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Geometrical Considerations for the  

Design of Liquid-Phase BioChemical Sensors Using a 

Cantilever’s Fundamental In-Plane Mode 
L.A. Beardslee, F. Josse, S.M. Heinrich, I. Dufour, O. Brand 

Abstract 

The influence of the beam geometry on the quality factor and resonance frequency of resonant 

silicon cantilever beams vibrating in their fundamental in-plane flexural mode in water has been 

investigated. Compared to cantilevers vibrating in their first out-of-plane flexural mode, utilizing 

the in-plane mode results in reduced damping and reduced mass loading by the surrounding 

fluid. Quality factors as high as 86 have been measured in water for cantilevers with a 20 µm 

thick silicon layer. Based on the experimental data, design guidelines are established for beam 

dimensions that ensure maximal Q-factors and minimal mass loading by the surrounding fluid, 

thus improving the limit-of-detection of mass-sensitive biochemical sensors. Elementary theory 

is also presented to help explain the observed trends. Additional discussion focuses on the 

tradeoffs that exist in designing liquid-phase biochemical sensors using in-plane cantilevers. 

 

Introduction 

 

Need For Microcantilever Sensors 

Quantification of liquid-phase analytes is essential in biomedical and environmental sample 

analysis. Example applications include, but are not limited to: (1) detection of harmful water 

contaminants, (2) point-of-care quantification of serum proteins, (3) chemical process 

monitoring, and (4) studying interactions among molecules. These four examples all require that 

quantitative results be obtained, preferably in real time, or with short measurement times. For the 

most part, these analyses are currently performed by automated analytical instruments such as 

mass spectrometers and UV spectrophotometers. These instruments are expensive and 

complicated to operate, and thus are not suited to point-of-sampling use such as at a patient’s 

bedside or for on-site monitoring of pollutants.  

 

Microsensors have the potential to solve many of the challenges associated with the current 

measurement technologies, especially when quantitative measurement of a targeted set of 

analytes is required on-site (e.g., point-of-care applications or in-situ environmental monitoring). 

Specifically, CMOS (Complimentary Metal Oxide Semiconductor) -compatible MEMS 

resonators are an attractive solution for several reasons. First, they can readily be batch 

manufactured and fabricated using the same tooling as integrated circuits; this leads to reductions 

in cost-per-unit and also allows system-on-a-chip or system-on-a-package solutions which have a 

small footprint [1]. Moreover, resonators can produce a semi-digital output, which can be tracked 

with a digital counter, thus greatly simplifying system integration. Continuous operation of 

MEMS resonators in liquid is possible, and can be achieved using an approach that can be ported 

to a hand-held system. In addition, MEMS resonators are easily integrated with an application-

specific driving/read-out circuit that can be incorporated into a system-on-a-package solution.  

 

Because of these advantages, micromachined mass-sensitive resonant cantilevers have attracted 

considerable research interest. However, few studies actually operate cantilevers in liquid and 

continuously track the resonator’s frequency. Two reasons for this are: (1) viscous damping can 
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severely limit the resolution of cantilevers operated in liquid, and (2) when operated in the 

traditionally utilized fundamental out-of-plane flexural mode, there is a significant amount of 

mass-loading by the surrounding liquid as evidenced by the frequency shift when the devices are 

immersed in liquid. This leads to a higher starting mass and thus lower mass sensitivity [2, 3]. In 

this work, cantilevers utilizing the fundamental in-plane flexural mode are characterized in liquid 

and the quality factor and frequency shift due to fluid loading are measured. The experimental 

data are then combined with FEM (finite element method) simulations of the chemical sensor 

sensitivity to determine the optimal sensor geometry (of the tested devices) for creating 

gravimetric liquid-phase sensors.  

 

Previous Cantilever Characterization and Sensor Work 

In sensing applications in which cantilever dynamic-mode operation is used, the short-term 

frequency stability limits the sensor resolution. The frequency stability is correlated with the 

quality factor, Q, of the resonance mode. For this reason, several recent studies have measured 

and modeled the Q-factors of cantilevers vibrating in out-of-plane bending modes in air [4-8]. 

While Q-factors up to 1,500 have been measured for the first out-of-plane bending mode in air 

[4], liquid operation becomes challenging because of the substantial viscous damping by the 

fluid. Besides low Q-factors, typically not exceeding 10-20 in water [2], a substantial reduction 

of the out-of-plane resonance frequency (typically in the range of 30-50%) is observed in liquid 

due to the large effective mass of the fluid. In addition, cantilevers that push against the fluid are 

more sensitive to viscosity and density changes in the liquid itself [2], which can be detrimental 

in identifying frequency shifts due to the sorption of analyte molecules from the liquid. 

 

Few systematic studies of cantilever-based sensors operated in the liquid-phase exist, mostly 

because the surrounding fluid severely damps the cantilever response, thus limiting sensor 

resolution. Often the chosen sensing strategy is to measure a baseline sensor output in air (i.e., 

resonant frequency, piezoresistor resistance, etc.), expose the sensor surface to liquid-phase 

analytes, which are sorbed by a sensitive layer on the device’s surface, and then dry the sensor 

and re-measure its characteristics in air [9]. This strategy can be problematic in practical 

applications because a washing step is required which necessitates additional reagents. 

Additionally, particles can contaminate the device surface during the drying step. Furthermore, 

the measurement process, including device drying, is generally not appropriate for real-time or 

in-situ measurements. Despite these challenges this strategy has been used to achieve ng/ml 

limits of detection for cancer biomarkers in liquid [10]. 

 

Optical detection of resonance modes has been employed to allow for continuous tracking of a 

cantilever’s resonant frequency during liquid-phase operation [11]. Generally, optical strategies 

require off-chip components that are incompatible with integrated systems. However, very 

recently, cantilever resonators with integrated optical detection components have been used to 

demonstrate ng/ml-range limits of detection for hepatitis virus in solution [12]. For continuous 

resonator operation in liquid using a fully integrated excitation and read-out strategy, Vancura et 

al. investigated cantilevers operated in their first out-of-plane flexural mode as resonant chemical 

sensors [2]. These devices are CMOS-compatible and use a magnetic excitation mechanism and 

piezoresistive detection scheme to achieve limits of detection in the parts-per-million (ppm) 

range for volatile organic compounds in water [2]. Microdisk resonators supported by a clamped-

clamped beam and utilizing thermal actuation and piezoresistive detection are a second example 
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of a CMOS-compatible strategy that has been used to make liquid-phase sensors [13]. Toa et al. 

investigated a novel clamped-free cantilever structure for liquid-phase biosensors, with reported 

quality factors in the range of 14 in water [14]. The authors of [14] also claim a Q-factor of 249 

in water (for an identical device) using a closed-loop measurement setup. However, to fairly 

compare the reported data, only open-loop characteristics should be considered. Direct resonator 

operation in liquid has also been demonstrated for sensors detecting heavy metals, whereby the 

metal ions are plated onto a mass-sensitive resonator, thereby altering its mass and thus the 

resonance frequency [15]. The same investigators have also demonstrated silicon resonator 

operation in water yielding Q-factors on the order of a few hundred [16]. Unfortunately, these 

high-Q devices consume large amounts of power and have a large temperature rise across their 

surface, which may be problematic for ligands used in biochemical sensing. A final example of 

resonator operation in fluid is the use of piezoresistive cantilevers for mass-sensitive detection of 

ethanol [17].  

 

A promising alternative strategy for liquid-phase sensing using cantilevers has been presented in 

[18]. In this work, a fluid channel is routed through the interior of the cantilever itself, which 

allows the beam to operate in air or even vacuum with quality factors as high as 15000, and thus 

mitigating the damping problem in fluids. This strategy makes extremely low limits of detection 

possible and quantities as small as a single particle or cell have been measured using this 

approach. Although the embedded fluid channel resonator offers single molecule resolution, it 

currently requires a complex fabrication process and can only be used with relatively low fluid 

flow rates (on the order of 1 µl/min at 10 bar of pressure). A piezoresistive read-out scheme has 

recently been demonstrated for the embedded fluid channel devices [19]. A similar method for Q 

enhancement has also been demonstrated using flexural plate resonators [20]. Finally, cantilever 

quality factors during liquid operation have been improved by placing the cantilever in a flow 

cell where only one side of the device is immersed, thus reducing the amount of energy loss to 

the fluid [21]. This strategy yields Q-factors in the hundreds, but ensuring that the flow pattern is 

maintained without wetting the cantilever may be difficult in embedded applications.  

 

Figures of Merit 

Conventionally, the limit of detection (in ppm) of a mass-sensitive chemical sensor is defined as 

three times the noise-equivalent analyte concentration, which itself is given by the ratio of the 

short-term frequency stability ∆fmin (in Hz) determined e.g. via the Allan variance method and 

the chemical sensor sensitivity S (in Hz/ppm): 

 

  (1) 

 

The achievable sensitivity depends on the sorption characteristics of the enrichment membrane 

(or ligand in the case of biosensing) coated onto the sensor surface, which is specific to a 

particular analyte, and on the gravimetric sensitivity of the resonant microsensor. Alternatively, 

the LOD might be expressed as three times the ratio of the relative frequency stability min to the 

relative chemical sensor sensitivity SR: 
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As described in [22], the chemical sensitivity S (or relative chemical sensitivity SR) may be 

written as the product of the gravimetric sensitivity G (or the relative gravimetric sensitivity GR) 

of the coated resonant sensor, i.e., the absolute or relative change in frequency f due to a change 

in coating density m, and the analyte sensitivity SA, i.e., the change in coating density m due to 

a change in analyte concentration cA in the surrounding medium: 
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If the analyte concentration is given in ppm (v/v), the analyte sensitivity SA may be calculated as  
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where  is the density of the analyte absorbed into the sensitive layer, and K is the partition 

coefficient of the particular analyte/membrane combination, i.e., the ratio of the analyte 

concentration in the sensitive film to the analyte concentration in the surrounding matrix. The 

factor 10
-6

 accounts for the fact that cA is given in ppm.  

 

The sensor’s limit of detection as defined by equation (1) is particularly affected by the 

geometrical dependence of the minimal detectable frequency change ∆fmin, a quantity that is 

generally improved (i.e., reduced) by increasing the quality factor of the resonance.  This fact 

provides the main motivation behind investigating in-plane rather than out-of-plane cantilever 

modes. In addition, as stated earlier, utilizing the in-plane mode (in comparison to the 

fundamental out-of-plane mode) gives much lower mass-loading due to the surrounding fluid 

which helps to reduce the cantilever’s starting mass and thus improves the mass-sensitivity [3]. 

 

Mechanical characterization of cantilevers with twenty different length and width combinations 

and four different thicknesses (eighty devices in total) have been performed. The equations 

above in combination with FEM modeling to simulate the gravimetric sensitivity allows one to 

estimate which cantilever would give the lowest detection limits (at least for those beams tested), 

if used as a liquid-phase biochemical sensor. More broadly, examination of the characterization 

data allows one to examine the tradeoffs that exist in the design of biochemical sensors using in-

plane cantilevers. 

   

Measurement Protocol 

 

In order to investigate the effect of beam dimensions on the resonance frequency and quality 

factor of cantilevers operated in their first in-plane flexural mode, thermally actuated and 

piezoresistively detected single-crystal silicon cantilevers (See Fig. 1) were fabricated using a 

bulk-micromachining process that has been previously presented [13]. For protection of the 

aluminum metal lines during liquid testing a stack of PECVD (plasma enhanced chemical vapor 

deposition) oxide/nitride layers were used. (See Fig. 2 for a diagram of the beam cross section.) 

The total target thickness of the PECVD passivation layers was 1.2 m. Silicon thickness 

measurements were done at a 90 degree angle in a Hitachi 3500 SEM. The silicon could be 
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where ∆f is the observed frequency decrease due to the additional mass, ∆m is the (effective) 

added mass associated with the target substance, m is the original effective mass of the resonator, 

and fo is the original resonance frequency of the device (prior to mass uptake).  One can see that 

having a lower starting mass improves (increases) the observed frequency shift due to a given 

mass change from the analyte that one wishes to detect. Thus, minimizing the mass loading on 

the beam by the surrounding fluid is important and is one of the main motivations for using in-

plane rather than out-of-plane flexural modes.  

 

While the piezoresistive detection of the first out-of-plane mode is –especially in liquid– difficult 

using the devices studied in this work (the piezoresistors are intentionally positioned such that 

signals stemming from out-of-plane flexural modes are suppressed), a small peak associated with 

the out-of-plane mode could be observed in liquid for some of the devices. Analyzing this data 

showed frequency changes on the order of 30-50% for the first out-of-plane mode in water 

relative to their value in air. These values were confirmed through optical measurements 

performed with a Polytec MSA-500 Analyzer that is able to measure in- and out-of-plane 

vibration amplitudes: for a 400 µm long, 90 µm wide and 20 µm thick cantilever, the optically 

detected first out-of-plane mode shifted from 154.6 kHz (Q = 680) to 96.1 kHz (Q = 20), i.e. by 

38% when going from air to water. For the same 400 µm long, 90 µm wide and 20 µm thick 

cantilever, the frequency of the first in-plane flexural mode decreased from 636.7 kHz to 596.0 

kHz, i.e., a shift of only 7%.  Among all tested cantilever dimensions, the smallest observed 

frequency shifts are less than 4% when immersing the cantilever from air into water (Fig. 5). 

 
 

Sensor Design Tradeoffs 

The quality factor and frequency change due to mass loading in liquid do not, however, give the 

entire picture when it comes to fabricating effective resonant sensors. As shown above (Eq. 1), 

the limit of detection for closed-loop operation is a function of both the short-term frequency 

stability (which is correlated with the resonator quality factor) and the sensor sensitivity. The 

chemical sensitivity is the product of the gravimetric sensitivity G and the analyte sensitivity SA, 

the latter depending only on the sorption characteristics of the sensitive layer (polymer or 

ligand). The gravimetric sensitivity G of the cantilevers has been simulated using the finite 

element software COMSOL (Stockholm, Sweden). Using modal analyses, the in-plane resonance 

frequencies of cantilevers with different dimensions coated with a 2 µm polymer layer (density 

of 840 kg/m
3
) have been obtained and the gravimetric sensitivity was extracted (see Fig. 8) by 

changing the polymer density. It should be noted that the thermal oxide and PECVD passivation 

layers were not included in the simulations, nor were the effects of the surrounding fluid. The 

stiffness of the polymer layer was assumed to be negligible compared to that of the silicon for the 

simulations. 
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which is undesirable for in-situ applications; (2) the temperature increase along the length of the 

cantilever is problematic for (bio)chemical sensing applications because high temperatures can 

denature proteins and lower the partition coefficients of analytes in polymers used for chemical 

sensing. COMSOL (Stockholm, Sweden) simulations based on the currently used 1.5 Vpp AC 

excitation and ±3V DC biases show a maximum temperature rise of ≈10˚C above room 

temperature on the cantilever surface. 

 

Conclusions 

Twenty different cantilever length and width combinations were tested in water for the purpose 

of determining their resonant properties using their first in-plane flexural mode and their 

potential for liquid-phase biochemical sensing applications utilizing this mode. For each of the 

length/width combinations, up to four different silicon thicknesses were tested. Using the 

measured characterization data and considering resonant sensor design objectives, it was 

determined that the shorter, wider and thinner beams give the best sensing characteristics. Of the 

cantilevers tested here, the ones most promising for sensing applications are those having 

resonant frequencies in the 700-1200 kHz range, as evidenced by their combination of high 

quality factor and sensitivity, while exhibiting sufficiently low stiffness so that they could be 

excited thermally in liquid. In terms of thickness, the 5 m and 8 m thick beams demonstrated 

the greatest potential for sensing; however, one must ensure that the chosen device has a 

sufficiently large Q for stable closed-loop operation. Theoretical and experimental results 

indicate that, of the cantilevers tested, 45 μm wid,  200 μm long devices with 5 μm or 8 μm 

thicknesses should yield the best compromise and the lowest limits of detection.  

 

Compared to other studies of liquid-phase operation of single-crystal silicon resonators, the 

achieved quality factors from this work are a factor of 3-4 times higher than most of those 

previously published. An exception are the high Q-factors in water achieved in [16], which 

however come at the expense of higher power consumption and larger temperature rise along the 

surface. The temperature rise on the device surface would denature ligands used for biosensing 

making these devices problematic for biochemical sensor applications. For the cantilevers 

investigated here further improvements are possible, including testing other cantilever 

geometries that have resonant frequencies in the 700-1200 kHz range.  
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