
HAL Id: hal-00663353
https://hal.science/hal-00663353v1

Submitted on 26 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying in B the Influence/Reaction Model to Study
Situated MAS: Application to vehicles platooning
Olivier Simonin, Arnaud Lanoix, Alexis Scheuer, François Charpillet

To cite this version:
Olivier Simonin, Arnaud Lanoix, Alexis Scheuer, François Charpillet. Specifying in B the Influ-
ence/Reaction Model to Study Situated MAS: Application to vehicles platooning. V2CS : First In-
ternational workshop on Verification and Validation of multi-agent models for complex systems, Nov
2011, France. 15 p. �hal-00663353�

https://hal.science/hal-00663353v1
https://hal.archives-ouvertes.fr


Specifying in B the Influence/Reaction
Model to Study Situated MAS

Application to vehicles platooning

Olivier Simonin * , Arnaud Lanoix ** , Alexis Scheuer * ,
François Charpillet *

* MAIA – LORIA – INRIA Lorraine, Nancy Universités
Campus Scientifique, BP 239, 54506 Vandœuvre lès Nancy, France

{Firstname.Lastname}@loria.fr
** AeLoS – LINA, Université de Nantes

2, rue de la Houssinière, BP 92208, 44322 Nantes, France
Arnaud.Lanoix@univ-nantes.fr

Abstract.
This paper addresses the formal specification and verification of situated Multi-Agent Systems
(MAS) that can be formulated within the Influence/Reaction model as proposed in 1996 by
Ferber & Muller. In this model, our objective is to prove the correctness of reactive MAS with
respect to a certain formal specification or property, using formal methods. This is an important
step to bring MAS to high quality standards as required for critical applications encountered in
domains such as transport systems. A generic B representation of systems instantiating the In-
fluence/Reaction model is proposed, using patterns of specification. We illustrate our approach
with a MAS to control unmanned land vehicles to form a platoon. The papers ends with con-
siderations about further improvements of the framework, involving simulation and study of the
properties of the system.

Keywords: Situated MAS – Influence/Reaction model – B method – Design patterns – Platoon-
ing

1. Introduction

We aim at defining a general approach to formally specify and study
situated Multi-Agent Systems (MAS), i.e. systems composed of agents

Studia Informatica Universalis.



2 Studia Informatica Universalis.

which interact in a physical environment (real or virtual). We are es-
pecially interested in addressing critical decentralised systems in which
autonomous components interact with each other to form a complex
system. The MAS approach allows the modeling of such systems with
a bottom-up methodology. The components (agents), their behaviours,
the way they interact with each other or with the environment define the
local level. It gives rise to the collective behaviours of a system (the
global level) whose properties are not always predictable from the lo-
cal level. This approach permits the definition of flexible decentralised
systems able to (self)organise. Such systems are appealing with respect
to their faculty of adaptation but they are difficult to study. Specifying
and verifying properties of such systems remains an open issue, which
we attack in this paper.

Our approach consists in choosing the Influence/Reaction (I/R)
framework [10], which is one of the few models expressing dynam-
ics of situated MAS. It is also simple enough to make the challenge of
verification reachable for simple properties.

In order to specify the I/R model, we adopt the B method, used for
modelling and reasoning about systems. The B method already demon-
strated its ability to verify industrial-strength software for autonomous
systems (as e.g. French automatic subway [6]). We aim here at exceed-
ing the software framework so as to specify the physical part of situated
MAS, as the overall dynamics of such systems depend on the interac-
tions between the agents and their environment, i.e. a physical world.
B only works at the level of integers, hence it seems not adapted to the
modelling of MAS which are intrinsically continuous systems. How-
ever we circumvent this limitation by abstracting over the granularity of
the model, i.e. the physical units of the variables.

In this paper we propose B design patterns able (i) to express the
main parts of situated MAS and their dynamics following the I/R def-
initions, and (ii) to help in verifying their local and global properties.
Design patterns are a good way of communicating expertise by captur-
ing the solutions to recurring design problems and re-using those solu-
tions. We illustrate how our B patterns can be instantiated to study a
specific MAS, by focusing on the platooning task.



B Patterns of I/R Model 3

The paper is organised as follows. Section 2 presents the I/R model
in order to clearly express dynamics of situated MAS. Then we propose
in section 3 a generic expression in B for the I/R model using design
patterns. Section 4 shows how patterns can be instantiated to study a
real complex case: a reactive MAS model for coordination of several
autonomous vehicles. Eventually section 5 presents related works, and
section 6 concludes and gives some perspectives.

2. The Influence/Reaction Model

The difficulty of designing and studying situated MAS comes from
the autonomy of agents and their interactions within a common envi-
ronment. They are highly distributed systems. It is then difficult to
formally express/simulate such systems and to predict their global be-
haviour [9, 12].

In particular, most MAS models do not allow to express simultane-
ous actions. They propose often a sequential representation of actions,
which is not generally equivalent. For instance two robots situated on
both sides of a door, and trying to open and close it simultaneously,
should fail as their forces are balanced. In a sequential representation
of actions, the door will sequentially be open and closed, or vice versa.

Ferber & Muller proposed in [10] the Influence/Reaction model in
order to express clearly the dynamics of such systems, considering a
discretization of time. In this model, agents are described separately
from the environment dynamics but connected to it by computing at
each step which state they perceive (perceptions) and which influences
they produce (actions). This dichotomy allows mainly to compute the
result of simultaneous actions performed by different agents at a given
time. Indeed, the new state of the system is defined as the combination
of the different influences produced by the agents.

Figure 1 illustrates the I/R loop : perceptions of the environment re-
lease agent influences, which are actions modifying the whole system.
The I/R model is formalised as shown in figure 2, where si(t) is the in-
ternal state of the ith agent at time t and σ(t) the state of the environment
at the same time t. Pi is a perception function from the environment to



4 Studia Informatica Universalis.

Figure 1: Interaction between
an agent and its environment
in the I/R model [9]




s1(t +1) = F1(s1(t),P1(σ(t)))
...
sn(t +1) = Fn(sn(t),Pn(σ(t)))

σ(t +1) = R(σ(t),∏i In f li(si(t +1)))

Figure 2: Formalisation of the I/R
model [9]

the internal state of the ith agent. Fi is a behavioural function that com-
putes the new internal state of the ith agent from its perceptions and its
previous state. In f li is an action function which produces a set of in-
fluences on the environment, for the ith agent. At last, R is the reaction
function computing the new state of the environment from its current
state and the combination of all the influences produced by agents. In-
fluences are combined thanks to the ∏ operator. Details about definition
of each function can be found in [9].

This coherent (and time discrete) expression of situated MAS give
us the basis to formally specify their dynamics and properties. For this
purpose, in the following, we propose a B expression of the I/R model.

3. Generic B Patterns of I/R Model

3.1. Specifying and Verifying with B

The B method is a formal software development method used to
model and reason about systems [1]. It is based on set theory and rela-
tions. Software development in B supports abstractly specifying the re-
quirements of the systems and then refining these requirements through
several steps to create a concrete description of the system which can
be automatically translated to code. Each B machine consists in vari-
ables representing the state of the model, operations representing the
possible evolutions of this state and an invariant specifying the safety
requirements. Each operation consists of a precondition part, which is a
predicate conditioning the activation of the operation, and a substitution
part specifying the effects of the considered operation.



B Patterns of I/R Model 5

The B method has been successfully applied in the development of
several complex real-life applications, such as the Meteor project [6],
the Roissy VAL [2] or the Coppilot project [15]. It is one of the few
formal methods which has robust and commercially available support
tools for the entire development life-cycle, from specification down to
code generation.

Proofs of invariant consistency and refinement are part of each devel-
opment. These Proof Obligations (POs) are generated from the model
by applying certain semantic rules. Then, they can be proven with B
support tools [19] or by any tool supporting first-order logic with set
theory and axioms for the basic data types of B. Checking POs is an
efficient and practical way to detect errors introduced during the devel-
opment and to validate the correctness of the specified models.

3.2. B Patterns Architecture of the I/R Model

We propose a generic expression in B of the I/R model. The figure 3
shows a general rewriting of the I/R model using B concepts: (i) two
B generic patterns express the cycle of the I/R model, (ii) one pattern
expresses the agents behaviours, and (iii) one pattern expresses the en-
vironment evolution. Note that the given B models are not complete.
They are only patterns and they have to be filled in for a specific system
as it is illustrated in section 4.

To reduce the complexity of B patterns, we consider that agents are
identical and defined by the same set of local variables and influences.
However heterogeneity can be easily introduced by ignoring some vari-
ables in some agents.

The cycle Function of the I/R Model To formalise the I/R model
in B, we express into the MAS machine (Fig. 3) an operation called
cycle, which is the loop on all the perceptions, all the decisions (be-
haviours → influences), and the global reaction. All these steps are
characterised by a step variable valued by PERCEIVE, BEHAVE, INFL
and REACT.



6 Studia Informatica Universalis.

MACHINE 
  Environment
SEES Constants
CONSTANTS
  ...
  perceive_j,
  ...
  react_i,
  ...
PROPERTIES
  ...
VARIABLES
  global_1, ... global_i, ... global_l
INVARIANT
  ...
  global_i ∈ 0..MAX_AGENTS → global_i_TYPE
  ...
OPERATIONS

  new_local_1,...,new_local_m ← perception(agent,...,local_j,...) =
  PRE
    agent ∈ 0..MAX_AGENTS ∧ 
    ...
    local_j ∈ 0..MAX_AGENTS → local_j_TYPE ∧ 
    ...
  THEN
    ...
    new_local_j :=  local_j <+ {agent ↦ 
                                         perceive_j(global_1,...,global_l) } || 
    ...
  END ;

  reaction(agent,...,influence_k,...) =
  PRE
    agent ∈ 0..MAX_AGENTS ∧
    ...
    influence_k ∈ 0..MAX_AGENTS → influence_k_TYPE ∧ 
    ...
  THEN
     ...
     global_i := global_i <+ {agent ↦ react_i(global_1,...,global_l,
                                                       influence_1,...,influence_n) } || 
     ...
  END

END

MACHINE 
  Agents
SEES Constants
INCLUDES Environment
CONSTANTS
  ...
  behave_j,
  ...
  infl_k,
  ...
PROPERTIES
  ...
VARIABLES
  step, 
  local_1, ..., local_j, ..., local_m,
  influence_1, ..., influence_k, ..., influence_n
INVARIANT
  step ∈ STEP ∧
  ... 
  local_j ∈ 0..MAX_AGENTS → local_j_TYPE ∧
  ...
  influence_k ∈ 0..MAX_AGENTS → influence_k_TYPE
  ...
OPERATIONS

perceive(agent) =  
  PRE
    agent ∈ 0..MAX_AGENTS ∧ step = PERCEIVE
  THEN
    local_1, ..., local_m ← perception(agent, local_1, ..., local_m)
  END ;

behave(agent) =
  PRE
    agent ∈ 0..MAX_AGENTS ∧ step = BEHAVE
  THEN
    ...
    local_j := local_j <+ {agent ↦ behave_j(local_1, ..., local_m) } ||
    ...
  END ;

infl(agent) =
  PRE
    agent ∈ 0..MAX_AGENTS ∧ step = INFL
  THEN
    ...
    influence_k := influence_k <+ {agent ↦ infl_k(local_1, ..., local_m) }
    ...
  END ;

react(agent)= 
  PRE
   agent ∈ 0..MAX_AGENTS ∧ step = REACT
  THEN
    reaction(agent, influence_1, ..., influence_n)
  END

END MACHINE 
  Constants
SETS 
  STEP = {PERCEIVE,BEHAVE,INFL,REACT}
CONSTANTS
  MAX_AGENTS,
  ...
PROPERTIES
  MAX_AGENTS ∈ NAT ∧ 
  MAX_AGENTS < MAXINT ∧ 
  MAX_AGENTS > 0
  ...
END

MACHINE 
  MAS_abs
SEES Constants
INCLUDES Agents
OPERATIONS
  cycle = ...
END

IMPLEMENTATION 
  MAS
REFINES MAS_abs
IMPORTS Scheduler
OPERATIONS
  cycle = 
  VAR i IN
    i := MAXINT;
    WHILE i > 0 DO
      perceptions ;
      behaviours ; 
      influences ; 
      reaction ; 
      i := i - 1
    INVARIANT 
      i ∈ NAT ∧ step = PERCEIVE
    VARIANT i
    END
  END
END

MACHINE
  Scheduler_abs
SEES Constants
INCLUDES Agents
OPERATIONS
  perceptions = ...
  behaviours = ...
  influences = ...
  reaction = ...
END

IMPLEMENTATION 
  Scheduler
REFINES Scheduler_abs
IMPORTS Agents
OPERATIONS
  perceptions = ...
  behaviours = ...
  influences = ...
  reaction = ...
END

(i)

(ii)

(iii)

Figure 3: B patterns of the I/R model



B Patterns of I/R Model 7

In order to use a “concrete” loop construction, the B method re-
quires two levels of specifications. Into the implementation given Fig. 3,
the loop is made explicit using a WHILE construction, that calls suc-
cessively four “intermediate” operations perceptions, behaviours, influ-
ences and reaction corresponding to the four global steps of the I/R
model.

These four operations are specified into the Scheduler B machine.
perceptions (respectively behaviours, influences and reaction) expresses
a loop by calling the perceive (respectively behave, infl and react)
method in turn for each agent to the considered step. Moreover, to give
a WHILE construction, we must use two levels of B specifications.

The Agents B Pattern Each agent is determined by its local vari-
ables, which characterise its perceptions and its memories, and by its
influences. We specify all the agents in the same B pattern given in the
machine Agents on Fig. 3.

– The local1, . . . , local j, . . . , localm variables are arrays associating
each agent to its internal state, i.e. its perceptions or knowledge (mem-
ory). These arrays local j are represented in B by total functions defined
between the numbers of agents (the indices) 0..MAX_ AGENTS and the
values contained thereinto.

– The in f luence1, . . . , in f luencek, . . . , in f luencen variables denotes
intended actions produced by agents in order to change the system. Note
that a communication is a particular influence produced by an agent and
that can be perceived by one or several agents.

The INVARIANT part of Agents can also contain safety properties be-
tween the local j and in f luencek variables.

The perceive and react methods express the agent actions at the PER-
CEIVE and REACT steps of the I/R model. They are generic because
their bodies correspond only to operations calls on the environment:

– perceive calls the perception method of Environment to perceive
the environment data, and

– react calls the reaction method of Environment to propagate its in-
fluences into the environment.



8 Studia Informatica Universalis.

The two methods to be filled in are behave and infl:

– behave is a B method which expresses the internal beha-
viour of each agent. It calls all the necessary local j = behave j(
local1, . . . , localm) to change its internal state;

– infl is the B method which produce the refresh influences using the
necessary in f luencek = in f lk(local1, . . . , localm) functions.

The Environment B Pattern The Environment machine of Fig. 3
gives a general B model of the environment. To represent the state of
the system, we define some global1, . . . , globall variables. Each globali
variable can model:

– specific data of each agent represented by arrays associating the
data to the agents (for instance, their location);

– data not associated to any agent, but useful for modelling reason,
as a global information necessary for all agents (e.g. location of other
objects different from the agents). Note that the B pattern given in Fig. 3
focuses only on specific data of each agent.

The INVARIANT part of the generic model contains typing predicates on
the globali variables.

The desired global safety properties of the system can also be ex-
pressed into the INVARIANT once the model has been instantiated for
a specific problem. The proof of the B models will highlight what is
required of the behavioural part to be able to ensure those properties.

The dynamics of the environment result from the “physical” interac-
tions the agents have with it. These interactions consist of two methods,
the first to perform agents sensing, the second to combine agents’ influ-
ences. These methods are called perception and reaction respectively in
Fig. 3:

– perception is a method called by each agent to perceive its en-
vironment. Following B syntax, we call into perception the func-
tions local j = perceive j(global1, . . . ,globall), which express the link
between the perceptions local j and the environment variables. Each
local j = perceive j(global1, . . . ,globall) correspond to a sensor update,
which can imitate noise or sensor errors.



B Patterns of I/R Model 9

– reaction is a method called by each agent so that the influ-
ences are combined in order to update the agent global variables
(its physical state). Objects are not considered but could be intro-
duced as passive agents. The functions globali = reacti( global1, . . . ,
globall, in f luence1, . . . , in f luencen) linking environment data and in-
fluences have to be expressed here, by way of combining the influences.
Noise or errors on the actuators can also be imitated here.

Moreover, the precondition part of both methods can be augmented to
take into account safety properties, once the model has been instantiated
for a specific problem.

4. Application to a Platooning Model

This section shows how to use the proposed B patterns to study de-
centralised platooning, i.e. convoys of autonomous vehicles following a
leader [21]. As in [8], we suppose that lateral and longitudinal control
are independent. We only consider here the longitudinal control, to sim-
plify. This example is motivated by studying the properties of the model
proposed by [8], especially the risk to have longitudinal collisions.

This example has been developed in the context of the CRISTAL
project (French Pole de competitivite “Vehicule du Futur”) from a real
case study.

Figure 4: Platooning

A one dimensional platooning As depicted in Fig. 4 each
vehicle’s state is given by an integer couple (xposi,speedi), i ∈



10 Studia Informatica Universalis.

0..MAX_V EHICLES: xposi is the vehicle’s position, and speedi its
bounded velocity. Distance and time scales do not have to be specified:
they can be as small as needed.

Each autonomous vehicle (not the leader) selects its acceleration
acceli according to its sensors’ values: its velocity p_speedi, the dis-
tance p_disti to the previous vehicle and the velocity p_l_speedi of this
vehicle. To simplify, perceptions are supposed errorless.

The following platooning laws are taken from [8]:

– the leader aims to reach a velocity IdealSpeed(t) which is ei-
ther constant or computed online: accel0(t) = (IdealSpeed(t) −
p_speedi(t))/∆t;

– the other vehicles aims to maintain a distance IdealDisti(t)
(once again, either constant or computed online) between the vehi-
cles: acceli(t)= (p_disti(t)−IdealDisti(t))/(2∆t2)+(p_l_speedi(t)−
p_speedi(t))/∆t.

These computed accelerations are limited by fixed bounds. The result-
ing acceleration is then used to compute the new state of each vehicle,
using classical mechanics’ laws [18, § III.A].

B Specification of Platooning The architecture of the B models
follows the B patterns given in section 3, with a few renaming: Environ-
ment becomes PhysicalVehicles, Agents becomes VehiclesControllers
(as depicted Fig. 5). Scheduler and MAS are kept.

The PhysicalVehicles machine contains the modelling of the physi-
cal world and its laws. The state of the vehicles are represented by two
arrays, xpos and speed, associating to each vehicle number the cor-
responding position or speed, respectively. It contains perception and
reaction operations, to react to its controllers.

The global safety property we are interested in with this model is to
establish that no collision can occur for instance. This can be done by
adding into the INVARIANT of PhysicalVehicles an expression like:

∀( ii ).(
( ii ∈ dom(xpos) − {0} ∧ xpos_updated(ii) = TRUE ∧ xpos_updated(ii−1) = TRUE)

⇒ xpos( ii−1) − xpos(ii) ≥ CRITICAL_DISTANCE)



B Patterns of I/R Model 11

which expresses that the distance between two updated positions of suc-
cessive vehicles must be higher than CRITICAL_DISTANCE.

Figure 5 also shows the VehiclesControllers machine, with 3 local
variables representing the perceptions (p_speed, p_dist and p_l_speed)
and one influence (accel_decision). It contains all the internal decision
mechanism of the agents, i.e. the infl method, which produces a new
acceleration. As established in section 3, only two methods have to be
explicitly written in VehiclesControllers (perceive and react already call
their respective counterparts in the PhysicalVehicles model): behave
which is bypassed because the agents are completely reactive, and infl.

MACHINE 
  VehiclesControllers
SEES Constants
INCLUDES PhysicalVehicles
CONSTANTS
  compute_new_accel
VARIABLES
  step, p_speed, p_dist, p_l_speed, accel
INVARIANT
  step ∈ STEP ∧
  p_speed ∈ 0..MAX_VEHICLES → MIN_SPEED..MAX_SPEED ∧
  p_dist ∈ 0..MAX_VEHICLES → INTEGER ∧ 
  p_l_speed ∈ 0..MAX_VEHICLES → MIN_SPEED..MAX_SPEED ∧
  accel ∈ 0..MAX_VEHICLES → MIN_ACCEL..MAX_ACCEL
OPERATIONS
perceive(ii) = ...
infl(agent) = ...
react(agent)= ...
END

MACHINE 
  PhysicalVehicles
SEES Constants
CONSTANTS
  new_xpos_when_max_speed,
  new_xpos_when_neg_speed,
  new_xpos_others
VARIABLES
  speed, xpos, xpos_updated
INVARIANT
  speed ∈ 0..MAX_VEHICLES → MIN_SPEED..MAX_SPEED ∧
  xpos ∈ 0..MAX_VEHICLES → NATURAL ∧
  xpos_updated ∈ 0..MAX_VEHICLES → BOOL
OPERATIONS
  new_p_speed, new_p_dist, new_p_l_speed ← perception
                (ii, old_p_speed, old_p_dist, old_p_l_speed) = ...
  reaction(ii,accel) = ...
END

MACHINE 
  Constants
SETS 
  STEP = {PERCEIVE,INFL,REACT}
CONSTANTS
  MAX_VEHICLES,
  MIN_SPEED,
  MAX_SPEED,
  MIN_ACCEL,
  MAX_ACCEL,
  CRITICAL_DISTANCE
  ...
END

Figure 5: Part of the B specification of platooning

Soundness of the Model, Properties B files once written, current
Proof Obligations (POs) for the platooning example are presented in Ta-
ble 1. Most of them are automatically solved by the Atelier B, the others
are proved interactively. An interactive proof means that the automatic
part of the prover did not go far enough into the proof tree. We have to
add new hypotheses and introduce sub-goals to guide the prover. Other
difficulties comes from complex arithmetic, which is a hard point for
theorem provers, but this tends to be less true over time.

Current unproved POs correspond to two cases:



12 Studia Informatica Universalis.

Component POs Proved Unproved %Pr
Constants 1 1 0 100
PhysicalVehicles 31 24 7 77
MAS_abs 0 0 0 -
MAS 169 169 0 100
Scheduler_abs 0 0 0 -
Scheduler 64 64 0 100
VehiclesControllers 21 17 4 80
TOTAL 286 275 11 96

Table 1: Proof results for the current B model of platooning

– some of them are not yet proved interactively with the tool, because
of the previously mentioned difficulties, but they seem true and some are
done by pen and paper;

– other unproved POs and the difficulties to prove them pinpoint mis-
takes on the model which correspond to know limitations of the consid-
ered laws for the longitudinal control, i.e. collision may occur in some
experimental conditions [18, § IV].

More generally, during the development process, the proof process
has unlighted lacks of hypotheses about some constants of the system,
such as the relationship between the bounds for the acceleration or be-
tween the acceleration and the maximal speed of the system. Not sur-
prisingly from a software engineering point of view, knowledge of the
experts of the domain was required for completing the hypotheses of
the system.

5. Related Works

Works on the specification and verification of MAS generally use as
verification methods model-checking techniques. They can be divided
in two main categories focusing on logical agents (e.g. [14, 7, 17, 16])
and deliberative/communicating multi-agent organisations (e.g. [20]).
However these models are not adapted to study situated MAS, due
in part to the combinatorial explosion generated by their complexity.
Theorem proving approaches abstract this explosive number of states
into predicates describing their general properties, thus theorem prov-
ing helps dealing with systems having an infinite, or really big, number



B Patterns of I/R Model 13

of states. The B method more particularly uses set theory, integer num-
bers and the theorems thereof to achieve this result.

We can nonetheless point out situated MAS designs based on model-
checking. Hilaire et al [13] propose a general framework for modelling
MAS that focuses on organisational aspects. Similarly, Regayeg et al
[17] defined a new language based on the Z notation and linear tempo-
ral logic allowing specifications of the internal part of agents and the
specification of the interaction protocol (communications) between the
agents. At last, [3] formalise situated MAS using coloured Petri net.
Once again this formalism is limited by the space explosion which re-
quires some simplification of the model.

More closely to the B method, we can point out recent works [5, 4,
11] involving the use of Event-B (an adaptation of the B method for
modelling reactive systems). These models focus on the coordination
between agents and only specifies the interaction protocol that struc-
tures the agent negotiation and decision making.

6. Conclusion

We have proposed in this paper a formal pattern for the Influence/Re-
action model proposed by Ferber & Muller [10]. This pattern is ex-
pressed with the B method, ensuring that a fully instantiated model fits
the high quality standards of the domain of critical software. This pat-
tern is also a generic expression of the Influence/Reaction model, allow-
ing in particular to take into account simultaneous actions generated by
agents. Indeed, any Multi-Agent System expressed through this model
and defined over integer numbers, or that can be approximated with
them, can be instantiated in this B pattern.

We furthermore illustrated the adequacy of our generic I/R formal
model with the problem of platooning defined as a reactive MAS. We
also obtained a platooning model that is sound up to typing constraints.
We drew a general schema for adding and proving more general prop-
erties to an instantiated MAS and how the process unrolls when doing
so.



14 Studia Informatica Universalis.

The strength of our approach resides in the fact that we consider a
formal model covering a whole system of agents. We are able to easily
express the local properties of agents in the relevant part of the design
pattern. We can easily match these local properties with desired global
properties expressed in the environmental part of the design pattern. In
other approaches, the design is focused on a single agent which is in-
stantiated several times, and global properties are tentatively extracted,
sometimes with difficulty, from the interaction of those agents. Our ap-
proach forces the developer to take into account at design time global
properties, even if these are trivial. The global properties can be en-
riched later on without having to restart the design from the beginning.

Further developments of our proposition include elaborating on the
expression of agents heterogeneity when considering one system. We
also want to ease the specification and verification of global properties
in the proposed framework. More generally, we started to develop an
application that aims at automatically generating complete B patterns
from agent behaviours and physical laws specified through an interface.
We also intend to lift the limitation on integer numbers by defining the
same kind of pattern for other formal methods supporting real numbers.
Eventually, we plan to express in the platooning model more complex
properties than presented, and to study other kinds of situated multi-
agent systems.

Acknowledgements We address our many thanks to Samuel Colin, for
common effort about the B specifications of the platooning problem in the
context of the CRISTAL project.

References
[1] J.-R. Abrial. The B Book. Cambridge University Press, 1996.
[2] F. Badeau and A Amelot. Using B as a high level programming language in an industrial

project: Roissy VAL. In ZB 2005: Formal Specification and Development in Z and B,
4th Int. Conf. of B and Z Users, volume 3455 of LNCS, pages 334–354. Springer-Verlag,
2005.

[3] I. Bakam, F. Kordon, C Le Page, and F Bousquet. Formalization of a spatialized multi-
agent system using coloured petri nets for the study of a hunting management system. In
FAABS 2000, Lecture Notes in Artificial Intelligence, number 1871, pages 123–132, 2001.

[4] E. Ball. An Incremental Process for the Development of Multi-agent Systems in Event-B.
PhD thesis, University of Southampton, 2008.



B Patterns of I/R Model 15

[5] E. Ball and M. Butler. Event-b patterns for specifying fault-tolerance in multi-agent in-
teraction. In Workshop on Methods, Models and Tools for Fault Tolerance, pages 4–13,
2007.

[6] P. Behm, P. Benoit, and J.M. Meynadier. METEOR: A Successful Application of B in
a Large Project. In Integrated Formal Methods, IFM’99, volume 1708 of LNCS, pages
369–387. Springer Verlag, 1999.

[7] F. Brazier, C. M. Jonker, and J Treur. Principles of component-based design of intelligent
agents. Data Knowledge Engineering, 41(1):1–27, 2002.

[8] P. Daviet and M. Parent. Longitudinal and lateral servoing of vehicles in a platoon. In
Proceeding of the IEEE Intelligent Vehicles Symposium, pages 41–46, 1996.

[9] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-wesley Professional, 1999.

[10] J. Ferber and J.P. Muller. Influences and reaction : a model of situated multiagent systems.
In 2nd Int. Conf. on Multi-agent Systems, pages 72–79, 1996.

[11] H.-J. Gao, Z. Qin, L. Lu, L.-P. Shao, and X.-C. Heng. Formal specification and proof of
multi-agent applications using event b. Information Technology Journal, 6(7):1181–1189,
2007.

[12] A. Helleboogh, G. Vizzari, A. Uhrmacher, and F. Michel. Modeling dynamic environ-
ments in multi-agent simulation. Autonomous Agents and Multi-Agent Systems, 14(1):1–
27, 2007.

[13] V. Hilaire, P. Gruer, A. Koukam, and O. Simonin. Formal specification approach of role
dynamics in agent organisations: Application to the Satisfaction-Altruism Model. In Int.
Jour. of Software Engineering and Knowledge Engineering (IJSEKE). in press, 2006.

[14] C. M. Jonker and J Treur. Compositional verification of multi-agent systems: A for-
mal analysis of pro-activeness and reactiveness. Lecture Notes in Computer Science,
1536:350–380, 1998.

[15] F. Patin, G. Pouzancre, and Servat T. A formal approach in the implementation of a
safety system for automatic control of platform doors. In 4th AFIS Conference on System
Engineering, 2006.

[16] F. Raimondi and A. Lomuscio. Mcmas: a tool for verifying multi-agent systems. In 12th
int. conf. on tools and algorithms for the construction and analysis of system (TACAS’06),
volume 3920 of LNCS. Springer Verlag, 2006.

[17] A. Regayeg, A. H. Kacem, and M. Jmaiel. Specification and verification of multi-agent
applications using temporal z. In Intelligent Agent Technology Conf. (IAT’04), pages 260–
266. IEEE Computer Society, 2004.

[18] Alexis Scheuer, Olivier Simonin, and François Charpillet. Safe longitudinal platoons
of vehicles without communication. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 70–75, Kobe (JP), May 2009.

[19] Steria – Technologies de l’information. Proof Obligations: Reference Manual, version
3.0, 1998.

[20] M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented analysis
and design. In Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 69–76. Seattle, WA, USA, 1999.

[21] Jano Yazbeck, Alexis Scheuer, Olivier Simonin, and François Charpillet. Decentralized
local approach for lateral control of platoons. In Proc. of the IEEE-RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Shanghai (CN), September 2011. To appear.


	Introduction
	The Influence/Reaction Model
	Generic B Patterns of I/R Model
	Specifying and Verifying with B
	B Patterns Architecture of the I/R Model

	Application to a Platooning Model
	Related Works
	Conclusion

