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Abstract. In order to face the various needs of users, user-driven seg-
mentation methods are expected to provide more relevant results than
fully automatic approaches. Within Mathematical Morphology, several
user-driven approaches have been proposed, mostly relying on the wa-
tershed transform. Nevertheless, Soille (IEEE TPAMI, 2008) has re-
cently suggested another solution by gathering puzzle pieces computed
as Quasi-Flat Zones (QFZ) of an image. In this paper, we study more
deeply this user-driven segmentation scheme in the context of video data.
Thus we also introduce the concept of Spatio-Temporal QFZ and propose
several methods for extracting such zones from a video sequence.
Key words: Quasi-flat zones, video segmentation, segmentation person-
alization

1 Introduction

Following the increase of textual and then image data in personal databases and
Web repositories, we are currently facing the same evolution with video data.
Many video processing schemes or related use cases require a prior segmentation
to get the objects-of-interest to be further processed. However, the segmentation
of a given video is often not unique and depends on user needs. Thus it is
necessary to rely on a segmentation method able to provide a personalized result.

Video segmentation methods designed within the framework of Mathemat-
ical Morphology may be clustered in two categories: automatic methods [1, 2]
which do not require any user interaction (apart from parameter settings) and
interactive methods [3] (but also video extension of [4]) where the user has to
draw some markers over objects-of-interest in order to drive the segmentation
process. Results returned by automatic methods are then not adapted to user
needs and often face the problem of over-segmentation. Interactive methods are
more time-consuming but provide a personalized result. Another solution to solve
the problem of segmentation personalization is to provide an over-segmentation
which will then be reduced by the user through region merging in order him
to obtain the expected segmentation. Image over-segmentation may be achieved
using flat zones [5] but it then results in an extreme over-segmentation. Quasi-
Flat Zones have been introduced in order to reduce this over-segmentation while



keeping interesting properties of flat zones. QFZ are based on a less restrictive
criteria to build the regions, thus leading to larger regions, while keeping a low
computational cost and region borders able to represent most of the frontiers
between the objects-of-interest. Besides, Soille [6] notices that QFZ are not re-
ally segmentation methods but rather methods which split an image into puzzle
pieces. Identifying the QFZ is then a preprocessing step in an image segmen-
tation process based on merging of puzzle pieces. This merging may be driven
by the user, thus solving the problem of segmentation personalization. Let us
observe however that there is no definition of QFZ for video sequences yet.

In this article, we recall the QFZ definition in the framework of logical pred-
icate connectivity introduced by Soille [7, 8]. We then extend this definition to
video sequences, and study how it can be applied to video segmentation personal-
ization. Finally we give some conclusions and indicate future research directions.

2 QFZ-based image segmentation

2.1 Logical Predicate Connectivity

QFZ rely on the concept of α-connected path. A path is said α-connected if all
paths between any pair of its pixels are Lipschitz-continuous, thus leading to the
following definition.

A path P, considering a neighbourhood N , and composed of n pixels (p0, p1, ..., pn−1)
is an α-connected path (α-P) if and only if:

∀i ∈ [0, n− 2], pi ∈ N(pi+1) and |f(pi)− f(pi+1)| ≤ α (1)

This notion let us define the most simple QFZ, i.e., α-connected zones [9]
which will be noted here α-CC. An α-CC is defined as:

α-CC(p) = {p} ∪ {Q | ∀q ∈ Q,α-P(p, q) 6= ∅} (2)

The α-CC of a pixel p is then the set of pixels to which it is linked through an
α-connected path. Let us observe that flat zones are a particular case of α-CC
with α = 0. The α-CC have the following hierarchical property which will be
useful later in this paper:

∀α′ ≤ α, α′-CC(p) ⊆ α-CC(p) (3)

Segmenting an image into α-CC results in an under-segmentation. If α is
set too high, it will lead to a chaining effect, which may result on a single QFZ
for the whole image (this depends of the image under consideration and the α
value of course). In order to counter this problem, new QFZ definitions based
on α-CC have been elaborated. In a goal of unification of existing works, Soille
and Grazzini [7, 8] have proposed a theoretical framework called logical predicate
connectivity. We recall that a logical predicate P return true when the parameter
satisfies the predicate, false otherwise. They define a new kind of QFZ (noted
(P1, ..., Pn)-CC here) which lead to QFZ satisfying all the n logical predicates.



Various predicates may be involved, for instance: global range predicate which
checks if the difference between minimal and maximal values of pixels within a
QFZ is below a threshold (ω); connectivity index which is the ratio between the
number of 2-pixels α-connected paths and the number of 2-pixels paths within
a QFZ. This predicate is verified if the index is higher than a threshold (β).
The (P1, ..., Pn)-CC thus consists in seeking, for each pixel p, the largest α-CC
satisfying all the predicates. Thanks to the property 3, we know that if α′ < α
then α′-CC(p) is less or equal to α-CC(p). When predicates are not verified for
a given value of α, we can use this property to decide to decrement α in order
to check if the predicates are verified for a lower value and to loop until finding
the maximal value of α for which all the predicates are verified:

(P1, ..., Pn)-CC(p) =∨ {
α′-CC(p)

∣∣∣∣∣ ∀k ∈ {1, ..., n} Pk (α′-CC(p)) = true

∀α” ≤ α′,∀q ∈ α′-CC(p), Pk (α”-CC(q)) = true

}
(4)

This theoretical framework is adapted to methods ensuring the unicity prop-
erty. Indeed we are seeking the largest α′-CC verifying all logical predicates. It
is thus not possible to consider methods which do not provide a unique QFZ
segmentation. More than only a framework to unify existing definitions, the
(P1, ..., Pn)-CC also allows to elaborate new QFZ definitions. Three predicates
are currently used within the QFZ: local range (α), global range (ω) and con-
nectivity index (β). In the framework introduced by Soille and Grazzini, it is
possible to include predicates related to other features (perimeter, area, etc.)
but also to more complex descriptors (texture, gradient, etc.) as long as these
predicates fulfill the condition defined in Eq. (4).

Some clues to using QFZ in multivariate images have been given by Soille
[6]: α is assumed to be a vector with the same value in all components. Then, α
may be easily ordered through a total ordering (decrementing α = (3, 3, 3) gives
α = (2, 2, 2)). Global range predicate is processed similarly, and is true only if it
is verified marginally for all bands.

In the sequel of this article, we will denote by QFZ the colour QFZ built
using (P1, ..., Pn)-CC with only the global range predicate and a given α.

2.2 Filtering

QFZ suffer from the transition region problem. Transition regions are regions
between two objects where a staircase phenomenon occurs on edge pixel values.
This is due to the image discretization process and the subsequent value inter-
polation. This artefact leads to an over-segmentation near to the edges which
will then be made of tiny QFZ. Some solutions have been proposed to solve this
problem. Soille and Grazzini [8] define transition regions as QFZ containing only
transition pixels. Every pixel which is not a local extremum is considered as a
transition pixel. All QFZ corresponding to transition regions are removed, and



remaining QFZ are enlarged using a region growing algorithm [10]. After the
removal of these regions, the amount of flat zones is reduced significantly.

The solution proposed by Soille and Grazzini does not depend of any pa-
rameter and relies on a precise definition of a transition region. But from our
experiments, we have observed that many regions of a few pixels remains after
applying their strategy. These regions do not fit with the definition of transition
regions, but are still sources of a high over-segmentation. Thus, a more efficient
and robust filtering method is still lacking.

Other authors have proposed QFZ filtering methods using a QFZ minimal
area thresholding step. Angulo and Serra [11] suggest to merge QFZ character-
ized by an area lower than a given threshold with the most similar neighbouring
QFZ. With this method, no more transition region is present in the final seg-
mentation. Zanoguera [12] removes QFZ with an area below a given threshould
(thus including transition regions) before applying a Watershed transform to
enlarge remaining QFZ in areas where small QFZ have been removed. Soille
[13] proposes a filtering method based on an iterative increase of the minimal
area, followed at each iteration by both a region growing algorithm relying on
QFZ with area greater or equal to minimal area and an image simplification
algorithm. The simplified image will then be segmented into QFZ at the next
iteration. This process is repeated until filtered QFZ become stable. Following
some ideas introduced in these methods, we have also design a filtering method.
It relies on the Seeded Region Growing (SRG) algorithm [10] but we apply it
on the QFZ rather than on the pixels. To do so, we consider a minimal area
threshold similarly to existing approaches. We set all QFZ with an area greater
or equal to this threshold as seeds for the SRG algorithm which is applied on the
region adjacency graph. We thus obtain a much more reduced over-segmentation
compared to the result obtained without filtering. The highest the area threshold
is, the more reduced the over-segmentation is. But in the same time, it is much
more probable to obtain an under-segmentation of some objects-of-interest. Our
region growing being applied on QFZ rather than on pixels, the proposed method
requires a low computational cost.

3 Extension to video data

3.1 Limits of a 3D straight extension

The most direct extension of QFZ to video sequences is to consider a video
sequence as a 3-D spatio-temporal cube. We can reuse the existing definitions,
thus changing only the neighbourhood considered (spatio-temporal rather than
purely spatial).

Computing the (P1, ..., Pn)-CC in 3D, we obtain a higher spatial overseg-
mentation than in 2D. On the carphone sample (Fig. 2.a) for α = ω = 20 (we
will use these values in the sequel), we obtain on average 4441CC per frame
in 2D vs. 6779CC per frame in 3D (55040CC on the full sample). Indeed, by
analysing the video sequences in 3D, the considered neighborhood contains more



pixels and therefore an α-CC contains more pixels (see chaining effect discussed
above). This naturally increases the risk of violating one of the considered pred-
icates. Thus, the largest α-CC satisfying all predicates is often produced with a
small α value. This leads to tiny QFZ of only a few pixels, while such QFZ are
unusable for video segmentation.

3.2 Sequential processing of spatial and temporal dimensions

As 3D approach is not suitable for video processing, we consider rather the 2D+t
approach. In this approach, we successively (and no more jointly) consider the
spatial and temporal dimensions, as illustrated in Fig. 1. We discuss here first
the spatial to temporal (2D + t) approach and then the temporal to spatial
(t + 2D) approach.

QFZ production on spatial (resp. 
temporal) dimensions

Add temporal (resp. spatial) 
connexity to QFZ nodes

QFZ production according to graph edges 
and merging of same QFZ's nodes

Map the resulting graph on the 
video to obtain QFZ

Fig. 1. Video Quasi-Flat Zones production by separated processing of spatial and tem-
poral dimensions.

With the spatial to temporal approach, QFZ are first built on each frame
independently. Then they are considered as nodes of a graph which are valued
(here we consider the QFZ mean value). Edges are then introduced to tempo-
rally connect QFZ from successive frames and overlapping spatial coordinates.
Each edge is valued by the difference between related node values. The new QFZ
are the largest connected components of nodes whose connecting edges have a
value less or equal to α and which do not violate any predicate. We observe that
(P1, ..., Pn)-CC produced significantly fewer regions in 2D + t (23926CC), thus
reducing the extreme segmentation we noted in 3D (55040CC). This can be ex-
plained by the distinct computing of the two dimensions (spatial and temporal).
In 2D+ t the first processing (spatial only) produces spatially wider QFZ reduc-
ing the spatial over-segmentation. But, then the second processing (temporal)
introduces temporal over-segmentation. This is due to the predicate constraints:
the regions being spatially more extensive, they are less homogeneous and there-



fore may have significantly different means which will violate a predicate during
the temporal computing of (P1, ..., Pn)-CC.

With the temporal to spatial approach, QFZ are first built for each spatial
coordinate independently, according to the temporal dimension. After this tem-
poral processing, we therefore obtained an extreme spatial over-segmentation
since, for each frame, each pixel belongs to a different QFZ. Similarly to the
2D+ t case, we consider QFZ as nodes of a graph and apply the same process as
previously, but considering here the spatial dimension instead of the temporal
one. We note that (P1, ..., Pn)-CC produces fewer regions (16, 830CC) than the
2D + t approach due to a smaller temporal over-segmentation.

Let us observe that the (P1, ..., Pn)-CC highlights an interesting phenomenon.
Due to their different order when processing spatial and temporal dimensions,
the approaches 2D+ t and t+2D induce different over-segmentations: a reduced
spatial but high temporal one for the former, and a higher spatial but reduced
temporal one for the latter. Nevertheless, both approaches provide better re-
sults than the 3D approach. Selecting between 2D + t and t + 2D depends on
the video under consideration. It may seem better to use the first approach with
short videos of high-resolution, and to use the second for long videos of lower-
resolution. Moreover, let us note that the spatial and the temporal processing are
both relying on (P1, ..., Pn)-CC, which guarantees the uniqueness of the result.
Thus they also ensure this fundamental property.

3.3 Filtering

The filtering methods presented in section 2.2 can be extended to video data. As
far as our method based on a minimum area threshold is concerned, adaptation
depends on the chosen approach. For the 3D approach, we could trivially extend
the method and no longer consider a minimum area but a minimum volume.
However, if considering a minimum volume would be effective in the context
of truly three-dimensional images, it is not suitable for video that are spatio-
temporal and not purely spatial. Indeed, assuming a minimum volume, a QFZ
having few pixels in a spatial area, but on many frames, would be kept despite
the fact it is probably not an object but a part of an object. Thus, we use a
threshold of minimum mean area, the mean area being computed as follows:

Amean =
# QFZ pixels

# frames where the QFZ is present
(5)

For the 2D + t approach, we may also use this definition, but we rather use
the filtering after the 2D processing. So we apply the filtering area not at the end
of the process, but rather after the first stage (i.e., prior to temporal processing).
Doing so allows us to have fewer QFZ to be processed during the temporal step.

We could do the same for the t + 2D approach by filtering QFZ produced
by the temporal processing. But setting a threshold on the minimum number of
frames in which a pixel must belong to the same QFZ would have been tricky
and very probably without any sense. Therefore we filter the QFZ in the same
manner as for the 3D approach, once the QFZ building is achieved.



Similarly to the image filtering, the oversegmentation is here strongly re-
duced. Indeed, setting the threshold of minimum mean area to 10 pixels, we
get 980CC for 2D + t and 319CC for t + 2D. In addition, we get few or no
under-segmentation, which makes obtained QFZ relevant for segmentation.

Filtering by minimum area threshold is very effective in reducing QFZ over-
segmentation in video sequences. We obtain a very substantial over-segmentation
reduction while maintaining the QFZ quality. By combining the definitions of
video QFZ and the filtering area, we obtain an effective method of video pre-
segmentation. This pre-segmentation can be used by QFZ merging methods to
obtain user-personnalized segmentation.

4 User-driven video segmentation

Encountered in image segmentation, over-segmentation is even more present
when dealing with video segmentation. For instance, when processing the sample
carphone (Fig. 2.a) with the Predictive Watershed [2], we obtained about 2000
regions. This problem happens obviously also with segmentation by quasi-flat
zones: segmenting the same sequence by (P1, ..., Pn)-CC t+2D, with α = ω = 20
and a minimal area of 10 also provides an over-segmentation (319CC). Moreover,
the resulting segmentation is not personnalized. This drawback may be solved by
relying on user interaction. Such an interaction aims the user to both customize
the segmentation and reduce over-segmentation. User-driven segmentation is a
well-known principle in Mathematical Morphology, and has been recently used
by the watershed from propagated markers method [3]. In the context of QFZ,
as indicated by Soille [6], it may correspond to the assembling of puzzle pieces.

We suggest a new principle for user-interactivity in video segmentation by
defining a QFZ segmentation guided by markers. First, a base QFZ segmenta-
tion is produced. Then, the user draws markers on the video data. Thus, he
customizes the segmentation by indicating his objects-of-interest. QFZ beneath
the markers are considered as the seeds of a Seeded Region Growing algorithm
[10]. The region growing will then merge the different QFZ according to their
distance in terms of color, which can be related to an α parameter in the QFZ
context. Since the user only see original video (and not QFZ), it is possible that
several markers are found over the same QFZ. In this case, we consider that
there are two possibilities: either the marker has been ill-drawed or the QFZ
is ill-segmented. Here, we assume that the user has well-drawn the marker and
that the QFZ has to be corrected. To do so, this QFZ is segmented using Seeded
Region Growing with the user’s markers as seeds. Thus, ill-segmented QFZ is
corrected: it both improves the accuracy of the initial over-segmentation and
solve the problem of having multiple markers over the same QFZ.

In order to evaluate the relevance of our proposal, we conducted some ex-
periments on the carphone sequence. We compared the (P1, ..., Pn)-CC 2D + t
and t + 2D methods to the Marker-Based Watershed known as the standard in-
teractive segmentation method of Mathematical Morphology. We also compared
interactive QFZ to the Seeded Region Growing involved in our method, in order



Method Parameters Precision
(a) (b) (c)

(P1, ..., Pn)-CC 2D + t α = ω = 20 0.94 1.10 0.81
(P1, ..., Pn)-CC 2D + t α = ω = 30 1.00 0.77 0.72
(P1, ..., Pn)-CC t + 2D α = ω = 20 2.92 0.92 1.45
(P1, ..., Pn)-CC t + 2D α = ω = 30 6.25 0.34 0.84
Marker-Based Watershed 7.77 2.72 1.76
Seeded Region Growing 8.73 3.23 2.62

Table 1. Comparison of frontier precision with different markers (a) a few points on
the median frame, b) heavy markers one the median frame, c) heavy markers on three
frames)

to show how our method benefits from such algorithm and what it offers com-
pared to a direct processing of Seeded Region Growing. In this perspective, we
used three different settings of markers (Fig. 2). The results of these experiments
are presented in Tab. 1. We denote here by precision the average spatial distance
(in pixels) between the frontiers of the resulting segmentation and those of the
reference segmentation. We used two sets of parameters (α, ω) for (P1, ..., Pn)-
CC to show that our method is robust to parameter settings (which have be-
sides not been optimized). Let us observe that, whatever the markers used, our
method always provides better results than the other two approaches. However,
like the other two interactive methods, the interactive QFZ segmentation is very
sensitive to the markers given by the user.

a b c

d e f

Fig. 2. Markers on sequence carphone (a) frame 7 of extract from carphone sequence,
b) few points on frame 7, c) heavy markers on frame 7, def) heavy markers on frame
3,7 and 10)

We also compared our method to a more recent method, the Watershed from
Propagated Markers [3], for which we used the binding of markers and the region-



based motion propagation. As the objective here was to compare our method
to a recent interactive approach in similar conditions (here the time required
for the user), we did not allow the marker correction by the user and marked
only the first frame. The results are given in Tab. 2 and show that marker-based
(P1, ..., Pn)-CC in these conditions is more accurate than the Watershed from
Propagated Markers.

Method Parameters Precision

(P1, ..., Pn)-CC 2D + t α = ω = 20 0.81
(P1, ..., Pn)-CC 2D + t α = ω = 30 0.73
(P1, ..., Pn)-CC t + 2D α = ω = 20 0.93
(P1, ..., Pn)-CC t + 2D α = ω = 30 0.71
Watershed From Propagated Markers 2.02

Table 2. Comparison of frontier precision between (P1, ..., Pn)-CC and watershed from
propagated markers

5 Conclusion

In this paper, we proposed both an extension of QFZ to video sequences and an
interactive method for assembling these QFZ in order to build a user-personnalized
segmentation. The separate processing of spatial and temporal dimensions im-
proves the segmentation compared to a straight three-dimensional processing of
video data. The proposed method for assembling QFZ according to the user’s
needs is intuitive and provides good results compared to other existing methods.

Our future work will focus on improving the markers. Indeed, the video is
currently only marked before the processing. However, it seems relevant to be
able to correct markers (like what is done in [3]) in order to iteratively improve
the segmentation. Indeed the eventual correction of some QFZ will improve the
over-segmentation at each iteration. Moreover, most of the computational cost of
our approach is linked to the initial QFZ segmentation: the marker-based QFZ
merging is very efficient because it is performed on the QFZ adjacency graph,
unlike other interactive segmentation methods that restart all the segmentation
process when modifying markers (cf. Marker-based Watershed and Seeded Re-
gion Growing). We also consider to apply video QFZ on other data spaces, such
as optical flow values instead of pixel values. Moreover, we plan to improve the
QFZ merging process by using other features than only the mean color.

Finally, as our method is based on a graph reduction process, we would like
to design a machine learning scheme to understand how to perform segmentation
from this reduction process. The idea is here to perform first a learning of some
videos marked by the user to then enable the system to segment unmarked, but
simply over-segmented with QFZ, video sequences.
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