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We designed high-efficiency error correcting codes allowing to extract an errorless secret key in a
Continuous-Variable Quantum Key Distribution (CVQKD) protocol using a Gaussian modulation
of coherent states and a homodyne detection. These codes are available for a wide range of signal-
to-noise ratios on an Additive White Gaussian Noise Channel (AWGNC) with a binary modulation
and can be combined with a multidimensional reconciliation method proven secure against arbitrary
collective attacks. This improved reconciliation procedure considerably extends the secure range of
CVQKD with a Gaussian modulation, giving a secret key rate of about 10™3 bit per pulse at a
distance of 120 km for reasonable physical parameters.

I. INTRODUCTION

Quantum Key Distribution (QKD) [1] is the first real-
life application of quantum information. It allows two
distant parties, Alice and Bob, to establish an uncondi-
tional [2] secret key through the exchange of quantum
states even in the presence of an eavesdropper, with the
help of a classical auxiliary authenticated communication
channel [3]. The first QKD vendors, ID Quantique [4] and
MagiQ Technologies [5], developed systems based on en-
coding the information on discrete variables such as the
phase or the polarization of single photons. The limita-
tion of these technologies is mainly due to the speed and
the efficiency of the single photon detectors. Recently
created companies, Quintessence Labs [6] and SeQureNet
[7], are developing a new generation of systems that allow
to get rid of these limitations by encoding the information
on continuous variables (CV) such as the quadratures of
coherent states.

In the standard protocol [8], one needs to prepare
Gaussian modulated coherent states and to measure
them with a homodyne or a heterodyne [9] detection
which requires only standard telecommunication parts.
With the current proof techniques, using a Gaussian
modulation is optimal as regards the theoretical secret
key rate. In particular, security against collective attacks
is well understood [10, 11], even in the finite-size regime
[12], and collective attacks are known to be asymptoti-
cally optimal [13]. However, since the efficiency of the
current reconciliation protocols for Gaussian variables
drops dramatically in the regime of low signal-to-noise
ratios (SNRs), new protocols using specific non-Gaussian
modulations, either discrete [14] or continuous [15], have
been developed. The idea of these modulations is that
they are compatible with high-performance error correc-
tion, making possible for the protocol parties to extract
efficiently the information available in their raw data.
This is in strong contrast with the Gaussian modula-

tion for which no efficient reconciliation procedure was
available until now. In theory, protocols with a non-
Gaussian modulation therefore increase the achievable
secure distance of CVQKD. They have, however, not yet
been demonstrated experimentally. Indeed, for long dis-
tances, that is low transmission of the quantum chan-
nel, the optimal modulation variance is typically lower
for non-Gaussian modulations (in particular for the four-
state protocol [14]) than for a Gaussian modulation. This
makes the design a stable continuous-variable system able
to operate at large distances difficult. Even if this effect
is mitigated for the eight-dimension protocol [15], the
modulation allowing for the largest variance remains the
Gaussian one [8].

In this paper, we exhibit high-efficiency error correct-
ing codes which can be combined with a multidimen-
sional reconciliation scheme [16]. This allows, for the
first time, to distill a secret key from a CVQKD protocol
with a Gaussian modulation in the regime of very low
SNR, and paves the way for future experimental demon-
strations of CVQKD over much larger distances than the
current record of 30 km [17, 18].

In Section II, we explain how the problem of recon-
ciling Gaussian variables can be translated into a chan-
nel coding problem on the Binary Input Additive White
Gaussian Noise Channel (BIAWGNC), for which we de-
scribe very low rate error correcting codes in Section III.
Combining these tools, we are able to efficiently recon-
cile data at low SNRs. Finally, we show in Section IV
the consequences of these new developments on the per-
formance of the Gaussian protocol over long distances.

II. THEORY OF RECONCILIATION OF
GAUSSIAN VARIABLES

The data reconciliation step is critical in CVQKD:
the distance of the chosen error-correction scheme to the



Shannon bound affects both the key rate and the range
of the protocol. Of considerable importance is the prob-
lem of the reconciliation of correlated Gaussian variables.
This is indeed the scenario considered in the GG02 proto-
col [8] where Alice’s coherent states are modulated with a
bivariate Gaussian distribution in phase space. Different
approaches have been explored to increase the reconcili-
ation efficiency for a Gaussian modulation, especially in
the regime of low SNR.

A first approach called Slice Reconciliation was pro-
posed in [19, 20] and implemented in [17, 18] but the effi-
ciency of this method currently limits the protocol range
to about 30 km. Another method is to encode the in-
formation on the sign of the Gaussian modulated value.
However, since we deal with centered Gaussian variables,
the uncertainty on the sign increases at low SNRs be-
cause most values have small amplitude. Another class
of protocols use post-selection [21-24] by working only
with high-amplitude data but the security is not proven
against general collective attacks.

In [16], the idea of reducing the Gaussian variables
reconciliation problem to the channel coding problem is
introduced. One first uses a d-dimensional rotation to
build a virtual channel close to the BIAWGNC from the
physical Gaussian channel. This means that d consecu-
tive instances of the physical channel are mapped to d
approximate copies of a virtual BIAWGN channel, which
are used to perform the error correction and eventually
distill the actual secret. The final reconciliation efficiency
one obtains with such a scheme depends on two things:

e The intrinsic efficiency of the error correcting code
used on the virtual channel on the BIAWGNC
(such an efficiency is given for example in Table

).

e The quality of the approximation between the vir-
tual channel and the BIAWGNC (for the scheme
given in [16], the quality of this approximation in-
creases with the dimension d).

One can therefore improve the reconciliation efficiency
of the global scheme by working on two things: design-
ing codes with higher efficiencies on the BIAWGNC and
increasing the dimension of the scheme.

Let us now explain in more details the setting defined
in [16]: Alice, the sender, and Bob, the receiver, are given
two m-dimensional real vectors x and y and can use a
public authenticated channel to agree on a common bit
string u. For this, one of the parties (say Alice in the di-
rect reconciliation scheme) sends to the other additional
information describing a function f such that f(x) = u;
the other party (Bob) applies this function to his data to
get v := f(y); this way, a virtual communication channel
with input u and output v is defined. The explicit con-
struction of [16] aims at creating a virtual channel that
is close to the BIAWGNC since very efficient codes are
available for that channel.

Alice and Bob are given two d-uplets x and y cor-
responding to correlated Gaussian vectors (this is valid
for CVQKD with a Gaussian modulation and a Gaus-
sian optimal attack). This means that one can introduce
constants ¢, and 0,0’ such that one has y = itx + z
with x ~ N(0,1)?, z ~ N(0,02)? in the direct recon-
ciliation case and x = t'y + z’ with y ~ N(0,1 + 02)4,
z'? ~ N(0,0')¢ in the reverse reconciliation case. Since
the two scenarios are similar, we consider without loss of
generality only the direct reconciliation one here. Fur-
thermore, up to a simple renormalization, one can fix
t=1.

Alice chooses a random element u € {—1/v/d, 1/v/d}*
with the uniform distribution on the d-dimensional hy-
percube and sends r = u.x"! to Bob through the pub-
lic channel (a “multiplication” and its inverse “division”
operator are assumed to exist on d-dimensional vectors -
more on this below). Then Bob computes v :=r.y. Let
us analyse the noise w on this virtual channel:

wi=Vv-—u
=ry—u

—ux'(x+z)—u
z z

= uUu—~u—-
x|l

where the last equality holds in law and is due to the
spherical symmetry of the distributions of z and x and
their independence. Since the norm of x is transmitted,
the channel considered is a Fading Channel with Known
Side Information as defined in [25], the fading coefficient
being the norm of x, which follows a x(d) distribution
with d degrees of freedom. Since the distribution x(d)
gets closer to a Dirac distribution when d goes to infinity,
one should use the highest dimension possible in order to
obtain the degenerate version of the Fading Channel with
Known Side Information where all the fading coefficients
are equal to 1, that is, the BIAWGNC. Unfortunately, the
required division operator only exists in dimensions 1, 2,
4 and 8 (where it can be built from the algebraic structure
of R, C, H and O respectively), so that it is not possible
to use the above algorithm in arbitrary dimension.

III. RECONCILIATION OF GAUSSIAN
VARIABLES: IMPLEMENTATION WITH LDPC
CODES

Low Density Parity Check (LDPC) codes (or Gallager
codes) are linear error-correcting codes with a sparse par-
ity check matrix. A good reference about general coding
theory and LDPC codes is [25]. LDPC codes can be
represented as bipartite graphs, one set of the nodes be-
ing the check nodes representing the set of parity-check
equations which define the code; the other, the variable
nodes which represent the elements of the codewords.
Variables nodes and check nodes are connected through



edges. LDPC codes are commonly used in telecommu-
nications since they perform very close to Shannon limit
and can be decoded with a fast iterative message-passing
decoder called Belief Propagation (BP) (in such a decod-
ing scheme, information is propagated between variable
and check nodes that are connected by edges). These
codes are designed for a given channel and a given SNR.
The rate of a code is defined as the ratio between the in-
formation bits and the total number of transmitted bits
on the channel. A low rate code is therefore a code with
a lot of redundancy bits. Correcting errors at very low
SNRs implies to design codes with low rates since adding
redundancy allows to correct more errors.

A standard way to characterize LDPC codes is the
probabilistic method: an ensemble of LDPC codes C is
characterized by the node degrees and one proves that
good codes occur with high probability within this en-
semble. A specific code is simply drawn randomly from
this set. Then one can modify the node degrees and their
probabilities of occurence to improve the performance of
the codes of the ensemble. A well known method to op-
timize LDPC codes for a given rate and a given chan-
nel is to use a genetic algorithm called Differential Evo-
lution. This method has been successfully applied for
a wide range of channels: the Binary Erasure Channel
(BEC) [26], the BIAWGNC [27] and the Binary Sym-
metric Channel (BSC) [28]. The cost function that is
maximized using this algorithm is defined as the thresh-
old value for the channel (i.e. the maximal value of the
noise that can be corrected with a given code, e.g. the
standard deviation o of the noise for the BIAWGNC or
the probability of error e for the BSC) and Discretized
Density Fvolution is used to compute the threshold.

In CVQKD, we need low-rate and high-efficiency codes
for the BIAWGNC since errors must be efficiently cor-
rected at very low SNRs to increase the secure distance.
Multi-edge-type LDPC' codes [29] give simple structures
allowing to operate very close to Shannon limit at very
low SNRs (for another construction of low rate LDPC
codes refer to [30]). In the multi-edge setting, several
edge classes are defined on the bipartite graph; then ev-
ery node is defined by its number of sockets in each class.
Whereas for standard LDPC ensembles the graph con-
nectivity is constrained only by the node degrees, the
multi-edge-type setting allows a greater control over the
graph because only sockets of the same class can be con-
nected together. Unlike standard LDPC ensembles, this
framework provides for example the possibility to use
degree-1 edges which improves significantly the thresh-
old.

Every known reconciliation technique for CVQKD
with a Gaussian modulation achieves an efficiency less
than or equal to 90% [17, 20, 31]. This efficiency param-
eter 8 (defined by S(s) = R/C(s) for a SNR s where R
is the code rate used for the reconciliation and C' is the
capacity of the Additive White Gaussian Noise Chan-
nel (AWGNC)) is critical since the asymptotic secure
key rate in the reverse reconciliation scheme is given by

R |spe| Cw | BpE
0.1 |0.156]0.10429|95.9%
0.05(0.074]0.05144|97.2%
0.02]0.029]0.02038|98.1%

TABLE 1. SNR asymptotic thresholds (spg) on the BI-
AWGNC, corresponding channel capacities (Ci) and efficien-
cies (BpE) given by Density Evolution for low rate multi-edge
LDPC codes of rate R.

K = BI(z;y) — x(y; E), where both I(x;y) (the mutual
information between the two protagonists bit strings z
and y) and x(y; E) (the Holevo information between the
eavesdropper and the receiver’s data) are large compared
to K. One should especially pay attention to the depen-
dency of 5 on the SNR. In [17, 20, 31], the good efficiency
values are obtained only for SNRs higher than 1 which
is incompatible with long distances. In [16], a 90% effi-
ciency is obtained for a 0.5 SNR which allows to extend
the secure distance from 30 km to 50 km. In this paper,
we obtain higher efficiencies for even lower SNRs which
allows secure key distribution over longer distances.

Let us now review low rate LDPC codes with a good ef-
ficiency available in literature. In [29], table IX, a 95.9%
efficiency, rate 1/10 code for the BIAWGNC is described.
This efficiency can be further improved through an op-
timization of the distribution coefficients as mentioned
in [29]. Starting from the structure of this code we de-
signed codes with lower rates and with higher asymptotic
thresholds. Table I sums up the performances of this orig-
inal code together with our set of new multi-edge LDPC
codes (the actual structure of the rate 0.02 code is de-
scribed as an example in Appendix A). In this table, R is
the rate of the considered code, spg is the SNR threshold
given by Discretized Density Evolution, Cy, is the the-
oretical channel capacity for this level of noise and Spg
is the efficiency of the code. These results are valid in
the asymptotic regime, i.e. for codes of infinite length.
However, the efficiency that is obtained with codewords
of length 220 is within 1% of the asymptotic efficiency.

A. Simulation Results with Rotations on S*, $°
and S7

Let us discuss the simulation results we obtained ap-
plying the multidimensional reconciliation scheme with
the previous codes for a dimension d = 2, d = 4 and
d = 8, for the sign coding technique (d = 1) and without
using any additional information, i.e. when we try to
use a code designed for the BIAWGNC with a Gaussian
modulation.

Tables IT and IIT summarize the efficiencies we ob-
tained with respect to the Gaussian channel capacity
with our multi-edge LDPC codes for a block size of
220 We obtained a quite high Frame Error Rate (FER)
(about 1/3) but a null Bit Error Rate (BER) on the



R S | 8d=1|Sd=2 | Sd=4 | Sa=8
0.1 10.271/0.187{0.169(0.163|0.161
0.05|0.123|0.082|0.077|0.076 |0.075
0.02{0.047|0.030|0.029{0.029|0.029

TABLE II. SNR thresholds on the BIAWGNC for low rate
multi-edge LDPC codes (size 2°°) using the multidimensional
reconciliation scheme (d = 1, 2,4, 8).

R B | Ba=1 | Ba=2 | Ba=4 | Ba=s
0.1 [57.9%|80.8%(88.7%1(92.1%|93.1%
0.05]59.7%(88.3%(93.5%|94.8%(95.8%
0.02]60.0%193.1%96.3%96.6% | 96.9%

TABLE III. Efficiencies (w.r.t. the BIAWGNC capacity) for
low rate multi-edge LDPC codes (size 2°°) using the multidi-
mensional reconciliation scheme (d = 1,2,4,8)

blocks where the decoding succeeded. This means that
concatenating our codes with very high rate codes like
BCH codes to remove the residual errors (as was done in
[17, 18]) is not necessary here.

Since the channel obtained with rotations is not ex-
actly a BIAWGNC, the efficiencies 8 are always lower
than the efficiencies predicted by density evolution on
the BIAWGNC. However, increasing the dimension d of
the rotations allows to get closer to the efficiency of the
code on the BIAWGNC. This is expected since the norm
of the input vector u?||z?|| of the virtual channel follows
a distribution x(d) (where d is the number of degrees of
freedom), which gets closer to a Dirac when d tends to
infinity.

Figure 1 compares the capacities of the BIAWGNC and
the multidimensional virtual channels for d = 1, 2,4, 8 as
a function of the SNR.

B. Use of rotations in higher dimension spaces

As was explained in the previous section, the multidi-
mensional reconciliation scheme is limited to dimensions
1,2,4 and 8 because these are the only ones compatible
with a division structure [16].

In [16], the following construction applicable to arbi-
trary dimension d is proposed. In the direct case, with
the same notations as in paragraph IT (where Alice has a
vector x, Bob a vector y, and Alice uses (x,r) to 'virtu-
ally’ send u to Bob), a random orthogonal transformation

FIG. 1. (Color online) Ratios between the capacities of the
multidimensional channels (d = 1,2,4,8) and the BIAWGNC
and between the BIAWGNC and the AWGNC with respect
to the SNR

4

Q on R? is drawn according to the Haar mesure, then Q
is composed with the reflection S across the mediator
hyperplane of x’ = @Q(x) and u. The resulting matrix
R =50Q@Q sends x to u and y to a point close to u, be-
cause R preserves the euclidean distance; R is revealed
by Alice and plays the same role as the vector r in sec-
tion II. The randomization provided by ) ensures that
R does not reveal more information on (x,u) than the
relation R(x) = u; in particular, all u are equally likely
given R.

@ is built, for instance, as the orthogonal ('Q’) part of
the QR decomposition of a d x d matrix G of Gaussian
normalized random values. This method has complex-
ity O(d®). All other known methods to draw random
orthogonal matrices have the same complexity.

We propose a method that allows to reduce the com-
plexity to O(d?). Let us observe first that we have the
choice of the encoding of R: we do not need to reveal it
in matrix form. However, the encoding must not reveal
anything about u except that R satisfies R(x) = u. For
instance, with the first method, revealing separately @
and S instead of R = S o @ is not a good idea since S
leaks information about u: indeed, in high dimension d,
two random independent vectors are approximately or-
thogonal and therefore their mediator hyperplane forms
and angle of about 7/4 with either vector.

Let us examine first how an orthogonal transform
@ can be drawn according to the Haar measure with
complexity O(d?), using an adequate representation,
the Householder decomposition. An orthogonal basis
e1,...,eq is fixed. Let E (resp. F) be the span of
er,...,eq (resp. es,...,€q).

If d =1, choose +1 or —1. If d > 1, choose a ran-
dom vector g uniformly on S¢~!, the unit sphere in R¢
(it can be constructed as g = h/||h|| where h has in-
dependent normalized Gaussian coordinates), and draw
recursively a random orthogonal matrix Q' of dimension
d—1, viewed as a transform of F. @’ is extended to F by
setting @’'(e1) = e;1. Let S be the reflection that sends e;
on g, and define Q = SoQ’. Q' is itself a composition of
d — 1 reflections in spaces of dimensions d —1,...,1. De-
scribing each reflection by its corresponding eigenvector
for the eigenvalue -1, @ is described by d vectors of di-
mensions d,d —1,...,1, for a total of d(dTH) coefficients.
The decomposition is unique. Note that Q(e;) = g.

This process can be adapted when a constraint Q(x) =
u is added, with ||x|| = ||u||. If d = 1, choose +1 or —1
depending on x = u or x = —u. Assuming d > 1, g is
chosen uniformly at random among unit vectors s.t.

u-g=x-€ (1)

where - is the dot product. This relation is required for @
to satisfy both Q(x) = u and Q(e;) = g. Starting from
a Gaussian normalized vector h, « is chosen uniformly
so that (h + au) -u = (x-e;) x ||h + au|| (this is a
quadratic equation that has at least one solution except if



d| s B
2(1.644|76.3%
4
8

1.336|85.7%
1.194|91.7%
16{1.144]94.3%
32(1.108(96.2%
64|1.097|96.9%

TABLE IV. SNR thresholds and channel efficiencies on the
BIAWGNC for the rate 1/2 multi-edge LDPC code in Table
VI of ref. [29] with respect to the dimension of the multidi-
mensional reconciliation scheme

h, u span the same line, and ey, x do not, which happens

with probability 0). g = ﬁ is computed in linear

+a
time and satisfies (1).

For an arbitrary vector v, write its decomposition on
F ey asv=vp+vpi. Q' is drawn recursively, satisfying
Q'(xr) = S(u)p. This is possible because x-e; = u -
g =1u-S(e;) = S(u) - e; implies xp1 = S(u)pr and
Ixpll = [|S(u)r||. Then as Q'(e1) = e1, Q'(x) = S(u).

Define Q = S o @' as before: Q(x) = S(Q'(x)) = u.

The algorithm still runs in O(d?), and the decompo-
sition does not reveal any side information because it is
unique. Since the added constraint (1) is required for the
relation Q(x) = u to hold, one sees recursively that the
process yields the correct distribution on Q4. Finally,
given the d reflection vectors, computing Q(z) for any
z is also done in time O(d?). Hence by revealing these
vectors instead of @) in matrix form, one gets the desired
O(d?) algorithm.

Let us now consider the rate 1/2 multi-edge LDPC
code given in Table VT of reference [29]. The SNR thresh-
old given by Discretized Density Evolution is s* = 1.074.
The corresponding efficiency on the BIAWGNC is 98.2%.
When using a Gaussian modulation, table IV shows the
effect of the dimension d on the efficiency 3 of the recon-
ciliation scheme. We can see that increasing the dimen-
sion above 8 when operating at a high SNR enables to
increase significantly the efficiency, and therefore the key
rate in QKD applications.

C. Dealing with a continuous range of SNR with
puncturing, shortening and repetition

We designed good efficiency codes for a finite set of
rates so far; we are going to show how to deal with a
continuous range of SNRs with this finite set. Since we
designed low rate codes with good efficiencies, we can ap-
ply the simple technique of repetition codes mentioned
in [32]. It is shown that starting from a code of rate
R achieving an efficiency f(s) for a SNR s on the BI-
AWGNC, one can use a repetition scheme of length k to
build a new code of rate R = R /k achieving an efficiency

B’ for a SNR s’ = s/k given by

logy (1 + s)
! If — 2
PUs/R) = PS) Fogy(1+ 5/B)

For example, using a repetition scheme of length 3 with
our code of rate 0.02 and efficiency 98% for a SNR
of 0.03, we can build a code of efficiency $(0.01) =

0.98% = 97%. We applied this technique with

repetition factors of 2 and 4 with our code of rate 0.02 to
obtain the codes of rates 0.01 and 0.005 given in Table
V.

However, this technique allows a low efficiency loss only
for very small SNRs. For higher SNRs, other techniques
must be applied if we want to keep very good efficien-
cies. Puncturing and shortening for LDPC codes are a
good way to adapt the rate of a code [33]. Let us start
with a (n,k) code, i.e. a code of length n with n — k
bits of redundancy; the rate is R = k/n. Puncturing
consists in deleting a predefined set of p symbols from
each word, converting a (n, k) code into a (n—p, k) code.
Shortening means deleting a set of s symbols from the
encoding process (or revealing s message bits in addition
to the syndrome in each codeword), converting a (n, k)
code into a (n — s,k — s) code. With a combination of
these techniques the rate obtained is

R k—s
n—p—s

The loss of efficiency incurred is small for small relative
variations of the code rate. Typically, one can achieve
a decrease of 5% (though shortening) and an increase
of 10% (through puncturing) of the code rate with an
efficiency loss smaller than 1%.

IV. PRACTICAL USE FOR A
CONTINUOUS-VARIABLE QUANTUM KEY
DISTRIBUTION SYSTEM

In this section, we apply the techniques developed in
the previous sections to CVQKD in order to increase the
secure distance achievable. We have to take into account
that our quantum channel is Gaussian so that code effi-
ciencies must be computed w.r.t. this channel capacity:

B R
Cawane

where R is the rate of the code and Cawanc is the
capacity of the AWGNC. As we can see on Figure 1, the
capacity of the BIAWGNC is very close to the capacity
of the AWGNC for small values of the SNR. We give the
efficiencies we can achieve on the AWGNC for different
SNRs in Table V.

Our set of codes allows us to correct errors with an
efficiency of about 95% for some fixed low SNRs. Let us
plot the secret key rate as a function of the SNR on Bob



R 8 s
0.5 [93.6%| 1.097
0.1 [93.1%]| 0.161
0.05 |95.8%| 0.075
0.02 196.9%| 0.029
0.01 |96.6%| 0.0145

0.005(95.9%0.00725

TABLE V. SNR thresholds and channel efficiencies on the
AWGNC of the multi-edge LDPC codes mentionned in this

paper.

FIG. 2. (Color online) Optimal modulation variance with
respect to the distance: n = 0.6, Veee = 0.01, £ = 0.01,
a=0.2dB/km, 8 = 95% and 8 = 90% from top to bottom.

side for a given distance and assuming a fixed error cor-
rection efficiency 8. This enables to determine for which
particular SNR it is relevant to design error-correcting
code in order to maximize the secret key rate. We do
not consider in this paper finite-size effects [12], meaning
that our figures represent the key rate in the regime of
infinite block length. In order to take finite-size effects
into account two approaches are possible: a theoretical
one consists in improving the proofs and the bounds on
the secret key rate [34], a more practical one consists
in designing systems with sufficient hardware stability in
order to compute keys on large blocks.

The modulation variance is restricted within the inter-
val [1,100] (in shot noise units) since lower values make
the experimental setup much more complex. Indeed,
a very low modulation variance is not compatible with
brighter synchronization and phase tracking signals, be-
cause of the limited extinction ratios of the optical mod-
ulators (30dB for the most common models). An attenu-
ation of 0.2dB/km is assumed. The homodyne detection
efficiency is set to 0.6, and a value of 1% of the shot noise
is taken for the electronic noise of the homodyne detec-
tion [17, 18]. A conservative value of 4% of the shot noise
as in the European project SECOQC (Secure Communi-
cation based on Quantum Cryptography) [18] is used for
the excess noise in Figure 4 while a more optimistic figure
of 1% is used in Figures 2, 3 and 5. This second value is
also typical of a realistic CVQKD system [17].

Figure 2 shows the optimal variance modulation on Al-
ice side with respect to the key rate as a function of the
distance. Achieving a good reconciliation efficiency at
any SNR allows to work with a high modulation variance.
This compares favorably to previous schemes with a dis-

FIG. 3. (Color online) Secret key rate for collective attacks
with respect to the SNR: n = 0.6, Ve = 0.01, £ = 0.01,
a = 0.2dB/km, Va € {1,100}, 8 = 95% and B = 90%,
D = 10, 20, 50, 100 km.

FIG. 4. (Color online) Secret key rate for collective attacks
with respect to the SNR: n = 0.6, Veiee = 0.01, € = 0.04,
o = 0.2dB/km, Va € {1,100}, 8 = 95% and f = 90%,
D = 10,20, 50, 100 km.

FIG. 5. (Color online) Secret key rate for collective at-
tacks with respect to the distance: 7 = 0.6, Veee =
0.01, ¢ = 0.01, « = 0.2dB/km, Va € {1,100},
SNR = 1.097,0.161,0.075,0.029,0.0145,0.00725, B =
93.6%, 93.1%, 95.8%, 96.9%, 96.6%, 95.9% from left to right.

crete modulation which require modulation variances 10
times lower than the ones shown here.

Figure 3 and 4, plotted respectively for an excess noise
of 1% and 4% of the shot noise, show that an improve-
ment on the reconciliation efficiency yields at any dis-
tance a wider range of SNR with a close-to-optimum se-
cret key rate. Conversely, the range of distances where a
given error-correcting code working close to its threshold
SNR can be used to get an almost optimal key rate is
increased.

Given these large distance ranges where an error-
correcting code is usable, it becomes feasible to use a
small family of error-correcting codes to perform the rec-
onciliation step at any distance and without using rate-
tuning techniques such as puncturing or shortening. Fig-
ure 5 shows the key rate and the maximum secure dis-
tance obtained with this simple approach and the codes
of Table V. With an excess noise of 1% of the shot noise, a
secure distance above 150 km is obtained (with an excess
of noise of 4% and the same codes, the secure distance
is above 140 km). This is a significant improvement over
previous reconciliation techniques since a reconciliation
efficiency of 90% for a SNR of 0.5 only allows a secure
distance of about 50 km with a Gaussian modulation [16].

V. CONCLUSION

We designed high-efficiency error-correcting codes al-
lowing to distribute secret keys with a continuous-
variable quantum key distribution system using a Gaus-
sian modulation over long distances. Our results give a
secure distance above 150 km against collective attacks
(in the asymptotic regime) and can be implemented with
only software modifications in the experimental setups of
[17] and [18].
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Appendix A: A rate 1/50 multi-edge LDPC code
(0" =5.91 on the BIAWGNC)

Below is the description of a multi-edge LDPC ensem-
ble of codes of rate R = 0.02. The left half of the array
describes the multidegree distributions of variable nodes,
and the right half the distribution of check node multide-
grees. m stands for a multidegree distribution of proba-
bility v, at the variable nodes and pu,, at the check nodes.

For instance, with probability 0.0225, a variable node has
multidegree [2, 57, 0], .e. it has 2 sockets for edges of
type 0, 57 sockets for edges of type 1, and no socket of
type 2. Check node probabilities sum to 1 — R = 0.98
since there is 0.98 check node for 1 variable node.

Vm m L, m
0.0225|2 57 01/0.010625|3 0 O
0.0175|3 57 01/0.009375(7 0 O
096 |0 0 1 0.6 0 2 1

036 |0 3 1
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