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Introduction

Bougerol's celebrated identity in law has been the subject of research for several authors since first formulated in 1983 [START_REF] Ph | Exemples de théorèmes locaux sur les groupes résolubles[END_REF]. A reason for this study is on the one hand its interest from the mathematical point of view and on the other hand its numerous applications, namely in Finance (pricing of Asian options etc.)-see e.g. [START_REF] Yor | On some Exponential Functionals of Brownian Motion[END_REF][START_REF] Dufresne | Laguerre Series for Asian and Other Options[END_REF][START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF]. However, one still feels that some better understanding remains to be discovered.

This paper is essentially an attempt to collect all the known results (up to now) and to give a (full) survey of the several different equivalent expressions and extensions (to other processes, multidimensional versions, etc.) in a concise way. We also provide a bibliography, as complete as possible. For the extended proofs we address the reader to the original articles.

Bougerol's remarkable identity states that (see e.g. [START_REF] Ph | Exemples de théorèmes locaux sur les groupes résolubles[END_REF][START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift[END_REF] and [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF] (p. 200)), with (B u , u ≥ 0) and (β u , u ≥ 0) denoting two independent linear Brownian motions § , we have:

for fixed t, sinh(B t ) (law) = β At(B) , (1) 
where A u (B) = u 0 ds exp(2B s ) is independent of (β u , u ≥ 0). For a first approach of (1), see e.g. the corresponding Chapters in [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and in [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning[END_REF]. In what follows, § When we simply write: Brownian motion, we always mean real-valued Brownian motion starting from 0. For 2-dimensional Brownian motion we indicate planar or complex BM.

sometimes for simplicity we will use the notation A u instead of A u (•). Alili, Dufresne and Yor [START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift[END_REF] obtained the following simple proof of Bougerol's identity (1):

Proof. On the one hand, we define S t ≡ sinh(B t ); then, applying Itô's formula we have:

S t = t 0 1 + S 2 s dB s + 1 2 t 0 S s ds . (2) 
On the other hand, a time-reversal argument for Brownian motion yields: for fixed t ≥ 0,

β At(B) = t 0 e Bs dγ s (law) = e Bt t 0 e -Bs dγ s ≡ Q t , (3) 
where (γ s , s ≥ 0) denotes another 1-dimensional Brownian motion, independent from (B s , s ≥ 0). Applying once more Itô's formula to Q t , we have:

dQ t = 1 2 Q t dt + (Q t dB t + dγ t ) = 1 2 Q t dt + Q 2 t + 1 dδ t , (4) 
where δ is another 1-dimensional Brownian motion, depending on B and on γ. From (2) and (4) we deduce that S and Q satisfy the same Stochastic Differential Equation with Lipschitz coefficients, hence, we obtain (1).

With some elementary computations, from (1) (e.g. identifying the densities of both sides, for further details see [START_REF] Vakeroudis | Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymère[END_REF][START_REF] Bertoin | Some two-dimensional extensions of Bougerol's identity in law for the exponential functional of linear Brownian motion[END_REF]), we may obtain the Gauss-Laplace transform of the clock A t : for every x ∈ R, with a(x) ≡ arg sinh(x)

≡ log x + √ 1 + x 2 E 1 √ A t exp - x 2 2A t = a ′ (x) √ t exp - a 2 (x) 2t . ( 5 
)
where a ′ (x) = (1 + x 2 ) -1/2 . For further use, we note that Bougerol's identity may be equivalently stated as:

sinh(|B u |) (law) = |β| Au(B) . (6) 
Using now the symmetry principle (see [START_REF] André | Solution directe du problème résolu par M. Bertrand[END_REF] for the original note and [START_REF] Gallardo | Mouvement Brownien et calcul d[END_REF] for a detailed discussion):

sinh( Bu ) (law) = βAu(B) , (7) 
where, e.g. Bu ≡ sup 0≤s≤u B s .

In the remainder of this article we give several versions and generalizations of Bougerol's identity (1). In particular, in Section 2 we give extensions of this identity to other processes (i.e. Brownian motion with drift, hyperbolic Brownian motion, etc.). Section 3 is devoted to some results that we obtain from subordination and some applications to the study of Bougerol's identity in terms of planar Brownian motion and of complex-valued Ornstein-Uhlenbeck processes. In Section 4 we give some 2 and 3 dimensional extensions of Bougerol's identity, first involving the local time at 0 of the Brownian motion B, and second by studying the joint law of 2 and 3 specific processes. In particular, in Subsection 4.2 we give a new 2-dimensional extension. In Section 5 we generalize Bougerol's identity for the case of diffusions, named "Bougerol's diffusions", followed by some studies in terms of Jacobi processes. Section 6 deals with Bougerol's identity from the point of view of "peacocks" (see this Section for the precise definition, as introduced in e.g. [START_REF] Hirsch | Peacocks and associated martingales, with explicit constructions[END_REF]). In Section 7 we propose some possible directions for further investigation of this "mysterious" identity in law with its versions and extensions and we give an as full as possible list of references (to the best of author's knowledge) up to now. Finally, in the Appendix, we present several tables of Bougerol's identity and all the equivalent forms and extensions that we present in this survey. These tables can be read independently from the rest of the text.

We also note that (sometimes) the notation used from Section to Section may be independent.

2 Extensions of Bougerol's identity to other processes

Brownian motions with drifts

Alili, Dufresne and Yor, in [START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift[END_REF], showed the following result: Proposition 2.1. With µ, ν two real numbers, for every x fixed, the Markov process:

X (µ,ν) t ≡ (exp(B t + µt)) x + t 0 exp (-(B s + µs)) d(β s + νs) , (8) 
for every t ≥ 0, has the same law as (sinh(Y (µ,ν) t

), t ≥ 0), where (Y (µ,ν) t

, t ≥ 0) is a diffusion with infinitesimal generator:

1 2 d 2 dy 2 + µ tanh(y) + ν cosh(y) d dy , (9) 
starting from y = arg sinh(x).

Proof. It suffices to apply Itô's formula to both processes X (µ,ν) and sinh(Y (µ,ν) ).

It follows now:

Corollary 2.2. For every t fixed,

sinh(Y (µ,ν) t ) (law) = t 0 exp(B s + µs)d(β s + νs). ( 10 
)
In particular, in the case µ = 1 and ν = 0:

sinh(B t + εt) (law) = t 0 exp(B s + s)dβ s , (11) 
with ε denoting a symmetric Bernoulli variable taking values in {-1, 1}. Hence:

M t ≡ sinh(Y t ) = β t 0 ds(cosh 2 (Ys)) ≡ β t 0 ds(1+sinh 2 (Ys)) , (12) 
and for this Markovian martingale, we have:

M t = sinh(Y t ) = t 0 cosh(Y s )dB s = t 0 1 + M 2 s dB s . ( 13 
)
It can also be seen directly from (8) that X

(-1/2,0) t , t ≥ 0 is the product of two orthogonal martingales. This property is true because:

X (-1/2,0) t = B u R u u=A (1/2) t , (14) with A 
(ν) t = t 0 ds exp(2B (ν) s ), (B (ν) 
t , t ≥ 0) denoting a Brownian motion with drift, and (R t , t ≥ 0) a 2-dimensional Bessel process started at 0. Further details about this ratio are discussed in Sections 5 and 7. We also remark that, with the notation of Section 1, A (0) t ≡ A t .

Hyperbolic Brownian motion

Alili and Gruet in [START_REF] Alili | Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers[END_REF] generalized Bougerol's identity in terms of hyperbolic Brownian motion:

Proposition 2.4. We use the notation introduced in the previous Subsection, that is: (R t , t ≥ 0) is a 2-dimensional Bessel process with R 0 = 0 and wee also denote by Ξ an arcsine variable such that B (ν) , R and Ξ are independent. Let φ be the function defined by:

φ(x, z) = 2e x cosh(z) -e 2x -1, f or z ≥ |x|. ( 15 
)
Then, for fixed t, we have:

β A (ν) t (law) = (2Ξ -1)φ B (ν) t , R 2 t + (B (ν) t ) 2 . ( 16 
)
In particular, with ν = 0, we recover Bougerol's identity:

β At (law) = (2Ξ -1)φ B t , R 2 t + B 2 t (law) = sinh(B t ). (17) 
This is an immediate consequence of the following:

Lemma 2.5. (i) The law of the functional A (ν) t is characterized by: for all u ≥ 0,

E exp - u 2 2 A (ν) t = e -ν 2 t/2 R dx e νx +∞ |x| dz z √ 2πt 3 e -z 2 t/2 J 0 (uφ(x, z)), (18) 
where J 0 stands for the Bessel function of the first kind with parameter 0 [START_REF] Lebedev | Special Functions and their Applications[END_REF].

(ii) In particular, taking ν = 0, for u ≥ 0 and x ∈ R we have:

exp - x 2 2t E exp - u 2 2 A t B t = x = +∞ |x| dz z t e -z 2 t/2 J 0 (uφ(x, z)). ( 19 
)
Proposition 2.4 follows now immediately from Lemma 2.5 by using the classical representation of the Bessel function of the first kind with parameter 0 (see e.g. [START_REF] Lebedev | Special Functions and their Applications[END_REF]):

J 0 (z) = 1 π +1 -1 dr √ 1 -r 2 cos(zr), (20) 
and remarking that (with Ξ denoting again an arcsine variable), for all real ξ:

J 0 (ξ) = E [exp (iξ(2Ξ -1))] . (21) 
Proof. (Lemma 2.5) With I µ and K µ denoting the modified Bessel functions of the first and the second kind respectively with parameter µ = ρ 2 + ν 2 (for ρ and ν reals), we define the function G µ : R 2 → R + by:

G µ (u, v) = 2I µ (u)K µ (v), u ≤ v; 2I µ (v)K µ (u), u ≥ v. (22) 
First, using the skew product representation of planar Brownian motion, the following formula holds (for further details we address the interested reader to [START_REF] Alili | Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers[END_REF]):

∞ 0 dt exp - ρ 2 2 t E exp - u 2 2 A (ν) t = +∞ -∞ dy e νy G µ (u, ue y ). (23) 
Using the integral representation (see e.g. [START_REF] Lebedev | Special Functions and their Applications[END_REF], problem 8, p. 140):

I µ (x)K µ (y) = 1 2 ∞ log(y/x) dr e -µr J 0 2 cosh(r)xy -x 2 -y 2 , y ≥ x. ( 24 
)
we can invert (23) in order to obtain part i) of Lemma 2.5. Part ii) follows with the help of Cameron-Martin relation.

Bougerol's identity and subordination

In this Section, we consider (Z t = X t + iY t , t ≥ 0) a standard planar Brownian motion (BM) starting from x 0 + i0, x 0 > 0 (for simplicity and without loss of generality, we suppose that x 0 = 1). Then, a.s., (Z t , t ≥ 0) does not visit 0 but it winds around it infinitely often, hence θ t = Im( t 0 dZs Zs ), t ≥ 0 is well defined [START_REF] Itô | Diffusion Processes and their Sample Paths[END_REF]. There is the well-known skew-product representation:

log |Z t | + iθ t ≡ t 0 dZ s Z s = (B u + iγ u ) u=Ht= t 0 ds |Zs| 2 , ( 25 
)
where (B u + iγ u , u ≥ 0) is another planar Brownian motion starting from log 1 + i0. Thus:

H -1 u ≡ inf{t : H t > u} = u 0 ds exp(2B s ) := A u (B).
For further study of the Bessel clock H, see e.g. [START_REF] Yor | Loi de l'indice du lacet Brownien et Distribution de Hartman-Watson[END_REF]. We also define the first hitting times T θ c ≡ inf{t :

θ t = c} and T |θ| c ≡ inf{t : |θ t | = c}.

General results

Bougerol's identity in law combined with the symmetry principle of André [START_REF] André | Solution directe du problème résolu par M. Bertrand[END_REF][START_REF] Gallardo | Mouvement Brownien et calcul d[END_REF] yields the following identity in law (see e.g. [START_REF] Bertoin | Retrieving information from subordination[END_REF][START_REF] Bertoin | Some two-dimensional extensions of Bougerol's identity in law for the exponential functional of linear Brownian motion[END_REF]): for every fixed l > 0,

H τ l (law) = τ a(l) (26) 
where (τ l , l ≥ 0) stands for a stable (1/2)-subordinator. An example of this kind of identities in law is given for the planar Brownian motion case in the next Subsection.

The main point in [START_REF] Bertoin | Retrieving information from subordination[END_REF] is that (26) is not extended in the level of processes indexed by l ≥ 0.

Bougerol's identity in terms of planar Brownian motion

Vakeroudis [START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF] investigated Bougerol's identity in terms of planar Brownian motion and obtained some striking identities in law:

Proposition 3.1. Let (β u , u ≥ 0) be a 1-dimensional Brownian motion independent of the planar Brownian motion (Z u , u ≥ 0) starting from 1. Then, for any b ≥ 0 fixed, the following identities in law hold:

i) H T β b (law) = T B a(b) ii) θ T β b (law) = C a(b) iii) θT β b (law) = |C a(b) |,
where C A is a Cauchy variable with parameter A and θu = sup 0≤s≤u θ s .

Proof. i) We identify the laws of the first hitting times of a fixed level b by the processes on each side of (7) and we obtain:

T B a(b) (law) = H T β b , which is i). ii) It follows from i) since: θ u (law)
= γ Hu , with (γ s , s ≥ 0) a Brownian motion independent of (H u , u ≥ 0) and (C u , u ≥ 0) may be represented as (γ T B u , u ≥ 0). iii) follows from ii) again with the help of the symmetry principle.

Using now these identities in law, we can apply William's "pinching" method [START_REF] Williams | A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion[END_REF][START_REF] Messulam | On D. Williams' "pinching method" and some applications[END_REF] and recover Spitzer's celebrated asymptotic law which states that [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF]:

2 log t θ t (law) -→ t→∞ C 1 , (27) 
with C 1 denoting a standard Cauchy variable (for other proofs, see also e.g. [Wil74, Dur82, MeY82, BeW94, Yor97, VaY11a]). One can also find a characterization of the distribution of T θ c and of T |θ| c in [START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF]. First, applying Bougerol's identity (1) in terms of planar Brownian motion we have:

Proposition 3.2. For fixed c > 0, sinh(C c ) (law) = β (T θ c ) (law) = T θ c N , (28) 
where N ∼ N (0, 1) and the involved random variables are independent.

Furthermore, we can obtain the following Gauss-Laplace transforms which are equivalent to Bougerol's identity exploited for planar Brownian motion:

Proposition 3.3. For x ≥ 0 and m = π 2c , c E π 2T θ c exp - x 2T θ c = 1 √ 1 + x c 2 (c 2 + log 2 ( √ x + √ 1 + x)) ; (29) c E 2 πT |θ| c exp - x 2T |θ| c = 1 √ 1 + x 2 ( √ 1 + x + √ x) m + ( √ 1 + x - √ x) m . ( 30 
)
Proof. For the proof of (29), it suffices to identify the densities of the two parts of (28) and to recall that the density of a Cauchy variable with parameter c equals:

c π(c 2 + y 2 )
.

For (30), we apply Bougerol's identity with u = T |γ| c ≡ inf{t : |γ t | = c} and we obtain:

sinh(B T |γ| c ) (law) = β (T |θ| c ) (law) = T |θ| c N . (31) 
Once again we identify the densities of the two parts. For the left hand side, we use the following Laplace transform: for λ ≥ 0, E e -λ 2 2 T |γ| b = 1 cosh(λb) (see e.g. Proposition 3.7, p. 71 in Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]). We also use the well-known result [START_REF] Lévy | OEuvres de Paul Lévy, Processus Stochastiques[END_REF][START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF]:

E exp(iλB T |γ| c ) = 1 cosh(λc) = 1 cosh(πλ c π ) = ∞ -∞ e i( λc π )x 1 2π 1 cosh( x 2 )
dx .

(32)

Changing now the variables y = cx/π, we obtain the density of B T |γ| c which equals:

2c cosh( yπ 2c ) -1 = c(e yπ 2c + e -yπ 2c ) -1
, and finishes the proof.

Vakeroudis and Yor in [START_REF] Vakeroudis | Integrability properties and Limit Theorems for the first exit times from a cone of planar Brownian motion[END_REF][START_REF] Vakeroudis | Some infinite divisibility properties of the reciprocal of planar Brownian motion exit time from a cone[END_REF] investigated further the law of these random times.

The Ornstein-Uhlenbeck case

Vakeroudis in [START_REF] Vakeroudis | On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity[END_REF][START_REF] Vakeroudis | On the windings of complex-valued Ornstein-Uhlenbeck processes driven by a Brownian motion and by a Stable process[END_REF] investigated also the case of Ornstein-Uhlenbeck processes. In particular, we consider now a complex valued Ornstein-Uhlenbeck (OU) process:

Z t = z 0 + Zt -λ t 0 Z s ds, (33) 
where Zt is a complex valued Brownian motion, z 0 ∈ C (for simplicity and without loss of generality, we suppose again z 0 = 1), λ ≥ 0 and

T (λ) c ≡ T |θ Z | c ≡ inf t ≥ 0 : θ Z t = c (θ Z
t is the continuous winding process associated to Z) denoting the first hitting time of the symmetric conic boundary of angle c for Z. Then, we have the following: Proposition 3.4. Consider (Z λ t , t ≥ 0) and (U λ t , t ≥ 0) two independent Ornstein-Uhlenbeck processes, the first one complex valued and the second one real valued, both starting from a point different from 0, and define T (λ) b (U λ ) = inf t ≥ 0 : e λt U λ t = b , for any b ≥ 0. Then, an Ornstein-Uhlenbeck extension of identity in law ii) in Proposition 3.1 is the following:

θ Z λ T (λ) b (U λ ) (law) = C a(b) , (34) 
where a(x) = arg sinh(x) and C A is a Cauchy variable with parameter A.

Proof. First, for Ornstein-Uhlenbeck processes, is well known that [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], with (B t , t ≥ 0) denoting a complex valued Brownian motion starting from 1, Dambis-Dubins-Schwarz Theorem yields:

Z t = e -λt 1 + t 0 e λs d Zs = e -λt (B αt ) , (35) 
Let us consider a second Ornstein-Uhlenbeck process (U λ t , t ≥ 0) independent of the first one. Taking now equation (35) for U λ t (1-dimensional case) we have:

e λt U λ t = δ ( e 2λt -1 2λ ) , (36) 
where 

(
θ Z t = θ B αt . (37) 
By inverting α t , it follows now that:

T (λ) c = 1 2λ ln 1 + 2λT |θ| B c . (38) 
Similarly, for the 1-dimensional case we have:

T (λ) b (U λ ) = 1 2λ ln 1 + 2λT δ b . (39) 
Equation (37) for t = 1 2λ ln 1 + 2λT δ b , equivalently: α(t) = T δ b becomes:

θ Z λ T (λ) b (U λ ) = θ Z λ 1 2λ ln(1+2λT δ b ) = θ B u=T δ b (law) = C a(b) ,
where the last equation in law follows precisely from statement ii) in Proposition 3.1.

Multidimensional extensions of Bougerol's identity

4.1 The law of the couple (sinh(β t ), sinh(L t ))

A first 2-dimensional extension of Bougerol's identity was obtained by Bertoin, Dufresne and Yor in [START_REF] Bertoin | Some two-dimensional extensions of Bougerol's identity in law for the exponential functional of linear Brownian motion[END_REF] (for a first draft, see also [START_REF] Dufresne | A two dimensional extension of BougerolŠs identity in law for theexponential of Brownian motion[END_REF]). With (L t , t ≥ 0) denoting the local time at 0 of B, we have:

Theorem 4.1. For fixed t, the 3 following 2-dimensional random variables are equal in law:

(sinh(B t ), sinh(L t ))

(law) = (β At , exp(-B t ) λ At ) (law) = (exp(-B t ) β At , λ At ), (40) 
where (λ u , u ≥ 0) is the local time of β at 0.

Remark 4.2. Theorem 4.1 can be equivalently stated as: for fixed t, the 3 following 2-dimensional random variables are equal in law:

(sinh(|B t |), sinh(L t )) (law) = (|β| At , exp(-B t ) λ At ) (law) = (exp(-B t ) |β| At , λ At ). (41) 
Using now Paul Lévy's celebrated identity in law (see e.g. [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]):

( Bt -B t , Bt ), t ≥ 0 (law) = ((|B t |, L t ), t ≥ 0) , (42) 
we can reformulate (40) or (41), and we obtain:

(sinh( Bt -B t ), sinh( Bt )) (law) = ( β -β) At , exp(-B t ) βAt (law) = exp(-B t ) ( β -β) At , βAt . ( 43 
)
The latter is particularly interesting when compared with the Wiener-Hopf factorization for Brownian motion. In particular, if we consider e q an independent exponential random variable of parameter q, then Beq is independent of B eq -Beq . This tells that the two random variables appearing on the right hand side of (43), when taken at e q , are independent.

Remark 4.3. Considering only the second processes of the first and the third part of (40) (or equivalently of (41)), we obtain a "local time" version of Bougerol's identity:

sinh(L t ) (law) = λ At , (44) 
which (as was shown in [START_REF] Bertoin | Retrieving information from subordination[END_REF]), similar to the Brownian motion case, is true only for fixed t and not in the level of processes.

Proof. (Theorem 4.1) From Remark 4.2 it suffices to prove (41). First, we denote S p , p ≥ 0 an exponential variable with parameter p independent from B and g t = sup{u < t : B u = 0}. We know that B u , u ≤ g Sp and B g Sp +u , u ≤ S pg Sp are independent, hence L Sp and B Sp are also independent. We also know that L t and |B t | have the same law. Hence, using the following computation: for every l ≥ 0, with (τ l , l ≥ 0) denoting the time L reaches l,

P L Sp ≥ l = P (S p ≥ τ l ) = E [exp(-pτ l )] = exp(-l 2p),
we deduce that the common density of L Sp and |B Sp | is:

2p exp(-u 2p), u ≥ 0.
Equivalently, we have:

√ 2e(|β(1)|, λ(1)) (law)
= (e, e ′ ), where on the left hand side e and e ′ are two independent copies of S 1 independent from β.

For the second identity in law in Theorem 4.1, it suffices to remark that

(β At , exp(-B t ) λ At ) (law) = ( A t β 1 , exp(-B t ) A t λ 1 ),
and use a time reversal argument. For the first identity in law we use an exponential time S p and we compute the joint Mellin transforms in both sides in order to show that:

√ 2e(sinh(|B| Sp ), sinh(L Sp )) (law) = √ 2e(exp(-B Sp ) A Sp |β 1 |, A Sp λ At ).
For further details we address the reader to [START_REF] Bertoin | Some two-dimensional extensions of Bougerol's identity in law for the exponential functional of linear Brownian motion[END_REF].

Using now Tanaka's formula we can also obtain the following identity in law for 2dimensional processes:

Corollary 4.4. (sinh(B t ), L t ) t≥0 (law) = exp(-B t ) β At , t 0 exp(-B s )dλ As t≥0 , (45) 
where, in each part, the second process is the local time at level 0 and time t of the first one.

1 ∂ 2 ∂x 2 1 + 1 + 4x 2 2 ∂ 2 ∂x 2 2 + 4x 1 x 2 ∂ 2 ∂x 1 ∂x 2 + x 1 2 ∂ ∂x 1 + 2x 2 ∂ ∂x 2 . ( 54 
)
Let us now study the couple:

(x (1) t , x (2) 
t ) = sinh(B (1) t ), 1 2 sinh(2B (2) t ) , (55) 
where (B

(1)

t , t ≥ 0) and (B (2) 
t , t ≥ 0) are two dependent Brownian motions. By Itô's formula we have:

x (1) t = sinh(B (1) t ) = t 0 cosh(B (1) v ) dB (1) v + 1 2 t 0 sinh(B (1) v ) dv = t 0 1 + (x (1) v ) 2 dB (1) v + 1 2 t 0 x (1) v dv, (56) and: 
x

(2) t

Remark 4.8. We remark that with:

α(x) = tanh(x) -1 cosh(x) 1 cosh(x) tanh(x) , (63) 
we have:

dB ′ t dG ′ t = α(B t ) dB t dβ t , (64) 
and

B ′ t G ′ t , t ≥ 0 is a 2-dimensional Brownian motion.
Proof. (Proposition 4.7) First proof: Using Itô's formula, we deduce easily that each of these triplets is a Markov process with infinitesimal generator (in C 2 (R 3 )):

1 2 (1 + x 2 ) d 2 dx 2 + 1 2 d 2 dy 2 + 1 2 d 2 dz 2 + x d 2 dxdy + d 2 dxdz + x d dx . ( 65 
)
The proof finishes by the uniqueness (in law) of the solutions of the corresponding martingale problem.

Second proof: First, we admit that the identity in law is true. Then, if we replace on the left hand side (B s ) by (B ′ s ) and (β s ) by (G ′ s ), we have necessarily:

sinh(B t ) (law) = e B ′ t t 0 e -B ′ u dG ′ t , (66) 
which is essentially a (partial) inversion formula of the transformation (64). Equation (66) can be proved by using Itô's formula on the right hand side.

Gruet in [ADY97] also remarked that:

Proposition 4.9. There exist two independent linear Brownian motions V and W and a diffusion J starting from 0 satisfying the following equation

dJ t = dW t + 1 2 tanh(J t )dt, (67) 
such that,

dβ t dB t = α(-J t ) dV t dW t . ( 68 
)
Hence, the two following 3-dimensional processes:

exp B t + t 2 t 0 exp -B s - s 2 dβ s , B t , β t ; t ≥ 0 and (sinh(J t ), B t , β t ; t ≥ 0) , are equal.
Proof. This result follows from a geometric proof and it is essentially an explanation of the second proof of Proposition 4.7, at least for ν = 0. For this purpose, we can compare the writing of a hyperbolic Brownian motion in the half-plane of Poincaré, decomposed in rectangular coordinates with the equidistant coordinates [START_REF] Vinberg | Geometry II, Spaces of constant curvature[END_REF]. For further details, see the Appendix in [START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift[END_REF] due to Gruet.

5 The diffusion version of Bougerol's identity

Bougerol's diffusion

Bertoin, Dufresne and Yor in a recent work [START_REF] Bertoin | A relationship between Bougerol's generalized identity in law and Jacobi processes[END_REF] generalized Bougerol's identity in terms of diffusions. First, we remark that from Proposition 2.1 we have that (see also [START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift[END_REF]):

(sinh(B t ), t ≥ 0) (law) = exp(-B t )β A (0) t , t ≥ 0 . ( 69 
)
In particular, using Lamperti's relation (see e.g. [START_REF] Lamperti | Semi-stable Markov processes I[END_REF] or [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]) we can invoke a Bessel process R (δ) independent from B in order to replace the right hand side of (69) by:

exp -B (ν) t R (δ) A (ν) t , t ≥ 0 ,
which turns out to be a diffusion (named Bougerol's diffusion) with a certain infinitesimal generator. Hence, we obtain the following:

Theorem 5.1. With Z = Z (δ) and Z ′ = Z (δ ′ ) denoting two independent squared Bessel processes of dimension δ = 2(1 + µ) and δ ′ = 2(1 + ν) respectively, starting from z and z ′ , the process:

X t ≡ X (ν,δ) t ≡ exp -2B (ν) t Z A (ν) t = Z u Z ′ u u=A (ν) t , t ≥ 0, (70) 
is a diffusion with infinitesimal generator:

2x(1 + x)D 2 + (δ + (4 -δ ′ )x) D, (71) 
where δ ′ = 2(1 + ν).

Remark 5.2. There is a discussion in [START_REF] Jakubowski | On hyperbolic Bessel processes and beyond[END_REF] concerning the particular case where the diffusion with generator given in (71) is the hyperbolic sine of the radial part of a hyperbolic Brownian motion (or equivalently the hyperbolic sine of a hyperbolic Bessel process) of index α ∈ (-1/2, ∞) (see [START_REF] Jakubowski | On hyperbolic Bessel processes and beyond[END_REF] Theorem 2.25, formula (46), p.15). In that case, with R t denoting this hyperbolic Bessel process starting from x and Y t = e Bt-(α+1/2)t , for any w ≥ 0, t ≥ 0, (sinh(R t ), t ≥ 0)

(law) = Y -1 t S t 0 Y 2 u du , t ≥ 0 , ( 72 
)
where S is a Bessel process of dimension 2(1 + α) independent of B, and S 0 = sinh(x).

H (ν) u = u 0 ds Z ′ s ; H (µ) u = u 0 ds Z s . (80) 
Moreover, we remark that (H

(ν) t ) is the inverse of (A (ν) t ) and (H (µ) t ) is the inverse of (A (µ) 
t ). We also need to use:

H (ν,µ) u = u 0 ds X (ν,µ) s ; H (µ,ν) u = u 0 ds X (µ,ν) s . (81) 
Simple calculations now yield:

H (ν,µ) t = H (µ) A (ν) t , (82) 
Finally, using (70) we have:

H (µ) A (ν) t = t 0 ds X (ν,µ) A (ν) s , (83) 
and we obtain easily the result.

Relations involving Jacobi processes

In this Subsection, we present a particular study of Theorem 5.1 in terms of the Jacobi processes Y (δ,δ ′ ) as introduced in Warren and Yor [START_REF] Warren | The brownian burglar : conditioning brownian motion by its local time process[END_REF] (see also the references therein for Jacobi processes), due to Bertoin, Dufresne and Yor [START_REF] Bertoin | A relationship between Bougerol's generalized identity in law and Jacobi processes[END_REF]. First, we recall some results involving Jacobi processes:

Proposition 5.4. (Warren and Yor [START_REF] Warren | The brownian burglar : conditioning brownian motion by its local time process[END_REF], Proposition 8) With T ≡ inf{u : Z u + Z ′ u = 0}, there exists a diffusion process Y u ≡ Y δ,δ ′ u , u ≥ 0 on [0, 1], independent from Z + Z ′ such that:

Z u Z u + Z ′ u = Y u 0 ds Zs+Z ′ s , u < T. (84) 
We remark that Y ′ = 1 -Y is the Jacobi process with dimensions (δ ′ , δ), and Y has infinitesimal generator:

2y(1 -y)D 2 + (δ -(δ + δ ′ )y) D . (85) 
Now, X defined in (70) and Y can be related as following:

Proposition 5.5. The following relation holds:

Y w 1 -Y w = X w 0 dv Y ′ v = X w 0 dv 1-Yv , (86) 
or equivalently:

X k = Y w 1 -Y w w= k 0 dv 1+Xv . (87) 
Proof. (Proposition 5.5) First, from (70), we have:

X t = Z u Z ′ u u=A (ν) t .
Conversely,

Z u Z ′ u = X H (ν) u , (88) 
where

H (ν) u = u 0 ds Z ′ s
is the inverse of A (ν) . However, using the Jacobi process Y ,

Z u Z ′ u = Y w 1 -Y w w=Hu= u 0 ds Zs+Z ′ s , (89) 
and moreover:

H (ν) u = u 0 ds Z ′ s = u 0 ds (Z s + Z ′ s ) 1 (1 -Y Hs ) = Hu 0 dv Y ′ v . ( 90 
)
Plugging now (90) to (88) and comparing to (89), we obtain (86). For (87), it suffices to remark that k → 

E[ψ(W )] ≤ E[ψ(V )], (91) 
and we write:

W (c) ≤ V . A process (G t , t ≥ 0) is a peacock if, for every s ≤ t, G s (c) 
≤ G t . Kelleler's Theorem now (see e.g. [START_REF] Kellerer | Markov-Komposition und eine Anwendung auf Martingale[END_REF][START_REF] Hirsch | Peacocks and associated martingales, with explicit constructions[END_REF][START_REF] Hirsch | A new proof of Kellerer's theorem[END_REF]) states that, to every peacock, we can associate a martingale (defined possibly on another probability space than G). In other words, there exists a martingale (M t , t ≥ 0) such that, for every fixed t ≥ 0,

G t (law) = M t . (92) 
The main subject of [START_REF] Hirsch | Peacocks and associated martingales, with explicit constructions[END_REF] is to give several examples of peacocks and the associated martingales.

We return now to Bougerol's identity and we remark that (see also [START_REF] Hirsch | Peacocks and associated martingales, with explicit constructions[END_REF], paragraph 7.5.4, p. 322), for every λ ≥ 0, (sinh(λB t ), t ≥ 0) is a peacock with associated martingale λ t 0 e λβs dγ s , t ≥ 0 (see e.g. (3)). Moreover, for every λ real, e -λ 2 2 t sinh(λB t ), ≥ 0 is obviously a peacock, as it is a martingale. This is generalized in the following: 

Further extensions and open questions

In this Section, we propose some possible directions to continue studying and possibly extending Bougerol's celebrated identity in law (for fixed time or as a process).

First, the natural question posed is wether this identity can be extended to higher dimensions. This very challenging question has already been attempted to be dealt with, and in this paper we've presented several extensions, at least for the 2-dimensional (and partly for the 3-dimensional) case.

Another natural question is wether we can generalize Bougerol's identity to other processes. For this purpose, we may think in terms of a diffusion, as introduced in Section 5. It seems more intelligent to start from the right hand side of (1) and try to see, e.g. in (70), for every particular ratio of processes, which is the corresponding process on the left hand side (this process could be named "Bougerol's process").

In particular, it seems interesting to investigate a possible extension in the case of Lévy or stable processes. To that end, we could replace the ratio of the two squared independent Bessel processes in (70) by e.g. the ratio of two exponentials of Lévy processes, and investigate the process obtained after the time-change. However, this perspective is not in the aims of the present work.

Finally, another aspect which could be further studied is the applications that one may obtain by the subordination method, as presented in Section 3. Following the lines of this Section, one may retrieve further results and applications, others than for the planar Brownian motion case (see also [START_REF] Bertoin | Retrieving information from subordination[END_REF][START_REF] Bertoin | Some two-dimensional extensions of Bougerol's identity in law for the exponential functional of linear Brownian motion[END_REF]).

A Appendix: Tables of Bougerol's Identity and other equivalent expressions

Using now the notations introduced in the whole text, we can summarize all the results in the following tables (u > 0, wherever used is considered as fixed).

A.1 Table : Bougerol's Identity in law and equivalent expressions (u > 0 fixed)

With a(x) ≡ arg sinh(x), and B, β denoting two independent real Brownian motions, for u > 0 fixed, we have:

1) sinh(B u ) (law) = β (Au(B)≡ u 0 ds exp(2Bs)) (Bougerol's Identity) 2) sinh(|B u |) (law) = |β| (Au(B))
3) sinh( Bu ) : Bougerol's Identity for other 1-dimensional processes (u > 0 fixed)

(law) = β(Au(B)) , Bu = sup s≤u β s 4) E 1 √ 2πAu(B) exp -x 2Au(B) = 1 √ 2πu 1 √ 1+x exp -(a( √ x)) 2 2u , x ≥ 0 A.2 Table
We use µ, ν reals and we define: starting from y = arg sinh(x). B (µ) , β (ν) , ε, Ξ and R are independent. Then, for u > 0 fixed:

B (µ) t = B t + µt, β (ν) s = β t + νt, A (ν) t = t 0 ds exp(2B (ν) s ), ε: a Bernoulli variable in {-1, 1}, (R t , t ≥ 
9) sinh(C c ) (law) = β (T θ c ) (law) = T θ c N, c > 0 fixed 10) H T β b (law) = T B a(b) , T B y = inf{t : B t = y}, a(x) = arg sinh(x), b > 0 fixed 11) θ T β b (law) = C a(b) , b > 0 fixed 12) θT β b (law) = |C a(b) |, θu = sup s≤u θ s 13) E 1 √ 2πT θ c exp -x 2T θ c = 1 √ 1+x c π(c 2 +log 2 ( √ x+ √ 1+x)) , b > 0 fixed, x ≥ 0 14) E 1 √ 2πT |θ| c exp(-x 2T |θ| c ) = 1 c 1 √ 1+x 1 ( √ 1+x+ √ x) ζ +( √ 1+x- √ x) ζ , x ≥ 0, ζ = π 2c 15) θ Z λ T (λ) b (U λ ) (law)
= C a(b) (OU version)

A.4 Table: Multi-dimensional extensions of Bougerol's Identity

In the following table, (L t , t ≥ 0) and (λ t , t ≥ 0) denote the local times at 0 of B, β respectively and: where (ξ

X (1) u , X (2) 
(1) v , v ≥ 0), (ξ (2) 
v , v ≥ 0) and (B u , u ≥ 0) are three independent Brownian motions. Moreover, we denote by (B (1) , B (2) ) and (β (1) , β (2) ) two couples of dependent Brownian motions (independent from B), such that: 

d < B (1) , B (2) > v = tanh(B (1) v ) tanh(2B (2) v ) dv,
= β

(1)

( u 0 dv exp(2Bv )) , β (2) 
( u 0 dv exp(4Bv ))

23) e Let Z ≡ Z (δ) and Z ′ ≡ Z (δ ′ ) be two independent squared Bessel process of dimension δ = 2(1 + µ) and δ ′ = 2(1 + ν) respectively, starting from z and z ′ , and X t ≡ X (ν,δ) t a diffusion (named "Bougerol's diffusion"), with infinitesimal generator:

2x(1 + x)D 2 + (δ + (4 -δ ′ )x) D,
and Y ≡ Y δ,δ ′ the Jacobi process. Then, for t, w, k > 0:

25) X (ν,δ) t ≡ exp -2B (ν) t Z A (ν) t = Zu Z ′ u u=A (ν) t 26) Yw 1-Yw = X w 0 dv Y ′ v = X w 0 dv 1-Yv 27) X k = Yw 1-Yw w= k 0 dv 1+Xv

k 0 dv

 0 1+Xv is the inverse of the increasing process w → w 0 dv 1-Yv .6 Bougerol's identity and peacocksHirsch, Profeta, Roynette and Yor in[START_REF] Hirsch | Peacocks and associated martingales, with explicit constructions[END_REF], studied the processes which are increasing in the convex order, named peacocks (coming from the French term: Processus Croissant pour l'Ordre Convexe, which yields the acronym PCOC). Let us first introduce a notation: for W and V two real-valued random variables, W is said to be dominated by V for the convex order if, for every convex function ψ : R → R such that E[|ψ(W )|] < ∞ and E[|ψ(V )|] < ∞, we have:

  v exp(B v ), exp(-2B u ) u 0 dξ (2) v exp(2B v ) ,

  dv exp(4Bv )) .

0

  tanh(B s )dG s , with (G t , t ≥ 0) denoting another Brownian motion, independent from B and J a diffusion starting from 0 satisfying: dJ t = dW t + 1 2 tanh(J t )dt, where W stands for an independent Brownian motion. Hence, for u > 0 fixed:16) sinh(L u ) (law) = λ Au 17) (sinh(B u ), sinh(L u )) (law) = (β Au , exp(-B u ) λ Au ) (law) = (exp(-B u ) β Au , λ Au ) 18) (sinh(|B u |) sinh(L u )) (law) = (|β| Au , exp(-B u ) λ Au ) (law) = (exp(-B u ) |β| Au , λ Au )19) (sinh( Bu -B u ), sinh( Bu ))

  β) Au , exp(-B u ) βAu

  (-B u ) ( ββ) Au , βAu ) 20) (sinh(B t ), L t , t ≥ 0) (law) = exp(-B t ) β At , t 0 exp(-B s )dλ As , t ≥

  Remark 2.3. With µ = -1/2 and ν = 0, we have that sinh Y

									(-1/2,0) t	is a martingale.
	(-1/2,0) t sinh(Y t ) = Indeed, with Y t ≡ Y t , Itô's formula yields: 0 cosh(Y s ) dY s + t 1 0 2	sinh(Y s ) ds			
	=	0	t	cosh(Y s ) dB s -	1 2	tanh(Y s ) ds +	1 2	0	t	sinh(Y s ) ds
			t							
	=			cosh(Y s )dB s .						
		0								

  δ t , t ≥ 0) is a real valued Brownian motion starting from 1. Second, applying Itô's formula to (35) and dividing by Z s , we obtain (α t =

	e 2λt -1 2λ ):				t 0 e 2λs ds =
	Im	dZ s Z s	= Im	dB αs B αs	,
	hence:				

  Proposition 6.1. ([HPRY11], Proposition 7.2) The process (e µt sinh(λB t ), ≥ 0) is a peacock if and only if µ ≥ -λ 2 2 . Proof. i) First, we suppose µ ≥ -λ 2 2 . Then, for s < t: However, x → |x| is convex and if (e µt sinh(µB t ), t ≥ 0) was a peacock, then E [|e µt sinh(µB t )|] would increase on t, which is a contradiction.

	e µt sinh(λB t ) = e (µ+ λ 2 2 )t sinh(λB t )e -λ 2 2 t	(c) ≥ e (µ+ λ 2 2 )s sinh(λB t )e -λ 2 2 t
	(c) ≥ e (µ+ λ 2 2 )s sinh(λB s )e -λ 2 2 s .		
	ii) Conversely, Itô-Tanaka's formula yields:				
	E [| sinh(λB t )|] = E [sinh(λ|B t |)] = e	λ 2 2 t λ	0	t	ds √ 2πs	e -λ 2 2 s ,
	hence:					
	E |e µt sinh(µB t )|	t→+∞ ∼ λe ( λ 2 2 +µ)t λ	0	+∞	ds √ 2πs	e -λ 2 2 s ,
	which means that if µ < -λ 2 2 ,					
	E |e µt sinh(µB t )|				

t→+∞ -→ 0 .

  Bt t 0 e Bu dβ u , B t , β t ; t ≥ 0 exp -B s -s 2 dβ s , B t , β t ; t ≥ 0 = (sinh(J t ), B t , β t ; t ≥ 0) A.5 Table: Diffusion version of Bougerol's Identity (relations involving the Jacobi process)

		(law) = (sinh(B t ), B ′ t , G ′ t ; t ≥ 0)
	24) exp B t + t 2	t 0 (law)
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Another two-dimensional extension

In this Subsection we will study the joint distribution of:

where (ξ

v , v ≥ 0) and (B u , u ≥ 0) are three independent Brownian motions. Hence, we obtain a new 2-dimensional extension which states the following: Proposition 4.5. We consider (B (1) t , t ≥ 0) and (B

(2) t , t ≥ 0) two real dependent Brownian motions, such that:

For the two-dimensional process X

(1)

, we have:

(i) In the level of processes:

( u 0 dv exp(4Bv )) .

(49)

Proof. Let us define:

where α = 1, 2. By Itô's formula, we have:

Hence:

and

v , v ≥ 0) and (η

v , v ≥ 0) are two dependent Brownian motions, with quadratic variation:

Thus, we deduce that the infinitesimal generator of X

(1) u , X

(2) u is:

Moreover, using (47):

Finally, we have that (x

u ) has the same infinitesimal generator with X

(1)

. Hence, we get part (i) of the Proposition.

For part (ii), we fix u and we have:

where (β

v , v ≥ 0) are two dependent Brownian motions and (B v , v ≥ 0) is another Brownian motion independent from them. Now, from (59), we obtain (60).

Remark 4.6. From (59), with p u (x, y) denoting now the density function of the couple (sinh(B

u )), we have:

In theory, we should be able to compute this probability density as we know the joint distribution of the couple of exponential functionals (see e.g. [START_REF] Alili | On a triplet of exponential Brownian functionals[END_REF]).

A three-dimensional extension

Alili, Dufresne and Yor, in [START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift[END_REF], obtained a 3-dimensional extension of Bougerol's identity:

Proposition 4.7. The two following processes have the same law:

where:

with (G t , t ≥ 0) denoting another Brownian motion, independent from B.

Proof. (Proposition 5.1) Applying Itô's formula to the process X, we obtain:

For the second integral in (73), Itô's formula once more yields:

Thus:

For the first integral in (73), we recall that, with γ denoting another Brownian motion independent from B (thus independent also from Z):

Hence:

with γ denoting another Brownian motion, depending on γ and on B.

The proof finishes by some elementary computations from (73), using (74) and (76). Finally, using Lamperti's relation, which states that:

we obtain the last identity in (70).

We may continue a little further in order to obtain the following result relating the diffusion X with its reciprocal (recall that:

Corollary 5.3. The following relation holds:

Proof. It follows easily by some relations involving the changes of time: