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Hybrid and multi-field variational principles for geometrically exact
three-dimensional beams
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bPolytechnical School of the University of São Paulo, P.O. Box 61548, 05424-970 São Paulo, Brazil

Abstract

This paper addresses the development of several alternative novel hybrid/multi-field variational formulations
of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework
of the complementary energy-based formulations, a Legendre transformation is used to introduce the com-
plementary energy density in the variational statements as a function of stresses only. The corresponding
variational principles are shown to feature stationarity within the framework of the boundary-value problem.
Both weak and linearized weak forms of the principles are presented. The main features of the princi-
ples are highlighted, giving special emphasis to their relationships from both theoretical and computational
standpoints.

Keywords: Three-dimensional beams, geometrically exact analysis, complementary energy, hybrid and
multi-field variational principles.

1. Introduction

Variational principles constitute the core of the development of numerical methods in solid mechanics.
The utility of such principles is two-fold: first, they provide a very convenient method for the derivation of
the governing equations and natural boundary conditions for complex problems and, second, they provide
the mathematical foundation required to produce consistent approximate theories. It is in this second role
that variational methods have been most useful in solid mechanics.

Many different variational principles can be constructed depending on the equations enforced in weak
form (Washizu, 1982). Perhaps the most remarkable variational principle in solid mechanics is the one-
field principle of stationary total potential energy, which states that, among all kinematically admissible
displacement fields, those that satisfy the equilibrium conditions, lead to a stationary value of the total
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potential energy functional. This principle is, very often and implicitly, taken as a particular case of the
principle of virtual work (after specialization to the case of hyperelastic materials and conservative external
loads), to develop variationally consistent displacement-based finite element formulations. Approximate
solutions derived from these formulations need not to fulfill exactly either the internal differential equilibrium
equations or the equilibrium equations on the boundary.

A wide variety of multi-field variational principles (also known as mixed variational principles) can be
obtained through the generalization of the principle of stationary total potential energy by means of the clas-
sical method of Lagrange multipliers. As it is well known, the principle of stationary total potential energy
leads to equilibrium configurations by varying displacements. Hence, in approximation techniques, such as
the finite element method, approximate displacement fields yield approximate equilibrium configurations.
Although this may lead to sufficiently accurate displacement fields, the corresponding stress fields may be
highly erroneous. This occurs because the accuracy of the approximate displacement field rapidly deterio-
rates when differentiations are required to compute other results, such as the stresses or the deformations.
However, multi-field variational principles enable arbitrary variation of multiple fields and, therefore, differ-
ent types of variables can be handled independently in approximation procedures to control simultaneously
multiple categories. In the field of the theory of linear elasticity, the first variational principle of this type
is due to (Hellinger, 1914) and (Reissner, 1950), being therefore often referred to as the Hellinger-Reissner
principle. It involves stresses and displacements as fundamental unknown variables. A generalization of this
principle is known in the literature as the Hu-Washizu principle, which owes its name to the works of (Hu,
1955) and (Washizu, 1955). It depends on three functional arguments: stresses, strains and displacements
(Washizu, 1982). Hybrid principles, which are based on modified variational principles with relaxed conti-
nuity requirements across element boundaries, have also been proposed in the literature. All these principles
are, however, only valid in the framework of the theory of linear elasticity and few studies have been devoted
to the extension and generalization of these principles to the geometrically nonlinear setting.

The implementation of the geometrically exact beam theory through the finite element method has been
performedmostly by resorting to displacement/rotation-based variational formulations, such as the principle
of virtual work or the principle of stationary total potential energy. Nevertheless, alternative variational
formulations and associated finite element models relying on different types of variables, such as stresses
and strains, can also be established.

Iura and Atluri were the first to propose a functional obtained in a consistent fashion from a general 3-
field variational principle for the geometrically exact three-dimensional beam theory (Iura and Atluri, 1988,
1989). The functional was established in terms of the cross-sectional stress-resultants, the displacements
of the axis, the rotations of the cross sections and the strain measures of the beam. Pimenta and Yojo also
presented a similar 3-field variational principle (Pimenta and Yojo, 1993). Formulations based on modified
principles of virtual work were developed by (Jelenic and Saje, 1995) and (Zupan and Saje, 2003a, 2004):
the former proposing a formulation based on the generalized principle of virtual work involving only the
rotational degrees-of-freedomof the structural model and the latter presenting a modified principle of virtual
work expressed only in terms of the strain vectors. Dealing with the geometrically exact three-dimensional
beam theory as well, but assuming also material nonlinearities, (Nukala and White, 2004) proposed a 2-field
variational principle of the Hellinger-Reissner type which involves, as fundamental unknowns, displace-
ments, rotations and stresses.

It is the purpose of this work to present several alternative novel hybrid/multi-field variational princi-
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ples for the quasi-static geometrically exact (Reissner-Simo) analysis of three-dimensional elastic beams.
Departing from the principle of stationary total potential energy, a generalized (3+1)-field principle is con-
structed. Afterwards, making use of the generalized principle, a 3-field principle of Hu-washizu type and
also a 2-field complementary principle of Hellinger-Reissner type will be derived. Finally, two hybrid prin-
ciples of the Hellinger-Reissner type and also a 2-field and a (2+1)-field principle of complementary energy
will be obtained. Legendre’s transformation is used to introduce the complementary energy density in the
complementary variational statements as a function of stresses only. The principles will be shown to be sta-
tionary principles within the framework of the geometrically exact three-dimensional beam boundary-value
problem. The main features of the principles are highlighted, giving special emphasis to their relationships
from both theoretical and computational points of view.

The outline of the paper is as follows: In section 2 we introduce the geometrically exact three-dimensional
beam theory, giving afterwards in section 3 some definitions required to address this theory. The equilibrium
boundary-value problem is established in section 4. Before proceeding with the derivation of a consis-
tent system of strain-displacement (compatibility) relations, which is performed in section 6 using the well
known principle of virtual work, for the sake of compactness, an assembled description of the statical vari-
ables is presented first in section 5. The constitutive equations, established in two alternative (and inverse)
forms, are presented in section 7. The global boundary-value problem is stated in section 8. Several hybrid
and multi-field variational formulations of the boundary-value problem are developed in section 9 along with
their corresponding second-order Gâteaux derivatives which can be used to obtain Newton type numerical
solution procedures. Finally, some conclusions are given in section 10. The definitions of the most important
operators are given in the Appendix.

In the direct notation, bold face lower-case letters are used to denote vectors, and bold face upper-
case letters to denote matrices. The components of vectors and matrices are denoted by light-face letters,
as well as the ordinary scalars. Cartesian bases are implicitly assumed. Skew-symmetric tensors and the
correspondent axial vector use the same letter, e.g., the skew-symmetric tensor associated to vector a is
represented by A, i.e., Skew(a) = A. While the scalar product of vectors a and b is denoted by a · b = aibi,
its vector product is represented by a × b = aib jεi jk. Finally, assuming ν as a vectorial space associated with
the three-dimensional Euclidean space R3, we define the tensorial product of vectors a and b as (a ⊗ b)c =
(b · c)a, ∀c ∈ ν. ‖(·)‖ represents the Euclidean norm of (·).

2. The Geometrically Exact Three-Dimensional Beam Theory

The geometrically exact three-dimensional beam theory owes its origins to the pioneering works of
(Reissner, 1973, 1981). By considering certain kinematic assumptions, which account for shear deforma-
tions and moderately large rotations, Reissner obtained expressions for the strain measures of both planar
and three-dimensional beams which involve not only the displacements of the beam axis, but also the rota-
tions of the beam cross sections. (Simo, 1985) and (Simo and Vu-Quoc, 1986), making use of convenient
parameterizations of the rotations, recast Reissner’s theory in a form valid for any magnitude of the rotations
(and displacements).

The theory was later extended by (Simo and Vu-Quoc, 1991) to account for the cross-sectional warping
phenomena. In fact, it was in this work that the denomination geometrically exact beamwas firstly proposed.
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Since the pioneering works cited above, considerable progress has been made on the geometrically ex-
act analysis of three-dimensional framed structures, see e.g. the works presented by (Cardona and Geradin,
1988), (Simo and Vu-Quoc, 1991), (Pimenta and Yojo, 1993), (Simo et al., 1995), (Ibrahimbegovic et al.,
1995; Ibrahimbegovic and Mikdad, 2000; Ibrahimbegovic et al., 2000; Ibrahimbegovic and Knopf-Lenoir,
2003), (Saje et al., 1998), (Crisfield and Jelenic, 1999; Jelenic and Crisfield, 1999), (Planinc and Saje, 1999),
(Iura and Atluri, 1988, 1989; Quadrelli and Atluri, 1996, 1998; Atluri et al., 2001), (Betsch and Steinmann,
2002), (Zupan and Saje, 2003b), (Kapania and Li, 2003b,a), (Romero, 2004), (Mata et al., 2007), (Makinen,
2007), (Lens and Cardona, 2008), (Ghosh and Roy, 2008) and (Pimenta et al., 2008).

In the framework of the geometrically exact three-dimensional beam theory, the geometry of a beam is
usually described by the line of centroids of the cross sections and also by the family of the cross sections.
As the cross sections are not necessarily normal to the line of centroids at the current state, the configuration
space of the beam consists of not only the linear space of position vectors of the line of centroids, but
also the non-linear space of the cross sections rotations. In this work, the rotations of the cross sections
are described through the Euler-Rodrigues formula which is defined in terms of the total rotation vector.
Several alternative parameterizations have however been employed in the literature, such as, among others,
parameterizations based on Euler angles or quaternion parameters. Efforts have also been made to overcome
the singularities inherent to the various parameterizations. A review of different parameterization techniques
for finite rotations in space and related computational issues can be found for instance in (Ibrahimbegovic,
1997).

As a geometrically exact three-dimensional beam theory which includes not only deformation in bending
but also shear and axial deformations, several other three/two-dimensional geometrically nonlinear beam
theories can be obtained after specialization. Therefore, all variational principles presented in this work can
be viewed as generalizations of a wide range of variational principles proposed in the literature for different
beam theories, such as Euler-Bernoulli and Timoshenko beam theories.

3. Definitions and Preliminaries

Let us consider the three-dimensional beam depicted in Figure 1. Only initially straight beam config-
urations and initially undistorted cross sections are assumed to be dealt with. The geometric shape of the
cross sections is assumed to be arbitrary and constant along the beam and, furthermore, the cross sections
are assumed to suffer only rigid body motions during deformation. The geometry of the beam in the current
configuration is described by the centroidal axis, denoted by C, and the set of orientations of the cross sec-
tions S. Note however that, although this assumption is very often employed, as it is on the basis of some
simplifications of the constitutive relations, the beam theory can be established using any other axis of the
beam. The centroidal axis C is parameterized by S ∈ [0, L], usually referred to as the arc-length of the refer-
ence centroidal axis of the beam, with L denoting the length of the beam in its reference configuration. C is
decomposed into an internal part, represented by Ω, and a boundary part, identified by Γ = ΓN ∪ΓD = {0, L},
where ΓN and ΓD correspond to the Neumann and Dirichlet boundaries, respectively, such that ΓN ∩ ΓD = ∅.
In general, the beammay be subject to distributed forces ñ and moments m̃ (applied inΩ) assumed to depend
on S , concentrated forces n̄ and moments m̄ (applied on ΓN) and prescribed displacements ū and rotations θ̄
(defined on ΓD). The loads are assumed conservative and to act at the centroidal axis of the beam.

In the reference configuration, the centroid axis of the beam is described by the position vector r. In order
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Figure 1: Current and reference configurations of a straight beam

to describe the positions of the cross sections in their reference configuration, a right-handed orthonormal
triad of base vectors {er1, e

r
2, e

r
3} (the material basis) is introduced. While vectors e

r
1 and e

r
2 are directed along

the principal axes of inertia of the cross section, vector er3 is assumed to be normal to the cross section, i.e.
er3 = e

r
1 × e

r
2. In addition to the material basis, the spatial basis with orthonormal base vectors {e1, e2, e3}

is introduced, spanning the physical space in which the beam is embedded. In contrast to the reference
configuration, the base vector e3 need not be directed along the current centroid axis, so that the beam model
is capable of representing the first-order shear deformation.

The material (spatial) basis can be regarded as a pull-back (push-forward) mapping of the spatial (mate-
rial) basis performed by means of the rotation tensor Q as follows

eri = Q
Tei (1a)

ei = Qeri (1b)

with i = 1, 2, 3. The position vector of the current centroidal axis, z(S ), and the orientation of the spatial
frame attached to the cross section at S , Q(S ), fully define the current configuration.

The rotation tensor Q is analytically parameterized through the Euler-Rodrigues formula given by

Q = I + h1(θ)Θ + h2(θ)Θ2 (2)

with h1 and h2 the following trigonometric functions

h1(θ) =
sin θ
θ

h2(θ) =
1 − cos θ
θ2

=
1
2

(sin θ/2
θ/2

)2
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with θ = ‖θ‖, being θ the total rotation vector (often called also as the Euler rotation vector). Θ represents
the skew-symmetric tensor associated to θ.

The displacement field at a generic material point lying on the axis of the beam is obtained by

u = z − r

which, after differentiation with respect to S , leads to

z′ = u′ + er3

where (·)′ indicates differentiation of (·) with respect to S .

It is worth noting that the true work-conjugate variable of θ is the pseudo-moment vector μ = Γ
Tm,

rather than the moment vector m, with

Γ = I + h2(θ)Θ + h3(θ)Θ2

where h3(θ) is the following trigonometric function

h3(θ) =
θ − sin θ
θ3

As a consequence, it is μ which must be prescribed on ΓN , rather than m as one would expect. For details on
this, see e.g. (Pimenta, 1993) and (Ritto-Corrêa and Camotim, 2002, 2003).

4. Equilibrium Equations

In the equilibrium of a three-dimensional beam, an infinitesimal element of length dS lying between two
cross sections taken normal to the original beam axis is in equilibrium of forces and moments about point
P′ in the current configuration (see Figure 2), if the following equations hold

n′ + ñ = 0 (4a)
m′ + z′ × n+ m̃ = 0 (4b)

On ΓN the following (Neumann) boundary conditions must hold

nn = n̄ (5a)
nμ = μ̄ (5b)

where
n =
{

1 if S = L
−1 if S = 0

Attending to (1), the material and spatial stress-resultants are shown to obey the following relations

n = Qnr

m = Qmr
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Figure 2: Equilibrium of an infinitesimal length of beam

Using these relations, the equilibrium differential equations (4) can be recast as

KQnr + Qnr′ + ñ = 0, in Ω (7a)
KQmr + Qmr′ + z′ × (Qnr) + m̃ = 0, in Ω (7b)

with
K = Q′QT = Skew(Γθ′)

5. Assembled Description of Statics

Before proceeding with the derivation of the kinematical differential equations, let us first, for the sake
of convenience, introduce an assembled form of the equilibrium boundary-value problem, so that a more
compact form of kinematics can be obtained through the application of the principle of virtual work.

Towards this end, let us introduce the following generalized vectors

σr =

[
nr
mr
]
, q̃ =

[
ñ
μ̃

]
, q̄ =

[
n̄
μ̄

]
, d =

[
u
θ

]

representing the generalized vector of stress-resultants, the generalized vector of external distributed loads,
the generalized vector of external concentrated loads and the generalized vector of displacements, respec-
tively. Let us also introduce the following generalized operators

Λ =

[
Q O
O Q

]
, H =

[
Q O
O Γ

]
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Making use of these new generalized vectors and operators, the material form of the equilibrium boundary-
value problem, given by equation (7), is reduced to the following synthetic form

T re (d)σr + q̃ = 0, in Ω (8a)
nHσr = q̄, on ΓN (8b)

where T re (d) represents the material equilibrium operator given by

T re (d) = ΨeΔeΛ

with

Ψe =

[
I O O
O Γ

TZ′ Γ
T

]
, Δe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I ∂
∂S O
I O
O I ∂

∂S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Z′ represents the skew-symmetric tensor associated with vector z′.

6. Assembled Description of Kinematics

The purpose of this section is to deduce the strain-displacement relationships using the principle of
virtual work (weak form of equilibrium).

Let us introduce a trial function space defined as

Uk = {d ∈ H1(Ω)| d = d̄ on ΓD}

with d̄ the generalized vector of prescribed displacements on the Dirichlet boundary ΓD, given by

d̄ =
[
ū
θ̄

]

and a test function space defined as

Vk = {δd ∈ H1(Ω)| δd = 0 on ΓD}

where H1(Ω) represents the standard Sobolev space. Spaces Uk and Vk are usually referred to as the
kinematically admissible space and the homogeneous kinematically admissible space (or, generally, the
space of admissible variations), respectively.

The weak solution to the equilibrium boundary-value problem is a vector d ∈ Uk such that, for all
δd ∈ Vk, the following variational equation holds∫

Ω

[T re (d)σr + q̃] · δd dΩ + [(q̄ − nHσr) · δd]ΓN = 0, ∀δd ∈ Vk

which, after integrating by parts, leads to

−

∫
Ω

σr · T rc (d)δd dΩ +

∫
Ω

q̃ · δd dΩ + [q̄ · δd]ΓN = 0, ∀δd ∈ Vk (9)
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where T rc (d) represents the material form of the tangent compatibility operator defined as

T rc (d) = Λ
T
ΨcΔc (10)

with

Ψc =

[
I O Z′Γ
O Γ Γ

′

]
, Δc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I ∂
∂S O
O I ∂

∂S
O I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the operator T rc can be regarded as the adjoint operator of the equilibrium operator T re .

The variational (weak) form (9) is equivalent to the principle of virtual work which states that, if vector
d ∈ Uk is an equilibrium configuration, then, for any given virtual displacement δd ∈ Vk, the external
virtual work δWext equals the internal virtual work δWint, i.e.

δWext = δWint, ∀δd ∈ Vk (11)

with

δWint =
∫
Ω

σr · δεr dΩ

δWext =
∫
Ω

q̃ · δd dΩ + [q̄ · δd]ΓN

where
δεr = T rc (d)δd (13)

Vector δεr can be identified as the generalized virtual material strain vector which is energy-conjugate to the
generalized stress-resultant vector σr, and it can be decomposed into two vectors, δηr and δκr, as follows

δεr =

[
δηr

δκr

]

representing the translational and rotational parts of δεr which are energy-conjugate to the stress-resultants
nr and mr, respectively, and which are defined as

δηr = QTδu′ + QTZ′Γδθ (14a)
δκr = QT (Γδθ)′ (14b)

Recalling that the reference configuration has been assumed to be undeformed, and after some algebraic
manipulations, integration of equations (14) leads to the following strain-displacement relationship

εr(d) =
[
ηr

κr

]
=

[
QT (u′ + er3) − e

r
3

Γ
Tθ′

]
(15)

It can be easily shown that these strain measures are objective, in the sense that they remain invariant under
superposed rigid body motions on the beam (see, e.g., (Crisfield and Jelenic, 1999)).
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7. Constitutive Relations

For an elastic material behavior, a strain energy density per unit reference length W(εr) can be defined
such that

σr =
∂W(εr)
∂εr

(16)

Taking the derivative of the equation given above with respect to the material strain vector, the following
constitutive tangent operator is obtained

C =
∂σr

∂εr
=
∂2W(εr)
∂εr∂εr

=

⎡⎢⎢⎢⎢⎢⎣
∂2W
∂ηr∂ηr

∂2W
∂ηr∂κr

∂2W
∂κr∂ηr

∂2W
∂κr∂κr

⎤⎥⎥⎥⎥⎥⎦ (17)

Let us assume that W is a differentiable and convex function with respect to vector εr. On the basis
of these assumptions, equation (16) establishes a one-to-one correspondence between the stress-resultant
vector σr and the strain vector εr. Legendre showed that this type of equations may be transformed into a
conjugate form by introducing a new functionWc(σr), defined by

Wc(σr) = −W(εr) + σr · εr (18)

which is called the complementary energy density. Differentiation of this equation yields

εr =
∂Wc(σr)
∂σr

(19)

Taking the derivative with respect to the material stress-resultant vector gives rise to the inverse of the
constitutive tangent operator C

D =
∂εr

∂σr
=
∂2Wc(σr)
∂σr∂σr

=

⎡⎢⎢⎢⎢⎣
∂2Wc
∂nr∂nr

∂2Wc
∂nr∂mr

∂2Wc
∂mr∂nr

∂2Wc
∂mr∂mr

⎤⎥⎥⎥⎥⎦ (20)

8. Boundary-Value Problem

The strong form of the boundary-value problem governing the response of a geometrically-exact three-
dimensional beam with hyperelastic material behavior consists of the following three sets of differential
equations to be solved in Ω

T re (d)σr + q̃ = 0, in Ω (21a)

σr −
∂W(εr)
∂εr

= 0, in Ω (21b)

εr − εr(d) = 0, in Ω (21c)

10



representing equilibrium, constitutive and compatibility conditions, respectively, and, additionally, a set of
prescribed boundary conditions on Γ = ΓN ∪ ΓD, subdivided into Neumann (equilibrium) and Dirichlet
(compatibility) conditions defined on ΓN and ΓD, respectively, as follows

nHσr = q̄, on ΓN (22a)
d = d̄, on ΓD (22b)

If the strain energy W(εr) is convex, which is indeed the case of a linear elastic material response, the
constitutive relations can be established using either the stiffness format (21b) or the flexibility format given
by (19). Conditions for the convexity of the strain energy density and a full discussion of the existence
of a uniquely defined inverse of the constitutive relations in the general framework of hyperelasticity were
given by (Ogden, 1977). Ogden has concluded that for all deformations of practical interest in rubberlike
materials, it is reasonable to suppose the existence of a strictly convex strain energy density function.

9. Stationary Variational Principles

9.1. Principle of Total Potential Energy

The total potential energy associated with vector d is the one-field functional Πp : Uk(Ω)→ R given by

Πp(d) = U(εr(d)) + F(d) (23)

where U represents the strain energy, or internal potential energy, given by

U(d) =
∫ L

0
W(εr(d)) dΩ

and F represents the external potential energy which, on the assumption of constant external pseudo-
moments, is defined as follows

F(d) = −
∫ L

0
q̃ · d dΩ − [q̄ · d]ΓN

While the compatibility and the constitutive equations may be regarded as constraints assigned to the
stationarity of the variational problem defined by the total potential energy given above, the equilibrium
equations are derived as their Euler-Lagrange conditions.

Vector d is called a stationary point if the first-order Gâteaux derivative of Πp(d) at d ∈ Uk in any
direction δd ∈ Vk vanishes, that is, if the following condition holds

δΠp(d; δd) = 0, ∀ δd ∈ Vk (24)

wherein δΠp(d; δd) assumes the following form

δΠp(d; δd) =
∫
Ω

[
∂W
∂εr

· δεr(d; δd) − q̃ · δd] dΩ − [q̄ · δd]ΓN

11



which, upon substitution of the constitutive relation (21b), gives rise to

δΠp(d; δd) =
∫
Ω

[σr · δεr(d; δd) − q̃ · δd] dΩ − [q̄ · δd]ΓN (25)

Note that, the variational form (24) with δΠp(d; δd) given by (25) is equivalent to the principle of virtual
work stated in (11).

According to (13), the first-order Gâteaux derivative of the total potential energy can be rewritten as

δΠp(d; δd) =
∫
Ω

[σr · T rc (d)δd − q̃ · δd] dΩ − [q̄ · δd]ΓN

Finally, after integrating by parts, the equation given above results as

δΠp(d; δd) = −
∫
Ω

[T re (d)σr + q̃] · δd dΩ + [(nHσr − q̄) · δd]ΓN

which shows that the Euler-Lagrange equations of δΠp are the equilibrium equations

T re (d)σr + q̃ = 0, in Ω
nHσr − q̄ = 0, on ΓN

Hence, it can be concluded that, a geometrically exact three-dimensional beam is in equilibrium if, and
only if, its total potential energy takes a stationary value for all admissible displacement fields that satisfy the
kinematical boundary conditions. This result is known as the principle of stationary total potential energy.

Assuming non-follower loads, the second-order Gâteaux derivative of the total potential energy defined
at d in the directions of δd and Δd reads

Δ(δΠp(d; δd,Δd)) =
∫
Ω

[Δσr · δεr(d) + σr · Δ(δεr(d))] dΩ

=

∫
Ω

[
∂σr

∂εr
Δεr(d) · δεr(d) + σr · Δ(δεr(d))] dΩ

which, using equations (10), (13) and (17), can be rewritten as

Δ(δΠp(d; δd,Δd)) =
∫
Ω

[T rc (d)δd · CT rc (d)Δd + σr · Δ(T rc (d)δd)] dΩ

=

∫
Ω

(Δcδd) · (KM + Kσ
r

G )(ΔcΔd) dΩ
(27)

where operators KM and Kσ
r

G are defined as

KM = Ψ
T
cΛCΛTΨc

KσrG =
∂(ΨTcΛσr)
∂(Δcd)
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with KσrG = KG(d,σr). The definitions of the operators KM and KG are given in the Appendix. As they
represent the material and geometrical contributions to the tangent bilinear form, they are usually referred to
as the material and geometric tangent operators, respectively.

Note that the bilinear form given by (27) is always symmetric, even far from an equilibrium state, since
conservative external loadings and hyperelastic material behavior have been assumed.

It should also be highlighted that, if conservative follower loads had been considered instead of simple
spatially fixed loads, the tangent stiffness matrix would have an additional term associated to the linearization
of the follower loads.

To conclude, it is worth noting that most of the traditional displacement/rotation-based finite element
models developed on the basis of this variational principle are non-objective (Crisfield and Jelenic, 1999;
Jelenic and Crisfield, 1999) and, furthermore, lead to numerical solutions which may be affected by shear-
locking effects (Ibrahimbegovic, 1995).

9.2. (3+1)-Field Generalized Principle

The principle of stationary total potential energy can be generalized through the well known method
of Lagrange multipliers, which allows to introduce the compatibility equations, assumed now as subsidiary
conditions, into the framework of the variational expression of the total potential energy. Accordingly,
relaxing equations (21c) and (22b) by means of two sets of Lagrange multipliers, s and r, defined in Ω and
ΓD, respectively, the following generalized functional Πg : H1(Ω) ×H0(Ω) ×H0(Ω) × R6(ΓD) is obtained

Πg(d, εr, s, r) = −Πp(d) +
∫ L

0
(εr − εr(d)) · s dΩ + [(d − d̄) · r]ΓD (29)

which can be recast as

Πg(d, εr, s, r) =
∫ L

0
[−W(εr) + q̃ · d + (εr − εr(d)) · s] dΩ + [q̄ · d]ΓN + [(d − d̄) · r]ΓD (30)

where the independent quantities subject to variation are the unknown vector fields d, εr, s and r with no
subsidiary conditions.

The first-order Gâteaux derivative of Πg writes

δΠg =

∫ L

0
[−
∂W(εr)
∂εr

· δεr + q̃ · δd + s · (δεr − T rc (d)δd) + (εr − εr(d)) · δs] dΩ

+ [q̄ · δd]ΓN + [(d − d̄) · δr]ΓD + [r · δd]ΓD

which, after integrating by parts and rearranging the terms, leads to

δΠg =

∫ L

0
[(T re (d)s + q̃) · δd + (εr − εr(d)) · δs + (s −

∂W(εr)
∂εr

) · δεr] dΩ

+ [(q̄ − nHs) · δd]ΓN + [(d − d̄) · δr]ΓD + [(r − nHs) · δd]ΓD

13



Since the variations δd, δεr, δs and δr are completely arbitrary, in order to have δΠg = 0, each term in
parentheses must vanish independently, i.e., the following Euler-Lagrange equations are obtained

T re (d)s + q̃ = 0, in Ω
εr − εr(d) = 0, in Ω

s −
∂W(εr)
∂εr

= 0, in Ω

q̄ − nHs = 0, on ΓN
d − d̄ = 0, on ΓD

r − nHs = 0, on ΓD

The physical meaning of the Lagrange multipliers s and r are seen to be that of generalized material stress-
resultants (defined in Ω) and reactions (defined on ΓD), i.e.

s = σr, in Ω (32a)
r = nHσr, on ΓD (32b)

The second-order Gâteaux derivative of Πg reads

Δ(δΠg) =
∫ L

0
[−
∂2W(εr)
∂εr∂εr

Δεr · δεr + Δs · (δεr − T rc (d)δd) − s · Δ(T rc (d)δd) + (Δεr − Δεr(d)) · δs] dΩ

+ [Δd · δr]ΓD + [Δr · δd]ΓD

which, using equations (10), (13) and (17), can be rewritten as

Δ(δΠg) =
∫ L

0
[−CΔεr · δεr + Δs · (δεr − T rc (d)δd) − (Δcδd) · KsG(ΔcΔd) + (Δε

r − T rc (d)Δd) · δs] dΩ

+ [Δd · δr]ΓD + [Δr · δd]ΓD

with KsG = KG(d, s).

Contrarily to the variational formulation established on the basis of the principle of stationary total
potential energy, this formulation can be used as the basis for the development of hybrid-mixedfinite element
models in which general approximate displacements/rotations are employed with no need to satisfy a priori
neither the kinematical differential equations defined in the elements nor the compatibility conditions defined
on the interelement boundaries. Furthermore, as the strains are taken as independent variables, the shear-
locking phenomena can be avoided without resorting to numerical tricks and objective numerical solutions
can be obtained. Despite these outcomes, finite element models developed on the basis of this principle
cannot in general produce solutions satisfying in strong form either the equilibrium or the constitutive or the
compatibility equations of the problem.

9.3. 3-Field Principle of Hu-Washizu Type

On insertion of the results given by (32) into the energy functional (30) gives rise to the 3-field Hu-
Washizu functional or, according to (Felippa, 2000), the 3-field Veubeke-Hu-Washizu functional ΠHW :
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H0(Ω) ×H0(Ω) ×H1(Ω)→ R defined by

ΠHW (σr, εr, d) =
∫ L

0
[−W(εr) + q̃ · d + (εr − εr(d)) · σr] dΩ + [q̄ · d]ΓN + [(d − d̄) · nHσr]ΓD (33)

in which the independent functions subject to variation are indeed σr, εr and d.

The first-order Gâteaux derivative of ΠHW writes

δΠHW =

∫ L

0
[−
∂W(εr)
∂εr

· δεr + q̃ · δd + σr · (δεr − T rc (d)δd) + (εr − εr(d)) · δσr] dΩ

+ [q̄ · δd]ΓN + [(d − d̄) · nδ(Hσr)]ΓD + [nHσr · δd]ΓD
which, after integrating by parts and rearranging the terms, leads to

δΠHW =

∫ L

0
[(T re (d)σr + q̃) · δd + (εr − εr(d)) · δσr + (σr −

∂W(εr)
∂εr

) · δεr] dΩ

+ [(q̄ − nHσr) · δd]ΓN + [(d − d̄) · nδ(Hσ
r)]ΓD

Requiring δΠHW to vanish for independent variations δσr, δεr and δd, the following Euler-Lagrange equa-
tions are obtained

T re (d)s + q̃ = 0, in Ω
εr − εr(d) = 0, in Ω

σr −
∂W(εr)
∂εr

= 0, in Ω

q̄ − nHσr = 0, on ΓN
d − d̄ = 0, on ΓD

The second-order Gâteaux derivative of ΠHW reads

Δ(δΠHW) =
∫ L

0
[−
∂2W(εr)
∂εr∂εr

Δεr · δεr +Δσr · (δεr −T rc (d)δd)−σr ·Δ(T rc (d)δd)+ (Δεr −Δεr(d)) · δσr] dΩ

+ [Δd · nδ(Hσr)]ΓD + [nΔ(Hσr) · δd]ΓD
which, using equations (10), (13) and (17), can be rewritten as

Δ(δΠHW) =
∫ L

0
[−CΔεr · δεr + Δσr · (δεr −T rc (d)δd) − (Δcδd) · Kσ

r

G (ΔcΔd) + (Δε
r −T rc (d)Δd) · δσr] dΩ

+ [Δd · n(Hδσr + Hσrd δd)]ΓD + [n(HΔσ
r + Hσrd Δd) · δd]ΓD

where operator Hσrd is defined as

Hσrd =

[
O ∂(Qnr)

∂θ

O ∂(Γmr)
∂θ

]

with Hσrd = Hd(θ,σr). The definition of operator Hd is given in the Appendix.

Finite element models constructed on the basis of this principle may benefit from the same numerical
features of finite element models derived from the generalized principle presented in the preceding section,
with the advantage of using a smaller number of approximation variables.
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9.4. 2-Field Principle of Hellinger-Reissner Type

As a prelude to the introduction of the 2-field principle of Hellinger-Reissner, it is worth noting that this
principle owes its origins to the idea that, while in the geometrically nonlinear framework the development
of a complementary energy principle involving only stress fields could be associated to some obstacles, no
such obstacles should exist for an energy principle expressed in terms of stresses and displacements.

By means of equations (32) and the Legendre transformation (18), variables s and r can be eliminated
from the generalized energy functional (30), leading to the 2-field complementaryHellinger-Reissner energy
ΠHR : H0(Ω) ×H1(Ω)→ R defined as

ΠHR(σr, d) =
∫
Ω

[Wc(σr) − σr · εr(d) + q̃ · d] dΩ + [q̄ · d]ΓN + [nHσ
r · (d − d̄)]ΓD (35)

Let us consider the first-order Gâteaux derivative ofΠHR at (σr, d) in the direction of (δσr, δd) ∈ H0(Ω)×
H1(Ω)

δΠHR =

∫
Ω

[
∂Wc(σr)
∂σr

· δσr − εr(d) · δσr − σr · T rc (d)δd + q̃ · δd] dΩ

+ [q̄ · δd]ΓN + [(d − d̄) · nδ(Hσr)]ΓD + [nHσr · δd]ΓD

which, after integrating by parts, leads to

δΠHR =

∫
Ω

[(
∂Wc(σr)
∂σr

− εr(d)) · δσr + (T re (d)σr + q̃) · δd] dΩ+ [(q̄− nHσr) · δd]ΓN + [(d − d̄) · nδ(Hσr)]ΓD

Accordingly, if δΠHR is required to vanish for independent variations of δσr and δd, the following Euler-
Lagrange equations are obtained

∂Wc(σr)
∂σr

− εr(d) = 0, in Ω

T re (d)σr + q̃ = 0, in Ω
q̄ − nHσr = 0, on ΓN

d − d̄ = 0, on ΓD

which represent all the equations governing the boundary-value problem.

As it can be seen, neither the stress fields need to satisfy the differential and boundary equilibrium
equations, nor the displacement fields need to satisfy the prescribed boundary conditions. Therefore, it can
be stated that the present 2-field principle of Hellinger-Reissner type is suitable for the construction of mixed
finite element models in which neither the compatibility nor the equilibrium conditions are required to be
satisfied a priori.

Note also that, the generalized principle as well as the principle of Hu-Washizu can only be transformed
into the principle of Hellinger-Reissner through a Legendre transformation when the constitutive equations
are invertible. In other words, neither the generalized principle nor the principle of Hu-Washizu require
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inverting the constitutive equation given by (21b), i.e., to axiomatically assume the existence of a comple-
mentary energy density Wc(σr). This restriction makes the former principles more appropriate for general
nonlinear materials than the latter.

The second-order Gâteaux derivative of ΠHR reads

Δ(δΠHR) =
∫ L

0
[
∂2Wc(σr)
∂σr∂σr

Δσr · δσr − Δεr(d) · δσr − Δσr · T rc (d)δd − σr · Δ(T rc (d)δd)] dΩ

+ [Δd · nδ(Hσr)]ΓD + [nΔ(Hσr) · δd]ΓD
which, using equations (10), (13) and (20), can be rewritten as

Δ(δΠHR) =
∫ L

0
[DΔσr · δσr − (T rc (d)Δd) · δσr − Δσr · (T rc (d)δd) − (Δcδd) · Kσ

r

G (ΔcΔd)] dΩ

+ [Δd · n(Hδσr + Hσ
r

d δd)]ΓD + [n(HΔσ
r + Hσ

r

d Δd) · δd]ΓD

9.5. (2+1)-Field Principle of Hellinger-Reissner Type

By means of equation (32a) and the Legendre transformation (18), the generalized energy functional (30)
gives rise to the following (2+1)-field complementary Hellinger-Reissner energy Π1HR : H

0(Ω) × H1(Ω) ×
R6(ΓD)→ R defined as

Π1HR(σ
r, d, r) =

∫
Ω

[Wc(σr) − σr · εr(d) + q̃ · d] dΩ + [q̄ · d]ΓN + [r · (d − d̄)]ΓD (37)

which corresponds to a hybrid form of the 2-field Hellinger-Reissner energy (35).

Carrying out its first-order Gâteaux derivative at (σr, d, r) in the direction of (δσr, δd, δr) ∈ H0(Ω) ×
H1(Ω) × R6(ΓD) leads to

δΠ1HR =

∫
Ω

[
∂Wc(σr)
∂σr

· δσr − εr(d) · δσr − σr · T rc (d)δd + q̃ · δd] dΩ

+ [q̄ · δd]ΓN + [(d − d̄) · δr]ΓD + [r · δd]ΓD
which, after integrating by parts, gives

δΠ1HR =

∫
Ω

[(
∂Wc(σr)
∂σr

− εr(d)) · δσr + (T re (d)σr + q̃) · δd] dΩ+

[(q̄ − nHσr) · δd]ΓN + [(d − d̄) · δr]ΓD + [(r − nHσ
r) · δd]ΓD

Finally, requiring δΠHR to vanish for independent variations of δσr, δd and δr, gives rise to the following
Euler-Lagrange equations

∂Wc(σr)
∂σr

− εr(d) = 0, in Ω

T re (d)σr + q̃ = 0, in Ω
q̄ − nHσr = 0, on ΓN

d − d̄ = 0, on ΓD
r − nHσr = 0, on ΓD
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Note that, besides the equations already obtained when using the 2-field Hellinger-Reissner variational prin-
ciple, an additional equation representing the balance between reactions and internal forces on the Dirichlet
boundary ΓD has also been obtained.

The second-order Gâteaux derivative of Π1HR reads

Δ(δΠ1HR) =
∫ L

0
[
∂2Wc(σr)
∂σr∂σr

Δσr · δσr − Δεr(d) · δσr − Δσr · T rc (d)δd − σr · Δ(T rc (d)δd)] dΩ

+ [Δd · δr]ΓD + [Δr · δd]ΓD

which, using equations (10), (13) and (20), can be rewritten as

Δ(δΠ1HR) =
∫ L

0
[DΔσr · δσr − (T rc (d)Δd) · δσr − Δσr · (T rc (d)δd) − (Δcδd) · Kσ

r

G (ΔcΔd)] dΩ

+ [Δd · r]ΓD + [r · δd]ΓD

9.6. (2+2)-Field Principle of Hellinger-Reissner Type

Relaxing the continuity requirement of the displacements along the interelement and Neumann bound-
aries in the (2+1)-field Hellinger-Reissner energy by means of the Lagrange multipliers qΓ, a generalized
hybrid form of the 2-field (complementary) Hellinger-Reissner energy can be obtained. It consists in a
(2+2)-field Hellinger-Reissner energy ΠHR : H0(Ω) × H1(Ω) × R6(Γ) × R6(Γ)→ R defined as

Π2HR(σ
r, d, dΓ, qΓ) =

∫
Ω

[Wc(σr) − σr · εr(d) + q̃ · d] dΩ + [q̄ · dΓ]ΓN + [qΓ · (dΓ − d̄)]ΓD + [qΓ · (d − dΓ)]Γ

and its first-order Gâteaux derivative at (σr, d, dΓ, qΓ) in the direction of (δσr , δd, δdΓ, δqΓ) ∈ H0(Ω) ×
H1(Ω) × R6(Γ) × R6(Γ) reads

δΠ2HR =

∫
Ω

[
∂Wc(σr)
∂σr

· δσr − εr(d) · δσr − σr · T rc (d)δd + q̃ · δd] dΩ

+ [(d − dΓ) · δqΓ]Γ + [qΓ · (δd − δdΓ)]Γ + [q̄ · δdΓ]ΓN + [(d
Γ − d̄) · δqΓ]ΓD + [q

Γ · δdΓ]ΓD

which, after integrating by parts, leads to

δΠ2HR =

∫
Ω

[(
∂Wc(σr)
∂σr

− εr(d)) · δσr + (T re (d)σr + q̃) · δd] dΩ+

+ [(qΓ − nHσr) · δd]Γ + [(d − dΓ) · δqΓ]Γ + [(q̄ − qΓ) · δdΓ]ΓN + [(d
Γ − d̄) · δqΓ]ΓD
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Finally, it can be easily shown that, requiring δΠ2HR to vanish for independent variations of δσ
r , δd, δdΓ and

δqΓ, the following Euler-Lagrange equations are obtained

∂Wc(σr)
∂σr

− εr(d) = 0, in Ω

T re (d)σr + q̃ = 0, in Ω
q̄ − qΓ = 0, on ΓN
dΓ − d̄ = 0, on ΓD

qΓ − nHσr = 0, on Γ
d − dΓ = 0, on Γ

Besides the equations obtained using the (2+1)-field variational principle of Hellinger-Reissner type, ad-
ditional equations imposing the continuity of displacements across Γ are also present. The Lagrange mul-
tipliers qΓ represent spatial nodal forces, whereas vector dΓ collects the nodal displacements defined on
Γ.

The second-order Gâteaux derivative of Π2HR reads

Δ(δΠ2HR) =
∫ L

0
[
∂2Wc(σr)
∂σr∂σr

Δσr · δσr − Δεr(d) · δσr − Δσr · T rc (d)δd − σr · Δ(T rc (d)δd)] dΩ

+ [(Δd − ΔdΓ) · δqΓ]Γ + [ΔqΓ · (δd − δdΓ)]Γ + [ΔdΓ · δqΓ]ΓD + [ΔqΓ · δdΓ]ΓD

which, using equations (10), (13) and (20), can be rewritten as

Δ(δΠ2HR) =
∫ L

0
[DΔσr · δσr − (T rc (d)Δd) · δσr − Δσr · (T rc (d)δd) − (Δcδd) · Kσ

r

G (ΔcΔd)] dΩ

+ [(Δd − ΔdΓ) · δqΓ]Γ + [ΔqΓ · (δd − δdΓ)]Γ + [ΔdΓ · δqΓ]ΓD + [ΔqΓ · δd
Γ]ΓD

9.7. 2-Field Principle of Total Complementary Energy

Although in the framework of the 2-field variational principle of Hellinger-Reissner type the equilibrium
conditions have been obtained as its Euler-Lagrange equations, they can instead be considered as subsidiary
conditions required to be satisfied a priori. Accordingly, assuming that equilibrium holds, when subjecting
(35) to the equilibrium equations by means of the appropriate Lagrangemultipliers, the following augmented
Lagrangian is obtained

Lc =
∫
Ω

[Wc(σr) − σr · εr(d) + q̃ · d] dΩ −

∫
Ω

(T re (d)σr + q̃) · d dΩ

+ [q̄ · d]ΓN − [(q̄ − nHσr) · d]ΓN + [nHσr · (d − d̄)]ΓD

which, after integrating by parts, leads to the 2-field complementary energy Πc : Us(Ω)→ R defined as

Πc(σr, d) =
∫
Ω

[Wc(σr) − σr · εr(d) + σr · T rc (d)d] dΩ − [nHσr · d̄]ΓD (40)
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withUs representing the following statically admissible space

Us = {(σr, d) ∈ (H1(Ω) ×H1(Ω))| T re (d)σr + q̃ = 0 in Ω and nHσr − q̄ = 0 on ΓN }

Note that, besides stress fields, the present total complementary energy functional depends also on displace-
ment fields. Its mixed character is in sharp contrast with the total complementary energy functionals for
fully linear problems, which can be regarded as pure principles as they only depend on stress fields.

The idea of constructing complementary energy-based principles for geometrically nonlinear theories,
written only in terms of stresses in analogy to potential energy-based principles, has deserved the attention of
several renowned mechanicians since the seventies, such as (Koiter, 1975), (Washizu, 1982) and (Reissner,
1987). However, as pointed out by (Reissner, 1987), the fundamental issue one could face up on attempting
to formulate a pure complementary energy principle for a geometrically nonlinear problem is the coupling
of stresses and deformations inherent to its corresponding set of equilibrium equations.

It can be shown that the pair (σr, d) ∈ Us is a solution of the boundary-value problem if, and only if, the
following condition holds

δΠc = 0, ∀(δσr, d) ∈ Vs

withVs representing a homogeneous statically admissible space defined by

Vs = {(δσr, d) ∈ H1(Ω) ×H1(Ω)| T re (d)δσr = 0 in Ω and nHδσr = 0 on ΓN }

In fact, taking the first-order Gâteaux derivative of Πc in the direction of (δσr, d) yields

δΠc =

∫
Ω

[
∂Wc(σr)
∂σr

− εr(d)] · δσr dΩ +

∫
Ω

T rc (d)d · δσr dΩ − [d̄ · nHδσr]ΓD

After integrating by parts the equation above and recalling that (δσr, d) lies in the statically admissible space
Vs, i.e., the following conditions hold

T re (d)δσr = 0, in Ω
nHδσr = 0, on ΓN

it is finally obtained that

δΠc =

∫
Ω

[
∂Wc(σr)
∂σr

− εr(d)] · δσr dΩ + [(d − d̄) · nHδσr]ΓD

Hence, requiring δΠc to vanish for independent pairs (δσr, d) ∈ Vs and using equation (19), the follow-
ing Euler-Lagrange equations are obtained

∂Wc(σr)
∂σr

− εr(d) = 0, in Ω

d − d̄ = 0, on ΓD

which clearly correspond to the compatibility equations of the boundary-value problem.

Therefore, it can be concluded that a generalized displacement vector d represents a kinematically admis-
sible field if, and only if, its total complementary energy takes a stationary value for all statically admissible
stress-resultant fields.
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It can be easily shown that, on taking the variation ofΠc in the direction of (δσr, δd), rather than (δσr, d),
as it has been performed, leads exactly to the same result.

The second-order Gâteaux derivative of Πc reads

Δ(δΠc) =
∫ L

0
[
∂2Wc(σr)
∂σr∂σr

Δσr · δσr − Δεr(d) · δσr + Δ(T rc (d)d) · δσr] dΩ − [d̄ · nΔHδσr]ΓD

which, using equations (10), (13) and (20), can be rewritten as

Δ(δΠc) =
∫ L

0
[DΔσr · δσr − (T rc (d)Δd) · δσr + (Δcδd) · Kδσ

r

G (ΔcΔd)] dΩ − [d̄ · nHδσrd δσ
r]ΓD

with KδσrG = KG(d, δσr) and Hδσ
r

d = Hd(θ, δσr).

Note that, the main advantage of using a complementary variational principle is that it may be employed
as the basis for the development of a finite element model capable of producing statically admissible approx-
imate solutions, i.e., solutions satisfying in strong form all the equilibrium equations of the problem. This
is of utmost importance in engineering design as well as in total contrast with all the other variational prin-
ciples from which the derivation of traditional displacement/rotation-based models or hybrid-mixed models
lead to approximate stress fields which may be highly erroneous.

9.8. (2+1)-Field Principle of Complementary Energy

If the equilibrium equations are assumed to be relaxed by means of the Lagrangian multiplier method
within the framework of the principle of total complementary energy presented above, the following aug-
mented Lagrangian is obtained

Π
g
c =

∫
Ω

[Wc(σr) − σr · εr(d) + T rc (d)d · σr] dΩ +

∫
Ω

[T re (d)σr + q̃] · d dΩ

+ [(q̄ − nHσr) · dΓ]ΓN − [nHσr · d̄]ΓD

with dΓ representing a Lagrangian multiplier vector defined on ΓN . This Lagrangian, after integrating by
parts, leads to a generalized complementary energy,Πgc : χ(Ω)→ R, given by

Π
g
c =

∫
Ω

[Wc(σr) − εr(d) · σr + q̃ · d] dΩ + [nHσr · (d − d̄)]ΓD + [q̄ · d
Γ]ΓN + [nHσ

r · (d − dΓ)]ΓN (43)

where the functions in class χ consist of pairs (σr, d) ∈ H0(Ω)×H1(Ω) and a real-valued vector dΓ defined
on ΓN .

The first-order Gâteaux derivative of Πgc defined at (σr, d, dΓ) in the direction of (δσr , δd, δdΓ) writes

δΠ
g
c =

∫
Ω

[
∂Wc(σr)
∂σr

· δσr − δεr(d) · σr − εr(d) · δσr + q̃ · δd] dΩ

+ [nδ(Hσr) · (d − dΓ)]ΓN + [nHσr · (δd − δdΓ)]ΓN
+ [nδ(Hσr) · (d − d̄)]ΓD + [nHσr · δd]ΓD + [q̄ · δd

Γ]ΓN (44)
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for arbitrary (δσr, δd, δdΓ) in χ(Ω).

The variational problem (weak form) is to find (σr, d, dΓ) such that

δΠ
g
c = 0, ∀(δσr, δd, δdΓ) ∈ χ(Ω) (45)

On insertion of (20) and after integrating by parts yields

δΠ
g
c =

∫
Ω

[(
∂Wc(σr)
∂σr

− εr(d)) · δσr + (T re (d)σr + q̃) · δd] dΩ

+ [nδ(Hσr) · (d − dΓ)]ΓN + [(q̄ − nHσ
r) · δdΓ]ΓN + [nδ(Hσ

r) · (d − d̄)]ΓD

which is formally equivalent to the following system of Euler-Lagrange equations

T re (d)σr + q̃ = 0 in Ω (46a)
∂Wc(σr)
∂σr

− εr(d) = 0 in Ω (46b)

q̄ − nHσr = 0 in ΓN (46c)

d − dΓ = 0 in ΓN (46d)
d − d̄ = 0 on ΓD (46e)

Clearly, dΓ represents a displacement vector associated with the continuity condition of σr across ΓN , which
is implied by condition (46c). Since any solution of the geometrically exact beam boundary-value problem
also satisfies (46), the variational principle (45) can be used as a basis for the approximations of (46).

It is fundamental to note that the present principle allows us to construct independent approximations of
σr and d. Furthermore, not only the compatibility but also the equilibrium equations are imposed in weak
form. However, if approximations lying in the statically admissible space are employed, the equilibrium
turns out to be fulfilled in strong form and statically admissible solutions are obtained. The principle can
be seen, therefore, as a generalization of the principle of stationary total complementary energy. Further
developments of this principle on the basis of an equilibrium finite element formulation will be presented in
a companion paper (Santos et al., 2009).

The second-order Gâteaux derivative of the generalized complementary energy Π
g
c defined at point

(σr, d, dΓ) in the directions of admissible variations (δσr, δd, δdΓ) and (Δσr ,Δd,ΔdΓ), i.e., lying in χ(Ω),
leads to

Δ(δΠgc) =
∫
Ω

[
∂2Wc(σr)
∂σr∂σr

Δσr · δσr − T rc (d)Δd · δσr − Δσr · T rc (d)δd − σr · Δ(T rc (d)δd)] dΩ

+ [nΔ(Hσr) · (δd − δdΓ)]ΓN + [nδ(Hσr) · (Δd − ΔdΓ)]ΓN + [nΔ(δ(Hσr)) · (d − d
Γ)]ΓN

+ [nΔ(Hσr) · δd]ΓD + [nδ(Hσr) · Δd]ΓD + [nΔ(δ(Hσr)) · d]ΓD
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which, using equations (10), (13) and (20), can be rewritten as

Δ(δΠgc) =
∫
Ω

[DΔσr · δσr − T rc (d)Δd · δσr − Δσr · T rc (d)δd − (Δcδd) · Kσ
r

G (ΔcΔd)] dΩ

+ [n(HΔσr + Hσ
r

d Δd) · (δd − δd
Γ)]ΓN + [n(Hδσ

r + Hσ
r

d δd) · (Δd − ΔdΓ)]ΓN
+ [n(GΓ

dσΔd · δσ
r + GΓ

ddΔd · δd + G
Γ
σdΔσ

r · δd)]ΓN
+ [n(HΔσr +Hσrd Δd) ·δd]ΓD + [n(Hδσ

r +Hσrd δd) ·Δd]ΓD + [n(ḠdσΔd ·δσ
r + ḠddΔd ·δd+ ḠσdΔσr ·δd)]ΓD

with

GΓ
dσ =

∂(HT (d − dΓ))
∂d

GΓ
σd =

∂((Hσrd )
T (d − dΓ))
∂σr

GΓ
dd =

∂((Hσrd )
T (d − dΓ))
∂d

and

Ḡdσ =
∂(HT (d − d̄))

∂d

Ḡσd =
∂((Hσrd )

T (d − d̄))
∂σr

Ḡdd =
∂((Hσrd )

T (d − d̄))
∂d

representing indeed geometric tangent operators defined on the boundaries.

10. Conclusions

Various novel hybrid/multi-field stationary principles, which can provide the basis for the variation-
ally consistent development of finite element formulations for geometrically exact (Reissner-Simo) three-
dimensional beam models have been established. Their correspondingweak and linearized weak forms have
also been presented. The specialization of these principles to other (two or three-dimensional) geometri-
cally nonlinear beam models, such as for instance the geometrically exact Euler-Bernoulli beam model, and
several other lower-order geometrically nonlinear beam models can be easily carried out.

Except for the case of the 2-field principle of total complementary energy, in which the equilibrium
conditions have to be assumed as their subsidiary conditions, the remaining novel principles are suitable for
the construction of either mixed or hybrid-mixed finite element approaches in which neither compatibility
nor equilibrium conditions are required to be satisfied a priori.

The (2+1)-field principle of complementary energy can be used for the derivation of a finite element
formulation providing statically admissible solutions, a new result that is possible due to the generality of
that principle.
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By means of the Lagrangian multiplier method, several alternative hybrid/multi-field variational princi-
ples with different subsidiary conditions and Euler-Lagrange equations can be formulated departing from
the principles presented in this paper.

Themain features of the principles and their relationships from both theoretical and computational stand-
points have been highlighted.
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Appendix

The material part of the tangent operator KM is given by

KM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
QCnrQT O QCnrQTZ′Γ
O Γ

TQCmrQTΓ Γ
TQCmrQTΓ′

−ΓT Z′QCnrQT Γ
′TQCmrQTΓ KθθM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

KθθM = −ΓTZ′QCnrQT Z′Γ + Γ′TQCmrQTΓ′

As for the geometric part of the tangent operator KG, it reads

KG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
O O −NΓ
O O VT (θ,m)
Γ
TN V(θ,m) KθθG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where KθθG is given by

KθθG = Γ
TZ′NΓ − V(θ, z′ × n) + Vθ(θ, θ′,m) −WT (θ, θ′)MΓ

with N and M representing the skew-symmetric tensors associated to vectors n and m, respectively. In this
operator, whileW is defined as

W(θ, θ′) = h2(θ)Θ′ + h3(θ)(ΘΘ′ +Θ′
Θ) + h4(θ)(θ · θ′)Θ + h5(θ)(θ · θ′)Θ2

with h4 and h5 the following trigonometric functions

h4(θ) =
dh2(θ)
dθ
θ

=
h1(θ) − 2h2(θ)

θ2
=
θ sin θ − 2(1 − cos θ)

θ4

h5(θ) =
dh3(θ)
dθ
θ

=
h2(θ) − 3h3(θ)

θ2
=
3 sin θ − θ(2 + cos θ)

θ5
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V is defined as

V(θ,m) = h2(θ)M + h3(θ)(MΘ − 2ΘM) − h4(θ)(Θm⊗ θ) + h5(θ)(Θ2m⊗ θ)

and Vθ comes out as

Vθ(θ, θ′,m) = h3(θ)(MΘ′ − 2Θ′M) − h4(θ)(Θ′m⊗ θ +Θm⊗ θ′ − (θ · θ′)M)+
h5(θ)((Θ′

Θ +ΘΘ′)m⊗ θ +Θ2m⊗ θ′ + (θ · θ′)(MΘ − 2ΘM))−
h6(θ)(θ · θ′)(Θm⊗ θ) + h7(θ)(θ · θ′)(Θ2m⊗ θ)

with h6 and h7 the following trigonometric functions

h6(θ) =
dh4(θ)
dθ
θ

=
h3(θ) − h2(θ) − 4h4(θ)

θ2

h7(θ) =
dh5(θ)
dθ
θ

=
h4(θ) − 5h5(θ)

θ2

Operator Hd is given by

Hd =
[
O −NΓ
O VT (θ,m)

]

Finally, the geometric tangent operators defined on the boundaries are defined as

GΓ
dσ =

[
O QT (U − UΓ)Γ
O V(θ, θ − θΓ)

]

GΓ
σd =

[
O O

−ΓT (U − UΓ)Q WT (θ, θ − θΓ)Q

]

GΓ
dd =

[
O O
O V(θ, n× (u − uΓ)) + ΓT (U − UΓ)NΓ + Vθ(θ, θ − θΓ,m) −WT (θ, θ − θΓ)MΓ

]

and

Ḡdσ =
[
O QT (U − Ū)Γ
O V(θ, θ − θ̄)

]

Ḡσd =
[

O O
−ΓT (U − Ū)Q WT (θ, θ − θ̄)Q

]

Ḡdd =
[
O O
O V(θ, n× (u − ū)) + ΓT (U − Ū)NΓ + Vθ(θ, θ − θ̄,m) −WT (θ, θ − θ̄)MΓ

]

It is worth noting that GΓ
dσ = (G

Γ
σd)T and Ḡdσ = (Ḡσd)T .
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