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Abstract. We propose an evolution of the hyper-connection axiomatic
in order to improve the consistency of hyper-connected filters and to
simplify their design. Our idea relies on the principle that the decompo-
sition of an image into h-components must be necessary and sufficient.
We propose a set of three equivalent axioms to achieve this goal. We
show that an existing h-connection already fulfills these axioms and we
propose a new h-connection based on flat functions that also fulfills these
axioms. Finally we show that these new axioms bring several new inter-
esting properties that simplify the use of h-connections and guarantee
the consistency of h-connected filters as they ensure that: 1) every dele-
tion of image components will effectively modify the filtered image 2) a
deleted component can not re-appear in the filtered image.

1 Introduction

Connections in image processing describe how pixels can be grouped together
according to their spatial relationships and/or their gray level values. In recent
years, several works were devoted to the development of new theories of con-
nections among which hyper-connection (h-connection) [1–3] is a very promising
notion. Contrary to traditional connections (like set connections), h-connections
allow to decompose images into intersecting components.

In this paper, we investigate the problem of the consistency of connected fil-
ters (edge-preserving filters) based on h-connections. The usual way to produce a
h-connected filter on an image is based on the following three steps: 1) consider
the set of h-connected components of this image, 2) select a subset of theses
components and 3) reconstruct an image using the select h-components. In this
scheme, one expect that the result image contains the selected h-components and
only those ones. But in the current theory, we can easily show that the result will
contain the selected h-connected components but may also contain other com-
ponents. These unwanted components are in fact h-components of the original
image that have not been selected during the 2nd step (see proposition 2 further).
This undesirable effect can be circumvented by the addition of a new property
that relies on the idea that the decomposition of an image into h-components



must be necessary and sufficient to describe the image. We think that this prop-
erty is fundamental for image processing as it implies that the decomposition into
h-components completely describes the whole image (sufficient) and that none
of its components is useless (necessary). These requirements enforce the consis-
tency of the h-connected filters as they ensure that: 1) every deletion of image
components will effectively modify the filtered image 2) a deleted component
can not re-appear in the filtered image. From a more formal point of view, the
sufficiency and necessity conditions can be formulated like this: the supremum
of the h-components of an image must be equal to the whole image (sufficient)
and the supremum of a family strictly included in the family of h-components
must be strictly included in the image (necessary).

In this article we propose a set of three axioms to achieve this goal and we
show that they are indeed equivalent. We show that an existing h-connection
(the functions with a unique maximum) already fulfills these axioms and we
propose a new h-connection based on flat functions, that may be seen as a
generalization of the flat zones, that also fulfills these axioms. Finally we show
that these new axioms bring several new interesting properties that simplify the
use of h-connections and guarantee the consistency of h-connected filters.

This article is organized as follows: section 2 gives some preliminary defini-
tions, section 3 presents the theory of h-connections and establishes some new
results, section 4 presents our new theoretical developments and finally section 5
concludes this work.

2 Lattice and Set Connection

This section gives some preliminary definitions about lattices and set connec-
tions. In the sequel, sets and families are written in capital letters while elements
of a set are written in lower-case letters. The logical conjunction (respectively
disjunction) is noted ∧ (respectively ∨).

A lattice (L,≤,
∨

,
∧

) is composed of a non-empty set L with a partial order
≤ and two operators: a supremum

∨
and an infimum

∧
. In the following, we

consider only complete lattices where every non empty family A ⊆ L has a
supremum

∨
A = > and an infimum

∧
A = ⊥ in L. A set S ⊆ L such that

⊥ /∈ S is called a sup-generating family of L if every element of L can be written
as the supremum of elements of S (∀a ∈ L, ∃B ⊆ S, a =

∨
B). The elements

of S are called sup-generators. Important examples of lattices are:

– the extended real line R = R
⋃
{−∞,+∞}, which is a complete chain under

the usual order, infimum, and supremum. It is sup-generated by R.
– the set of all subsets of a set E (noted P (E)), which is a complete lattice

with the partial order defined by the inclusion relation, and the infimum and
supremum given by the set intersection and union. It is sup-generated by the
singletons of E.

– the set of functions from a set E into a lattice L (noted LE), which is a lattice
under the pointwise order ∀f, g ∈ LE , f ≤ g ⇔ ∀x ∈ E, f(x) ≤L g(x). The



infimum and supremum are similarly defined by a pointwise application of
the infimum

∧
L and supremum

∨
L of the underlying lattice. LE is sup-

generated by the pulses: the functions δt
x, ∀x ∈ E, ∀t ∈ L, t 6= ⊥ defined by

∀y ∈ E, δt
x(y) = t if x = y, ⊥ otherwise. The properties of LE depend of the

properties of the underlying lattice L.

A connection on P (E) is a family C ⊆ P (E) composed of the connected elements
of E. Formally we say that C is a connection if [4]:

1. {∅} ∈ C: the empty set is connected;
2. ∀x ∈ E, {x} ∈ C: the singletons (or points) are connected;
3. ∀A ⊆ C,

⋂
A 6= ∅ ⇒

⋃
A ∈ C, the union of intersecting connected elements

is connected.

3 Hyper-connection

We now present the theory of h-connections, we give the definition of a new
h-connection and we establish two new properties. Being given a lattice L with
a sup-generating family S, an h-connection C+ on L is a subset of L verifying
the following conditions [1]:

1. ⊥ ∈ C+: the least element is h-connected;
2. ∀s ∈ S, s ∈ C+: the points (i.e. the sup-generators) are h-connected;
3. ∀A ⊆ C, ./ A ⇒

∨
A ∈ C+, the supremum of overlapping h-connected

elements is h-connected.

where ./ is a predicate on P (L) called the overlap criterion. This predicate must
be decreasing: ∀A ⊆ P (L), 6./ A ⇒ ∀b ∈ L, 6./ {b}

⋃
A.

A simple example of h-connection is made of functions with a unique max-
imum [1, 2]. This h-connection is defined on the lattice of functions LE and it
is based on a primary set connection Co on E. Then, one says that a function
has a unique maximum if it is connected at all levels with respect to the pri-
mary set connections. More formally, we define the set of connected functions by:
C+

m =
{

f ∈ LE | ∀t ∈ L, f
¬t ∈ Co

}
, with f

¬t = {p ∈ E | t ≤ f(p)} the thresholding

of f at level t. The overlap criterion can be defined as: ∀ {fi} ⊆ LE , ./m {fi} ⇔
∀t ∈ L, Ut = ∅ or

⋂
Ut 6= ∅ with Ut =

{
fi
¬t | fi

¬t 6= ∅
}

.
Another new example of h-connection is given by the set of all flat functions.

Let LE be the image space, let Co be a primary set connection on P (E), the set
of flat functions is defined by:

C+
p =

{
fC,t ∈ LE |C ∈ Co, t ∈ L

}
(1)

with ∀x ∈ E, fC,t(x) = t if x ∈ C, ⊥ otherwise. Then the overlap criterion ./p

is defined by:

∀ {gi∈I} ⊆ C+
p , ./p ({gi}) =

{
true if U 6= ∅ and ∀i, j ∈ I,∀x ∈ U, gi(x) = gj(x)
false otherwise

(2)



with U =
⋂

i∈I supp (gi) and supp (gi) = {p ∈ E | gi(p) 6= ⊥} is the support of
the function gi. Flat functions are overlapping if their supports intersect and
if they have the same value on this intersection. Figure 1 shows examples of
overlapping and non-overlapping flat functions according to ./p. Contrary to
the usual definition of flat zones (the largest connected component such that
the function is constant), the h-connected flat zones can spread under other flat
zones that have a higher level. Several flat zones according to the usual definition
can then be represented by a unique h-connected flat function.

b

a dc fe

Fig. 1. The overlap criterion ./p. Functions a and b are not overlapping because they
don’t have the same value on their intersection. Functions c and d are not overlapping
because their supports do not intersect. Functions e and f overlap.

Proposition 1. (C+
p , ./p) is an h-connection of LE (see Figure 2).

Proof. We must show that the three axioms of the h-connection are verified by
(C+

p , ./p). First note that ./p is trivially decreasing.
1) By definition of set connections, ∅ ∈ Co, ∀t ∈ L, f∅,t = ⊥ ∈ C+

p .
2) By definition of set connections, the singletons of E belong to Co, thus,

∀x ∈ E, ∀t ∈ L, the f{x},t = δx,t ∈ C+
p are the pulses of LE which are a

sup-generating family S of LE .
3) Let {ai∈I} be a family of C+

p , let also U =
⋂

i∈I supp (ai), and assume that
U 6= ∅ and ∀i, j ∈ I, ∀x ∈ U, ai(x) = aj(x) then we must show that

∨
ai ∈ C+

p .
From property 3) of set connections, if U 6= ∅ then

⋃
i∈I supp (ai) = R ∈ Co, then

from the definition of C+
p and from the condition ∀i, j ∈ I, ∀x ∈ U, ai(x) = aj(x),

all ai have the same value t on their supports, thus,
∨

ai = fR,t ∈ C+
p .

Hyper-connected operators and openings H-operators [3] are applications
from L into P (L) which extract the h-components marked by a sup-generator.
Formally, being given a sup-generator s ∈ S, we define the h-operator by:

∀a ∈ L, γ∗s (a) =
{
h ∈ C+ | s ≤ h ≤ a,∀g ∈ C+, h ≤ g ≤ a ⇒ g = h

}
(3)

The h-components are maximal h-connected elements and the h-components of
a ∈ L are given by:

γ∗ (a) =
⋃
s∈S

γ∗s (a) (4)



The h-opening marked by s is the supremum of the h-components of a above s:

∀a ∈ L, γs (a) =
∨

γ∗s (a) (5)

The two following properties hold [2]:

1. a =
∨

γ∗ (a): an element is the supremum of its h-components;
2. ∀b, c ∈ γ∗ (a), b 6= c ⇒ b 6./ c: two h-components do not overlap.

Z-operators In [2], the authors propose the interesting notion of z-operators.
Let a ∈ L, the equivalence relation a∼ on S is defined by:

∀b, c ∈ S, b
a∼ c ⇔ γb (a) = γc (a) (6)

Then, the z-operator is defined as the supremum of an equivalence class of a∼:

∀s ∈ S, ζs (a) =
∨ {

b ∈ S | b a∼ s
}

(7)

Finally, the set of all z-zones of a is noted:

ζ (a) = {ζs (a) | ∀s ∈ S} (8)

The authors of [2] have chosen to base the z-operators on the h-connected open-
ings, but we can also define them in terms of h-connected operators leading to
a slightly different definition. Let a∼∗ be the equivalence relation defined by:

∀b, c ∈ S, b
a∼∗c ⇔ γ∗b (a) = γ∗c (a) (9)

The alternative z-operator∗ is the supremum of an equivalence class of a∼∗:

∀s ∈ S, ζ∗s (a) =
∨ {

b ∈ S | b a∼∗s
}

(10)

Generally, as h-components can be intersecting, ζs (a) 6= ζ∗s (a). Consider the set
E = {a, b, c} and the h-connection {∅, {a} , {b} , {c} , {ab} , {bc} , {ac}} on P (E)
with the overlap criterion defined as false (two elements are never overlapping,
this is a valid criterion since it is trivially decreasing). Then, the h-components
of E are {{ab} , {bc} , {ac}}. Thus, we have γa (E) = γb (E) = γc (E) = E and
ζa (E) = ζb (E) = ζc (E) = E. But γ∗a (E) = {{ab} , {ac}}, γ∗b (E) = {{ab} , {bc}}
and γ∗c (E) = {{ac} , {bc}} thus ζ∗a (E) = {a} 6= ζa (E). In section 4, we show
that under certain conditions, we have ∀a ∈ L,∀s ∈ S, ζs (a) = ζ∗s (a). Figure
2 shows an example of function decomposition with the z-operators and the
h-connection of functions having a unique maximum.

H-reconstruction Being given a marker m ∈ L, the hyper-reconstruction (h-
reconstruction) of a ∈ L marked by m is defined by [2]:

daem =
∨

s∈S,s≤m

γs (a) (11)
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Fig. 2. Example of decomposition of the function f using the h-connection of flat
functions. Figure (a) shows the function f , 8 pulses δ1, . . . , δ8 that are representative

of the 8 equivalence classes of the sup-generating family according to
f∼. In image (a),

each zone of f marked by the pulses δi, corresponds to an equivalence class and is thus
the result of a z-operator ζδi (f). Figures (b) to (i) show the results of the h-openings of
f marked by the δi. One can note that figures (c), (e), (g) and (i) are the h-components
of f while the results of the h-opening marked by δ1, δ3, δ5 and δ7 represented in figures
(b), (d), (f) and (h) are not h-connected.

f

m

f

m

f

m

a b c

Fig. 3. Example of h-reconstruction with the h-connection of flat functions. Figure (a)
shows the function f and the marker m. The figure (b) represents the result of the
h-reconstruction dfem of f by m proposed in [2]. Figure (c) represents the result dfeζ

m

of f by m with our definition.



We propose another definition based on the alternative z-operators:

daeζm =
∨

s∈S,s≤m

ζs (a) (12)

The latter is more flexible, the two approaches are compared in Figure 3.

New properties We establish here two properties that will help us in following
proofs. Let a ∈ L:

Proposition 2. ∀ {hi} ⊆ γ∗ (a), {hi} ⊆ γ∗ (
∨
{hi})

Proof. Let a in L, {hi} ⊆ γ∗ (a) and b =
∨
{hi}, for all i , we have hi ≤ b and

b ≤ a. Suppose that there exists some h ∈ C+ such that hi ≤ h ≤ b ≤ a. But
by definition of γ∗ (a) and as hi belongs to γ∗ (a), we have hi = h showing that
hi ∈ γ∗ (b). Thus we have {hi} ⊆ γ∗ (

∨
{hi}).

This property that was already known under a different form in [2] states that:
being given a family of h-components, the h-components of its supremum is a
superset of the given family. Those two families are generally not equal, take
for example the h-connection given in section 3; the h-components of the ele-
ment {abc} are {{ab} , {bc} , {ac}}. Now, consider the subfamily {{ab} , {bc}},
the supremum of this family is equal to {abc} and the h-components of this
supremum is a strict superset of the family.

Proposition 3. ∀s ∈ S, ∀h′ ∈ γ∗ (a), if s ≤ h′ and γs (a) = h ∈ C+ then
h = h′.

Proof. Let s in S, h ∈ C+ such that γs (a) = h and h′ ∈ γ∗ (a) such that s ≤ h′.
We have h′ ≤

∨
{g ∈ γ∗ (a) | s ≤ g} = h, so s ≤ h′ ≤ h ≤ a and by definition of

h-components h = h′.

If the h-opening of a marked by the sup-generator s is an h-component then
there is no other h-component of a above s.

In the following, we assume the existence of a complete lattice L with the
sup-generating family S and the h-connection C+ such that the number of h-
components of each element of L is finite.

4 Toward a new axiomatic

Despite the successful developments of h-connections in recent works [3, 5–8,
2], the theory of h-connections is still not satisfactory. All of the successes ob-
tained have been based on specific h-connections, whereas only a few general
properties have been established. This lack of theoretical results comes from the
very broad definition of h-connections. The third axiom (the overlap criterion)
is especially problematic. On one hand, this axiom is satisfactory because it for-
malizes the intuitive union based approach. On the other hand, the definition of



the overlap criterion is so wide that, in practice, this third axiom does not bring
any meaningful property to the h-connection (for example, consider the overlap
criterion which is always false, and the third axiom is never applicable). One
can also observe that in all the h-connections used in practice [1, 2, 7, 5, 6] the
overlap criterion is defined as a tautology such that it correctly fits the set of
connected elements. For example, instead of a constantly false overlap criterion,
one can also define the following less trivial valid overlap tautologic criterion:
∀C+ ∈ L, ∀A ⊆ C+, ./ A ⇔ (∀B ⊆ A,

∨
B ∈ C+).

To harden the definition of h-connections, we propose the fundamental prop-
erty that an h-connection must provide for each element a decomposition in
h-components that is necessary and sufficient. With the current theory it is
clear that the decomposition in h-components is sufficient in the sense that an
element is equal to the supremum of its h-components. But in general this de-
composition is not necessary in the sense that only a subset of the h-components
of an element can be necessary to retrieve the element by supremum.

More formally, one can define the following properties ∀a ∈ L:

P-1 – ∀h′ ∈ γ∗ (a) ,
∨
{h ∈ γ∗ (a) |h 6= h′} <

∨
γ∗ (a): all h-components of an

element are necessary to describe the element.
P-2 – ∀ {hi} ⊆ γ∗ (a) , ∀h ∈ γ∗ (a) , h ≤

∨
{hi} ⇒ h ∈ {hi}: an h-component

cannot be covered by other h-components.
P-3 – ∀h ∈ γ∗ (a) , ∃s ∈ S, γ∗s (a) = h: each h-component of an element can be

individually retrieved through an h-opening.

Then, the following proposition holds:

Proposition 4. Properties P-1, P-2, and P-3 are equivalent. In the following,
we will say that a connection is accessible if the previous properties hold.

Proof. We first show P-2⇒P-1. Let {hi} ⊆ γ∗ (a), and assume that ∃h′ ∈ {hi}
such that

∨
{h ∈ γ∗ (a) |h 6= h′} =

∨
γ∗ (a). Let F =

∨
{h ∈ γ∗ (a) |h 6= h′},

one have h′ ≤
∨

γ∗ (a) =
∨

F but that contradicts P-2 since h′ /∈ F .
Then, we show P-1⇒P-2: let {hi} ⊂ γ∗ (a) and assume that there exists

h ∈ γ∗ (a) such that h /∈ {hi} and h ≤
∨
{hi}. Let b =

∨
{hi} =

∨
({hi} ∪ {h}),

we have by proposition 2 that h ∈ γ∗ (b) and that {hi} ⊆ γ∗ (b). And then we
have

∨
{h′ ∈ γ∗ (b) |h′ 6= h} =

∨
{hi} = b which contradicts P-1.

Now P-3⇒P-2: let {hi} ⊆ γ∗ (a) and h ∈ γ∗ (a). Assume that h ≤
∨
{hi}

then, by P-3, there exists s ∈ S such that γs (a) = h and s ≤ h ≤
∨
{hi}. By

assumption, the family γ∗ (a) is finite, so there exists j such that s ≤ hj and
from proposition 3 we can say that h = hj and thus h belongs to {hi}.

And finally, P-1⇒P-3: let h ∈ γ∗ (a), P-1 implies that
∨

B < a with B =
{h′ ∈ γ∗ (a) |h′ 6= h}. Now, consider the smallest family {si} ⊆ S such that∨

(B ∪ {si}) = a. Let s be an element of {si}, we have for all h′ ∈ B, s � h′

and s ≤ h thus γs (a) = h.

P-1 and P-2 are two direct formulations of the ”necessity” condition, the first one
from a global point of view, the second from a local point of view. P-3 shows that
this condition naturally comes to the notion of special groups of sup-generators



that give access to a unique h-component through an h-opening. From the image
processing point of view, this means that every h-component of an image can be
selected individually with a simple opening.

Proposition 5. The h-connection (C+
m, ./m) of functions with a unique maxi-

mum is accessible.

Proof. We show that C+
m verifies the property P-3. Let a ∈ LE , h ∈ γ∗ (a) and

x ∈ E such that h(x) = maxy∈E h(y) (h(x) is in the maximum of h). Let the
pulse δx,h(x) and we show that γ∗δx,h(x)

(a) = {h}.
The inclusion {h} ⊆ γ∗δx,h(x)

(a) is direct as δx,h(x) ≤ h and h ∈ γ∗ (a).
We now show the inverse inclusion γ∗δx,h(x)

(a) ⊆ {h}. Let h′ ∈ γ∗δx,h(x)
(a).

We start by showing that ./m ({h, h′}) is true. Let t ∈ L, we have: if t ≤ h(x)
then h

¬t 6= ∅ and h
¬t′ 6= ∅ (as δx,h(x) ≤ h′), else if t > h(x) then h

¬t = ∅ (h(x)
is the maximal height of h). And yet ∀t ∈ L, t ≤ h(x), we have x ∈ h

¬t∩ h′
¬t 6=

∅. So ./m ({h, h′}) is true. In consequence,
∨
{h, h′} ∈ C+

m, but h, h′ ≤ a so∨
{h, h′} ≤ a, and as h and h′ are h-connected components of a, we have either

h = h′ or h and h′ are not comparable. Assume that h and h′ are not comparable,
then h <

∨
{h, h′}, h′ <

∨
{h, h′}, and as

∨
{h, h′} ≤ a, h and h′ cannot be

h-connected components of a. Thus we have h = h′ and γ∗δx,h(x)
(a) ⊆ {h}.

Thus, we have the double inclusion and γ∗δx,h(x)
(a) = {h}. Every h-connected

component of a can be obtained by an h-opening. The h-connection C+
m verifies

property P-3 and is accessible.

Proposition 6. The h-connection (C+
p , ./p) of flat functions is accessible.

Proof. The demonstration is similar to the previous one using the opening
γ∗δx,h(x)

(a) = {h} with x ∈ E such that h(x) = a(y).

Accessible h-connections also have stronger properties:

Proposition 7. If C+ is accessible, being given a family of h-components, the
h-components of its supremum is the same family: ∀ {hi} ⊆ γ∗ (a), {hi} =
γ∗ (

∨
{hi})

Proof. We already have the first inclusion {hi} ⊆ γ∗ (
∨
{hi}) by proposition 2.

The second inclusion γ∗ (
∨
{hi}) ⊆ {hi} is directly given by P-2: let h ∈

γ∗ (
∨
{hi}), as we have h ≤

∨
{hi}, P-2 says that h belongs to {hi}. Finally, the

double inclusion proves that {hi} = γ∗ (
∨
{hi}).

Compared to proposition 2, this version is harder and it ensures that by selecting
a family of h-components, its reconstruction by the supremum operator will not
introduce new h-components. From the image processing point of view, this
ensures that, when performing an h-connected filtering, a deleted h-component
cannot re-appear after the reconstruction of the selected h-components. Another
interesting property of accessible h-connections concerns z-operators:



Proposition 8. If C+ is accessible, the equivalence relations a∼ and a∼∗ are
equivalent: ∀s1, s2 ∈ S,

(
s1

a∼ s2

)
⇔

(
s1

a∼∗s2

)
.

Proof. First, we show that ∀s1, s2 ∈ S, s1
a∼∗s2 ⇒ s1

a∼ s2, this part does not
need the accessibility property. We have:

s1
a∼∗s2 ⇔ γ∗s1

(a) = γ∗s2
(a) ⇒

∨
γ∗s1

(a) =
∨

γ∗s2
(a) ⇔ γs1 (a) = γs2 (a)

⇔ s1
a∼ s2

The reverse implication is given by: assume that we have s1
a∼ s2, which is

equivalent to γs1 (a) = γs2 (a). Let h ∈ γ∗s1
(a), we have h ≤ γs1 (a) =

∨
γ∗s1

(a) =∨
γ∗s2

(a). Then, P-2 implies that h ∈ γ∗s2
(a) and thus γ∗s1

(a) ⊆ γ∗s2
(a). The same

argument is used to prove that γ∗s2
(a) ⊆ γ∗s1

(a) showing that γ∗s2
(a) = γ∗s1

(a)
which is equivalent to s1

a∼∗s2.

This property removes the necessity of operating a choice between the two dis-
tinct approaches when dealing with z-operators. Thus it simplifies the process
of creating image filters based on z-zones.

5 Conclusion

We have proposed an evolution of the notion of h-connection motivated by the
desirable property that the decomposition of an image into connected compo-
nents should be necessary and sufficient to describe this image. Due to this
evolution, based on three equivalent axioms, we have set out several new impor-
tant properties for image processing which ensure the consistency and simplify
the use of h-connected filters. This theoretical work offers a strong basis for the
development of hierarchical representations based on h-connections [9].
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