—a spanning tree of K. Let S be an empty
list;
2. for every edge E € T set (h®, E) := 0;
3. for every triangle T' € I
(a) (numOfEdg, sum, F') := checkBoundary(T);
(b) if (numOfEdg=2) S :=SUT;
4. while(S is not empty)
(a) take any T'€ S; S := S\ T;
(b) (numOfEdg,sum, F') := checkBoundary(T);
(¢) if (numOfEdg = 2) then
i. (h®, F):=—CJT, F]sum + (i*,T);
ii. for every triangle C' whose boundary edge is F’
do
A. (n,s, F') := checkBoundary(C);
B. if (n=2) S:=SUC;

5. return h’;

Table 1. The STT algorithm.

the top of Fig. 1. A spanning tree is formed by consid-
ering the thick edges represented on the bottom of Fig.
1. If the STT algorithm—as implemented for example in
Table 1—is run, it hangs in an infinite loop. This is due
to the fact that no edge can be set since each face has
zero or one tree edges in its boundary. This pedagogical
counter-example shows that the STT is not general, since
its termination cannot be taken for granted.

When a gauged magnetostatic formulation is used, it
is required to construct a tree that is complete on the
boundary as described in [2-5]. The Reader should be
aware that also if the tree is complete on the boundary
STT failures may easily happen, see a concrete counter-
example in [6, Section 5.1.2]. In this paper, we concentrate
on ungauged formulations, which are known to be more
efficient with respect to the gauged ones. Dealing with un-
gauged formulations, no boundary condition is needed for
the generalized source magnetic field.

A modification of the STT is proposed in [10] dealing
with a cubical structured mesh. This algorithm, if applied
on a tetrahedral mesh, frequently fails in practice as we
are going to show. It turns out that it has even prob-
lems with two-dimensional complexes, where the STT is
provably general. To show this, let us consider the two-
dimensional complex in Fig. 2a. The currents specified for
each face are all zero except for the face S, represented by
a dark triangle in Fig. 2a. Let the current associated to S

X

/.

Fig. 1. A simple counter-example for the STT algorithm ter-
mination.

be an arbitrary non-zero value, say one to fix the ideas.
In the first iteration of [10] algorithm, the dark triangle in
Fig. 2b is considered. A tree, represented in the picture by
thick edges, is found on S and a zero value is associated
to these edges. The value relative to the third edge is set
to a non-zero value, indicated in the picture by a dotted
edge (Depending on orientations, not shown in the picture
for the sake of clarity, the non-zero value is 1 or —1.), by
using the discrete Ampeére’s law. Next, all the triangles
sharing an edge with S are considered. For each of them,
a local tree is constructed by using as tree edges as many
edges already imposed as possible. As usual, a zero value
is associated to the tree edges and the cotree edges are
determined accordingly to discrete Ampere’s law, see Fig.
2c. In all the pictures, the edges associated with a zero
value are represented by thick black edges. After consid-
ering all the triangles in the set, a new set is formed by the
triangles which share an edge with the set considered in
the previous iteration and not yet considered, see Fig. 2d.
This procedure should run until all the triangles are con-
sidered. Let us analyze the output of the algorithm after
the fourth iteration, see Fig. 2e. As one can easily see, the
output is wrong. In fact, let us concentrate on the cycle
made by edges with a zero associated value represented in
Fig. 2e. This cycle imposes the circulation of the m.m.f.
to zero, while should be once since the cycle encircle the
unit current through S.

One purpose of this paper is to show that STT per-
forms much better when the so-called BFS trees are used.
A BFS tree can be obtained by using BFS (Breadth-First

4 P. Dlotko, R. Specogna: Efficient generalized source field computation

v v
S A
My

Fig. 2. A simple counter-example for the [10] algorithm. a)
The two-dimensional complex used in the counter-example. b-
e) The first four iterations. The result produced in the last
(fourth) iteration is wrong, since discrete Ampéere’s law is vi-
olated. In fact, the m.m.f. circulation evaluated on the cycle
represented in f) by thick edges is zero, while should match the
current though the triangle S.

Search) strategy [17] to the graph consisting of the nodes
and the edges of the mesh. Previously, it was known that
this kind of trees—called also minimal diameter trees—
produce less iterations in the STT [4], [18] algorithm, but
it was not pointed out that this is expressly required to
reduce the probability of failure to an acceptable value.

2.2 A survey on different algorithms

Some alternatives with respect to the STT algorithm, that
do not suffer from a lack of generality, have also been
proposed in the literature.

A naive solution to the problem would be to solve the
linear system of equations (4) by a linear system solver.
To this aim, a sparse matrix data structure has to be first
created and the linear system has to be rigorously solved,
which of course substantially increase both the computa-
tional time and the coding effort (in fact, an integer-based

solver is usually not needed in FEM codes). For exam-
ple, in [11] this is done with a reordering and a Gaus-
sian elimination which is claimed to avoid the usual fill-in
increasing during the Gaussian elimination. It is rather
difficult to have some guarantees that the fill-in increas-
ing will be small enough to enable to reach a solution in
practice. After the factorization is available, the system is
solved by back-substitution over reals. Nonetheless, it is
well known that, during integer elimination, arbitrary big
integers may be present in the computation, requiring a
costly package to manage arbitrary large integers.

An iterative real-valued (or complex-valued) solver has
been used for example in [13,14], where the source field is
obtained by means of a FEM projection technique. Nonethe-
less, the cost of solving such a big linear system is not neg-
ligible concerning both the computational complexity and
memory requirements. Actually, as already pointed out in
[13], it requires even more computational effort than solv-
ing the original magnetostatic or eddy-current problem.

Techniques based on the so-called fundamental cycles?
are also possible, see for example [1,12]. This approach
requires a huge computational effort to retrieve all the
fundamental cycles. Moreover, the currents over surfaces
whose boundaries are the fundamental cycles have to be
efficiently determined. Especially how to provide quickly
these currents is not addressed at all in the cited pa-
pers. Solve this problem in general would require to find a
surface whose boundary is the fundamental cycle, which
again requires to solve rigorously a non-maximal rank sys-
tem on integers.

To conclude, even though if these approaches are prov-
ably general, all of them increase the coding and compu-
tational complexity and the memory requirements with
respect to STT. An effective extension of the STT, called
Extended Spanning Tree Technique (ESTT), is introduced
in the next Section. ESTT results provably general and
exhibits a linear complexity on average.

3 The Extended Spanning Tree Technique
(ESTT)

As already discussed in Section 2.1, the STT algorithm
hangs in an infinite loop when there are still edges with-
out a h® value set but does not exist a triangle T" having
exactly one boundary edge still to be set. However, due
to the uniqueness of the solution, we know that each edge
value has to be set to a precise real (or complex) number.

The ESTT algorithm works exactly as the STT algo-
rithm until it hangs in an infinite loop. When it hangs, the
list of the remaining triangles is searched for a triangle T
having a unique edge set by the algorithm.

— If such T is found, an edge E’ of T for which the value
(h®, E’) is not set yet, is set to the unknown fixed value
xXq.

2 Let us consider a spanning tree over a graph. Each cotree
edge form, together with some tree edges, one and only one
cycle which is called fundamental cycle.

P. Dlotko, R. Specogna: Efficient generalized source field computation 5

— If such a T is not found, then any triangle T is picked.
Two edges E1, Fy of T are set to the unknown fixed
values x1 and zs.

Since after this simple manipulation there exists a trian-
gle T with exactly one boundary edge still to be set, the
STT algorithm can continue iterating. The only difference
is that the algorithm operates on an extended implemen-
tation of real (or complex) numbers. On one hand, the
number can be explicitly known, on the other, it repre-
sents some unknown fixed value. Such an implementation
of a number may be obtained easily by using any ob-
ject oriented programming language or Matlab®. Let us
present in Table 2 an example of extended class of a real
number implemented in C++. In the class presented in

class extNumber
{
public:
//here suitable arithmetic operators and
//conversions should be implemented.
extNumber (double val)
{
this->value = val;
this->wasValueSet = true;
}
extNumber ()
{
for(int i=0;i!=this->number0fSymVar;++i)
this->symbolicVar.push_back(0) ;
this->symbolicVar.push_back(1);
++this->number0fSymVar;
this->wasValueSet = false;
}
private:
double value;
bool wasValueSet;
std: :vector< double > symbolicVar;
static int numberOfSymVar;
};

int extNumber: :numberOfSymVar = O;

Table 2. C++ style class of extended number.

Table 2 two constructors are indicated. The first one cre-
ates a standard double variable packed in the extNumber
class object. The second one, used when the STT algo-
rithm hangs, creates a new unknown symbolic variable.
To store the symbolic variables, the Standard Template
Library [19] vector symbolicVar is used. The symbolic
variables are enumerated with integers starting from 0. To
enumerate the variables, a static variable number0fSymVar
being the member of the extNumber class is used. There-
fore, the value of the i-th symbolic variable is stored at the
i-th position of symbolicVar vector. Such an approach en-
ables fast and easy arithmetic operations using symbolic
variables (which are in fact the arithmetic operations on

the symbolicVar vectors). The obvious details are left to
the Reader.

Now, the ESTT algorithm is presented. Instead of pro-
viding a full-length implementation, only the differences
with respect to the STT algorithm are discussed. Namely,
the point (4) of the STT algorithm is reorganized as al-
ready described in this Section to obtain the ESTT algo-
rithm presented in Table 3.

(4a) while (true)

1. while(S is not empty)
(a) take any T'€ S; S := S\ T;
(b) (numOfEdg,sum, F') = checkBoundary(1");
(¢) if (numOfEdg = 2) then
i. (h®, F):=—CIT, F]sum + (i*,T)
ii. for every triangle C' whose boundary edge is F'
do
A. (n,s, F') = checkBoundary(C);
B. if (n=2) S:=SUC(;

2. if for every edge E the value (h° FE) is set, then
break;

3. search for a triangle 7" having the value (h°®, E) set for
exactly one edge F;

4. if such a triangle T exists, for one of its edges £’ not
already set impose the value by using extNumber() con-
structor;

5. if such a triangle T does not exists pick any triangle 7"
(a) Let E and E’ be two edges not already set in the

boundary of T’;
(b) Set the values for E and E’ by using extNumber()
constructor;

6. for every triangle T" which have the value of exactly two
boundary edges set do S := SUT};

(4b) For every triangle T € K if (h®,CTT) is a nonzero
unknown value add the equation (h®, CTT) = 0 to the linear
system of equations;

(4c) Solve the linear system of equations (one can use for
example [20]) and set the values of the suitable edges;

Table 3. The changes that need to be applied to STT in order
to obtain the ESTT algorithm.

3.1 Proof of ESTT generality

We already pointed out that the solution of the system (4)
is unique. When the STT algorithm is propagating, setting
a value to an edge E is equivalent to obtaining a unique
solution of one equation in (4). This equation, together
with the corresponding unknown, can be canceled out and
both the rank of the resulting system and the number of
unknowns is decreased by one. Therefore, since the rank
of the system was maximal, during each iteration of the
STT algorithm it remains maximal although the system
itself gets smaller.

6 P. Dlotko, R. Specogna: Efficient generalized source field computation

When STT hangs, the unknown symbolic variable is
created and propagated by the ESTT algorithm. When
adding a new symbolic variable, no value is computed and
no equation is canceled out in the considered linear sys-
tem. Therefore, the system and its rank remain invariant.
Later, once that the propagation is resumed, the rank goes
down again. It is therefore clear, that the rank of the re-
sulting system is equal to the number of symbolic variables
used in course of ESTT algorithm run.

Once the while loop in the ESTT algorithm termi-
nates, the linear system of equations have to be created
and solved in order to determinate the values of all sym-
bolic variables. When constructing the system, trivial equa-
tions involving some symbolic variables (for example the
ones like (x1 + 1) — (z1) + (1) = 2) are eliminated. Also
the repetitions of the same equation are removed from
the final system. In all the considered cases the number
of equations obtained in this way matches the number of
unknowns which is a very small or void in practice.

3.2 ESTT rigorous complexity analysis

When STT does not hang in an infinite loop, the perfor-
mance of ESTT and STT are very similar considering the
computational complexity®. In this case, ESTT uses a lit-
tle more memory to store the numbers*. In practice, the
extra cost of ESTT with respect to STT is not visible to
the user.

Let us therefore analyze the time complexity of the
STT algorithm presented in the Table 1. Since the tree
can be constructed in linear time, the steps (1) — (3)
need a linear time with respect to the number of ele-
ments in the complex. It is also clear that the proce-
dure checkBoundary (simplex 7) needs a constant time®.
Therefore, also the body of the while loop in the point
(4) of the algorithm needs a constant time. It remains to
compute the number of iterations of the while loop in the
point (4) of the algorithm. But it is clear that each triangle
T will be considered only once. Hence, the complexity of
the while loop is linear and consequently the complexity
of the whole STT algorithm is linear.

When STT hangs in an infinite loop, an extra vari-
able has to be added and, at the end, a linear system of
equations has to be solved. Adding an extra variable in
the algorithm does not affect the performance of the al-
gorithm. The only important quantity is the number of

3 The only difference is that ST'T uses processor directives to
perform arithmetic operations on real (or complex) numbers,
while ESTT uses objects of the class extNumber where the
arithmetic operation can be effectively implemented as inline
arithmetic operators. Hence, with a good implementation, the
difference is not too big.

4 This is due to the fact that, in the considered case, the
class extNumber contains one real (or complex) number and
one boolean value while STT needs only one real (or complex)
number to be stored.

5 Such a complexity may be achieved once the value (h*, E)
is kept together with E as an extra field of the simplex data
structure and can be accessed in constant time.

the extra equations of the linear system that needs to be
solved at the end. At the moment, there are no rigorous
results to determine this size. Nonetheless, it seems very
unlikely in practice to consider a mesh for which the linear
system would consists in more than few, say three, equa-
tions. In fact, it is rare even to have a system with just
two equations. Therefore, it is reasonable to assume that
the number of extra equations on average is bounded by
a constant. With this assumption it is straightforward to
see that also the ESTT algorithm exhibits a linear com-
plexity. In the worst possible case, the size of the system
would be proportional to the size of the mesh. Anyway,
the cost of solving it would be less than the algorithm
presented in [11].

4 Numerical Results

The proposed algorithm has been applied to the source
field computation on real-sized industrial magnetostatic
problems without experimenting any difficulty. As an ex-
ample, the micro inductor in Fig. 3 surrounded by an in-
sulating region is considered.

Fig. 3. The micro inductor used as a benchmark problem.

First of all, the statistics of STT failures on various
meshes of the considered problem are produced. To this
aim, the STT has been executed on thousands of random
trees for each mesh producing the results in Table 4. The
results show that, for big enough meshes, the probability
of STT failure is very high. So we can conclude that STT
does not perform satisfactorily by using random trees. By
using ESTT, the correct result is obtained in each tested
case.

Using BFS trees, no failures has been reported em-
ploying the STT on the benchmark problem. Nonetheless,
the STT convergence using BFS trees cannot be proved,
since concrete counter-examples exists. Namely, there ex-
ists three-dimensional meshes without holes and cavities
in which STT fails even if using BFS trees. There is even
some example, like the Furch’s knotted ball [15], in which

P. Dlotko, R. Specogna: Efficient generalized source field computation 7

Table 4. STT performance with random trees.

f##tetrahedra #trees tested #failures ratio
471 30,000 346 1.2%
2499 30,000 4562 15.2%
4603 30,000 8722 29.1%
12,271 11,400 8310 72.9%

STT does not converge for any choices of BFS spanning
tree. Hence, to have a provably good method which is re-
liable in practice, ESTT is expressly needed.

The execution times of both STT and ESTT are rep-
resented in Fig. 4. As expected, both show a linear com-
plexity behavior.

700

0 I I I I
0 0.5 1 15 2

Millions of tetrahedra

Fig. 4. STT and ESTT timings.

Since ESTT is more general but slower, hence we pro-
pose the following algorithm employing a cascade of STT
and ESTT:

1. The STT using a BFS tree is applied first. If STT
converges, exit.

2. If STT fails, the slower but provably general ESTT is
employed starting from the situation in which the STT
stopped the propagation.

With this combination of STT and ESTT, one is able to
get a fast and provably good algorithm for generalized
source field computation.

In the literature, there has been some effort to reduce
the support (i.e. reduce the number of edges with a non-
zero h?® value) of the generated source fields h®. However,
as already shown in [16], we experimented that this pro-
cess does not worth the effort when STT/ESTT is used.
This is because the time required to reduce the support
is frequently greater than the time gained dealing with a
compact support.

5 Conclusions

The spanning tree technique (STT), widely used to im-
pose sources in h-oriented formulations for magnetostatic

problems, hangs in an infinite loop for some choices of the
spanning tree. It has been shown, by using concrete exam-
ples, that these failures do happen frequently in practice
and an extension is thereafter sought. Beside of the al-
ready proposed attempts to produce a different general
and efficient algorithm, the aim of this paper has been to
present the Exztended Spanning Tree Technique (ESTT),
which is provably general and yields to an optimal compu-
tational complexity. Some examples using real-sized three-
dimensional finite element meshes are presented, showing
the utility of ESTT for practical applications.

Acknowledgments

P.D. is partially supported by MNiSW grant N N206 625439.

References

1. P. Dular, F. Henrotte, F. Robert, A. Genon, W. Legros,
A Generalized Source Magnetic Field Calculation Method
for Inductors of any shape, IEEE Trans. Magn., Vol. 33,
1997, pp. 1398-1401.

2. J.P. Webb, B. Forghani, A single scalar potential method
for 3D magnetostatics using edge elements, IEEE Trans.
Magn., Vol. 25, 1989, pp. 4126-4128.

3. Y. Le Ménach, S. Clénet, F. Piriou, Determination and
Utilization of the Source Field in 3D Magnetostatic Prob-
lems, IEEE Trans. Magn., Vol. 34, 1998, pp. 2509-2512.

4. F. Henrotte, K. Hameyer, An algorithm to construct the
discrete cohomology basis functions required for magnetic
scalar potential formulations without cuts, IEEE Trans.
Magn., Vol. 39, 2003, pp. 1167-1170.

5. T. Henneron, S. Clenet, P. Dular, F. Piriou, Discrete finite
element characterizations of source fields for volume and
boundary constraints in electromagnetic problems, Jour-
nal of Computational and Applied Mathematics, Vol. 215,
2008, pp. 438-447.

6. P. Dloko, R. Specogna, Critical analysis of the spanning
tree techniques, STAM J. Numer. Anal., Vol. 48, No. 4,
2010, pp. 1601-1624.

7. J.R. Munkres, Elements of algebraic topology, Perseus
Books, Cambridge, MA, 1984.

8. P. Dlotko, R. Specogna, F. Trevisan, Automatic genera-
tion of cuts on large-sized meshes for the T-{2 geometric
eddy-current formulation, Comput. Methods Appl. Mech.
Engrg., Vol. 198, 2009, pp. 3765-3781.

9. G. Strang, Linear algebra and its applications, 3-rd ed.,
Thomson Business Information, Stanford, USA, 2003.

10. O. Biro, K. Preis, G. Vrisk, K.R. Richter, Computation of
3-D Magnetostatic Fields Using a Reduced Scalar Poten-
tial, IEEE Trans. Magn., Vol. 29, 1993, pp. 1329-1332.

11. Z. Cendes, Z. Badics, Source Field Modeling by Mesh In-
cidence Matrices, IEEE Trans. Magn., Vol. 43, 2007, pp.
1241-1244.

12. K. Preis, I. Bardi, 0. Biro, C. Magele, G. Vrisk, K.R.
Richter, Different Finite Element Formulations of 3D Mag-
netostatic Fields, IEEE Trans. Magn., Vol. 28, 1992, pp.
1056-1059.

13.

14.

15.

16.

17.

18.

19.

20.

P. Dlotko, R. Specogna: Efficient generalized source field computation

O.-M. Midtgard, R. Nilssen, Efficient Spanning Trees for
a High-Order Edge Element T'— ¥ Eddy Current Formu-
lation, IEEE Trans. Magn., Vol. 34, 1998, pp. 2652-2655.
C. Geuzaine, B. Meys, F. Henrotte, P. Dular, W. Legros,
A Galerkin Projection Method for Mixed Finite Elements,
IEEE Trans. Magn., Vol. 35, 1999, pp. 1438-1441.

G.M. Ziegler, Shelling polyhedral 3-balls and 4-polytopes,
Discrete Comput. Geom., Vol. 19, 1998, pp. 159-174.

T. Henneron, F. Piriou, A. Tounzi, S. Clénet, J.P.A. Bas-
tos, N. Sadowski, Source-Field Method for 3D Magneto-
statics: Influence of the Potential Created by the Excit-
ing Currents, Journal of Microwaves, Optoelectronics and
Electromagnetic Applications, Vol. 8, No.1, June 2009.
T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction
to Algorithms, 2/e, McGraw-Hill 2002.

A. Murphy, Implementation of a finite element based algo-
rithm to make cuts for magnetic scalar potentials, Masters
thesis Dept. of ECS Eng., Boston U., 1991.

N. M. Josuttis, The C++ Standard Library: A Tutorial
and Reference, Addison-Wesley U.S.A; 1999.

The Eigen Library, http : //eigen.tux family.org.

