Presentation

This technical report describes the implementation of exact and parametrized exponential algorithms, developed during the French ANR Agape during 2010-2012. The developed algorithms are distributed under the CeCILL license and have been written in Java using the Jung graph library.

Installation notes

The source code is available at http://traclifo.univ-orleans.fr/Agape/. Several dependencies are necessary in order to use the Agape library. They are included in the lib/ directory of the SVN trunk:

• Jung library 2.0.1, BSD license (jung * .jar).

• Apache commons for collections, Apache License 2.0 (collections-generic-4.01.jar) 1 .

• Guava i.e. Google's collections, Apache License 2.0, (guava-r09.jar).

• Mascopt optimization library, LGPL, (mascoptLib.jar).

The project can be downloaded as an Eclipse project from the SVN trunk repository (see instructions on the website). It is particularly useful for studying the source code of the provided algorithms. To use this library as a dependency in another project, only the agape.jar file and the dependencies (dependencies.zip) are needed.

Packages content

In this section, we briefly describe the implemented algorithms. Section 3 describes how to use these algorithms through simple tutorials.

Package agape.algos

This package contains the different implemented exponential or parametrized algorithms. The abstract class Algorithms groups the different factories for graph/vertices/arcs creation. The graphs are based on generic classes of the Jung library. Indeed, some algorithms require to instantiate vertices or arcs. The instanciation of such objects depends of the nature of the generic token, e.g. a vertex can be an Integer. Thus, as the type of vertices are not known in advance, the algorithms that require to create graphs should obtain a factory for the provided graph.

The different classes and their hierarchy are represented in Figure 1. Table 1 sums-up the different implemented algorithms, their complexity in time and the references to the papers that provided the algorithms. The last column recalls the acronym used for the Agape Command Line tool (c.f. Section 2.2.2). In the following subsections, each implemented algorithm is briefly described.

Class Coloring

The goal of this class is to compute the minimum number of colors to properly color an undirected graph.

int chromaticNumber(Graph<V,E> G): Computes the chromatic number of a graph G. This method is based on the An exact algorithm for graph coloring with polynomial memory by Bodlaender and Kratsch [START_REF] Hans | An exact algorithm for graph coloring with polynomial memory[END_REF]. The algorithm solves the problem in PSPACE and in time O(5.283 n).

Set<Set<V> > graphColoring(Graph<V,E> G): Computes a solution having the minimum chromatic number using the same algorithm as before. It returns the partition of the vertices into color classes.

Set<Set<V> > greedyGraphColoring(Graph<V,E> G): a greedy algorithm that computes iteratively the maximum independet set of G and removes it.

Class MinDFVS

This class is dedicated to the minimum directed feedback vertex set. This problem consists in finding the minimum number of vertices to delete in order to get a directed acyclic graph from a directed graph.

Set<V> minimumDirectedAcyclicSubset(Graph<V,E> G): Computes the Minimum Directed Acyclic Subset as the complement of the Maximum Directed Feedback Vertex Set (see below).

Set<V> maximumDirectedAcyclicSubset(Graph<V,E> G):

The implemented method solves the problem in time O(1.9977 n) using the Razgon work Computing Minimum Directed Feedback Vertex Set in O * (1.9977 n) [START_REF] Razgon | Computing Minimum Directed Feedback Vertex Set in O(1.9977 n)[END_REF]).

It uses kernelization techniques presented in A 4k 2 kernel for feedback vertex set by Thomassé [START_REF] Thomassé | A 4k 2 kernel for feedback vertex set[END_REF].

Set<V> greedyMinFVS(Graph<V,E> G): Computes an approximation of the FVS problem using the big degree heuristic, written by Levorato. Starting from the initial graph, the algorithm removes the vertex with highest degree until the graph is acyclic.

This class also provides a method that enumerates all the cycles. This can be usefull to find all the cycles that are impacted by a given vertex of the minimum feedback vertex set.

Set<ArrayList<V> > enumAllCircuitsTarjan(Graph<V,E> G) Enumerates all circuits of a graph (Tarjan, Enumeration of the elementary circuits of a directed graph [START_REF] Tarjan | Enumeration of the Elementary Circuits of a Directed Graph[END_REF]).

Class MIS

This class computes the maximum independ set of a graph (directed or undirected). This problem consists in finding the maximum set of vertices such that two vertices of the computed set are not neighbors in the original graph. Several algorithms have been implemented.

Set<V> maximalIndependentSetGreedy(Graph<V,E> g): implements a polynomial greedy heuristic in O(n+ m). The algorithm chooses vertices of minimum degree and removes the neighbors iteratively.

Set<V> maximumIndependentSetBruteForce(Graph<V,E> g): this algorithm examines every vertex subset and checks whether it is an independent set using the isIndependentSet method. The time complexity is O(n 2 .2 n).

Set<V> maximumIndependentSetMaximumDegree(Graph<V,E> g): this algorithm computes an exact solution by branching on the maximum degree vertex that is either in or out of the final solution and computes the result recursively. This algorithm has been proposed by I. Todinca and M. Liedloff but has no proved upper bound.

Set<V> maximumIndependentSetMoonMoser(Graph<V,E> g): the algorithm solves the problem in time O(1.4423 n).

It is based on On cliques in graphs [START_REF] Moon | On cliques in graphs[END_REF].

Set<V> maximumIndependentSetMoonMoserNonRecursive(Graph<V,E> g): this is the non recurvisve version of the previous algorithm. Experimental benchmarks show that this version is slower.

Set<V> maximuRmIndependentSetFominGrandoniKratsch(Graph<V,E> g): this method is based on A Measure & Conquer Approach for the Analysis of Exact Algorithms [START_REF] Fedor V Fomin | A measure & conquer approach for the analysis of exact algorithms[END_REF]. The algorithm solves the problem in time O(1.2201 n).

Two methods help to detect if a set is an independent set for a given graph:

boolean isIndependentSet(Graph<V,E> g, Set<V> S): verifies that S is an independent set of G.

boolean isMaximalIndependentSet(Graph<V,E> g, Set<V> S): verifies that S is a maximal independent set of G (cannot be completed).

Class MVC

This class implements algorithms for solving the Minimum Vertex Cover problem. The problem consists in finding the minimum set of vertices such that any vertex is at distance at most 1 of the computed set. This class only works on undirected graphs.

Set<V> twoApproximationCover(Graph<V,E> g): 2-approximation of the Minimum Vertex Cover problem.

The algorithm returns a cover that is at most of double size of a minimal cover, O(|E|) time.

Set<V> greedyCoverMaxDegree(Graph<V,E> g): this greedy heuristic computes a result by selecting iteratively the vertex having the maximum degree.

boolean kVertexCoverBruteForce(Graph<V,E> g, int k): this method selects all the sets of size k among n and checks if this set covers the graph. The resulting complexity is O(n k). The algorithm tries to potentially select the vertices that are not covered first which improves the execution time.

boolean kVertexCoverDegreeBranchingStrategy(Graph<V,E> g, int k): this method uses Degree-Branching-Strategy (DBS) and has a time complexity of O(1.47 k). This algorithm is extracted from Invitation to Fixed-Parameter Algorithms [START_REF] Niedermeier | Invitation to Fixed Parameter Algorithms[END_REF] pp. 90.

boolean kVertexCoverNiedermeier(Graph<V,E> g, int k): this method is an implementation of Niedermeier algorithm of Invitation to Fixed Parameter Algorithms [START_REF] Niedermeier | Invitation to Fixed Parameter Algorithms[END_REF] pp. 99-101, which time complexity is O(1.33 k).

boolean kVertexCoverBussGoldsmith(Graph<V,E> g, int k): this method is an implementation of Buss and Goldsmith reduction algorithm of Nondeterminism within P [START_REF] Buss | Nondeterminism within P[END_REF], presented by Niedermeier in [START_REF] Niedermeier | Invitation to Fixed Parameter Algorithms[END_REF] pp. 54. Set<Set<V> > getABSeparators(Graph<V,E> g, V a, V b): this method computes the set of minimal ab-separator in O(n 3) per separator. It is an implementation based on Generating All the Minimal Separators of a Graph [START_REF] Berry | Generating all the minimal separators of a graph[END_REF].

Set<Set<V> > getAllMinimalSeparators(Graph<V,E> g): this method returns all the minimal ab-separators for all pairs of vertices.

Package agape.applications

This package contain two software: a graph graphical editor and command line program that allows to launch the previously presented algorithms.

Graphical editor: the GraphEditor class

The graphical editor is a simple example, based on the Jung library, as shown in Figure 2. Only the possibly of saving a graph into a file has been added.

Agape command line application: the AgapeCL class

The command line application allows to apply an chosen algorithm to a graph or a set of graphs. All the graphs must be written in the .net format. This format comes from the Pajek software for social network analysis. A .net file is composed of the list of vertices and the adjacency list. An example of a Pajek file is presented in Listing 2.2.2. The graph is composed of 4 vertices and 4 edges (a,b), (b,c), (b,d), and (c,d).

The AgapeCL command line application can be used with the standalone package distributed on the website:

java -jar AgapeCL.jar graphFilePath|graphDirectoryPath algorithm

The first parameter is the name of the .net file (or the directory that contains multiple files) and the second one is the algorithm name that has to be chosen among CN, MISBF, MISMM, MISDegMax, MISFGK, MVCBF, [v0, v48, v17, v18, v36, v6, v25, v13, v9, v40, v34, v44, v31, v32] Example of execution on a directory [START_REF] Barabasi | Emergence of scaling in random networks[END_REF][START_REF] Kleinberg | The small-world phenomenon[END_REF]0,[START_REF] Buss | Nondeterminism within P[END_REF][START_REF] Erdös | On random graphs[END_REF][START_REF] Lalande | Mascopt -A Network Optimization Library: Graph Manipulation[END_REF] thomassen20.net V:20 E:37 18.0 ms Size: 8 [START_REF] Bagrow | Portraits of Complex Networks[END_REF][START_REF] De Nooy | Exploratory social network analysis with Pajek, volume 40 of Structural analysis in the social sciences[END_REF]19,[START_REF] Hans | An exact algorithm for graph coloring with polynomial memory[END_REF][START_REF] Watts | Collective dynamics of "small-world" networks[END_REF][START_REF] Fedor V Fomin | A measure & conquer approach for the analysis of exact algorithms[END_REF][START_REF] Razgon | Computing Minimum Directed Feedback Vertex Set in O(1.9977 n)[END_REF][START_REF] Lalande | Mascopt -A Network Optimization Library: Graph Manipulation[END_REF]

Package agape.generators

This package contains several graph generators. Two categories of generators have been implemented: random and non random generators. Some generators are based on Jung generators and others have been implemented from scratch. Below is listed all the available generators. All the generators need factories to instantiate vertices and edges.

Random graph generators

• Erdös Rényi random graphs [START_REF] Erdös | On random graphs[END_REF].

• Eppstein random graphs (from Jung) [START_REF] Eppstein | A steady state model for graph power laws[END_REF].

• Barabasi-Albert random graphs (from Jung) [START_REF] Barabasi | Emergence of scaling in random networks[END_REF].

• Kleinberg small world graphs [START_REF] Kleinberg | The small-world phenomenon[END_REF].

• Watts-Strogatz small world graphs [START_REF] Watts | Collective dynamics of "small-world" networks[END_REF].

• k-regular random graphs.

2.4 Package agape.io P. Berthomé, J.-F. Lalande, V. Levorato

Structured graph generators

See Section 3.1.4 for an example of use of these two generators.

• 2D grids.

• K-regular rings.

In order to use the generators, the user has to define first a graph factory before using one of the generators. A tutorial about factories is presented in Section 3.1.3.

Package agape.io

This package contains two classes for the read/write operation on graphs (Import and Export).

Formats supported for reading:

• .net oriented or non oriented (Pajek) [START_REF] De Nooy | Exploratory social network analysis with Pajek, volume 40 of Structural analysis in the social sciences[END_REF].

• .mgl Mascopt [START_REF] Lalande | Mascopt -A Network Optimization Library: Graph Manipulation[END_REF].

• .tgf Wolfram Mathematica http://www.wolfram.com/mathematica/.

Formats supported for writting:

• .net oriented or non oriented (Pajek) [START_REF] De Nooy | Exploratory social network analysis with Pajek, volume 40 of Structural analysis in the social sciences[END_REF].

• .gv GraphViz http://www.graphviz.org/.

A tutorial about input/output is presented in section 3.1.2.

Package agape.tools

This package is a set of toolboxes for classical graph operations. In the Operations class, we implemented metric detection (diameter, degrees, . . .), type identification (clique, regular, simple edge, . . .), copy operations (copy, merge, subgraphs, . . .), . . . For example, the getMinDeg(Graph<V,E> g) returns the vertex that has the smallest degree and isRegular(Graph<V,E> g test if the graph is k-regular. In the Components class, we implemented methods for connected components of a graph, for example the Tarjan's method that computes all the strongly connected components in getAllStronglyConnectedComponent(Graph<V,E> g.

Package agape.visualization

This package contains the class Visualization that provides a method to display a graph (showGraph) and a method to represent a graph as a B-matrix [START_REF] Bagrow | Portraits of Complex Networks[END_REF], as shown in Figure 3.

Figure 1 :

 1 Figure 1: The agape.algos package hierarchy

2. 2 Figure 2 :

 22 Figure 2: Screen capture of the graph editor

Table 1 :

 1 Algorithms summary

	Acronym Algorithm	Time complexity References Agape CL
	CN	Chromatic Number		
		Bodlaender, Kratsch	O(5.283 n)	[4]	CN
	DFVS	Directed Feedback Vertex Set		
		Razgon, Thomassé	O(1.9977 n)	[14, 16]	DFVS
	MIS	Maximum Independent Set		
		Brute-Force	O(n 2 .2 n)		MISBF
		Moon, Moser	O(1.4423 n)	[12]	MISMM
		Fomin, Grandoni, Kratsch	O(1.2201 n)	[9]	MISFGK
	MVC	Minimum Vertex Cover		
		Brute-Force	O(n k)		MVCBF
		Niedermeier	O(1.47 k)	[13]	MVCDBS
		Niedermeier	O(1.33 k)	[13]	MVCN
		Buss, Goldsmith	-	[13, 5]	MVCBG
	SEP	Minimal ab-Separators		
		Berry, Bordat, Cogis	O(n 3)	[3]	SEP

This is a new (very old i.e.

2006) version of the popular Jakarta Commons-Collections project. It features support for Java 1.5 Generics. Generics introduce a whole new level of usability and type-safety to the Commons-Collections classes.

DirectedSparseGraph<String, Integer> g = new DirectedSparseGraph<String, Integer>(); g.addVertex("n1"); g.addVertex("n2"); g.addVertex("n3"); // Jung finds matching nodes even if pointers are different g.addEdge(1, new Pair<String>("n1", "n2")); System.out.println (g); // Jung adds automatically new nodes g.addEdge(2, new Pair<String>("n1", "n4")); System.out.println(g); g.removeVertex("n1"); System.out.println (g); } } Tutorial: console output Vertices:n1,n3,n2 Edges: 1[n1,n2] Vertices:n1,n4,n3,n2 Edges:1[n1,n2] 2[n1,n4] Vertices:n4,n3,n2 Edges:

Input/Output

A .net reader have been implemented in the class Import. The first line of the file is ignored (title), then each line is parsed to read vertices (name "label") until the string * edgeslist is found. Then, the edges/arcs are read until the end. The .net file instanciates Graph<String,Integer> which implies that vertices are String and edges/arcs are Integer. Exporting a graph to a file works the same way. The Export class can also write files using the graphviz format. v1,v7,v5,v6,v4,v9,v3,v8,v2,v10 Edges:1[v1,v7] 2[v1,v5] 3[v1,v6] 4[v1,v4] 5[v1,v9] 6[v1,v3] 7[v1,v8] 8[v1 ,v2] 9[v1,v10] 10[v7,v5] 11[v7,v6] 12[v7,v4] As a consequence, some operations have been implemented using factories. For example, the copyGraph method asks for a factory in order to copy any kind of graph, as shown in the example below. Furthermore, many algorithms need to manipulate deeply graphs by creating, deleting edges and/or vertices. These algorithms thus require the adequate factories to complete. System.out.println("----------------"); System.out.println("UNDIRECTED GRAPH"); System.out.println("----------------"); SparseGraph<String, Integer> gu = new SparseGraph<String, Integer>(); UndirectedGraphFactoryForStringInteger undfactory = new UndirectedGraphFactoryForStringInteger();

gu.addVertex("n1"); gu.addVertex("n2"); gu.addVertex("n3"); gu.addVertex("n4"); gu.addVertex("n5");

gu.addEdge(1, new Pair<String>("n1", "n2")); gu.addEdge(2, new Pair<String>("n1", "n4")); gu.addEdge(3, new Pair<String>("n2", "n3")); gu.addEdge(4, new Pair<String>("n3", "n5")); gu.addEdge(5, new Pair<String>("n5", "n2")); gu.addEdge(6, new Pair<String>("n5", "n3")); // useless / * This is an explicit call to the copyUndirectedSparseGraph method * (we know that the graph is undirected) * / System.out.println(gu); UndirectedSparseGraph<String, Integer> gu2 = (UndirectedSparseGraph<String, Integer>) Operations. copyUndirectedSparseGraph(gu); System.out.println(gu2); / * This is a general call to the copyGraph method that uses a factory * (we do not want to know if the graph is direted or not) * / UndirectedSparseGraph<String, Integer> gu3 = (UndirectedSparseGraph<String, Integer>) Operations. copyGraph(gu, undfactory); System.out.println(gu3); } } P. Berthomé, J.-F. Lalande, V. Levorato Using factories may cause issues when graphs are created manually because there may be conflicts between the generated vertices/edges and the already existing ones. The following example shows such a conflict. To solve the issue, the user should create any graph using the factory that is used later in the algorithms. SparseGraph<String, Integer> gu = new SparseGraph<String, Integer>(); gu.addVertex("v1"); gu.addVertex("v2"); gu.addVertex("v3"); gu.addVertex("v4"); gu.addVertex("v5"); gu.addEdge(1, new Pair<String>("v1", "v2")); gu.addEdge(2, new Pair<String>("v1", "v4")); gu.addEdge(3, new Pair<String>("v2", "v3")); gu.addEdge(4, new Pair<String>("v3", "v5")); gu.addEdge(5, new Pair<String>("v5", "v2")); gu.addEdge [START_REF] De Nooy | Exploratory social network analysis with Pajek, volume 40 of Structural analysis in the social sciences[END_REF]new Pair<String>("v5","v3 [START_REF] Bagrow | Portraits of Complex Networks[END_REF]); gu2.addEdge(e [START_REF] Bagrow | Portraits of Complex Networks[END_REF], v[0], v [START_REF] Berry | Generating all the minimal separators of a graph[END_REF]); gu2.addEdge(e [START_REF] Barabasi | Emergence of scaling in random networks[END_REF], v [START_REF] Bagrow | Portraits of Complex Networks[END_REF], v [START_REF] Barabasi | Emergence of scaling in random networks[END_REF]); gu2.addEdge(e [START_REF] Berry | Generating all the minimal separators of a graph[END_REF], v [START_REF] Barabasi | Emergence of scaling in random networks[END_REF], v [START_REF] Hans | An exact algorithm for graph coloring with polynomial memory[END_REF]); gu2.addEdge(e [START_REF] Hans | An exact algorithm for graph coloring with polynomial memory[END_REF], v [START_REF] Hans | An exact algorithm for graph coloring with polynomial memory[END_REF], v [START_REF] Barabasi | Emergence of scaling in random networks[END_REF]); gu2.addEdge(e [START_REF] Buss | Nondeterminism within P[END_REF], v [START_REF] Hans | An exact algorithm for graph coloring with polynomial memory[END_REF], v [START_REF] Berry | Generating all the minimal separators of a graph[END_REF] Vertices:v1,v7,v5,v6,v4,v9,v3,v8,v2 Edges: v5,v4] 10[v5,v9] 11[v5,v3] 12[v5,v8] 13[v5,v2] 14[v6,v9] 15[v6,v3] 17[v6,v2] 16[v6,v8] 19[v4,v8] 18[v4,v3] 21[v9,v3] 20[v4,v2] 23[v3,v2] 22[v3,v8] Chromatic number : 4 [[v5], [v7, v3], [v1, v4, v6], [v9, v2, v8]] Graph2: 90 vertices, 188 edges Greedy chromatic number: 6 P. Berthomé, J.-F. Lalande, V. Levorato

Using MinDFVS algorithms

After generating a graph using one of the factories, this example shows how to compute the minimum directed feedback vertex set. DirectedSparseGraph<String, Integer> g = new DirectedSparseGraph<String, Integer>(); g.addVertex("n1"); g.addVertex("n2"); g.addVertex("n3"); g.addVertex("n4"); g.addVertex("n5"); g.addEdge(1, new Pair<String>("n1", "n2")); g.addEdge(2, new Pair<String>("n1", "n4")); g.addEdge(3, new Pair<String>("n2", "n3")); g.addEdge(4, new Pair<String>("n3", "n5")); g.addEdge(5, new Pair<String>("n5", "n2")); g.addEdge(6, new Pair<String>("n5", "n3")); n1,n5,n4,n3,n2 Edges:1[n1,n2] 2[n1,n4] 3[n2,n3] 4[n3,n5] 5[n5,n2] 6[n5,n3 :1[n1,n2] 2[n1,n4] 3[n2,n3] 4[n3,n5] 5[n5,n2] 6[n1,n6] 7[n5,n6