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Abstract

In this paper, we provide a new nonparametric estimator of the joint distribution

of two lifetimes under random right censoring and left truncation, which can be

seen as a bivariate extension of the Kaplan-Meier estimator. We derive asymptotic

results for this estimator, including uniform n1/2−consistency, and develop a general

methodology to study bivariate lifetime modelling, which is a critical issue in the

study of pensions with a reversion condition. Application to goodness-of-�t for

survival copula models is discussed. We show that the procedure that we use are

consistent, and propose a bootstrap procedure based on our estimator to compute

the critical values. All the new techniques that we propose are experimented on the

Canadian data-set initially studied by Frees et al. (1996).

Key words: Kaplan-Meier estimator, bivariate censoring, left-truncation, survival anal-

ysis, lifetime analysis, nonparametric estimation, copula models, bootstrap.

Short title: Nonparametric estimation for two lifetimes.

1 Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie Paris VI,

4 place Jussieu, 75005 Paris, France, E-mail: olivier.lopez0@upmc.fr.

1



1 Introduction

Pension contracts with reversion clauses depend on two random lifetimes: the one of the

policyholder, and the one of his/her wife/husband. While studying the lifetime of a single

individual is a classical problem for insurers, bivariate mortality analysis is quite more

delicate. The easiest solution would be to study each lifetime separately, assuming that

these two random variables are independent. However, this independence assumption

may be far to be true when we are considering two members of the same couple. Sev-

eral approaches have been proposed to model such lifetimes jointly, see e.g. Frees et al.

(1996), Carriere (2000), Luciano et al. (2008). These approaches are essentially based

on parametric or semiparametric models (typically copula models), and therefore rely on

rather strong assumptions. On the other hand, in this setting there is a serious lack of

nonparametric estimators that may be used, for example, to perform model checking. The

main reason for this absence stands in the di�culty to handle bivariate truncation and

bivariate censoring, which compose the main speci�cities of lifetime datas. The main aim

of this paper is to de�ne a new nonparametric estimator of the joint probability law of

a random vector of lifetimes, under a particular censoring and truncation scheme which

corresponds to the typical situation encountered in insurance data-sets. As an example

of application, we consider the Canadian data-set initially studied by Frees et al. (1996)1.

In the univariate case, Kaplan-Meier estimator (Kaplan and Meier (1958), generalized to

the case of left-truncation by Tsai et al. (1987)) plays this role of a purely nonparametric

estimator of the survival function which can be used as a benchmark for any parametric or

semiparametric model. However, in the bivariate case, such an estimator of the joint sur-

vival function is more di�cult to �nd. The most classical one can be found in Dabrowska

(1988). The main drawback of this estimator stands in the fact that it does not de�ne

a true probability de�nition, making it hard to use when it comes to estimate any other

quantity than the survival function itself. In fact, Dabrowska's estimator assigns negative

mass to some observations (see Pruitt (1991a)) which is, at least, counterintuitive. Alter-

native estimators usually present similar drawbacks. Akritas and Van Keilegom (2003)

and Lopez and Saint Pierre (2011), under bivariate censoring, proposed di�erent kind of

estimators that happen to de�ne true distribution. However, the estimator of Akritas and

Van Keilegom (2003) requires a careful choice of a smoothing parameter, while the one

de�ned by Lopez and Saint Pierre (2011) require additional assumptions on the censoring

1The author wishes to thank the Society of Actuaries, through the courtesy of Edward J. Frees and

Emiliano Valdez, for allowing use of the data in this paper
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variables which may not be realistic for insurance data-sets. In the present paper, we

restrain ourselves to a particular situation which corresponds to the situation observed

for the Canadian data-set. The two main assumptions that we make is that censoring

occurs at the same time for the two members of the couple, and that the only cause of

censoring is the fact that one member (at least) of the couple is still alive at the end of

the statistical study. Using these two assumptions allows to de�ne a simple estimator of

the joint distribution. We show that this estimator is uniformly n1/2−consistent for esti-
mating the survival function and a large number of related quantities (such as Kendall's

τ coe�cient for instance). Applications to parametric estimation, model checking and

bootstrap are considered. The rest of the paper is organized as follows. In section 2, we

de�ne the speci�c bivariate truncation and censoring scheme under which we work in the

following. We use the assumptions of the model to de�ne our nonparametric estimator

of the joint distribution. In Section 3, we provide some theoretical properties of this es-

timator, giving some uniform convergence rate. We particulary focus on the estimation

of quantities which may be used to perform copula modelling and �tting of the two life-

times, and provide a bootstrap procedure that manage to take account for the presence

of censoring and truncation. A detailed application of these techniques to the Canadian

data-set is performed in section 4.

2 A nonparametric estimator of the joint distribution

of two lifetimes

The aim of this section is to de�ne a nonparametric estimator for the joint distribution

of two lifetimes, under a right-censoring and left-truncation model which is presented in

section 2.1. Our estimator is based on a partial derivative equation which is described

in section 2.2, while the estimator itself is presented in section 2.3. Comparison with

the construction of Kaplan-Meier estimator in the univariate case, and with alternative

estimators, is done in section 2.4.

2.1 Bivariate right-censoring and left-truncated model

In the following, we consider two lifetimes (T, U), and i.i.d. replications (Ti, Ui)1≤i≤n of

these random variables. We assume that these random variables are absolutely continuous

with respect to Lebesgue's measure on the plane. A bivariate right-censoring model occurs
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when the random variables (Ti, Ui)1≤i≤n are not directly observed, that is when only the

following data is available,{
Yi = inf(Ti, Ci), & δi = 1Ti≤Ci

Zi = inf(Ui, Di), & γi = 1Ui≤Di
,

where (Ci, Di)1≤i≤n consists of i.i.d. replications of a random bivariate censoring vec-

tor (C,D), and (δi, γi)1≤i≤n are indicator functions allowing the distinction between cen-

sored and uncensored observations. In addition to right-censored observation, we consider

bivariate left-truncation. Introducing two random variables (µ, ν), the random vector

(Y, Z, δ, γ) is observed only if Y ≥ µ and Z ≥ ν. Therefore, observations are made of

(Yi, Zi, δi, γi, µi, νi)1≤i≤n where Yi ≥ µi and Zi ≥ νi. In order to be able to estimate the

joint distribution of (T, U), some identi�ability assumptions are required. In the univariate

case, classical assumptions consists of assuming the independence of T from (C, µ), and of

C from (T, µ), and of assuming that the probability of observing non-truncated observa-

tions is non-zero (otherwise, the set of observations is almost surely empty). Throughout

this paper, we will use a multivariate extension of such assumptions, which is summarized

in Assumption 1 below.

Assumption 1 Assume that

1. (T, U) is independent from (C,D, µ, ν),

2. (C,D) is independent from (T, U, µ, ν),

3. P(Y ≥ µ, Z ≥ ν) > 0.

It is important to mention that no additional assumption is made under the random

variables (C,D), or (µ, ν), which may have a dependence structure that we do not need

to specify.

If we consider the application of such a model in the study of the joint distribution of

the lifetimes of two members of the same couple, T (resp. U) will denote the total lifetime

of the husband (resp. his wife), C (resp. D) will denote the age at which the husband

(resp. the wife) stops being under observation for any other cause than death. Causes for

exiting the statistical study may be various. If one of the members of the couple is not

dead at the end of the statistical study, his/her lifetime is censored, but other causes may

exist, especially in cases where people can surrender their contract (and therefore stop

being under observation). Regarding the truncation variables, µ (resp. ν) will denote the
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age of the husband (resp. his wife) at the beginning of the statistical study (or at the time

when he joins the study after its beginning). Of course, Y and Z, which correspond to

the age at which the individuals leave the study for whatever cause, can only be observed

if they are both larger than the ages at which the two members of the couple join the

study.

Our aim is to provide a nonparametric estimation of the distribution of the random

vector (T, U). In absence of truncation or censoring, this task can be easily performed

by using the empirical distribution, which is the distribution de�ned by the multivari-

ate empirical distribution function, Femp(t, u) = n−1
∑n

i=1 1Ti≤t,Ui≤u, which estimates

F (t, u) = P(T ≤ t, U ≤ u). Indeed, this standard procedure consists of assigning the

mass n−1 at each observation, since, in an non-censored and non-truncated framework,

each observation is expected to bring the same amount of information. In our model,

Femp is of course unavailable, since it would require complete observation of (T, U). We

propose to rely on an estimator of the following form,

F̂ (t, u) =
n∑

i=1

Wi,n1Yi≤t,Zi≤u. (2.1)

An advantage of such a representation of our estimator F̂ is that there is a quick con-

nection between such an estimator and the underlying distribution he de�nes. Indeed,

Wi,n can be interpreted as the mass assigned to observation i. The weight Wi,n will be

designed to compensate the lack of information caused by censoring and truncation in

some parts of the distribution. Based on an estimator of the type (2.1), it becomes easy

to estimate general quantities such as E[ϕ(T, U)] =
∫ ∫

ϕ(t, u)dF (t, u) for some function

ϕ, by computing ∫ ∫
ϕ(t, u)dF̂ (t, u) =

n∑
i=1

Wi,nϕ(Yi, Zi). (2.2)

Estimation of the joint distribution or survival function is only a special case of this

estimation problem. Our theoretical results will show that we can obtain consistency of

integrals of the type (2.2) under appropriate conditions.

To properly de�ne the weights Wi,n, we will proceed in two steps. Section 2.2 provides

a key relationship that will only allow to de�ne an ideal (but unfortunately uncomputable)

estimator. Nevertheless, this relationship will allow us to de�ne a true estimator of the

type (2.1), which achieves some kind of asymptotic equivalence with the ideal one, as it

is shown in section 3.1.
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2.2 A key relationship for our bivariate lifetime model

In order to state the key result of our approach, let us �rst introduce some notation.

De�ne

SF (t, u) = P (T > t, U > u) ,

V (t, u) = P (Y ≤ t, Z ≤ u, δ = γ = 1|Y ≥ µ, Z ≥ ν) ,

H(t, u) = P (µ ≤ t ≤ Y, ν ≤ u ≤ Z|Y ≥ µ, Z ≥ µ) .

The following proposition establishes a relationship between these three functions and

dF (t, u).

Proposition 2.1 Under Assumption 1,

dF (t, u) =
SF (t, u)dV (t, u)

H(t, u)
=

{∫
t+

∫
u+ dF (t′, u′)

}
dV (t, u)

H(t, u)
, (2.3)

or, equivalently, for any ϕ ∈ L1,

E [ϕ(T, U)] =

∫ ∫
ϕ(y, z)SF (y, z)dV (y, z)

H(y, z)
= E [δγw(Y, Z)ϕ(Y, Z)|Y ≥ µ, Z ≥ ν] ,

with

w(y, z) =
SF (y, z)

H(y, z)
. (2.4)

Before proving Proposition 2.1, let us mention how it allows us to de�ne an ideal

estimator of F. De�ning W ∗
i,n = n−1δiγiw(Yi, Zi), consider

F ∗(t, u) =
n∑

i=1

W ∗
i,n1Yi≤t,Zi≤u. (2.5)

Based on Proposition 2.1, we see that∫ ∫
ϕ(t, u)dF ∗(t, u) →

∫ ∫
ϕ(y, z)w(y, z)dV (y, z) = E [ϕ(T, U)] , a.s.,

from the strong law of large numbers, when the sample size increases. Of course, F ∗

can not be computed, since it would require the knowledge of function H and of function

SF (t, u) =
∫
t+

∫
u+ dF (t′, u′). Nevertheless, as announced, F ∗ has to be understood as some

benchmark estimator, which presents the advantage of depending only on (Yi, Zi, δi, γi)1≤i≤n

and not on the unobservable variables (Ti, Ui)1≤i≤n.

Let us mention that F ∗ does not necessarily de�nes a true probability distribution,

since there is no reason than
∑n

i=1W
∗
i,n = 1. We will denote as W ∗

∞,∞ = 1 −
∑n

i=1Wi,n
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which can be interpreted as the additional mass that has to be put at in�nity (that is

(∞,∞)) in order to achieve a total mass equal to 1 (let us note that W ∗
∞,∞ can even be

negative, in the case where the total mass of F ∗ is larger than 1). Similar phenomenon

occur when we look at Kaplan-Meier estimator in the univariate case. If the largest

observation is uncensored, then the total mass of Kaplan-Meier estimator is one, otherwise,

an additional mass is missing that can be assumed to be put at in�nity.

We now state the proof of Proposition 2.1.

Proof of Proposition 2.1. De�ne

m∗(ϕ) =

∫ ∫
ϕ(y, z)SF (y, z)dV (y, z)

H(y, z)
.

This quantity is equal to

E [δγw(Y, Z, µ, ν)ϕ(Y, Z)|Y ≥ µ, Z ≥ ν] = E [1T≤C,U≤Dw(T, U, µ, ν)ϕ(T, U)|Y ≥ µ, Z ≥ ν] .

Next, the right-hand side can be rewritten in the following way,

m∗(ϕ) =
E [1T≤C,U≤D1T≥µ,U≥νw(T, U, µ, ν)ϕ(T, U)]

P(Y ≥ µ, Z ≥ ν)

=
E [E [1T≤C,U≤D1T≥µ,U≥νw(T, U, µ, ν)ϕ(T, U)|T, U, µ, ν]]

P(Y ≥ µ, Z ≥ ν)

=
E [E [1T≤C,U≤D|T, U, µ, ν]1T≥µ,U≥νw(T, U, µ, ν)ϕ(T, U)]

P(Y ≥ µ, Z ≥ ν)
.

We now use the fact that (C,D) is independent from (T, U, µ, ν), which leads to

E [1T≤C,U≤D|T, U, µ, ν] = SG(T−, U−), where SG(t, u) = P(C > t,D > u) is the joint

survival function of (C,D). Next, we get

m∗(ϕ) =
E [E [1T≥µ,U≥ν |T, U ]SG(T−, U−)w(T, U, µ, ν)ϕ(T, U)]

P(Y ≥ µ, Z ≥ ν)
,

and the independence of (µ, ν) from (T, U) leads to E [1T≥µ,U≥ν |T, U ] = L(T, U), where

L(t, u) = P(µ ≤ t, ν ≤ u). The proof will be complete if we show that w de�ned by (2.4)

is equal to SG(t−, u−)−1L(t, u)−1P(Y ≥ µ, Z ≥ ν).

To this aim, observe that, by de�nition,

H(t, u) = P(µ ≤ t ≤ Y, ν ≤ u ≤ Z|Y ≥ µ, Z ≥ ν) =
P (Y ≥ t, Z ≥ u)P (µ ≤ t, ν ≤ u)

P (Y ≥ µ, Z ≥ ν)
,

where we used the independence between (Y, Z) and (µ, ν).Observing that P (Y ≥ t, Z ≥ u) =

SG(t−, u−)SF (t−, u−) from the independence between (T, U) and (C,D), we �nally get

H(t, u) = SG(t−, u−)SF (t−, u−)L(t, u)P(Y ≥ µ, Z ≥ µ), and the result follows, since

SF (t−, u−) = SF (t, u) for absolutely continuous variables.
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2.3 A computable estimator

In the previous section, we showed that the distribution function F was solution of the

partial derivative equation (2.3). We use the term of partial derivative equation, since, in

the case where F corresponds to an absolutely continuous measure, dF (t, u) = f(t, u)dtdu,

where f(t, u) = ∂t∂uF (t, u). This equation depends on two unknown quantities which are

V and H. Nevertheless, V and H can be estimated empirically with n1/2−consistent
estimators, that is

V̂ (t, u) =
1

n

n∑
i=1

δiγi1Yi≤t,Zi≤t,

Ĥ(t, u) =
1

n

n∑
i=1

1µi≤t≤Yi,νi≤u≤Zi
.

Therefore, we propose to de�ne our estimator F̂ as a solution of an empirical version of

equation (2.3), that is F̂ solution of

dF̂ (t, u) =

{∫
t+

∫
u+ dF̂ (t′, u′)

}
dV̂ (t, u)

Ĥ(t, u)
. (2.6)

with the condition that the total mass of F̂ is equal to one, in order to de�ne a true

probability distribution. Since V̂ is a sub-distribution function which puts mass only at

observations such that δi = γi = 1, F̂ is of the form (2.1), with Wi,n = 0 when δi = 0 or

γi = 0. This simple form will allow us to show existence and unicity of this function F̂ ,

and will also provide an easy way to compute it.

Indeed, in this case, solving (2.6) is equivalent to determine a vector

W = (W1,n, ...,Wn,n,W∞,∞), where, again, W∞,∞ represents the eventual additional mass

that as to be put at in�nity. Equation (2.6) can then be rewritten in a matricial form, as

(In+1 − Â)W = 0, (2.7)

where In+1 denotes the identity matrix of Rn+1, and Â = (âi,j)1≤i,j≤n, with ân+1,n+1 = 1,

and, for (i, j) ∈ {1, ..., n}2,

âi,j =
δjγjδiγi1Yj≥Yi,Zj≥Zi

nĤ(Yi, Zi)
,

and âi,n+1 = δiγin
−1Ĥ(Yi, Zi)

−1, âj,n+1 = 0. Let us observe that there is no problem of

de�nition for coe�cients âi,j, since Ĥ(Yi, Zi) > 0, for all i.

Theorem 2.2 ensures existence of solutions of (2.7). Moreover, the proof furnishes a

way to solve explicitely this equation.
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Theorem 2.2 Under Assumption 1, there exists a unique solution of (2.7) such that:

1. W∞,∞ > 0,

2. Wi,n = 0 if δi = 0 or γi = 0,

3.
∑n+1

i=1 Wi,n = 1.

Moreover, Wi,n > 0 for all i such that δi = γi = 1.

Proof. Let m be the number of doubly uncensored observations. Since the weight

of all other observations is assumed to be zero, solving (2.7) under the restriction that

Wi,n = 0 if δi = 0 or γi = 0 is equivalent to solving

(Im+1 − Ã)W̃ = 0,

where Ã is a matrix of size (m+1)× (m+1), where we removed all the lines and columns

corresponding to the censored observations, and W̃ is the vector of all weights for doubly

uncensored observations. Moreover, we can reorder the terms in W̃ with respect to the

values of Y (the �rst component of W̃ corresponds to the weight that is a�ected to the

doubly uncensored observation with the smallest value of Y, and so on until the m−th
component which corresponds to the largest uncensored value of Y ). We will denote by

Y(1) < . . . < Y(m) the ordered values of uncensored variables Y, and Z(1) < . . . < Z(n)

the corresponding values of uncensored variables Z (ordered with respect to Y ). With a

slight abuse in notations, we do not change the notation Ã after reordering. Next, one

can observe that

Im+1 − Ã = Im+1 −


0 . . . . . . . . .

0
. . . . . . . . .

...
. . . 0 . . .

0 . . . 0 1

 =


1 . . . . . . . . .

0
. . . . . . . . .

...
. . . 1 . . .

0 . . . 0 0

 , (2.8)

since the i-th component of ÃW̃ corresponds to n−1Ĥ(Y(i), Z(i))
−1
∑

j W̃j1j∈Ri
, where

Ri = {j : Y(j) > Y(i), Z(j) > Z(i)} ∪ {∞}. Therefore, we see that Ri ⊂ {i+1, ..., n} ∪ {∞},
which leads to the triangular form of Ã with zeros on the diagonal, except for the last

coe�cient corresponding to the mass at in�nity. It follows from (2.8) that the dimension

of the kernel of Im+1 − Ã is exactly one, showing the existence and unicity of a non-zero

solution of (2.7) satisfying conditions 2 and 3 of the statement of Theorem 2.2.
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We will now prove that the coe�cients of W̃ are strictly positive if we impose W∞,∞ >

0. To this aim, it su�ces to consider a solution of (2.7) with W̃ ′
∞ = 1, the conclu-

sion being deduced after normalization by the sum of the coe�cients W̃ ′
i . This proof

can be done recursively, and furnishes an explicit solution of (2.7). Indedd, W̃ ′
m =

n−1Ĥ(Y(m), Z(m))
−1W̃ ′

∞ is strictly positive since W ′
∞ is. Since Rm−1 ⊂ {m} ∪ {(∞,∞)},

since Ĥ is a positive function and since W̃ ′
m > 0 and W̃ ′

∞ > 0, we can conclude that

W̃ ′
m−1 > 0. The same procedure can be applied to show that W̃ ′

m−2 > 0, ..., W̃ ′
1 > 0. More-

over, we see that these weights can be computed recursively, beginnning with the mass at

in�nity, since the mass at an observation only depends on the mass a�ected to the obser-

vations with a largest value of Y. The proof is complete by taking Wi,n = W̃i,n(
∑

W̃j,n)
−1,

and W∞ = W̃∞(
∑

W̃j,n)
−1.

Remark 2.3 Adding a mass at in�nity is necessary if we wish to ensure existence of

solutions of (2.7). However, as it will appear in the proof of our Theorem 3.1, we will

see that this mass will be quite close to zero in practice (of order n−3/2). Nevertheless,

there exists a particular situation in which we can slightly modify our estimator in order to

reallocate the small weight of (∞,∞) at the "largest" observation. Consider the case where

there exists some observation i0 such that Yi0 = max1≤i≤n(Yi) and Zi0 = max1≤i≤n(Zi).

In this case (Yi0 , Zi0) can be considered as the largest observation in a bivariate sense,

since all observations are smallest with respect to both Y and Z. If this observation is

uncensored, that is δi0 = γi0 = 1, we can slightly modify equation (2.7) by simply putting

the residual mass at point (Yi0 , Zi0) instead of putting it at (∞,∞). The new system of n

equations then becomes,

Wi,n = n−1Ĥ(Yj, Zj)
−1

n∑
i=1

Wj,n1Yj>Yi,Zj>Zi
, for i ̸= i0,

Wi0,n = Wi0,n,

and the same proof as for Theorem 2.2 applies, by searching a solution of the system with

Wi0,n = 1 (instead of W∞,∞ = 1).

2.4 Comparison with other estimators

Comparison to Kaplan-Meier estimator.

In the univariate case, Kaplan-Meier estimator (Kaplan and Meier (1958)) is used

to estimate the distribution of right-censored random variable, and Tsai et al. (1987)
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proposed an adaptation which is used for dealing with left-truncation. This estimator

satis�es a di�erential equation which has to be connected with our Proposition 2.1. Indeed,

this estimator F̂ (t) of F (t) = P(T ≤ t) can be rewritten as

F̂ (t) =
n∑

i=1

Win1Yi≤t.

Looking at the expression of the weight Win in Sánchez Sellero et al. (2005), we see that

this wait can be expressed as

Win =
δi(1− F̂ (Ti))

Ĥ(Ti)
,

where H(t) = P(µ ≤ t ≤ T ), which is the one-dimensional counterpart of (2.4).

Comparison to other existing estimators in the case of bivariate censoring.

Most of the estimators used for studying bivariate censoring only focus on the es-

timation of the joint survival function. A consequence is that many of them do not

de�ne regular distributions. The estimator proposed by Campbell and Földes (1982) is

not a proper survival function due to nonmonotonicity. Similarly, Dabrowska's estimator

(Dabrowska (1988)) assigns negative mass to some points in the plane, as it is shown

in Pruitt (1991a). As a consequence, since Dabrowska's does not de�ne a probability

distribution, in can not be used for perfoming bootstrap. Moreover, assigning negative

mass to some observations is, at most, counterintuitive. More generally, de�ning the

mass that some estimator a�ects to each observation is generally di�cult for previously

existing estimators, making them di�cult to use when it come to estimate integrals with

respect to the distribution of (T, U). See also Prentice and Cai (1992), Gill et al. (1993)

for modi�cations of these estimators that su�er from the same drawbacks.

Another class of estimators relies on nonparametric maximum likelihood techniques

(NPMLE). The computation of the estimator is usually delicate, since it is de�ned im-

plicitely (see Pruitt (1993), Pruitt (1991b) and van der Laan (1996)), while the conver-

gence rate can be lower than n1/2. This problem of slow convergence rates appears in

Akritas and Van Keilegom (2003), which is one of the rare estimator being a true survival

function. The estimator proposed by Lopez and Saint Pierre (2011), achieves this usual

convergence rate and de�nes a true distribution, but relies on a restrictive assumption on

the joint law of the censoring, that can be di�cult to justify in the framework of insurance

contracts.

As we will show in the following, the convergence rate of the estimator that we propose

in the present paper is n1/2, while its computation is quite simple (and can be done without
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any approximation). Moreover, the fact that it de�nes a true distribution allows to use

it to perform bootstrap procedure, as it is shown in section 3.3.

3 Theoretical behaviour of the new estimator and boot-

strap procedure

The aim of this section is to show that our new estimator of the distribution is n1/2−consistent.
In section 3.1, we provide a general result for integrals of the type

∫ ∫
ϕ(t, u)dF̂ (t, u).

Some particular cases are considered in section 3.2. Finally, in section 3.3, we show how

a bootstrap procedure can be implemented in order to evaluate estimation errors.

3.1 n1/2−consistency of the new estimator

To prove n1/2−consistency, we compare the estimator F̂ proposed in the previous section

to the ideal estimator F ∗ de�ned in (2.5). Indeed, estimator F ∗ is very simple to study,

since it is a sum of i.i.d. quantities. Therefore, the most delicate result that we need to

prove is contained in Theorem 3.1 below, which aims to compare the mass Wi,n to the

ideal one W ∗
i,n.

Theorem 3.1 Under Assumption 1, assume that there exists a constant K such that

1

H(Y, Z)
< K, a.s. (3.1)

then

sup
1≤i≤n

|Wi,n −W ∗
i,n|+ |W∞,∞ −W ∗

∞,∞| = OP (n
−3/2).

The proof of this result is postponed to the Appendix section. In this statement, let

us discuss (3.1). This assumption has to be linked with the di�culty to estimate the

tail of the distribution (in a bivariate sense, this means when y and z tend to in�nity).

A particular case in which this assumption holds is when the censoring has a support

included in some compact set [0, tmax]×[0, umin], strictly included in the support of (T, U),

with P((C,D) = (tmax, umin)) ̸= 0. However, as it will be shown in the simulations we

conduct in section 3.2.2, the fact that this assumption does not hold does not seem to have

a strong impact in practice. Some similar problems occur when studying the asymptotics

of Kaplan-Meier estimator in the univariate case. Many existing results are only valid on

compact subsets strictly included in the support of the distribution (see e.g. Van Keilegom

12



and Akritas (1999), Du and Akritas (2002), Lopez (2011)), because of similar problems

of denominators close to zero that are delicate to handle from a theoretical point of view.

With additional work, these conditions can be replaced by moments conditions (which,

unfortunately, can not be checked in practice), such as the one provided by Stute (Stute

(1995)). However, developing similar arguments in order to relax condition (3.1) is quite

delicate in our framework (without signi�cant practical impact), and is therefore left to

future research.

With at hand Theorem 3.1, we can now state our main result on integrals of the form∫ ∫
ϕ(t, u)dF̂ (t, u).

Theorem 3.2 Let F denote a class of functions such that, for all ϕ ∈ F , ϕ(∞,∞) = 0,

and |ϕ(y, z)| ≤ Φ(y, z) with E[Φ(Y, Z)] < ∞. Then, under the assumptions of Theorem

3.1, ∫ ∫
ϕ(t, u)dF̂ (t, u) =

∫ ∫
ϕ(t, u)dF ∗(t, u) +Rn(ϕ), (3.2)

with supϕ∈F |Rn(ϕ)| = OP (n
−1/2). Moreover, if

sup
ϕ∈F

∣∣∣∣∣ 1n
n∑

i=1

δiγiSF (Yi, Zi)ϕ(Yi, Zi)

H(Yi, Zi)
− E[ϕ(Y, Z)]

∣∣∣∣∣ = OP (n
−1/2), (3.3)

we get

sup
ϕ∈F

∣∣∣∣∫ ∫ ϕ(t, z)dF̂ (t, z)−
∫ ∫

ϕ(t, z)dF (t, z)

∣∣∣∣ = OP (n
−1/2). (3.4)

Condition (3.3) will hold as long as F is a Donsker class of functions (see van der

Vaart and Wellner (1996) for a precise de�ntion), that is if F satis�es an uniform central

theorem property. In particular, the class of indicator functions (T, U) → 1T≤t,U≤u where

(t, u) belong to some set T satis�es condition (3.3), allowing to obtain uniform consistency

of F̂ as an estimator of F (see section 3.2.1 for more details).

Proof of Theorem 3.2. Write∫ ∫
ϕ(t, u)dF̂ (t, u) =

∫ ∫
ϕ(t, z)dF ∗(t, z) +

n∑
i=1

(Wi,n −W ∗
i,n)ϕ(Yi, Zi).

The second term is bounded by(
n−1

n∑
i=1

Φ(Yi, Zi)

)
× sup

i
n|Wi,n −W ∗

i,n|.

Next, n−1
∑n

i=1Φ(Yi, Zi) = OP (1), while supi n|Wi,n −W ∗
i,n| = OP (n

−1/2), from Theorem

3.1, which shows that (3.2) holds. Finally, (3.4) can be obtained from Assumption (3.3).
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3.2 Examples of applications of Theorems 3.1 and 3.2

We now present some applications of the general results of the previous section. The three

examples that we give are motivated by survival copula models. Indeed, the bivariate

survival function SF (t, u) = P(T > t, U > u) of the random vector (U, V ) admits, by

Sklar's Theorem (Sklar (1959)), a copula representation, that is

SF (t, u) = C(ST (t), SU(u)),

where ST (t) = P(T > t) and SU(u) = P(U > u), and where C is a copula function

(see e.g. Nelsen (2006)). To understand the dependence between T and U, which is

represented by the copula function C, it is natural to search for an estimator C, usually

based on a parametric or semiparametric model. Nevertheless, even in this framework,

nonparametric inference is required, at least to validate the model.

In section 3.2.1, we show how our estimator can be used to compute a n1/2−consistent
estimator of SF . Section 3.2.2 illustrates its behaviour in view of estimating Kendall's

τ coe�cient. This nonparametric estimation of τ can be used, in a copula modelling

approach, to obtain preliminary estimators that can be used in the maximum likelihood

estimation procedure. Finally, section 3.2.3 provides an uniform consistency result for an

extension of Kendall's process, that is classically used to assess the validity of Archimedean

copula models in absence of right-censoring and left-truncation.

3.2.1 Estimation of the joint distribution function

As a particular example of the use of Theorem 3.2, we provide an uniform consistency

result for the estimation of the joint distribution function (T, U). The survival function SF

can be obtained in the same way, since both function are related. Indeed, we can apply

Theorem 3.2 to the class of functions F = {(T, U) :→ 1T≤t,U≤u}. This class is a Donsker
class of functions (see Van der Vaart and Wellner, 1996, for a complete de�nition), and

therefore satis�es condition (3.3). Moreover, F̂ (t, u) =
∫ ∫

1t′≤t,u′≤udF̂ (t′, u′), which leads

to

sup
t,u

|F̂ (t, u)− F (t, u)| = OP (n
−1/2). (3.5)

The joint survival function can be studied in the same way by considering 1T>t,U>u. We

see that this convergence rate is of the same order as the one of Dabrowska's estimator

(Dabrowska (1988)).
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3.2.2 Estimation of Kendall's τ coe�cient

Kendall's τ coe�cient can be de�ned as

τ = P [(T1 − T2)(U1 − U2) > 0]− P [(T1 − T2)(U1 − U2) < 0] .

This coe�cient is a popular measure of dependence between to random variables, see e.g.

Nelsen (2006) for more details. After some standard calculations, Kendall's τ coe�cient

can be rewritten as

τ = 4

∫ ∫
F (t, u)dF (t, u)− 1.

Therefore, our estimator F̂ can be used to de�ne a nonparametric estimator of τ in the

following way,

τ̂ = 4

∫ ∫
F̂ (t, u)dF̂ (t, u)− 1. (3.6)

Convergence of τ̂ towards τ can be shown combining (3.5) and Theorem 3.2. Indeed,

τ̂ − τ =

∫ ∫ (
F̂ (t, u)− F (t, u)

)
dF (t, u) +

∫ ∫
F (t, u)d

{
F̂ (t, u)− F (t, u)

}
+

∫ ∫
(F (t, u)− F̂ (t, u))d

{
F̂ (t, u)− F (t, u)

}
.

The �rst and third term are OP (n
−1/2) using (3.5), while the second is also OP (n

−1/2)

from Theorem 3.2.

In the following, we will use this estimator τ̂ to de�ne preliminary estimators for

the association parameter of survival copulas models under bivariate censoring and left

truncation. Indeed, for some copula families, there exists a closed formula linking the

parameter of association to Kendall's τ coe�cient. Otherwise one can use numerical

techniques to determine, for example through simulations, which value of the association

parameter corresponds to τ̂ . The preliminary estimators obtained by this method can then

be used as starting point for maximum likelihoood optimization. Indeed, these maximiza-

tion techniques, especially in our incomplete data framework, rely on delicate numerical

techniques that can be very sensitive to the initial point of the iterative maximization

algorithm that is used. Since our estimator (3.6) is n1/2−consistent, it is expected to

furnish a good initialization for such procedures.

Illustration.

To investigate the practical behaviour of our procedure, we consider a simulation

study in order to assess the convergence of our estimator τ̂ . We consider a couple of
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lifetimes (T, U) with the same Weibull distribution for T and U. Weibull distribution is

parametrized through a shape parameter α and a scale parameter β, and admits a density

f(t) =
α

β

(
t

β

)α−1

exp

(
− tα

βα

)
,

for t ≥ 0. The two random variables are linked by a Clayton copula (see de�nition in

Table 2) with parameter θ, so that Kendall's τ coe�cient is known, since τ = θ[θ + 2]−1

for a Clayton copula. The censoring variables are assumed to be i.i.d. exponential with

scale parameter equal to one. The truncation variables (µ, ν) are assumed to be i.i.d. with

marginal distribution de�ned as the product B × W of a Bernoulli random variable B

with mean value 0.7, and a Weibull random variable W of parameters α = 2 and β = 10

which is independent from B.

We considered two di�erent situations for the values of the parameters of the marginal

laws of T and U. In the �rst situation, we consider α = 2 and β = 1.1, which corresponds

approximatively to a proportion of 20% of observations which are uncensored for both

marginals. Additionally, we considered the case where α = 2 and β = 1.7, corresponding

to 10% of observations which are uncensored for both marginals. In each case, we took

θ = 2, corresponding to τ = 0.5, and we considered two sample sizes n = 1000, and

n = 2000. Through 1000 replications of each setting, we computed an estimation of the

mean squared error E [(τ̂ − τ)2] , and decomposed it into a bias term and a variance term.

Results are shown in Table 1 below.

Model Criterion n=1000 n=2000

α = 2 MSE = 0.01502 0.00722

β = 1.1 Bias = 0.08983 0.05117

(20% of uncensored) Variance = 0.00695 0.00460

α = 2 MSE = 0.07433 0.04051

β = 1.7 Bias = 0.23792 0.16787

(10% of uncensored) Variance = 0.01772 0.01233

Table 1: Estimation of the mean-squared error and related quantities for the estimation

of Kendall's τ coe�cient.
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3.2.3 Kendall's process

Kendall's process is a standard tool to perform model checking for copulas in absence of

censoring or truncation, see Genest and Rivest (1993), or Genest et al. (2006). Applica-

tions will be shown in section 4.3. De�ning K(v) = P(SF (T, U) ≤ v), empirical versions

of K can be computed in absence of censoring using the empirical distribution function.

In our framework, we can extend this de�nition, de�ning

K̂(v) =

∫ ∫
1SF̂ (t,u)≤vdF̂ (t, v) =

n∑
i=1

Wi,n1SF̂ (Yi,Zi)≤v. (3.7)

The proof of the next result is technical and is postponed to the appendix section.

Proposition 3.3 Under the assumptions of Theorem 3.1, assume that the density of

(T, U) is uniformly bounded by some constant C ≥ 0. Then,

sup
v∈[0,1]

|K̂(v)−K(v)| = OP (n
−1/2).

This theoretical result is a key tool to assess the validity of testing procedures for copula

models. More precisions on this are given in section 4.3. Wang and Wells (2000) proposed

a similar estimator based on Dabrowska's estimator, without proving its convergence.

3.3 Bootstrap procedure

Theorem 2.2 only provides an uniform convergence rate, without giving an asymptotic

law, which could be used to compute con�dence intervals for estimations of integrals∫ ∫
ϕ(t, u)dF (t, u). Nevertheless, the most appropriate way to estimate the asymptotic

variance of such quantities is to rely on bootstrap approximations (even if we had deter-

mined the asymptotic law, bootstrap procedures would be more adapted for �nite sample

size).

Suppose that we wish to estimate the law of a quantity θ(F̂ ), the particular example

we have in mind being V ar
(∫ ∫

ϕ(t, u)dF̂ (t, u)
)
, but more general quantities may be

studied with the similar method. For censored variables in the univariate, there exists

two principal strategies for de�ning resampling plans. Reid's (Reid (1981)) methodology

consists of directly resampling the points (Yi, δi)1≤i≤n, while Efron's methodology (Efron

(1981)) consists of simulating lifetimes and censoring variables to compute (Yi, δi). Al-

though Reid's methodology is easier to implement, it can lead to unconsistant results,
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which is not the case of Efron's methodology, see Akritas (1986). Therefore, we try to ex-

tend this second approach to the bivariate case (in the univariate case, Efron's resampling

plan has already been extended to the case of left truncation by Wang (1991)).

In order to simulate censoring variables (C,D), it is required to use an estimator of

their joint distribution. De�ning G(c, d) = P (C ≤ c,D ≤ d) , we can, reversing the role

of the censoring and lifetime variable, compute an estimator Ĝ using the same method

that we used for estimating the distribution of the lifetimes. We also need to simulate

truncation variables (µ, ν). For this, we use

L̂(t, u) = (
n∑

i=1

ŜF (Yi, Zi)
−1)−1(

n∑
i=1

ŜF (Yi, Zi)
−11µi≤t,νi≤u),

as an estimator of their joint distribution.

We here provide a resampling plan, inspired by the methodology of Efron (1981) for

censored observations in the univariate case.

Resampling plan.

Let B denote the number of bootstrap sample that we whish to generate. For b =

1, ..., B,

1. Simulate (T b
i , U

b
i ) according to F̂ .

2. Simulate (Cb
i , D

b
i ) according to Ĝ.

3. Compute (Y b
i , Z

b
i , δ

b
i , γ

b
i ).

4. Simulate (τ bi , υ
b
i ) according to L̂.

5. If Y b
i ≥ τ bi and Zb

i ≥ υb
i , keep observation i. Otherwise, resimulate from Step 1 until

this is the case.

6. Obtain an n−sample reiterating this procedure independently, and compute F̂b and

θ(F̂b).

The vector (θ(F̂b))1≤b≤B can then be used to estimate di�erent characteristics, such as

the variance, of θ(F̂ ).

Remark 3.4 Simulating random vector with respect to discrete distributions such as F̂ ,

Ĝ and L̂ is easy. We here see one of the advantages of having used an estimator F̂

which is linked to a true distribution. If we use estimators such as the one provided by
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Dabrowska (1984), this resampling plan can not be adapted since Step 1 and 2 are not

feasible. Nevertheless, there is a speci�city of F̂ and Ĝ that we must take into account:

in some cases, these two distributions will present some mass at (∞,∞). In these cases,

some observations which are resimulated should have the value (∞,∞). The probability

occurence of such events should be small (both distributions put a small mass at in�nity).

Such observations will only have the consequence to add some weight at (∞,∞) for F̂b,

without leading to failures. However, an alternative would be to remove these observations

from the simulated sample, which would not strongly modify the results.

4 Application to the Canadian data set

In this section, we apply our technique to a portfolio from a Canadian insurer, which has

been studied in several papers. In this paper, the authors provided a very detailed study

of the joint mortality using Archimedean copula models. The choice of the copula family

is made using a technique based on a version of Kendall's process proposed by Wang and

Wells (2000) and based on Dabrowska's estimator. We here compare our results with the

new estimator that we propose in order to assess its validity. Moreover, in section 4.3,

we provide a test procedure to perform model-checking, and explain how to compute the

critical values.

4.1 Description of the data-set

The dataset that we study has been initially introduced by Frees et al. (1996), and was

studied by Carriere (2000), Youn and Shemyakin (1999), Youn and Shemyakin (2001) and

Luciano et al. (2008). We refer to Frees et al. (1996) for a more detailed description of this

dataset. The dataset concerns 14947 contracts from a large Canadian insurer, observed

between Decembre 29th, 1988 and Decembre 31th, 1993. After elimination of same-sex

contracts and of couples with more than one policies (for which we only keep one policy),

11454 contracts remain. To model the data, we consider three copula models proposed

by Luciano et al. (2008) to study a particular generation (here, we apply our method to

the whole population), and show how our technique allows to perform estimation and

goodness-of-�t.
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4.2 Copula models and estimation of the association parameter

In this section, we consider a semiparametric copula model for describing the distribution

of (T, U). In a semiparametric copula model, the marginal distribution of each variable is

estimated nonparametrically (using Kaplan-Meier estimator since we are in presence of

censoring and truncation), while the dependence between the two variables is described

by a parametric copula family {Cθ : θ ∈ Θ} for Θ ⊂ Rk, see e.g. Shih and Louis (1995).

We consider the three families of copulas that have been used by Luciano et al. (2008)

for studying the joint mortality of a speci�c generation in the Canadian data-set, that is

Clayton, Frank and Nelsen 4.2.20. These three families are of Archimedean type, which

means that the copula function is uniquely de�ned by a decreasing convex function ϕ,

that is Cϕ(t, u) = ϕ−1 (ϕ(u) + ϕ(v)) . The generators corresponding to the three families

are presented in Table 2 below, and we recall the link between τ and the association

parameter in these families.

Using our estimator (3.6), we obtain τ̂ = 0.4332. Using the relationship between

the association parameter θ and τ, we obtain the following preliminary estimators of θ,

presented in Table 2.

Model ϕθ(t) τ Preliminary

Clayton θ−1(t−θ − 1) τ = θ
θ+2

1.5283

Frank − log
(

exp(−θt)−1
exp(−θ)−1

)
1− 4

θ

(∫ θ

0
tdt

θ(et−1)
− 1
)

4.6201

4.2.20 exp(t−θ)− e 1− 4
θ

(
1

θ+2
−
∫ θ

0
tθ+1[exp(1− t−θ)]dt

)
1.0413

Table 2: Expression of the di�erent copula families considered. The column τ presents the

expression of Kendall's τ if available, the column preliminary represents the preliminary

estimator obtained by calibration with τ coe�cient.

These preliminary estimators are then used to perform maximum likelihood estima-

tion, using a procedure which has been studied by Shih and Louis (1995), Wang and

Wells (2000), and which is also used in Luciano et al. (2008). In this bivariate censoring

framework, the log-likelihood can be decomposed into four terms, that is

L(θ) =
n∑

i=1

δiγi log
(
cθ(ŜT (Yi), ŜU(Zi))

)
+ (1− δi)γi log

(
∂zCθ(ŜT (Yi), ŜU(Zi))

)
+δi(1− γi) log

(
∂yCθ(ŜT (Yi), ŜU(Zi))

)
+ (1− δi)(1− γi)Cθ(ŜT (Yi), ŜU(Zi)),

20



Model Final estimator Corresponding value of Kendall's τ

Clayton 1.3116 0.3960

Frank 2.91290 0.3012

Nelsen 4.2.20 0.5098 0.4020

Table 3: Final maximum likelihood estimators of the association parameter in the three

copula models, with corresponding value of Kendall's τ coe�cient.

where ŜT (resp. ŜU) denotes the Kaplan-Meier estimator of ST (t) = P(T > t) (resp.

SU(u) = P(U > u)), or any other consistent estimator of the survival function. We

perform maximization of this quantity using a Newton-Raphson algorithm, with initial

value taken as the preliminary estimator of Table 2. The �nal estimators are presented

in Table 3, along with the corresponding value of Kendall's τ coe�cient.

4.3 A class of model-checking procedures using Kendall's process

4.3.1 Test-statistics

Archimedean families of copulas present the advantage of being uniquely de�ned by their

generator ϕ, which can be linked to function K through the relation,

K(v) = v − ϕ(v)

ϕ′(v)
.

Genest and Rivest (1993) and Genest et al. (2006) proposed test procedures (in absence

or censoring) that can be used for model-checking based on the comparison of Kθ̂(v) =

v−ϕθ̂(v)/ϕ
′
θ̂
(v), where θ̂ denotes the estimator of the association parameter in a parametric

copula model, and a nonparametric version K̂.

Let C denote the true copula function linking the marginal distributions of T and U.

If one whishes to test H0 : C ∈ CΘ against H1 : C /∈ CΘ, where CΘ is a parametric family

of copulas, the procedure can be summarized as follows:

1. Estimate θ by θ̂ assuming that model CΘ is true.

2. Compute K̂, Kθ̂, and d(K̂,Kθ̂) where d denotes some distance.

3. If d(K̂,Kθ̂) is larger than some critical value sα, reject H0.

Luciano, Vigna and Spreeuw (2008) use a L2−distance, that is

d(K,K ′) =

∫ 1

0

{K(v)−K ′(v)}2 dv, (4.1)
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and we will use the same distance for easier comparison. Next, we explain in section 4.3.2

how to compute the critical values.

Based on Proposition 3.3, one can see that this testing approach is consistent. In-

deed, if H0 is not true, our estimator K̂ converges towards some limit K such that

infθ∈Θ d(K,Kθ) > 0. Hence, since d(K̂,Kθ̂) > |d(K,Kθ̂)− d(K̂,K)|, we get

d(K̂,Kθ̂) > inf
θ∈Θ

d(K,Kθ) +OP (n
−1/2).

As a consequence, for any α, P
(
d(K̂,Kθ̂) > sα|H1

)
→n→∞ 1.

4.3.2 Computation of the critical values

We propose to compute the critical values using a procedure which is adapted from Genest

et al. (2006) in the uncensored case. The critical values are computed using a bootstrap

resampling plan. Let us mention that Wang and Wells (2000), in our framework, proposed

a very simple resampling plan. However, Genest et al. (2006) showed that this resampling

plan was unconsistent and therefore could not be used. Therefore, we propose to adapt

our bootstrap procedure de�ned in section 3.3 in order to extend the procedure of Genest

et al. (2006). We apply this technique for θ(F̂ ) = d(K̂,Kθ̂), where d is the distance de�ned

in (4.1). However, since we are interesting in knowing the distribution of d(K̂,Kθ̂) under

the null hypothesis, we simply change Step 1 in our bootstrap procedure of section 3.3 by

1'. Simulate (T, U) according to the distribution Cθ̂(F̂T (t), ĜU(u)).

The bootstrap vector (d(K̂b, Kθ̂b)) that we obtain using this procedure can then be used

to determine approximated p−values of our test procedure.
Another modi�cation of the bootstrap procedure is required to reduce computation

time. Indeed, this simulation scheme su�ers from the di�culty to estimate the distribution

in the left-tail (caused by truncation). Even if condition (3.1) holds, the constant K may

be large and impact on the performance for �nite sample-size (this is actually the case

in the univariate situation). In practice, we see that the nonparametric estimator of

the distribution of (C,D) is very sensitive to this phenomenon. As an illustration, the

smallest censored observations (for both components) has mass 0.5. Moreover, the set of

observations such that one at least is less than 20000 days is a�ected of a mass greater

than 0.8, although it represents only 2% of the observations. This is not a problem from a

theoretical point of view: if we draw some point (C,D) in this part of the distribution, the

truncation phenomenon will frequently reject this observation, and therefore it will not

22



appear in the �nal simulated sample. However, in practice, according to our procedure,

each time a point is rejected due to truncation, another simulation is performed. If these

rejection happen very often, this dramatically increases the computation time. Therefore,

we chose to use modify the distribution. We a�ect to the set of censored points such that

C < 20000 or D < 20000 a mass 0.2, and renormalize the rest of the mass in order to

obtain a total mass equal to 1.

4.3.3 Goodness-of-�t on the Canadian data-set

In Figure 1, we graphically present the function K̂ computed from the Canadian data-set,

and compare it with the function K̂θ̂ obtained for the three copula models.
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Figure 1: Comparison of the estimators K̂θ̂ to the nonparametric estimator K̂.

One can observe that the estimated version using Clayton's model or Nelsen's 4.2.20
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model seem to be closer to the nonparametric curve. Nevertheless, all three models seem

to be less accurate for high values of v, which may be caused by the presence of censoring.

The application of the test procedure described in the previous section is presented in

Table 4. In this table, we compare the value of the distance obtained by our method

for the di�erent models that we considered, to the one obtained by Luciano et al. (2008)

using the version of K̂ proposed by Wang and Wells (2000) instead of our estimator K̂

de�ned in (3.7). We present the p−value corresponding to each case.

Model Test statistic 95% quantile 97.5 % quantile 99 % quantile p-value

Clayton 0.006360 0.02301 0.02708 0.03383 0.3840

Frank 0.02439 0.02893 0.02980 0.03975 0.1520

Nelsen 4.2.20 0.006253 0.02866 0.02972 0.03571 0.3630

Table 4: Goodness-of-�t procedure for a the three survival copula models considered

(Clayton, Frank, Nelsen 4.2.20).

According to these results, Frank's model corresponds to the smallest p-value, and

seems less adapted than the two other models, which corresponds to what was observed

on Figure 1. At a classical 5% level, one can see that, for all three models, the null

hypothesis is not rejected.

5 Conclusion

In this paper, we proposed a new nonparametric estimator of the joint distribution of a

random vector of lifetimes (T, U). This estimator is designed to compensate the classical

problem that impact lifetime data, such as left truncation and right-censoring. Unlike

previously existing estimators in this framework, our estimator de�nes a true distribution,

and does not only focus on the particular case of estimating the joint survival function.

An important advantage of this approach, is that it allows to perform simulations quite

easily, as it has been proposed in the bootstrap procedures that we discussed in section

3.3 and 4.3.2. These simulations procedure may be quite valuable in the computation of

critical values of goodness-of-�t tests, as it is illustrated on the Canadian data-set of Frees

et al. (1996).
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6 Appendix

6.1 Proof of Theorem 3.1

In this proof, we introduce several notations in order to make some simpli�cations. We

will denote Hi = H(Yi, Zi), ∆i = δiγi, Si = SF (Yi, Zi), and S∗
i = 1 − F ∗(Yi, Zi) =

n−1
∑n

j=1∆jH
−1
j 1Yj>Yi,Zj>Zi

. The vector W ∗ will represent the weights a�ected by F ∗ to

each observation. Only the doubly uncensored observations (which are the one where some

mass is put) are present in this vector of size m+1 (as in the proof of Theorem 2.2, m will

denote the number of doubly uncensored observations) This vector is sorted accordingly

to Y (the �rst component corresponds to the mass assigned at the doubly uncensored

observation with the smallest Y, and so on). W ∗
i will denote the i−th component of W ∗.

We recall some facts that can be easily proven using empirical process theory, see e.g.

Van der Vaart and Wellner (1996) for more details:

sup
t,z

|Ĥ(t, z)−H(t, z)| = OP (n
−1/2), (6.1)

sup
t,z

|F ∗(t, z)− F (t, z)| = OP (n
−1/2). (6.2)

Now, let us recall that

W ∗
∞,∞ = 1− 1

n

n∑
i=1

∆iSi

Hi

,

that is the residual mass that the ideal estimator F ∗ puts at in�nity. W ∗
∞,∞ is a sum

of i.i.d. quantities, with E[W ∗
∞,∞] = 0 (from Proposition 2.1), and with �nite variance.

Then, the CLT applies, leading to W ∗
∞,∞ = OP (n

−1/2).

Next, as in the proof of Theorem 2.2, we remove the components of W which are

supposed to be zero, considering the equation (Im+1 − Ã)W̃ = 0, where m denotes the

number of doubly uncensored responses. We will also assume that the components of W̃

are sorted with respect to the variable Y. De�neW ′ as a solution of (Im+1−Ã)W ′ = 0 with

W ′
∞ = W ∗

∞. Note that the vector W ′ does not necessarily de�ne a probability measure,

since the some of its components is not equal to one. However, W ′ is proportional to W,

and de�nes a positive measure. In this proof, we �rst show that W ′ is close to W ∗, and

then show that W is close to W ′.

We denote Sj =
∑

i≥j |W ′
i −W ∗

i |+ |W ′
∞,∞−W ∗

∞,∞|, with Sm+1 = |W ′
∞,∞−W ∗

∞,∞| = 0.

Let Ri be de�ned as in the proof of Theorem 2.2. We have, for j ≤ m, 0 ≤ Sj ≤
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Sj+1 + |W ′
j −W ∗

j |. Next, observe that

W ′
j =

1

n

∑
i>j W

′
i1i∈Rj

Ĥj

=
1

n

∑
i>j W

′
i1i∈Rj

Hj

+
1

n

∑
i>j W

′
i1i∈Rj

[Hj − Ĥj]

ĤjHj

, (6.3)

W ∗
j =

1

n

Sj

Hj

=
1

n

∑
i>j W

∗
i 1i∈Rj

Hj

+
1

n

Sj − S∗
j

Hj

. (6.4)

Therefore,

Sj ≤
(
1 +

K

n

)
Sj+1 +

K2

n
sup
j

Hj|Ĥj −Hj|
Ĥj

+
K

n
sup
j

|S∗
j − Sj|.

Since Sm+1 = 0, one gets

Sj ≤ εn
(1 +Kn−1)m−j − 1

Kn−1
≤ C(K)εn,

where

εn =
K2

n
sup
j

Hj|Ĥj −Hj|
Ĥj

+
K

n
sup
j

|S∗
j − Sj|,

and where C(K) is a positive constant which does not depend from n or j. Moreover, on

An we have

sup
j

Hj|Ĥj −Hj|
Ĥj

≤ sup
t,u

|Ĥ(t, u)−H(t, u)| × sup
t,u

∣∣∣∣∣H(t, u)

Ĥ(t, u)

∣∣∣∣∣ = OP (n
−1/2),

from (6.1). Indeed, the �rst supremum in the right-hand side is exactly the supremum

considered in (6.1). To see that supt,u

∣∣∣H(t,u)

Ĥ(t,u)

∣∣∣ = OP (1), we can use the uniform consistency

of Ĥ coming from (6.1) to see that, for n large enough, on a set with probability tending

to one, |Ĥ(t, u) − H(t, u)| ≤ 1/2K, and therefore H(t, u)/Ĥ(t, u) ≤ 1/[1 − 1/2]. Next,

recall that

sup
j

|S∗
j − Sj| ≤ sup

t,u
|S∗(t, u)− S(t, u)| = OP (n

−1/2),

from (6.2). This leads to supj Sj = OP (n
−1/2).

Going back to (6.3) and (6.4), we see that

|W ′
j −W ∗

j | ≤
1

n
sup
j

Sj +
C(K)

n
εn :=

ηn
n
,

with ηn = OP (n
−1/2). From this, we deduce that

∑n
j=1W

′
j =

∑n
j=1W

∗
j + rn = 1+ rn, with

rn = OP (n
−1/2). Next, we use the fact that Wj = W ′

j [
∑n

j=1W
′
j ]
−1 to deduce that

|Wj −W ∗
j | ≤

|W ′
j −W ∗

j |
1 + rn

+W ∗
j rn =

θn
n
,

with θn = OP (n
−1/2), since W ∗

j ≤ Kn−1.
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6.2 Proof of Proposition 3.3

Consider the event An,ε = {supt,u n
1/2|SF̂ (t, u)− SF (t, u)| ≤ ε}, for some ε > 0. By (3.5)

and the de�nition of the OP (n
−1/2) convergence rate, limx→∞ ¯limnP(Ac

n,ε) = 0. On this

set, ∆i := |1SF̂ (Yi,Zi)≤v − 1SF (Yi,Zi)≤v| is equal to zero, except if |SF (Yi, Zi)− v| ≤ εn−1/2.

Hence, it is bounded by 1|SF (Yi,Zi)−v|≤εn−1/2 . De�ne

K̃(v) =

∫ ∫
1SF (t,u)≤vdF̂ (t, u) =

n∑
i=1

Wi,n1SF (Yi,Zi)≤v.

We see that, on An,εn−1/2 ,

|K̂(v)− K̃(v)| ≤
∫ ∫

1|SF (t,u)−v|≤εn−1/2dF̂ (t, u).

Now, obviously the class F = {(T, U) → 1|SF (T,U)−v|≤η, v ∈ [0, 1], η > 0} satis�es condition
(3.3) (it is a Donsker class of bounded functions, see van der Vaart and Wellner (1996)).

Hence, Theorem 3.2 applies. Therefore, on An,ε

|K̂(v)− K̃(v)| ≤ P
(
|SF (T, U)− v| ≤ εn−1/2

)
+Rn(ε, v), (6.5)

with supε,v |Rn(ε, v)| = OP (n
−1/2). Since we assumed that the density of (T, U) is bounded

by some constant C, the probability in the right-hand side of (6.5) is less than Cεn−1/2.

We can deduce that

P
(
sup
v

n1/2|K̂(v)− K̃(v)| > x

)
≤ P

(
sup
v

n1/2|K̂(v)− K̃(v)| > x,An,ε

)
+ P(Ac

n,ε).(6.6)

Using (6.5), we see that, for x large enough, the �rst probability on the right-hand side

of (6.6) is less than P(supε,v n
1/2|Rn(ε, v)| > x). By de�nition of the OP (n

−1/2) rate,

limx→∞ ¯limnP(supε,v n
1/2|Rn(ε, v)| > x) = 0, and consequently supv |K̂(v) − K̃(v)| =

OP (n
−1/2). Finally, Theorem 3.2 applies to K̃, leading to supv |K̃(v)−K(v)| = OP (n

−1/2),

completing the proof.
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