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Notations

{ } vector (column)

〈 〉 transposed vector (row)

[ ] matrix

Ω element’s interior (volume or
surface)

Γ element’s boundary (surface or
curve)

Γ = ∂Ω = Γu∪Γσ; Γu∩Γσ = ∅

Γu part of Γ with prescribed dis-
placements

Γσ part of Γ with imposed forces

ΓI interface

U (small) displacements

σ Cauchy’s stresses

ε (small) strains

λ Lagrange multipliers

Dijkl Hooke’s operator

{σ} = [D] {ε}

Sijkl [S] = [D]
−1

[L] differential operator

{ε} = [L] {U}

fΩ applied body forces in Ω

T applied forces on Γσ

U prescribed displacements on
Γu

1. Introduction

Sandwich plates being more and more involved in structural components,
it becomes essential to develop analysis tools taking their specificities into
account.

In this paper, we present some computational methods developed in
order to describe the mechanical behaviour of sandwich plates in a more
realistic way. Emphasis has been put on the determination of stresses at
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the interfaces between the skins and the core which have in general very
heterogeneous mechanical properties.

A sandwich plate is a 3-layer laminate, whose layers have very differ-
ent mechanical properties: the skins are generally very stiff and work in
membrane, whereas the core, which has low stiffness and density, is sub-
jected to shear efforts. It yields quite particular behaviour and failure modes
(crack modes, instability modes, local denting...), as explained in (Teti and
Caprino, 1989).

The main points of our sandwich modelling are the following:

− transverse shear effects are taken into account: this point is extremely
important since the core is only subjected to shear loading;

− the continuity of displacements and the equilibrium state of stresses at
each interface of layers are fulfilled: these conditions ensure the physical
interface condition;

− large differences of the geometrical and mechanical properties between
layers are correctly modelized;

− the relative magnitudes of stresses: the plane stress assumption used in
the classical theory of laminated plates is not acceptable for sandwich
plates.

Computation of stresses at interfaces is of particular importance for
sandwich panels submitted to flexural bending. Nevertheless, it remains
difficult to calculate these quantities in a accurate way: at the interfaces,
only some components of stresses are continuous. We also face the problem
of working with “reduced” stress fields (“reduced” means “which does not
contain all the components”). For this purpose several approaches have
been developed and are presented in this paper.

2. Hybrid sandwich finite elements

In this section, we present the development of different special finite ele-
ments taking the aforementioned points into account.

Classical finite elements in displacements yield a correct displacement
field, but cannot fulfill the equilibrium state of stresses, which are derived
from displacements. On the other hand, mixed formulations, such as Reiss-
ner’s one, which use both displacement and stress fields as variables, lead
to the continuity of all components of both fields: these models induce too
high number of degrees of freedom and non-required continuities.

Therefore, it is necessary to develop methods leading to the continuity of
only required components. For this purpose, we introduced a reduced stress
field as unknown. It can be done by insuring the displacements continuity at
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the interfaces by Lagrange multipliers; these multipliers are easily identified
as the reduced stress field. The developed hybrid sandwich elements are
initially composed of three sub-elements through the thickness, exactly as
a sandwich plate. The displacement field is interpolated quadratically in
each layer to take flexural effects into account in a better way.
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Figure 1. Sub-domains and finite element

We developed two families of hybrid sandwich elements. In the first type,
we use the functional of the potential energy in each sub-layer and ensure
the displacement continuity at interfaces with Lagrange multipliers repre-
senting the reduced stress field. In the second case, we use the condensed
Pian and Tong functional in each sub-domain and Lagrange multipliers to
ensure the displacements continuity. These functionnals can be found in
(Washizu, 1982).

The first hybrid sandwich element leads to a non-symmetrical and non
definite-positive stiffness matrix, the second one to a symmetrical but non
definite-positive stiffness matrix, which is typical of mixed systems. Vari-
ational principles used by these elements are given in (Manet and Han,
1997).

We use the term “hybrid” because the displacement field in approxi-
mated in the volume and Lagrange multipliers only along interfaces. We do
not use the term “mixed hybrid” even if we have two types of unknowns
(displacements and Lagrange multipliers) to point out that Lagrange mul-
tipliers are not a physical field (although they have a physical meaning).
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3. Post-processing

Specials finite elements lead to “non-usual” stiffness matrices, in particular
non definite-positive matrices. So, their implementation in commercialized
FEM softwares is sometimes difficult.

3.1. STRESS PROJECTION

As an alternative solution, we developed a “stress-projection” method in
order to improve the results obtained by displacement finite elements.

This method, initially proposed by (Zienkiewicz and Taylor, 1994), per-
mits to improve the accuracy of nodal stresses extrapolated from stresses
derived from the displacements at Gauss points.

The principle of the method is to minimize the difference between the
stresses obtained from displacements and the stresses issued from a mixed
formulation, in each element.

For sandwich structures, problems arise from the high heterogeneity of
mechanical properties between the skins and the core. The computation of
stresses at the interfaces cannot be done so easily, otherwise stresses would
not fulfill the equilibrium state. We use the stress projection method, not
on one element, but on two elements on each side of an interface, so that
the integration volume includes the interface. In such a case, the calculated
stress field fulfills the equilibrium state.

In the displacements formulation, stresses are obtained from nodal dis-
placements {q} by: {σu} = [D] [L] [Nu] {q}, where [D] is the generalized
Hooke’s matrix and [Nu] the matrix of shape functions. In a mixed formu-
lation, stresses are obtained directly from nodal stresses {τ} by: {σm} =
[Nσ] {τ}. If we now minimize the difference

∫
Ω {σm}−{σu} dΩ after having

premultiplied by [Nσ]
T , we reach:

[Mσ] {τ} = {Pu}

with:

[Mσ ] =

∫
Ω
[Nσ]

T [Nσ] dΩ and {Pu} =

∫
Ω
[Nσ]

T [D] [L] [Nu] dΩ {q}

Hence:
{τ} = [Mσ]

−1 {Pu}

Contrary to (Zienkiewicz and Taylor, 1994), we perform the minimiza-
tion process on two elements on each side of an interface, so that the result
will yield a stress field which fulfills the force equilibrium state.
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3.2. LOCAL REISSNER

Reissner’s mixed formulation, as that of Pian and Tong, leads to a stiffness
matrix in which the stress field can be condensed: the stress field does no
more belong to the set on global unknowns, and is therefore discontinuous.
This condensed method leads to the displacement field and is equivalent to
the classical displacement method.

A post-processing method (in fact a decondensation method) can then
be applied to retrieve the stress field, but once again on two elements:

{τ} = [A]−1 [B] {q}

in order to fulfill force equilibrium state at interfaces, with:

[A] =

∫
Ω
[Nσ]

T [S] [Nσ] dΩ and [B] =

∫
Ω
[Nσ]

T [L] [Nu] dΩ

This method is mathematically equivalent to the previous one.

4. Applications

In this section, we only present two simple examples. More results concern-
ing hybrid sandwich elements can be found in (Manet and Han, 1997).

In the following, “Sandwich” denote solutions obtained with our hybrid
sandwich elements (for legibility, these two elements are merged because
their results are very close); “Disp.” is the solution obtained with classical
finite elements in displacements without post-processing; “P-P” denotes
results obtained with the post-processing methods (the stress projection
and local Reissner methods yield very close results).

4.1. A SANDWICH BEAM

We consider a simply supported beam, with total length L and total height
H, under uniform pressure as shown in figure 2. The analytical solution is
given in (Lerooy, 1983). The core represents 80% of the total thickness, and
L/H = 12.

- x1, u1

6

x2, u2

Figure 2. Simply supported sandwich beam

Convergence of the mid-section deflection is given: i) in figure 3.a as
a function of the number of degrees of freedom; and ii) in figure 3.b as
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Figure 3. Convergence of central deflection

a function of the number of longitudinal cuts on the half beam. Hybrid
sandwich elements have the same convergence speed as the displacements
method in terms of the number of longitudinal cuts; the fact that these
models have more degrees of freedom (Lagrange multipliers) explains the
shift of figure 3.a.

The transverse shear stress distribution through the thickness is shown
in figure 4.a. The result for the classical finite element method is not plotted,
because this component is not continuous.
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Figure 4. Comparison of stress distribution through the thickness at x = L/4

Figure 4.b shows the distribution of σ11 through the thickness. Results
obtained by Reissner’s method and post-processing are only plotted for
σ11/σ

M
11 < 0. For hybrid sandwich elements, they are plotted for σ11/σ

M
11

> 0 for better legibility. This component does not have to be continuous at
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the interfaces. This figure shows that Reissner’s method leads to a exceeding
continuity. Our elements and post-processing methods give an appropriate
shape of this discontinuous component.

From figures 3 and 4 it is clear that the presented methods yield results
in agreement with the theory, for displacements as well as for the stress
distribution through the thickness, and especially at interfaces.

4.2. A SANDWICH PLATE

We now extend the previous example to 3D. Let us consider a simply sup-
ported square plate under uniform pressure, as shown in figure 5. The core
represents 80% of the total height H, and L/H = 12, with L the length of
the side of the plate. The reference solution is given in (Pagano, 1970).

simply supported

uniform pressure

Figure 5. Symply supported square sandwich plate

Keeping the previous example in mind, we limit our study to the dis-
tribution of σ23 and σ33 through the thickness of the plate. These results
are shown in figure 6.
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Figure 6. Stress distribution through the thickness
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5. Conclusion

The two different approaches, the hybrid sandwich finite elements and the
post-processing, have been presented and assessed. From that, we can draw
the following conclusion:

− both methods give good results for displacements as well as for stresses:
i) only required stress components are continuous at the interfaces and
the force equilibrium state is fulfilled; ii) at the free edge of structures,
the normal stress vector, σijnj, converges to zero.
The hybrid sandwich finite elements are formulated without assump-
tion of the theory of laminated plates. Even though they have a little
higher number of degrees of freedom, they represent mechanical be-
haviours of the sandwich plates in a more realistic way.

− the post-processing methods permit to use directly the displacement
results obtained by any existing FEM softwares.
The computing time of the present post-processing methods is a little
higher than the direct computation, which uses only shapes functions
({σ} = [D] [L] [Nu] {q}) but has been shown to be numerically the
worst, as explained in (Hinton, 1974). Most of FEM programs use more
sophisticated methods, generally a local least square method (ANSYS
for example) to compute nodal stresses. The present post-processing
methods have the same computation time as these methods, but ob-
tains the same accuracy with fewer elements.

We can emphasize that the two present approaches permit to calculate
displacements and stresses in an accurate way, and that they can be easily
implemented in existing FEM softwares.
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