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default threshold∗
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International Conference on Stochastic Analysis and Applications,
Hammamet - October 12-17, 2009

Abstract

We study the impact of asymmetric information in a general credit model where
the default is triggered when a fundamental diffusion process of the firm passes be-
low a random threshold. Inspired by some recent technical default events during the
financial crisis, we consider the role of the firm’s managers who choose the level of
the default threshold and have complete information. However, other investors on
the market only have partial observations either on the process or on the threshold.
We specify the accessible information for different types of investors. Besides the
framework of progressive enlargement of filtrations usually adopted in the credit risk
modelling, we also combine the results on initial enlargement of filtrations to deal
with the uncertainty on the default threshold. We consider several types of investors
who have different information levels and we compute the default probabilities in
each case. Numerical illustrations show that the insiders who have extra informa-
tion on the default threshold obtain better estimations of the default probability
compared to the standard market investors.

1 Introduction

In the credit risk analysis, it is crucial to model the default event and to forecast the
default probabilities for pricing and risk management purposes. In the literature, there
exist two main modelling approaches: the structural one and the reduced-form one. The
structural approach provides a convincing economic interpretation, where the original
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idea goes back to the paper of Merton [20]. The default is triggered when a fundamental
process X of the firm passes below a deterministic threshold L. The fundamental process
may represent the asset value or the total cash flow. The level L is chosen by the firm’s
managers according to some economic criterions, for example, maximizing the equity
value. The default time defined in the structural approach is a predictable stopping time
and is considered as an observable event once the process approaches the threshold. In
the reduced-form approach, the default is assumed to arrive in a more “surprising” way,
especially in the short term. The uncertainty is often characterized by the level of the
credit spread or the default intensity. The model parameters can be calibrated from
market data.

The links between the two approaches have been well studied by many authors. There
are in general two methods to introduce short-term default risks in a classical structural
model. The first way is to consider a generalized first-passage model where the default
threshold L is supposed to be random (e.g. [7, 18, 10]). The second way is to suppose
that the process X is partially observed by the investors (e.g. [6, 4, 16, 12, 3, 2]). In both
cases, the information accessibility plays an important role.

Let us consider the first-passage model in a general setting. Let (Ω,A,P) be a proba-
bility space where A is a σ-algebra of Ω representing the total information on the market.
We consider a firm and model its default time as the first time that a continuous time
process (Xt)t≥0 reaches some default barrier L, i.e.,

(1.1) τ = inf{t : Xt ≤ L} where X0 > L

with the convention that inf ∅ = +∞. Denote by F = (Ft)t≥0 the filtration generated by
the process X, i.e., Ft = σ(Xs, s ≤ t)∨N satisfying the usual conditions where N denotes
the P null sets. We introduce the decreasing process X∗ defined as X∗t = inf{Xs, s ≤ t}.
Then (1.1) can be rewritten as

(1.2) τ = inf{t : X∗t = L}.

Note that the information of X∗t is contained in the σ-algebra Ft.

Such construction of a default time adapts to both structural and reduced form ap-
proaches of the default modelling. In the structural approach models, L is a constant or a
deterministic function L(t), then τ defined in (1.1) is a predictable F-stopping time (since
the firm value (Xt)t≥0 is a continuous time process). In the reduced-form approach1, the
default barrier L is unknown and is described as a random variable in A. In the widely
used Cox Model [18], the barrier L is supposed to be independent of F∞ and the law of
L is known. In the incomplete information models such as [6, 16, 12], the whole process
X can not be fully observed, so the information concerning X is represented by some

1In the classical reduced-form model such as the Cox-process model in Lando [18], X is an increasing
process — the compensator process of default — instead of a decreasing one, and L is an upper bound.
See §3.2 for details.
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subfiltration of F. In all the models, the default probabilities are computed with respect
to the observable information.

In this work, we are specially interested in the information asymmetry on the default
threshold L. This is motivated by some recent “technical default events” during the crisis:
the firm is still in a relatively healthy situation, nevertheless, the managers have decided
to close the activities and the default occurs. Hence, the default barrier in this case is a
random variable whose value is chosen by the managers. In the literature, the information
on the value process of the firm has been thoroughly studied. However, only few works
concentrate on the default threshold. Giesecke and his co-author consider in [9] and [10]
the case where the process X is perfectly observed, but where L is a random variable
that is not observed. That is, they consider the filtration generated by X and by L so
that the default time is a stopping time. Our approach is different: we study the problem
by using the theory of enlargement of filtrations. We consider the default threshold to
be an exogenous source of risk and we add the knowledge on L to the whole information
flow. The information of the managers becomes then F ∨ σ(L). In addition, we consider
another type of investors, the insiders, who do not have the full access to the threshold
value but know some extra information on it compared to other market investors. We
compute conditional default probabilities for these different investors and we show the
importance of the information level for their estimations of default probabilities.

The rest of this paper is organized as follows. In Section 2, we introduce different
information structures for various agents on the market. We distinguish the role of the
managers who choose the default barrier L, the insiders who have information on L and
the investors who only observe the occurrence of the default. We precise the mathematical
hypotheses, using the language of enlargement of filtrations. Section 3 is devoted to the
explicit calculations on the conditional default probabilities. We then give numerical illus-
trations in Section 4 to quantify how different partial information impact the estimations
of the default probabilities.

2 The informational structure

On the financial market, the available information for each agent is various. On one hand,
there is a strong information asymmetry between the managers and the investors of the
firm. The important point is that the managers have prior information on whether the
firm will default and the timing of the default. On the other hand, market investors do
have different information. We now describe the different information concerning the firm
and the threshold : we will consider four levels of information on the default threshold
L and the underlying process X. In the following, we suppose that the default barrier is
fixed at the initial date by the manager as the realization of the random variable L, and
that all investors observe the occurrence of the default.
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2.1 Full information

The managers have perfect information on the firm. At any time t, they know the con-
tinuous firm value, together with the default barrier. In other words, the managers have
complete information on both X and L. The information of the managers — called the
full information — is then given at time t ≥ 0 by

GMt := Ft ∨ σ(L).

The filtration GM = (GMt )t≥0 is in fact the initial enlargement of the filtration F with the
random variable L. For the manager, τ is a predictable GM -stopping time. Let us precise
better the nature of this initial information.

Assumption 2.1 We assume that L is an A-measurable random variable with values in
R which satisfies the assumption :
P(L ∈ ·|Ft)(ω) ∼ P(L ∈ ·) for all t for P almost all ω ∈ Ω.

Remark: Assumption 2.1 is satisfied if L is independent of F∞.

Assumption 2.1 is the standard assumption by Jacod [14, 15]. We denote by PL
t (ω, dx) a

regular version of the conditional law of L given Ft and by PL the law of L. According to

Jacod, there exists a measurable version of the conditional density pt(x)(ω) =
dPLt
dPL

(ω, x)
which is a (F,P)-martingale and for all t ≥ 0, pt(L) > 0 P almost surely.
Grorud et al. [11] proved that Assumption 2.1 is equivalent to the existence of a probability
measure equivalent to P and under which for any t ≥ 0, Ft and σ(L) are independent.
We consider the only one, denoted by QL, which is identical to P on F∞. The probability
measure QL is characterized by the density process

(2.1) EQL [
dP
dQL
|GMt ] = pt(L).

It will play a key role in the computation of the conditional default probability.

2.2 Progressive information

The progressive information is the information level of an ordinary investor who observes
the process X but does not have any knowledge on the barrier L, except that he observes
at time t whether the default has occurred up to t and if so, the exact timing of default.
His information is given as the progressive enlargement of filtration of F with τ :

G = (Gt)t≥0 with Gt = Ft ∨ Dt

where D = (Dt = ∪s>tσ(τ ∧ s))t≥0 is the minimal right-continuous filtration which makes
τ a D-stopping time. The filtration G = (Gt)t≥0 corresponds to the standard information

4



flow in the credit modelling. We call this information the “progressive information” on
L. We see that the filtration GM is larger than G.

Remark: If L is independent of F∞, then the so-called (H)-hypothesis is satisfied: every
(F,P) local martingale is also a (G,P) local martingale. The (H)-hypothesis is equivalent
to the equality P(τ > t|Ft) = P(τ > t|F∞) for all t ≥ 0. This hypothesis is standard in
the credit risk modelling. For example, the widely used Cox process model [18] satisfies
this hypothesis.

2.3 Noisy full information

We now consider an intermediary case: the case of an insider who is an investor having
additional observations on L besides the information on D and on F. We assume that
the additional information on the barrier L changes through time : the knowledge on L
is distorted by an independent noise, and is getting to him clearer as time evolves. More
precisely, we suppose that this insider observes Ls = L + εs at time s with (εs)s≥0 being
an independent noise perturbing the information on L. The information of the insider
is then given by the following filtration GI = (GIt )t≥0 and is denoted as the “noisy full
information”:

Assumption 2.2
For any t ≥ 0 , GIt = F It ∨ Dt where F It = ∩u>t(Fu ∨ σ(Ls, s ≤ u)), Ls = L+ εs with
• ε = {εt, t ≥ 0} is independent of F∞ ∨ σ(L).
• P(L ∈ ·|Ft)(ω) ∼ P(L ∈ ·) for all t for P almost all ω ∈ Ω.

If we work on a finite horizon T , the last two assumptions are
• ε = {εt, t ≤ T} is independent of FT ∨ σ(L),
• P(L ∈ ·|Ft)(ω) ∼ P(L ∈ ·) for all t ∈ [0, T [ for P almost all ω ∈ Ω.

The process ε represents an additional noise that perturbs the knowledge of the barrier
L. Therefore one expects in general that the variance of the noise decreases to zero as
time t goes to infinity.

2.4 Delayed information

In this subsection, we consider the case where the process X driving the default risk is not
totally observable for all agents. We suppose that at date 0, all investors are completely
informed on the firm value. Later on, they will be differently informed on the process X.
Let us assume in the sequel that the process X is associated with a standard Brownian
motion B (for example, X is a geometric Brownian motion or the solution of some SDE).
LetN denotes the P null sets and we assume that Ft = σ(Bs, s ≤ t)∨N where F = (Ft)t≥0

represents the information of an investor having complete information of the fundamental
process X. Most investors on the market only have an incomplete observation described
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by an auxiliary filtration of F. In the literature, there are several ways to describe the
incomplete information:

Example 2.3 (Noisy information) A structural type model with deterministic barrier
is studied in [3]. The partial information is represented by an auxiliary process β depend-
ing on some noisy signal of the process X. The information of an investor observing the
noisy signal of X is represented by the filtration Fβt := σ(βs, s ≤ t) ∨N .

Example 2.4 (Delayed information) The investors may have a delayed (continuous
or discrete) observation of the fundamental process X, this type of models have been
considered, among others, by [6, 4, 16, 12]. In this case, the observable information is
characterized by a sub-filtration FD = (FDt )t≥0 of F, constructed by either a time change
(continuously delayed filtration) or by a discretely delayed filtration.

In the following, we are particularly interested in the delayed information case. Let

FDt =

{
F0 if t ≤ δ(t),

Ft−δ(t) if t > δ(t),

where δ(t) is some function on t. The above formulation covers the constant delay time
model where δ(t) = δ (see [4], [12]) and the discrete observation model where δ(t) =

t − t
(m)
i , t

(m)
i ≤ t < t

(m)
i+1 where 0 = t

(m)
0 < t

(m)
1 < · · · < t

(m)
m = T are the only discrete

dates on which the (Ft)t≥0 information may be renewed (release dates of the accounting
reports of the firm for example, see [6], [16]). In this case, the information of the investors
is represented by the progressive enlargement of filtration of FD with τ :

GDt := FDt ∨ Dt.

We call the information related to the filtration GD = (GDt )t≥0 the “delayed information”.

3 Default probabilities with information asymmetry

Our aim is to compute the conditional probabilities of default with respect to the different
filtrations introduced in the previous section. More precisely, we compute P(τ > θ|Ht)
for all t < θ, where the filtration (Ht)t≥0 describes the accessible information for the
investors. Remark that the default time τ is a (Ht)t≥0 stopping time for all the four levels
of information we consider.

3.1 Full information

Proposition 3.1 If Ht = GMt is the full information, then under Assumption 2.1, we
have for any θ > t,

(3.1) P(τ > θ|GMt ) =
1

pt(L)
[EP(pθ(x)11X∗

θ>x
|Ft)]x=L
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where pt(x)(ω) =
dPLt
dPL

(ω, x), PL
t (ω, dx) being a regular version of the conditional law of L

given Ft and PL being the law of L.

Proof: Using the facts that Fθ and σ(L) are independent under QL, that EQL [ dP
dQL |G

M
t ] =

pt(L), and that QL is identical to P on F∞, we have

P(τ > θ|GMt ) = EP(11X∗
θ>L
|Ft ∨ σ(L))

=
1

pt(L)
EQL(pθ(L)11X∗

θ>L
|Ft ∨ σ(L))

=
1

pt(L)
[EQL(pθ(x)11X∗

θ>x
|Ft)]x=L

=
1

pt(L)
[EP(pθ(x)11X∗

θ>x
|Ft)]x=L.

2

Remark: If Fθ and σ(L) are independent under P, we obtain the simple formula

P(τ > θ|GMt ) = P
X∗
θ

t (]L,+∞[),

where P
X∗
θ

t (dy) is the regular conditional probability of X∗θ given Ft.

3.2 Progressive information and the delayed case

The case with progressive information corresponds to the standard reduced form modelling
approach and the computation results are well known in the literature (e.g.[17, 8, 1]). In
this case, the investor knows the information on the underlying process.

Proposition 3.2 If Ht = Gt = Ft ∨ Dt is the progressive information, we have for θ > t

P(τ > θ|Gt) = 11τ>t
E(PL

θ (X∗θ )|Ft)
PL
t (X∗t )

.

Proof: Classical computation in the progressive enlargement leads to

P(τ > θ|Gt) = 11τ>t
P(τ > θ|Ft)
P(τ > t|Ft)

= 11τ>t
E(Sθ|Ft)

St
, θ > t

where St = P(τ > t|Ft). In our model, S is given explicitly by St = P(X∗t > L|Ft) =
PL
t (X∗t ) with PL

t being the conditional law of L given Ft. This gives the result. 2

In the classical reduced form models such as the Cox process model, the interpretation
of the underlying process is different from the one in the model (1.1). Let Λt = X0−X∗t .
The interpretation of this positive and increasing process is the compensator of default in
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the reduced-form models. The default is defined as the first time that the compensator
process reaches the independent upper barrier L̃ = X0 − L. The process Λ can be
calibrated from market data and the barrier L̃ is supposed to follow the unit exponential
law. In this case, we recover the well-known formula P(τ > θ|Ft) = E[e−(Λθ−Λt)|Ft]
for θ > t. Furthermore, if Λ is absolutely continuous w.r.t. the Lebesgue measure, i.e.
Λt =

∫ t
0
λsds, then the positive process λ is called the default intensity. We have that the

process (11τ≤t −
∫ t∧τ

0
λsds, t ≥ 0) is a G-martingale.

In the case with delayed information, explicit computations have been given for specific
delayed information GD in the literature such as in [2, 4, 6, 12]. Here we just give a general
computation formula without discussing the details.

Corollary 3.3 If Ht = GDt = FDt ∨ Dt is the delayed information, we have for θ > t

(3.2) P(τ > θ|GDt ) = 11τ>t
E(PL

θ (X∗θ )|FDt )

E(PL
t (X∗t )|FDt )

.

Proof: Similar as in the progressive information case,

P(τ > θ|GDt ) = 11τ>t
P(τ > θ|FDt )

P(τ > t|FDt )
= 11τ>t

E(Sθ|FDt )

E(St|FDt )
= 11τ>t

E(PL
θ (X∗θ )|FDt )

E(PL
t (X∗t )|FDt )

.

2

3.3 Noisy full information

In this subsection, Ht = GIt . We consider the particular but useful case in finite horizon
time T where Lt = L + εt, εt = ZT−t, Z being a continuous process with independent
increments whose marginal has density qt (this example was introduced in Corcuera et al.
[5] to study insider’s portfolio optimization problems). For example, εt = Wg(T−t) with W
an independent Brownian motion, and g : [0, T ]→ [0,+∞) a strictly increasing bounded
function with g(0) = 0.

Proposition 3.4 We assume that Ht = GIt is the noisy full information with Lt = L+εt,
εt = ZT−t, Z being a continuous process with independent increments whose marginal has
density qt. Then we have for θ > t,

(3.3) P(τ > θ|GIt ) = 11τ>t

∫
R

1
pt(l)

EP(pθ(l)11X∗
θ>l
|Ft)qT−t(Lt − l)PL

t (dl)∫
R 11X∗

t >l
qT−t(Lt − l)PL

t (dl)

where PL
t is a regular version of the conditional law of L given Ft and 1

pt(l)
EP(pθ(l)11X∗

θ>l
|Ft)

is the conditional default probability for the full information on the event {L = l} (see
Proposition 3.1).
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Proof: We recall that GIt = F It ∨ Dt. A first step is to compute P(τ > θ|F It ).

Let Aθ ∈ Fθ and h be a bounded measurable function. Using the independence of
Fθ∨t ∨ σ(L) and Z, we have

E
(
h(L)11Aθ |F It

)
= E (h(L)11Aθ |Ft ∨ σ(Lt) ∨ σ((εt − εs), s ≤ t)))

= E (h(L)11Aθ |Ft ∨ σ(L+ εt))

Let PL
t (dl) be the regular conditional probability of L given Ft. Then for C ∈ B(R2),

P ((L,L+ εt) ∈ C|Ft) =

∫
R2

11C(l, x)qT−t(x− l)PL
t (dl)dx.

Therefore

(3.4) E
(
h(L)|F It

)
=

∫
R h(l)qT−t(Lt − l)PL

t (dl)∫
R qT−t(Lt − l)P

L
t (dl)

.

Hence, if θ ≤ t we have

P
(
τ > θ|F It

)
=

∫
R 11X∗

θ>l
qT−t(Lt − l)PL

t (dl)∫
R qT−t(Lt − l)P

L
t (dl)

.

If θ > t, we use the following successive conditional expectations

P (τ > θ|Ft ∨ σ(L+ εt)) = P (P (τ > θ|Ft ∨ σ(L+ εt) ∨ σ(L)) |Ft ∨ σ(L+ εt)) .

Using the fact that ε is independent to FT ∨ σ(L), we have

P (τ > θ|Ft ∨ σ(L+ εt) ∨ σ(L)) = P (X∗θ > L|Ft ∨ σ(εt) ∨ σ(L)) = P (X∗θ > L|Ft ∨ σ(L)) =: ht(L)

where ht(L) = 1
pt(L)

[EP(pθ(x)11X∗
θ>x
|Ft)]x=L corresponds to the conditional default prob-

ability for the full information. Therefore

(3.5) P(τ > θ|F It ) =

∫
R

1
pt(l)

EP(pθ(l)11X∗
θ>l
|Ft)qT−t(Lt − l)PL

t (dl)∫
R qT−t(Lt − l)P

L
t (dl)

.

The second step to compute P(τ > θ|GIt ) is straightforward using (3.5) and the well-
known relation in the progressive enlargement of filtration

P(τ > θ|GIt ) = 11τ>t
P(τ > θ|F It )

P(τ > t|F It )
.

2

Remark: This proof can be extended to other examples in the infinite horizon. For
example, let εt = Wg( 1

t+1
) with W an independent Brownian motion, and g : [0, 1] →

[0,+∞) a strictly increasing bounded function with g(0) = 0. Then εt is a centered
Gaussian process with independent increments. Let qt be the density of εt. We have for
θ > t,

P
(
τ > θ|GIt

)
= 11τ>t

∫
R

1
pt(l)

EP(pθ(l)11X∗
θ>l
|Ft)qt(Lt − l)PL

t (dl)∫
R 11X∗

t >l
qt(Lt − l)PL

t (dl)
.
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3.4 Credit spread

An important quantity in the credit risk analysis is the credit spread defined as the
instantaneous conditional default probability at time t:

λt = lim
∆t→0

1

∆t
P(t < τ ≤ t+ ∆t|Ht) a.s.

In the reduced-form approach with the progressive information, it coincides with the de-
fault intensity λF which is the positive F-adapted process such that (11{τ≤t}−

∫ t∧τ
0

λFsds, t ≥
0) is a G-martingale. In the classical structural approach, the credit spread tends to zero
and the intensity does not exist since the default time τ is a predictable F-stopping time.
The credit spread for the delayed information, i.e. when Ht = FDt , has been studied in
many papers such as [6, 4, 16, 12]. In this case, the credit spread is strictly positive for a
short term time.

We note that in the full information case whereHt = GMt , we encounter the same situation
as in the classical structural model: the credit spread equals to zero since L is GMt -
measurable. For the insider with the noisy full information GIt , Proposition 3.4 implies
that the credit spread remains to be zero. Because of the additional information he has
on the default barrier, there is no short-term uncertainty on the default for the insider.

4 Application and numerical illustrations

We are now ready to give explicit models for the conditional default probabilities in the
different settings of information. The direct application will be the pricing of the credit
derivatives such as the defaultable bonds. We implement the formulas in order to quantify
numerically how the different levels of information impact the estimations of the default
probabilities.

In the literature, the default threshold, if random, is generally supposed to be inde-
pendent of the filtration F generated by the firm value process. In this case, the (H)-
hypothesis is satisfied and the computations can be often simplified. In the following, we
first consider an independent threshold case. Moreover, we also give an example where
the default threshold is correlated to the underlying process X.

We consider the standard Black-Scholes model for the asset values process X:

dXt

Xt

= µdt+ σdBt, t ≥ 0

where µ and σ are real constants and B is an F-Brownian motion. For t ≥ 0 and h, l > 0,
one has ([1, p.69])

EP(11X∗
t >l
− 11X∗

t+h>l
|Ft) = 11X∗

t >l

(
Φ
(−Y l

t − νh
σ
√
h

)
+ e2νσ−2YtΦ

(−Y l
t + νh

σ
√
h

))
=: 11X∗

t >l
Φt,h(l)(4.1)
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where Φ is the standard Gaussian cumulative distribution function and

Y l
t = νt+ σBt + ln

X0

l
, with ν = µ− 1

2
σ2.

4.1 Case of an independent default threshold

The following corollary gives the conditional default probabilities in the Black-Scholes
model for any independent default threshold.

Corollary 4.1 We assume that the default threshold L is independent of FT . If the
asset process X satisfies the Black-Scholes model, then for any h > 0, we have

• P(t+ h ≥ τ > t|GMt ) = 11τ>t Φt,h(L).

• P(t+ h ≥ τ > t|GIt ) = 11τ>t

∫
11X∗

t >l
Φt,h(l)qT−t(Lt−l)PLt (dl)∫

11X∗
t >l

qT−t(Lt−l)PLt (dl)
.

• P(t+ h ≥ τ > t|Gt) = 11τ>t
∫

Φt,h(l)PL(dl)∫
11X∗

t >l
PL(dl)

.

• P(t+ h ≥ τ > t|GDt ) = 11τ>t

∫
(Φt−δ(t),h+δ(t)(l)−Φt−δ(t),δ(t)(l))P

L(dl)∫
(1−Φt−δ(t),δ(t)(l))PL(dl)

.

where Φt,h is defined in (4.1) and δ(t) is the time delay.

We give numerical comparisons of the conditional default probabilities for different infor-
mation in the following binomial example where li ≤ ls are the two numerical levels of
the threshold. Let 0 < α < 1 and

(4.2) L =

{
li with probability α,

ls with probability 1− α.

In the simulation, we take the values: li = 1, ls = 3, α = 1
2
.

Comments : The probabilities of default for a full or noisy full information are
significantly different from the ones for the progressive or the delayed information. More
precisely, if L = li, the manager has fixed the lower value for the default threshold and thus
the probability of default will be lower for the full information than for the progressive
information (see Figure 1), conversely if L = ls (see Figure 2).
In both cases, the estimation of the default probability for the noisy full information
is between the estimations of the full and the progressive information. The difference
between the probabilities of default is very significant at the beginning and tends to
vanish as time t goes to maturity T . If L is constant (li = ls), the probabilities of default
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Figure 1: L = li

are the same, whatever the information we consider (see Figure 3). Not surprisingly, we
observe that the variation of the default probabilities is closely related to the variation of
the firm value. We note finally that the results between the progressive and the delayed
information are very close because we have chosen a small constant delay time.

4.2 Case of a dependent default threshold

In practice, the value of the firm or its forecasting play an important role in the manager’s
decision to fix the default threshold. In the following, we consider the example where

(4.3) L = li11[a,+∞[(XA) + ls11[0,a[(XA), A > T, li ≤ ls.

The manager chooses the level of L according to a constant threshold a and to the value
of the asset process X on some given date A (A > T where T is a fixed horizon time,
for example the maturity of the credit derivatives we consider).2 If XA ≥ a, the manager
believes the firm on healthy situation and chooses the lower barrier li, otherwise, he
chooses the higher barrier to accelerate the default.

We begin by computing the default probability for the managers. By Proposition 3.1,
P(τ > t+h|GMt ) = 1

pt(L)
[EP(pt+h(l)11X∗

t+h>l
|Ft)]l=L. Compared to the previous independent

2In this example, the manager knows well the economic situation of the firm so that he has a good
prior judgment on whether or not the terminal value of the firm XA will be greater or smaller than the
constant threshold a.
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Figure 2: L = ls

case, we first compute the conditional law of L given Ft and then the conditional joint
law (pt+h(l), 11X∗

t+h>l
) given Ft.

• We have explicitely for t < A

P(L = ls|Ft) = P(XA < a|Ft) = Φ(kt), P(L = li|Ft) = 1− Φ(kt)

where

kt =
ln a− lnX0 − νA− σBt

σ
√
A− t

.

Hence

pt(ls) =
Φ(kt)

Φ(k0)
, pt(li) =

1− Φ(kt)

1− Φ(k0)
.

• Using the following lemma given in [1], we deduce the conditional joint law of
(Y l

t+h, 11X∗
t+h>l

) and (pt+h(l), 11X∗
t+h>l

) given Ft.

Lemma 4.2 For y ≥ 0, on the set {τ > t}

P
(
Y l
t+h ≥ y, 11X∗

t+h>l
|Ft
)

= Φ
(−y + Y l

t + νh

σ
√
h

)
− e2νσ−2YtΦ

(−y − Y l
t + νh

σ
√
h

)
where Φ is the standard Gaussian cumulative distribution function, Y l

t = νt+σBt + ln X0

l

and ν = µ− 1
2
σ2.

We denote by ft,θ,ls(y) the conditional density defined by ft,θ,ls(y) = ∂
∂y
P(Y ls

θ ≥ y, 11X∗
θ>ls
|Ft).

• Combining these two results, we have for θ > t,

P(τ > θ|GMt ) = 11L=ls

1

Φ(kt)
E(Φ(kθ)11X∗

θ>ls
|Ft) + 11L=li

1

1− Φ(kt)
E((1− Φ(kθ))11X∗

θ>li
|Ft).

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

manager

progressive

delayed

noisy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5

6

 

 

firm value

t→ P(T ≥ τ > t|Ht) firm value

Figure 3: li = ls : L constant

where Φ(kt) = gls(Y
ls
t ) with gls(x) = Φ

(
ln a
ls
−x−ν(A−t)
σ
√
A−t

)
and

E(Φ(kθ)11X∗
θ>ls
|Ft) = E(gls(Y

ls
θ )11(Y ls )∗θ>0|Ft) = 11X∗

t >ls

∫ ∞
0

gls(y)ft,θ,ls(y)dy

E((1− Φ(kθ))11X∗
θ>li
|Ft) = 11X∗

t >li

∫ ∞
0

(1− gli(y))ft,θ,li(y)dy.

This gives the conditional default probability for the full information.

The result for the noisy information is then straightforward using Proposition 3.4. The
progressive and the delayed case are obtained by classical computations. For the numerical
illustrations, we have similar observations to those of the previous section.

5 Conclusions

We have investigated the impact of different information levels on the conditional default
probabilities. The conditional survival probability plays an important role in the pricing
of credit derivatives (we refer the reader to a forthcoming work [13]). For example let us
consider a defaultable bond with zero recovery, that is, the buyer of the bond receives 1
euro if there is no default and zero otherwise. Then the price of such a product is exactly
the conditional survival probability with respect to the accessible information.

Whereas the information on the value process of the firm has been widely studied, rela-
tively few works concern the information on the default threshold. Our approach combines
the initial and the progressive enlargement of filtrations in the modelling of information
flows. Our results show that the information on the default threshold also have a signifi-
cant influence in the credit risk analysis and deserve to be studied in more details.
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