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QUANTIZATION COMMUTES WITH REDUCTION IN THE

NON-COMPACT SETTING: THE CASE OF HOLOMORPHIC

DISCRETE SERIES

PAUL-EMILE PARADAN

Abstract. In this paper we show that the multiplicities of holomorphic dis-
crete series representations relatively to reductive subgroups satisfy the credo
“Quantization commutes with reduction”.
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1. Introduction

The orbit method, introduced by Kirillov in the 60’s, proposes a correspondence
between the irreducible unitary representations of a Lie group G and its orbits
in the coadjoint representation : the representation πG

O should be the geometric
quantization of the Hamiltonian action of G on the coadjoint orbit O ⊂ g∗. The
important feature of this correspondence is the functoriality relatively to inclusion
H →֒ G of closed subgroups. It means that if we start with representations πG

O and
πH
O′ attached to the coadjoint orbits O ⊂ g∗ and O′ ⊂ h∗, one expects that the

multiplicity of πH
O′ in the restriction πG

O|H can be computed in terms of the space

(1) O ∩ π−1
h,g(O′)/H,

where πh,g : g∗ → h∗ denotes the canonical projection. The symplectic geometers
recognise that (1) is a symplectic reduced space in the sense of Marsden-Weinstein,
since πh,g : O → h∗ is the moment map relative to the Hamiltonian action of H on
O. Let us give some examples where this theory is known to be valid.

For simply connected nilpotent Lie groups, Kirillov [24] described the correspon-
dence O 7→ πG

O, and Corwin-Greenleaf [10] proves its functoriality relatively to
subgroup : the multiplicity appearing in the direct integral decomposition of πG

O|H
is the cardinal of the reduced space (1).

For compact Lie group, G. Heckman [21] proved that the multiplicity was asymp-
totically given by the volume of the reduced space (1). Just after Guillemin and
Sternberg [19] replaced this functoriality principle in a more geometric framework
and proposed another version of this rule for a good quantization process: the
quantization should commute with the reduction. This means that if QH(M) is the
geometric quantization of an Hamiltonian action of a compact Lie group H on a
symplectic manifold M , the multiplicity of the representation πH

O′ in QH(M) should
be the (dimension of the) quantization of the reduced space (ΦH

M )−1(O′)/H . Here
ΦH

M : M → h∗ denotes the moment map.
A good quantization process for compact Lie group action on compact symplectic

manifolds turns to be the equivariant index of a Dolbeault-Dirac operator [41, 43].
In the late 90’s, Meinrenken and Meinrenken-Sjamaar proved that the principle of
Guillemin-Sternberg works in this setting [31, 32]. Afterwards, this quantization
procedure was extended to non-compact manifolds with a proper moment map by
Ma-Zhang and the author [36, 29, 39]. See also the recent work of Duflo-Vergne on
the multiplicities of the tempered representations relatively to compact subgroups
[17].

The purpose of this article is to show that the quantization commutes with re-
duction principle holds in a case where the group of symmetry is a real reductive
Lie group. Loosely speaking, we prove that if πG

O and πH
O′ are holomorphic discrete

series representations of real reductive Lie groups H ⊂ G, the multiplicity of πH
O′

in the restriction πG
O|H is equal to the quantization of the reduced space (1).

We turn now to a description of the contents of the various sections, highlighting
the main features.

In Section 2, we clarify previous work of Weinstein [46] and Duflo-Vargas [15, 16]
concerning the Hamiltonian action of a connected reductive real Lie group G on a
symplectic manifold M . The main point is that if the action of G on M is proper
and the moment map ΦG

M : M → g∗ relative to this action is proper, then the image
of ΦG

M is contained in the strongly elliptic open subset g∗se and the manifold has a
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decomposition

(2) M = G×K Y.

Here K is a maximal compact subgroup of G, and Y is a closed K-invariant sym-
plectic sub-manifold of M . Thanks to (2), we remark that the reduced space
(ΦG

M )−1(O)/G is connected for any coadjoint orbit O ⊂ g∗ : this is a notable
difference with the nilpotent case where the reduced space (1) can be disconnected.

The decomposition (2) will be the main ingredient of this paper to prove some
quantization commutes with reduction phenomenon. Note that P. Hochs already
used this idea when the manifold Y is compact to get a quantization commutes with
reduction theorem in the setting of KK-theory [22]. Hochs was working on some
induction process, while we will use (2) to prove some functoriality relatively to a
restriction procedure.

In this context, it is natural to look at the induced action of a reductive subgroup
G′ ⊂ G on M , and we know then that we have another decomposition M =
G′ ×K′ Y ′ if the moment map ΦG′

M is proper. In Section 2.3, we give a criterion

that insures the properness of ΦG′

M .
In Section 3, we turn onto a closed study of the holomorphic discrete series

representations of a reductive Lie group G. Recall that the parametrization of
these representations depends on the choice of an element z in the center of the
Lie algebra of K such that the adjoint map ad(z) defines a complex structure on
g/k. Let T be a maximal torus in K, with Lie algebra t. The existence of element
z forces t to be a Cartan sub-algebra of g, and it defines a closed cone Cρ

hol(z) ⊂ t∗.
If ∧∗ ⊂ t∗ is the weight lattice, we consider the subset

Ĝhol(z) := Cρ
hol(z) ∩ ∧∗

+

where ∧∗
+ is the set of dominant weights. The work of Harish-Chandra tells us

that that we can attach an holomorphic discrete series representation V G
λ to any

λ ∈ Ĝhol(z).
In Section 3, we look at formal quantization procedures attached to the Hamil-

tonian action of G on a symplectic manifold M . We suppose that the properness
assumptions are satisfied and that the image of the moment map ΦG

M is contained
in G · Cρ

hol(z) ⊂ g∗se. Let us briefly recall the definition. We define the formal
geometric quantization of the G-action on M as the following formal sum

(3) Q−∞
G (M) :=

∑

λ∈Ĝhol(z)

Q(Mλ,G) V
G
λ ,

where Q(Mλ,G) ∈ Z is the quantization of the compact symplectic reduced space
Mλ,G := (ΦG

M )−1(G · λ)/G.
Since the moment map ΦK

M is proper, we can also define the formal geometric
quantization of the K-action on M as

(4) Q−∞
K (M) :=

∑

µ∈∧∗
+

Q(Mµ,K) V K
µ ,

where Mµ,K := (ΦK
M )−1(K · µ)/K, and V K

µ denotes the irreducible representation

of K with highest weight µ. The formal quantization procedure Q−∞
K , together

with its functorial properties, has been studied by Ma-Zhang and the author in
[36, 29, 39].
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Let R−∞(G, z) be the Z-module formed by the infinite sums
∑

λ∈Ĝhol(z)
mλ V G

λ

with mλ ∈ Z. We consider also the Z-module R−∞(K) formed by the infinite sums∑
µ∈∧∗

+
nµ V K

µ with nµ ∈ Z. The following basic result will be an important tool

in our paper (see Lemma 3.20).

Lemma A We have an injective restriction morphism rK,G : R−∞(G, z) →
R−∞(K).

We can state one of our main result

Theorem B If Assumptions1 A1 or A2 are satisfied, we have the following
relation

rK,G

(
Q−∞

G (M)
)
= Q−∞

K (M).

The main tool for proving Theorem B, is the following relation

Q−∞
K (M) = Q−∞

K (Y )⊗ S•(p)

where Q−∞
K (Y ) is the formal geometric quantization of the slice Y and S•(p) is the

symmetric algebra of the complex K-module p := (g/k, ad(z)).

Consider now a connected reductive subgroup G′ ⊂ G such that its Lie algebra
g′ contains the element z. Let ΦG′

G·λ be the moment map relative to the Hamiltonian

action of G′ on the coadjoint orbit G · λ, λ ∈ Ĝhol(z). It is not difficult to see that

ΦG′

G·λ is a proper map. Thanks to the work of T. Kobayashi [27] and Duflo-Vargas
[15], we know that the representation V G

λ admits an admissible restriction to G′. It
means that the restriction V G

λ |G′ is a discrete sum formed by holomorphic discrete

series representations V G′

µ , µ ∈ Ĝ′
hol(z).

We can now state the major result of this paper (see Theorem 3.26).

Theorem C Let λ ∈ Ĝhol(z). We have the following relation

V G
λ |G′ = Q−∞

G′ (G · λ).
It means that for any µ ∈ Ĝ′

hol(z), the multiplicity of the representation V G′

µ in the

restriction V G
λ |G′ is equal to the geometric quantization Q ((G · λ)µ,G′) ∈ Z of the

(compact) reduced space (G · λ)µ,G′ .

In Section 3.7, we prove that the formal quantization process Q−∞
G is functorial

relatively to reductive subgroups.

Theorem D Suppose that Assumption A2 holds. Then we have

rG′,G

(
Q−∞

G (M)
)
= Q−∞

G′ (M).

where rG′,G is a restriction morphism.

In [23], Jakobsen-Vergne proposed another formula for the the multiplicity of

the representation V G′

µ in the restriction V G
λ |G′ . In Section 3.8, we explain how to

recover their result from Theorem B.

Section 4 is devoted to the proofs of the main results of this paper. We use
here previous work of the author on localization techniques in the the setting of
transversally elliptic operators.

1See Assumptions 3.23.
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Notations. In this paper, G will denoted a connected real reductive Lie group.
We take here the convention of Knapp [26]. We have a Cartan involution Θ on G,
such that the fixed point set K := GΘ is a connected maximal compact subgroup.
We have Cartan decompositions : at the level of Lie algebras g = k⊕ p and at the
level of the group G ≃ K × exp(p). We denote by b a G-invariant non-degenerate
bilinear form on g that defines aK-invariant scalar product (X,Y ) := −b(X,Θ(Y )).

When V and V ′ are two representations of a group H , the multiplicity of V in
V ′ will be denoted [V : V ′].

2. Hamiltonian actions of real reductive Lie groups

This section is mainly a synthesis of previous work by Weinstein [46], Duflo-
Vargas [15, 16] and Hochs [22], except the criterion that we obtain in Section 2.3.

Let G be a connected real reductive Lie group. We consider an Hamiltonian ac-
tion of G on a connected symplectic manifold (M,ΩM ). The corresponding moment
map ΦG

M : M → g∗ is defined (modulo a constant) by the relations

(5) ι(XM )ΩM = −d〈ΦG
M , X〉, ∀X ∈ g,

where XM (m) := d
ds
e−sX ·m|s=0 is the vector field generated by X ∈ g.

Let g = k⊕ p be a Cartan decomposition. Let K ⊂ G be the maximal compact
subgroup with Lie algebra k. Thus we have a decomposition

ΦG
M = ΦK

M ⊕ Φp
M

where ΦK
M : M → k∗ is a moment map relative to the action of K on (M,ΩM ), and

Φp
M : M → p∗ is K-equivariant.
The K-invariant scalar product ‖X‖2 = −b(X,Θ(X)) on g induces an identifi-

cation ξ 7→ ξ̃, g∗ ≃ g defined by (ξ̃, X) := 〈ξ,X〉 for ξ ∈ g∗ and X ∈ g. We still

denote ‖ξ‖2 := ‖ξ̃‖2 the corresponding scalar product on g∗.
Let κG, κK and κp be respectively the Hamiltonian vectors fields of the K-

invariant functions −1
2 ‖ΦG

M‖2, −1
2 ‖ΦK

M‖2, and −1
2 ‖Φp

M‖2. The relations (5) give
that

(6) κ−(m) =

[
Φ̃−

M (m)

]

M

(m), ∀m ∈ M,

for − ∈ {G,K, p}.
2.1. Proper actions. In this section we suppose C1 : the action of G on M is
proper2. We have then the fundamental fact.

Lemma 2.1. • The map Φp
M : M → p∗ is a K-equivariant submersion, so for any

a ∈ p∗, the fiber Ya := (Φp
M )−1(a) is either empty or a sub-manifold of M .

• The set of critical points of ‖Φp
M‖2 : M → R is Y0 := (Φp

M )−1(0).

Proof. Let us prove the first point. Let m ∈ M . Since the tangent map TΦp
M (m) :

TmM → p∗ satisfies

(7) 〈TΦp
M (m), X〉 = −ι(XM )ΩM |m, ∀X ∈ p,

the orthogonal of the image of TΦp
M (m) is equal to pm := {X ∈ p | XM (m) = 0}.

As the action of G on M is proper, the stabilizer subgroup Gm is compact. This
forces pm = Lie(Gm)∩ p to be reduced to {0}. Thus TΦp

M (m) is onto and the first

2For any compact subset A of M the subset {g ∈ G | g ·A ∩ A 6= ∅} is compact.
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Table 1. Strongly elliptic set

G g∗se 6= ∅
GL(n,C) no
O(n,C) no
SL(n,R) n = 2
SOo(p, q) pq even
Sp(n,R) yes
SO∗(2n) yes
U(p, q) yes
Sp(p, q) yes

point is proved. Let m ∈ M be a critical point of ‖Φp
M‖2. The Hamiltonian vector

field κp vanishes at m, and (6) tells you that Φ̃p
M (m) ∈ pm = {0}. The second

point is proved. �

For the remaining part of this section, we consider the K-invariant sub-manifold

Y := Y0 ⊂ M

that we suppose non empty. Let us consider the restriction ΩY of the symplectic
structure ΩM to Y . For y ∈ Y , let p · y = {XM (y), X ∈ p} ⊂ TyM . The tangent
space TyY is by definition the kernel of TΦp(y). Relations (7) show that

(8) TyY = (p · y)⊥

where the orthogonal is taken relatively to the symplectic form. Hence the kernel
of ΩY |y is equal to (p · y)⊥ ∩ p · y. For X,X ′ ∈ p and y ∈ Y , we have

ΩM (XM (y), X ′
M (y)) = 〈ΦG

M (y), [X,X ′]〉
= 〈[ΦK

M (y), X ], X ′〉.
Hence (p · y)⊥ ∩ p · y ≃ gξ ∩ p for ξ = ΦK

M (y). Note that for ξ ∈ k, we have
gξ = gξ ∩ k⊕ gξ ∩ p. We have then proved

Lemma 2.2. Let y ∈ Y . The 2-form ΩY |y is non degenerated if and only gξ ⊂ k

for ξ = ΦK
M (y).

We have a canonical G-equivariant map π : G×K Y −→ M that sends [g, y] to
g · y. Following Weinstein [46], we consider the G-invariant open subset

(9) g∗se = {ξ ∈ g∗ |Gξ is compact}
of strongly elliptic elements.

Example 2.3. For the group G = SL2(R), the set g∗se is equal, through the trace,
to the cone {X ∈ sl2(R) | det(X) > 0}.

Let t be the Lie algebra of a maximal torus in K. Weinstein proves that the
open subset g∗se is non-empty if and only if t is a Cartan sub-algebra of g [46]. See
the Table 1. We note that k∗se := g∗se ∩ k∗ is equal to {ξ ∈ k∗ |Gξ ⊂ K} and that

(10) g∗se = Ad∗(G) · k∗se.
Let us consider the invariant open subsets Mse = (ΦG

M )−1(g∗se) ⊂ M and Yse :=
Y ∩Mse ⊂ Y .
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Lemma 2.4. • The 2-form ΩY is non-degenerated on Yse.
• The action of the group K on (Yse,ΩYse

) is Hamiltonian, with moment map
ΦK

Yse
that is equal to the restriction of ΦG

M to Yse.
• The map π induces a G-equivariant diffeomorphism πse : G×K Yse → Mse.

Proof. The first point is a direct consequence of Lemma 2.2. The second point is
immediate. Let us check the last point.

Relation (10) shows that πse is onto. Let [g0, y0], [g1, y1] such that g0 ·y0 = g1 ·y1.
Then by taking the image by the moment map, we get Ad∗(g0)ξ0 = Ad∗(g1)ξ1 where
the ξk = ΦK

M (yk) belong to k∗se. Let h = g−1
1 g0 ∈ G. We have Ad∗(h)ξ0 = ξ1, and

Ad∗(Θ(h))ξ0 = ξ1 by taking the Cartan involution. Finally h−1Θ(h) ∈ Gξ0 . Since
Gξ0 ⊂ K, we get that h ∈ K, and finally that [g0, y0] = [g1, y1] in G×K Yse. �

Let us denote by ΩMse
the restriction of the symplectic form ΩM on the open

subset Mse. We will now finish this section by giving a simple expression of the
pull-back π∗

se(ΩMse
) ∈ A2(G×K Yse).

Let θG ∈ A1(G) ⊗ g be the canonical connexion 1-form relative to the G-action
by right translations : ι(Xr)θG = X , ∀X ∈ g, where Xr(g) = d

dt
(getX)|0. Let

θK ∈ A1(G) ⊗ k, the composition of θG with the orthogonal projection X → Xk

from g to k. We will use the G×K-invariant 1-form onG×Yse defined by 〈θK ,ΦK
Yse

〉.
Note that the space of differentials forms on G×K Yse admits a canonical iden-

tification with the space of K-basic differentials forms on G× Yse.

Proposition 2.5. The 2-form π∗
se(ΩMse

) is equal to the K-basic, G-invariant, 2-
form ΩYse

− d〈ΦK
Yse

, θK〉.
Proof. Let π1 : G × Yse → Mse the map that factorizes πse. By G-invariance, we
need only to show that π∗

1(ΩMse
) equals ΩYse

− d〈ΦK
Yse

, θK〉 at the point (1, y) ∈
G× Yse.

Let (X ′, v′), (X, v) ∈ g×Ty = T(1,y)(G× Yse). We have

π∗
1(ΩMse

)
(
(X ′, v′), (X, v)

)

= ΩM (−X ′
M (y) + v′,−XM (y) + v)

= ΩM (v′, v) + ΩM (X ′
M (y), XM (y))− ΩM (X ′

M (y), v) + ΩM (XM (y), v′)

= ΩYse
(v′, v) + 〈ΦK

Yse
(y), [X ′, X ]k〉︸ ︷︷ ︸

A

+ d〈ΦK
Yse

, X ′
k〉|y(v)− d〈ΦK

Yse
, Xk〉|y(v′)︸ ︷︷ ︸

B

.

= ΩYse
(v′, v)− d〈ΦK

Yse
, θK〉

(
(X ′, v′), (X, v)

)
.

The last equality is due to the fact that A = −〈ΦK
Yse

(y), dθK |1〉(X ′, X) since

dθK((X ′)r, (X)r) = −[X ′, X ]k, and B = −〈dΦK
Yse

, θK〉((X ′, v′), (X, v)).
�

2.2. Proper moment map. In this section we study the Hamiltonian actions of a
real reductive group G on a symplectic manifold (M,ΩM ) that meet the following
condition:

C1 The action of G on M is proper,
C2 The moment map ΦG

M : M → g∗ is a proper map3.

3For any compact subset B ⊂ g∗ the fiber Φ−1

G
(B) is a compact subset of M .
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The condition C2 imposes that the image of ΦG
M is a closed subset of g∗. Let Ã

be a compact subset of Image(ΦG), and let A = (ΦG
M )−1(Ã) be the corresponding

compact subset of M . We see then that, ∀g ∈ G

g ·A ∩ A 6= ∅ ⇐⇒ g · Ã ∩ Ã 6= ∅.
Condition C1 tell us then that {g ∈ G | g · A ∩ A 6= ∅} is compact, hence {g ∈
G | g · Ã∩ Ã 6= ∅} is compact for any compact set Ã in the image of ΦG

M . By taking

Ã equal to a point, we get the following

Lemma 2.6. Under the conditions C1 and C2, the image of ΦG
M is contained in

the open subset g∗se = {ξ ∈ g∗ |Gξ is compact} of strongly elliptic elements. In
particular, the image of ΦG

M does not contain 0 ∈ g∗.

The previous Lemma gives a strong condition on the reductive Lie group G : it
may acts in an Hamiltonian fashion on a symplectic manifold, properly and with
a proper moment map only if g∗se 6= ∅. So G can not be for example SLn(R) for
n ≥ 3 or a complex reductive Lie group (see Table 1).

If we use the last section we see that M = Mse. We summarize with the following

Proposition 2.7. • The set Y is a K-invariant symplectic sub-manifold of M ,
with proper moment map ΦK

Y equal to the restriction of ΦG
M to Y .

• The manifold G×K Y carries an induced symplectic structure ΩY −d〈ΦK
Y , θK〉.

The corresponding moment map is [g, y] 7→ g · ΦK
Y (y).

• The map π : G×K Y → M is a G-equivariant diffeomorphism of Hamiltonian
G-manifolds.

• The manifold Y is connected.

Proof. Thanks to the Cartan decomposition, the third point implies that p×Y ≃ M
and then the last point follows. �

Let t be the Lie algebra of a maximal torus T in K. Note that g∗se 6= ∅ is
equivalent to the fact that t is a Cartan sub-algebra of g. Let g∗se = g∗se ∩ k∗ and
t∗se = g∗se ∩ t∗. We have g∗se = Ad∗(G) · k∗se = Ad∗(G) · t∗se.

Let ∧∗ ⊂ t∗ be the weight lattice : α ∈ ∧∗ if iα is the differential of a character
of T . Let R ⊂ ∧∗ be the set of roots for the action of T on g ⊗ C. We have
R = Rc ∪Rn where Rc and Rn are respectively the set of roots for the action of
T on k⊗ C and p ⊗ C. We fix a system of positive roots R+

c in Rc: let t
∗
+ ⊂ t∗ be

the corresponding Weyl chamber. Let W = W (K,T ) be the Weyl group. We have
then

t∗se = W ·
(
t∗se ∩ t∗+

)
= W · {ξ ∈ t∗+ | (ξ, α) 6= 0, ∀α ∈ Rn}
= W · (C1 ∪ · · · ∪ CN ) ,

where each Cj is an open cone of the Weyl chamber.
We recover the following result due to Weinstein [46].

Theorem 2.8. • The Kirwan set ∆K(Y ) := Image(ΦK
Y ) ∩ t∗+ is a closed convex

locally polyhedral subset contained in one cone Cj.
• We have Image(ΦG

M )/Ad∗(G) ≃ ∆K(Y ).
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Proof. Since the moment map ΦK
Y is proper and Y is connected, the Convexity

Theorem [2, 18, 25, 28] tells us that the Kirwan set ∆K(Y ) is a closed, convex,
locally polyhedral, subset of the Weyl chamber. On the other hand, we know that
the image of ΦK

Y belongs to t∗se. Then ∆K(Y ) ⊂ C1 ∪ · · · ∪ CN , but since ∆K(Y ) is
convex we have ∆K(Y ) ⊂ Cj for a unique cone Cj . The last point is obvious since
the isomorphism π : G×K Y → M satisfies ΦG

M ◦ π([g, y]) = g · ΦK
Y (y). �

We finish this section, with the following

Theorem 2.9. Let (M,ΩM ,ΦG
M ) be an Hamiltonian G-manifold.

• If the G-action on M is proper, ΦG
M is proper if and only if ΦK

M is proper.
• Under the conditions C1 and C2, we have

∅ 6= Cr(‖ΦG
M‖2) = Cr(‖ΦK

M‖2) = Cr(‖ΦK
Y ‖2) ⊂ Y.

Proof. Let us prove the first point. As ‖ΦG
M‖ ≥ ‖ΦK

M‖ one implication trivially
holds. Suppose now that ΦG

M is proper. Thanks to Propositions 2.7 and 2.8, we
know thatM = G×KY where Y is aK-Hamiltonian manifold, with proper moment
map ΦK

Y , and with Kirwan set ∆K(Y ) being a closed set in t∗se. Let R > 0. We
consider

• M≤R = {m ∈ M | ‖ΦK
M (m)‖2 ≤ R},

• Y≤R = {y ∈ Y | ‖ΦK
Y (y)‖2 ≤ R} which is a compact subset of Y ,

• K = ∆K(Y ) ∩ {ξ ∈ t∗ | ‖ξ‖2 ≤ R} which is a compact subset of t∗se,

• c(K) = inf ξ∈K

α∈Rn

|(α,ξ)|2

2‖ξ‖ which is strictly positive.

We have to show that M≤R is a compact subset of M . Take m = [keX , y], with
k ∈ K and X ∈ p. Since ΦG

M (m) = keX · ΦK
Y (y), we have

‖ΦK
M (m)‖2 ≥ −b(ΦG

M (m),ΦG
M (m)) = ‖ΦK

Y (y)‖2

‖ΦK
M (m)‖2 = ‖

[
eX · ΦK

Y (y)
]
k∗
‖2.

Hence if m = [keX , y] ∈ M≤R, we have y ∈ Y≤R and then ΦK
Y (y) = ko · ξ for

some ko ∈ K and ξo ∈ K. Then we have, for X ′ = k−1
o ·X ∈ p,

‖ΦK
M (m)‖ = ‖

[
eX

′ · ξo
]
k∗
‖ ≥ 1

‖ξo‖
(eX

′ · ξo, ξo)

=
1

‖ξo‖
∑

n∈N

1

2n!
‖ad∗(X ′)nξo‖2

≥ 1

2‖ξo‖
‖ad∗(X ′)ξo‖2 ≥ c(K)‖X‖2.

Thus ifm = [keX , y] ∈ M≤R, the vectorX is bounded and y belongs to the compact
subset Y≤R. This proves that M≤R is compact.

Let us concentrate to the last point. First we note that since the map ‖ΦG
M‖2 :

M → R is proper, its infimum is reached, and so Cr(‖ΦG
M‖2) 6= ∅. Let − ∈ {G,K}.

Thanks to (6), we know that

m ∈ Cr(‖Φ−
M‖2) ⇐⇒ κ−(m) = 0 ⇐⇒ Φ̃−

M (m) ∈ gm.

Since gm ⊂ gξ with ΦG
M (m) = ξ = ξk ⊕ ξp, we have m ∈ Cr(‖Φ−

M‖2) only if

[ξ̃p, ξ̃] = 0. Since ξ is strongly elliptic the last condition imposes that ξp = 0. We
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have proved that Cr(‖ΦK
M‖2) and Cr(‖ΦG

M‖2) are both contained in {Φp
M = 0} = Y .

We have κG = κK + κp and the vector field κp vanishes on Y . Finally we see that

Cr(‖ΦG
M‖2) = Cr(‖ΦK

M‖2) = {y ∈ Y | [Φ̃K
M (y)]M (y) = 0}

= Cr(‖ΦK
Y ‖2).

The last equality is due to the fact that ΦK
Y is the restriction of ΦK

M to Y . �

2.3. Criterion. We have seen in Theorem 2.9 a situation where the properness
property of the moment maps ΦG

M and ΦK
M are equivalent. In this section, we

start with a symplectic manifold (M,ΩM ) admitting an Hamiltonian action of a
compact connected Lie group K. We suppose that the moment map ΦK

M is proper.
Let K ′ ⊂ K be a closed subgroup. The aim of the section is to give a criterion
under which the induced moment map ΦK′

M is still proper. We start by recalling
basic facts concerning the notion of asymptotic cone.

To any non-empty subset C of a real vector space E, we define its asymptotic
cone As(C) ⊂ E as the set formed by the limits y = limk→∞ tkyk where (tk) is a
sequence of non-negative reals converging to 0 and yk ∈ C. Note that As(C) = {0}
if and only if C is compact.

We recall the following basic facts.

Lemma 2.10. Let Ci, i = 0, 1 be closed and convex subsets of E.
• We have Ci +As(Ci) ⊂ Ci.
• If C0 ∩C1 is non-empty we have As(C0) ∩ As(C1) = As(C0 ∩ C1).
• If C0 ∩C1 is non-empty and compact, we have As(C0) ∩ As(C1) = {0}

Proof. Let us check the first point. Take z ∈ Ci and y = limk→∞ tkyk an element
of As(Ci). Then z + y = limk→∞(1 − tk)z + tkyk. Since (1 − tk)z + tkyk ∈ Ci if
tk ≤ 1, we know that z + y ∈ Ci since Ci is closed.

The inclusion As(C0 ∩ C1) ⊂ As(C0) ∩ As(C1) follows from the inclusions C0 ∩
C1 ⊂ Ci. Let z ∈ C0 ∩ C1 and y ∈ As(C0) ∩ As(C1). Thanks to the first point
we know that z + R≥0y ⊂ C0 ∩ C1. Then y = limt→0+ t(z + t−1y) ∈ As(C0 ∩ C1).
The second point is proved and the last point is a direct consequence of the second
one. �

The following Proposition is a useful tool for finding proper moment map. For
a closed subgroup K ′ of K, we denote πk′,k : k

∗ → (k′)∗ the projection which is the

dual of the inclusion k′ →֒ k. The kernel π−1
k′,k(0) is denoted (k′)⊥.

Proposition 2.11. • Let (M,ΩM ) be an Hamiltonian K-manifold with a proper
moment map ΦK

M . Let ∆K(M) be its Kirwan polyhedron. Let K ′ ⊂ K be a closed
subgroup. Then the following statement are equivalent

a) the moment map ΦK′

M = πk′,k ◦ ΦK
M is proper,

b) As (∆K(M)) ∩K · (k′)⊥ = {0},
c) there exists ε > 0, such that the inequality ‖ΦK′

M ‖ ≥ ε‖ΦK
M‖ − ε−1 holds on

M .

Proof. If c) does not hold we have a sequence mi ∈ M such that ‖ΦK′

M (mi)‖ ≤
1
i
‖ΦK

M (mi)‖ − i, for all i ≥ 1. Then ‖ΦK
M (mi)‖ tends to infinity and

‖ΦK′

M (mi)‖

‖ΦK
M (mi)‖

tends to zero. We write ΦK
M (mi) = ki · yi with ki ∈ K and yi ∈ ∆K(M). The
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sequence πk′,k(ki · yi

‖yi‖
) converges to 0. Here we can assume that the sequence

ki converge to k ∈ K, and that the sequence yi

‖yi‖
converge to y ∈ As(∆K(M)).

We get then that πk′,k(k · y) = 0. In other words, y is a non-zero element in
As (∆K(M)) ∩K · (k′)⊥. We have proved b) =⇒ c).

The implication c) =⇒ a) is obvious. Let us prove the last implication a) =⇒ b).
First we note that the properness of ΦK

M implies that the projection πk′,k is proper
when restricted to the closed subset Image(ΦK

M ) = K · ∆K(M). Let k ∈ K and
ξo ∈ k ·∆K(M). Then

k ·∆K(M)
⋂

ξo + (k′)⊥ ⊂ Image(ΦK
M )
⋂

π−1
k′,k(πk′,k(ξo))

is non-empty and compact. If we apply the last point of Lemma 2.10 to the closed
and convex sets k ·∆K(M) and ξo + (k′)⊥ we get that

As(k ·∆K(M))
⋂

As(ξo + k⊥) = k ·As(∆K(M))
⋂

(k′)⊥

is reduced to {0}. So we have proved that As(∆K(M))
⋂

k · (k′)⊥ = {0} for any
k ∈ K. �

Remark 2.12. When M is a symplectic vector space (E,ΩE), the moment map
ΦK

E : E → k∗ is quadratic. Then ΦK
E is proper if and only if (ΦK

E )−1(0) = {0}.
2.4. Kostant-Souriau line bundle. In the Kostant-Souriau framework, an Hamil-
tonian G-manifold (M,ΩM ,ΦG

M ) is pre-quantized if there is an equivariant Hermit-
ian line bundle LM with an invariant Hermitian connection ∇M such that

(11) L(X)− ι(XM )∇M = i〈ΦG
M , X〉 and (∇M )2 = −iΩM ,

for every X ∈ g.
The data (LM ,∇M ) is also called a Kostant-Souriau line bundle. Note that

conditions (11) imply via the equivariant Bianchi formula the relations (5).

We suppose now that conditions C1 and C2 hold. Then M = G ×K Y where
Y ⊂ M is the K-invariant symplectic sub-manifold defined in Section 2.2. Let
(LM ,∇M ) be a Kostant-Souriau line bundle on M . We denote LY the restriction
of the line bundle LM on Y . The connection ∇M induces a K-invariant connection
∇Y on LY → Y , and we check easily that (LY ,∇Y ) is a Kostant-Souriau line
bundle on Y .

Reciprocally, if (LY ,∇Y ) is a Kostant-Souriau line bundle on (Y,ΩY ,Φ
K
Y ), we

define on M the line bundle LM := (G× LY )/K equipped with the connection

∇M := ∇Y + dG + i〈ΦK
Y , θK〉,

where dG is the de Rham differential on G. Since ΩM = ΩY − d〈ΦK
Y , θK〉, we

check easily that (LM ,∇M ) is a G-equivariant Kostant-Souriau line bundle on
(M,ΩM ,ΦG

M ).

2.5. The case of elliptic orbits. In this section, we consider the examples given
by the elliptic coadjoint orbits of G, that is M := G · λ for some λ ∈ k∗. The
Kirillov-Kostant-Souriau symplectic structure ΩM is defined by the relation

ΩM |m(XM |m, YM |m) = 〈m, [X,Y ]〉,
for m ∈ M and X,Y ∈ g. The corresponding moment map relatively to the action
of G on G · λ is the inclusion ΦG

M : G · λ →֒ g∗.

Lemma 2.13. The moment maps ΦG
M and ΦK

M are proper.
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Proof. The inclusion ΦG
M is proper since the elliptic orbit M = G · λ is closed in

g∗. If we use the relations ‖λ‖2 = −b(ΦG
M ,ΦG

M ) = ‖ΦK
M‖2 − ‖Φp

M‖2 and ‖ΦG
M‖2 =

‖ΦK
M‖2 + ‖Φp

M‖2, we get ‖ΦK
M‖2 = 1

2 (‖λ‖2 + ‖ΦG
M‖2). The properness of ‖ΦK

M‖2
then follows. �

We work now with an elliptic coadjoint orbit of G, G ·λ, such that the stabilizer
subgroup Gλ is compact. Then the action of G (and those of any closed subgroup)
on G · λ is proper.

Let t be the Lie algebra of a maximal torus T in K. Our hypothesis concerning
the compactness of Gλ imposes t to be a Cartan sub-algebra of g. Let R be the
set of roots for the action of t on g ⊗ C. We have R = Rc ∪ Rn where Rc and
Rn are respectively the set of roots for the action of t on k ⊗ C and p ⊗ C. For
the remaining part of this section, we fix a system of positive roots Rc,+ in Rc: let
t∗+ ⊂ t∗ be the corresponding Weyl chamber.

So λ is chosen in the Weyl chamber t∗+, away from the non-compact wall :
(α, λ) 6= 0 for all α ∈ Rn. Thanks to Lemma 2.13, we know that the moment map
ΦK

G·λ relative to a maximal compact subgroup K ⊂ G is proper. The Convexity
theorem tells us that the set

∆K(G · λ) := Image(ΦK
M ) ∩ t∗+

is a closed convex locally polyhedral subset of t∗. The results of Duflo-Heckman-
Vergne [14] shows that in fact ∆K(G·λ) is defined by a finite number of inequalities.
In this paper, we call ∆K(G · λ) the Kirwan polyhedron.

We consider now a connected reductive subgroup G′ ⊂ G, such that a Cartan
involution Θ for G leaves G′ invariant. Then we have Cartan decompositions g′ =
k′ ⊕ p′ and g = k ⊕ p, with k′ ⊂ k and p′ ⊂ p. Let K ⊂ G and K ′ ⊂ G′ be the
corresponding maximal subgroups.

Consider now the action of G′ on (G · λ,ΩG·λ). The moment map ΦG′

G·λ is the
composition of the inclusion G ·λ →֒ g∗ with the orthogonal projection πg′,g : g∗ →
(g′)∗. Note that Y := (ΦG

M )−1(k∗) is non-empty since it contains πg′,g(λ).
We are looking to connected reductive subgroups G′ ⊂ G such that the moment

map ΦG′

G·λ is proper. Theorem 2.9 shows that is equivalent to look at compact sub-

groups K ′ ⊂ K such that the moment map ΦK′

G·λ is proper. Thanks to Proposition
2.11, we have the following criterium

Proposition 2.14. • The moment map ΦG′

G·λ is proper if and only if
As(∆K(G · λ)) ∩K · (k′)⊥ = {0}.

We want to stress a property which is peculiar to the reductive Lie groups (in
comparison with the nilpotent one).

Proposition 2.15. Let O ⊂ g∗ be a strongly elliptic orbit. Let G′ ⊂ G be a
connected reductive subgroup such that ΦG′

O = πg′,g : O → (g′)∗ is proper. Then for
any coadjoint orbit O′ ⊂ (g′)∗ the reduced space

(12) O ∩ π−1
g′,g(O′)/G′

is connected.

Proof. Since ΦG′

O is proper, we have a decomposition O = G′ ×K′ Y ′, where Y ′ is

a connected sub-manifold. Then O ∩ π−1
g′,g(O′) is empty if O′ is not elliptic. And if
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O′ = G′ · µ with µ ∈ (k′)∗, we see that O∩ π−1
g′,g(O′)/G′ ≃ (ΦK

Y )−1(K · µ)/K which

is connected since ΦK
Y is proper (see the Convexity Theorem [2, 18, 25, 28]). �

In general the Kirwan polyhedron ∆K(G · λ) is not known, but we can use at
least the following observation. Let Rn(λ) be the set of non-compact roots α such
that (α, λ) > 0. Let us consider the following cone in t∗ :

C(λ) :=
∑

α∈Rn(λ)

R≥0α.

Lemma 2.16. For the Kirwan polyhedron we have

∆K(G · λ) ⊂ {λ+ C(λ)} , and then As (∆K(G · λ)) ⊂ C(λ).

Corollary 2.17. The moment map ΦG′

G·λ is proper if C(λ) ∩ K · (k′)⊥ = {0}.
Proof. Let Cλ be the cone tangent to ∆K(G · λ) at λ :

Cλ = R≥0 · {ξ − λ, ξ ∈ ∆K(G · λ)} ⊂ t∗.

We have to show that Cλ is contained in C(λ). Thanks to the result of Sjamaar [40],
we know that Cλ is determined by a local Hamiltonian model near K · λ ⊂ G · λ.

The maximal torus T ofK is still a maximal torus for the stabiliser subgroupKλ :
let t∗λ,+ be a Weyl chamber for (Kλ, T ) which contains t∗+. Here, we consider the vec-

tor space p equipped with the linear symplectic structure Ωλ(X,Y ) := 〈λ, [X,Y ]〉.
The group Kλ acts in a Hamiltonian fashion on (p,Ωλ). Let us denote by

∆Kλ
(p) ⊂ t∗λ,+

the corresponding Kirwan polytope (which is a rational cone). Since the stabiliser
of the point λ ∈ M := G · λ coincides with the stabiliser subgroup Kλ of its image
by the moment map ΦK

M , the local form of Marle [30] and Guillemin and Sternberg
[20] tells us that M is symplectomorphic with K×Kλ

p in a neighbourhood of K ·λ.
Theorem 6.5 of [40] tells us then that Cλ = ∆Kλ

(p).
Let us consider the Hamiltonian action of the torus T on (p,Ωλ). Let Jλ be an

invariant complex structure on p which is compatible with Ωλ: we can check that
the weights of the T -action on (p, Jλ) are −α, for α ∈ Rn(λ). Hence the image
∆T (p) of the moment map is equal to the cone generated by the weights α ∈ Rn(λ).
Finally we have proved that

Cλ = ∆Kλ
(p) ⊂ ∆T (p) = C(λ).

�

3. Quantization commutes with reduction

Let G be a connected real reductive Lie group and let K be a maximal connected
compact subgroup. Let ck, cg be respectively the center of k and g. In all the section
we assume that the group G satisfies the following condition

(13) Zg(ck) = k,

i.e. the centralizer of ck in g coincides with k. Hence cg ⊂ ck ⊂ k.
We make the choice of a maximal torus T in K with Lie algebra t. Note that

(13) forces t to be a Cartan sub-algebra of g. Let R = Rc ∪Rn be the set of roots.
We fix a system of positive roots R+

c in Rc. We know also that (13) imposes the
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existence of elements z ∈ ck such that ad(z) defines a complex structure on p (see
Section 9 in [26]). For such element z, we define

Rn(z) := {α ∈ Rn | 〈α, z〉 = 1}.
which is invariant relatively to the action of the Weyl group WK . The union
R+

c ∪Rn(z) defines then a system of positive roots in R.
We will be interested to the closed WK-invariant cones in t∗

Chol(z) := {ξ ∈ t∗ | (β, ξ) ≥ 0, ∀β ∈ Rn(z)} ,
C(z) :=

∑

β∈Rn(z)

R≥0β.

We recall some basic facts about them.

Lemma 3.1. We have the following inclusions

(14) C(z) ⊂ Chol(z) ⊂ {ξ ∈ t∗ | 〈ξ, z〉 ≥ 0}.
Proof. Since (β0, β1) ≥ 0 for any βk ∈ Rn(z), we see that C(z) ⊂ Chol(z). For

ξ ∈ t∗, we have 〈ξ, z〉 = −b(ξ̃, z) = 2
∑

β∈Rn(z)
〈β, ξ̃〉 with 〈β, ξ̃〉 = (β, ξ). Then

ξ ∈ Chol(z) implies 〈ξ, z〉 ≥ 0. �

Example 3.2. We have the following classical examples:

G K p

Sp(n,R) U(n) S2(Cn)
SO∗(2n) U(n) ∧2Cn

SOo(2, n) SO(2)× SO(n) Cn

U(p, q) U(p)×U(p) Mp,q(C)

3.1. Holomorphic coadjoint orbits. The holomorphic coadjoint orbits are G · λ
with λ in the interior of Chol(z). These symplectic manifolds possess a G-invariant
(integrable) complex structure Jλ which is compatible with the symplectic struc-
ture ΩG·λ (see [38]). Hence (G · λ,ΩG·λ, Jλ) is a Kähler manifold when λ ∈
Interior(Chol(z)).

The real K-module p is equipped with the invariant linear symplectic structure
Ωp(A,B) := −b(z, [A,B]). We have two families of Hamiltonian K-manifold :
K · λ× p and G · λ for λ ∈ Chol(z). We start with the fundamental fact.

Proposition 3.3. Let λ ∈ Interior(Chol(z)). We have

a) ∆K(G · λ) ⊂ λ+ C(z) ⊂ Chol(z),
b) ∆K(G · λ) = ∆K(K · λ× p),
c) As (∆K(G · λ)) = ∆K(p).

Proof. Point a) is the translation of Lemma 2.16 since the cone C(λ) is equal to
C(z). Point b) is proved in [38]. Another proof is given by Deltour in [13], by
showing the stronger result that the Hamiltonian K-manifolds G · λ and K · λ× p

are symplectomorphic. The point c) follows easily from b). �

Remark 3.4. When G is one of the groups appearing in Example 3.2, the gener-
ators of the cone ∆K(p) can be defined in term of strongly orthogonal roots (see
Section 5 in [38]). Note also that Deltour has completely described the facet of the
polytopes ∆K(G · λ) when Interior(Chol(z)) (see [12]).
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Table 2. Involution σ such that σ(z) = z

G Gσ

Sp(n,R) Sp(p,R)× Sp(n− p,R)
Sp(n,R) U(p, n− p)
SO(2, 2n) U(1, n)
SO(2, n) SO(2, p)× SO(n− p)
SO∗(2n) U(p, n− p)
SO∗(2n) SO∗(2p)× SO∗(2n− 2p)
U(n, n) Sp(n,R)
U(n, n) SO∗(2n)
U(p, q) U(i, j)×U(p− i, q − j)

Let S•(p) be the symmetric algebra of the complex K-module (p, ad(z)): it is
an admissible representation of K. Let K ′ be a closed connected subgroup of K.
We denote by ΦK′

G·Λ and by ΦK′

p the corresponding moment maps. We have the
following

Proposition 3.5. Let λ ∈ Interior(Chol(z)). The following assertions are equivalent
a) ΦK′

G·λ : G · λ → (k′)∗ is a proper map,
b) ∆K(p) ∩K · (k′)⊥ = {0},
c) ΦK′

p : p → (k′)∗ is a proper map,

d) {ΦK′

p = 0} is reduced to {0},
e) S•(p) is an admissible representation of K ′.

Proof. The equivalences a) ⇔ b) and b) ⇔ c) follow from Propositions 2.11 and
3.3. The other equivalences c) ⇔ d) ⇔ e) are proved in [36][Section 5]. �

Let us consider the moment map ΦK
p : p → k∗. Via the identification k∗ ≃ k, the

moment map ΦK
p is defined by

ΦK
p (X) = −[X, [z,X ]], X ∈ p.

Hence we see that 〈ΦK
p , z〉 : p → R is a proper map taking positive values. This

simple fact and Proposition 3.5 gives us the following

Corollary 3.6. Let G′ be a connected reductive subgroup of G, and let λ ∈ Interior(Chol(z)).
The moment map ΦG′

G·Λ is proper when the Lie algebra g′ contains Rz.

Example 3.7. The condition Rz ⊂ g′ is fulfilled in the following cases:

(1) G′ = SOo(2, p) ⊂ G = SOo(2, n) for 0 ≤ p ≤ n,
(2) G′ is the identity component of Gσ, where σ is an involution of G such that

σ(z) = z (see Table 2),
(3) G′ is the diagonal in G := G′ × · · · ×G′.
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3.2. Holomorphic discrete series. Let ∧∗ ⊂ t∗ be the lattice of characters of

T . We know that the set ∧∗
+ := ∧∗ ∩ t∗+ parametrizes the set K̂ of irreducible

representations of K: for any µ ∈ ∧∗
+, we denote V

K
µ the irreducible representation

of K with highest weight µ.
We will be interested in Cρ

hol(z) = 2ρn(z) + Chol(z) ⊂ Chol(z) where 2ρn(z) is the
sum of the roots of Rn(z). Let us denote

Ĝhol(z) := ∧∗
+

⋂
Cρ
hol(z).

Theorem 3.8 (Harish-Chandra). For any λ ∈ Ĝhol(z), there exists a irreducible
unitary representation of G, denoted V G

λ , such that the vector space of K-finite
vectors is

V G
λ |K := V K

λ ⊗ S•(p).

Here S•(p) is the symmetric algebra of the complex vector space (p, ad(z)).

3.3. Formal geometric quantization. Let us first recall the definition of the
geometric quantization of a smooth and compact Hamiltonian manifold. Then we
show a way of extending the notion of geometric quantization to the case of a
non-compact Hamiltonian manifold.

Let K be a compact connected Lie group. Let (M,ΩM ,ΦK
M ) be a Hamiltonian

K-manifold which is pre-quantized by the Hermitian line bundle LM (see Section
2.4).

Let us recall the notion of geometric quantization when M is compact. Choose
a K-invariant almost complex structure J on M which is compatible with ΩM

in the sense that the symmetric bilinear form ΩM (·, J ·) is a Riemannian metric.

Let ∂LM
be the Dolbeault operator with coefficients in L, and let ∂

∗

LM
be its

(formal) adjoint. The Dolbeault-Dirac operator on M with coefficients in LM is

DLM
=

√
2(∂LM

+∂
∗

LM
), considered as an elliptic operator from A0,even(M,LM ) to

A0,odd(M,LM ). Let R(K) be the representation ring of K.

Definition 3.9. The geometric quantization of a compact Hamiltonian K-manifold
(M,ΩM ,ΦK

M ) is the element QK(M) ∈ R(K) defined as the equivariant index of
the Dolbeault-Dirac operator DLM

.

Let us consider the case of a proper pre-quantized Hamiltonian K-manifold M :
the manifold is (perhaps) non-compact but the moment map ΦK

M : M → k∗ is
supposed to be proper. In this setting, we have two ways of extending the geometric
quantization procedure.

First way : Q−∞
K

. One defines the formal geometric quantization of M as an

element Q−∞
K (M) that belongs to R−∞(K) := homZ(R(K),Z) [45, 36, 29, 39]. Let

us recall the definition.

For any µ ∈ K̂ which is a regular value of the moment map Φ, the reduced space4

(or symplectic quotient)

(15) Mµ := (ΦK
M )−1(K · µ)/K

is a compact orbifold equipped with a symplectic structure Ωµ. Moreover Lµ :=
(L|(ΦK

M )−1(µ) ⊗ C−µ)/Kµ is a Kostant-Souriau line orbibundle over (Mµ,Ωµ). The

definition of the index of the Dolbeault-Dirac operator carries over to the orbifold

4The symplectic quotient will be denoted Mµ,K when we need more precise notations.
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case, hence Q(Mµ) ∈ Z is defined. This notion of geometric quantization extends
further to the case of singular symplectic quotients [32, 34]. So the integer Q(Mµ) ∈
Z is well defined for every µ ∈ K̂: in particular Q(Mµ) = 0 if µ is not in the Kirwan
polytope ∆K(M).

Definition 3.10. Let (M,ΩM ,ΦK
M ) be a proper Hamiltonian K-manifold which

is pre-quantized by a Kostant-Souriau line bundle L. The formal quantization of
(M,ΩM ,ΦK

M ) is the element of R−∞(K) defined by

Q−∞
K (M) =

∑

µ∈K̂

Q(Mµ)V
K
µ .

When M is compact, the fact that

(16) QK(M) = Q−∞
K (M)

is known as the “quantization commutes with reduction” Theorem. This was con-
jectured by Guillemin-Sternberg in [19] and was first proved by Meinrenken [31]
and Meinrenken-Sjamaar [32]. Other proofs of (16) were also given by Tian-Zhang
[42] and the author [34]. For complete references on the subject the reader should
consult [41, 43].

One of the main features of the formal geometric quantization Q−∞ is summa-
rized in the following

Theorem 3.11 ([36]). • Restriction to subgroup. Let M be a pre-quantized
Hamiltonian K-manifold which is proper. Let H ⊂ K be a closed connected Lie
subgroup such that M is still proper as a Hamiltonian H-manifold. Then Q−∞

K (M)

is H-admissible and we have Q−∞
K (M)|H = Q−∞

H (M) in R−∞(H).

• Product. Let M and N be pre-quantized Hamiltonian K-manifolds with M
is proper and N is compact. Then M ×N is a proper pre-quantized Hamiltonian
K-manifold and we have Q−∞

K (M ×N) = Q−∞
K (M) · QK(N) in R−∞(K).

Second way : QΦ

K
.WhenM is a proper pre-quantized HamiltonianK-manifold,

we can define another formal geometric quantization of M through a non-abelian
localization procedure à la Witten [47]. In [29, 36], one proves that an element

(17) QΦ
K(M) ∈ R−∞(K)

is well-defined by localizing the index of the Dolbeault-Dirac operator DLM
on the

set Cr(‖ΦK
M‖2) of critical points of the square of the moment map.

The crucial result is that these two procedures coincides [29, 36].

Theorem 3.12 (Ma-Zhang, Paradan). Let M be a proper pre-quantized Hamilton-
ian K-manifold. Then, the following equality

(18) Q−∞
K (M) = QΦ

K(M).

holds in R−∞(K).
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3.4. Formal geometric quantization of holomorphic orbits. Let us come
back to the holomorphic discrete representation V G

λ . Consider a coadjoint orbit
G ·λ for λ ∈ ∧∗

+ in the interior of the chamber Chol(z), so that λ is strongly elliptic.
The action of G on G · λ is Hamiltonian, and the line bundle

L := G×Kλ
Cλ

is a Kostant-Souriau line bundle over G · λ ≃ G/Kλ. Here Cλ denotes the 1-
dimensional representation of the stabilizer subgroup Kλ that can be attached to
the weight λ.

Thanks to Lemma 2.13, we know that the moment map ΦK
G·λ relatively to the

action of K on G · λ is proper. Hence the reduced spaces

(G · λ)µ := (ΦK
G·λ)

−1(K · µ)/K.

are compact for any µ ∈ ∧∗
+, and the generalized character QΦ

K(G · λ) ∈ R−∞(K)
is well defined. We have proved in [35, 38] the following

Theorem 3.13. Let λ ∈ ∧∗
+ ∩ Interior(Chol(z)). The following equality

QΦ
K(G · λ) = V K

λ ⊗ S•(p)

holds in R−∞(K).

This result will be generalized in (21). It shows that QΦ
K(G·λ) coincides with the

vector space of K-finite vector of the holomorphic discrete representation V G
λ when

λ ∈ Cρ
hol(z). Note that for λ ∈ Interior(Chol(z)) \ Cρ

hol(z), the generalized character
QΦ

K(G · λ) can not be associated to an holomorphic discrete representation of G.
Theorems 3.13 and 3.12, gives us the following informations concerning the K-

multiplicities.

Corollary 3.14. Let λ ∈ ∧∗
+ ∩ Interior(Chol(z)), and µ ∈ ∧∗

+.

• The multiplicity of V K
µ in V K

λ ⊗S•(p) is equal to the quantization of the reduced
space (G · λ)µ.

• If [V K
µ : V K

λ ⊗ S•(p)] 6= 0 then µ ∈ λ + C(z) ⊂ Chol(z). The last condition
imposes that ‖µ‖ > ‖λ‖ or µ = λ.

Proof. The first point is a consequence of the equality QΦ
K(G · λ) =

Q−∞
K (G·λ). We know then that if [V K

µ : V K
λ ⊗S•(p)] 6= 0, then µ belongs to the Kir-

wan polytope ∆K(G ·λ). But we know after Lemma 2.16 that ∆K(G ·λ) ⊂ λ+C(z)
: so µ = λ+

∑
β∈Rn(z)

xββ with xβ ≥ 0. Finally, we have

‖µ‖2 = ‖λ‖2 + ‖
∑

β∈Rn(z)

xββ ‖2 + 2
∑

β∈Rn(z)

xβ (β, λ)︸ ︷︷ ︸
≥0

≥ ‖λ‖2,
and we have ‖µ‖2 = ‖λ‖2 only if µ = λ. �

3.5. Multiplicities of the holomorphic discrete series. We consider now a
connected reductive subgroup G′ ⊂ G such that z ∈ g′. Then it is easy to check
that G′ satisfies (13). Let K ′ ⊂ K be the maximal compact subgroup in G′, and let
T ′ ⊂ T be a maximal torus in K ′. Let Chol(z), Cρ

hol(z) ⊂ t∗ and C′
hol(z), C′ρ

hol(z) ⊂
(t′)∗ be the corresponding convex cone. For l ∈ {t, k, g}, we denote πl′,l : l

∗ → (l′)∗

the canonical projection. We have the following important fact.
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Proposition 3.15. We have the following relations

(a) πt′,t (Chol(z)) ⊂ C′
hol(z),

(b) πk′,k (K · Chol(z)) ⊂ K ′ · C′
hol(z),

(c) πk′,k (K · Cρ
hol(z)) ⊂ K ′ · C′ρ

hol(z),

(d) πg′,g (G · Cρ
hol(z)) ⊂ G′ · C′ρ

hol(z).

Proof. Let α ∈ t∗ be a non-compact root of (g, t). Let gα ⊂ p⊗C the corresponding
1-dimensional weight space. Then we know that there exists hα ∈ i[gα, gα]∩ t such
that α = −b(hα, ·). Note that the half-line R>0hα does not depend of the bilinear
form b, and that the condition (α, ξ) ≥ 0 is equivalent to 〈ξ, hα〉 ≥ 0 for any ξ ∈ t∗.

Let α ∈ t∗ be a non-compact root of (g, t) such that its restriction α′ = πt′,t(α)
is a non-compact root of (g′, t′). Since the 1-dimensional weight spaces gα and
g′α′ coincide we have R>0hα = R>0hα′ ⊂ t′. Then the condition 〈ξ, hα〉 ≥ 0 is
equivalent to 〈πt′,t(ξ), hα′〉 ≥ 0. Finally we have proved the point (a) : if one has
〈ξ, hα〉 ≥ 0 for any positive non-compact root of (g, t), then 〈πt′,t(ξ), hα′〉 ≥ 0 holds
for any positive non-compact root of (g′, t′).

Let ξ ∈ Chol(z) and ξ′ ∈ πk′,k(K · ξ) ∩ (t′)∗. Then ξ′ ∈ πt′,t ◦ πt,k(K · ξ). By the
Convexity theorem [2, 18, 25, 28], we know that πt,k(K · ξ) is equal to the convex
hull of WKξ. But ξ belongs to the WK-invariant convex cone Chol(z), and then
πt,k(K · ξ) ⊂ Chol(z). Finally ξ′ ∈ πt′,t(Chol(z)) ⊂ C′

hol(z) thanks to the point (a).
Let ξ ∈ Chol(z). Since 2ρn(z) is K-invariant, we have K · (2ρn(z)+ ξ) = 2ρn(z)+

K · ξ. Thanks to the point (b), we see that

πk′,k(K · (2ρn(z) + ξ)) = πk′,k(2ρn(z)) + πk′,k(K · ξ)
⊂ K ′ · (πk′,k(2ρn(z)) + C′

hol(z)) .

The K ′-invariant term πk′,k(2ρn(z)) belongs to (t′)∗ and is equal to 2ρ′n(z)+πt′,t(A)
where A is the sum of the positive non-compact roots α such that gα is not included
in p′⊗C. Hence A ∈ Chol(z) and thanks to point (a) its projection πt′,t(A) belongs
to C′

hol(z). The point (c) is then proved.
Let λ ∈ Cρ

hol(z). The coadjoint orbit G · λ is contained in g∗se, and the moment

map ΦG′

G·λ is proper since z ∈ g′ (see Corollary 3.6). Then, we know that

πg′,g (G · λ) = Image(ΦG′

G·λ) = G′ ·
(
πg′,g (G · λ)

⋂
(k′)∗

)

and

πg′,g (G · λ)
⋂

(k′)∗ ⊂ πk′,k ◦ πk,g (G · λ)
⊂ πk′,k (K ·∆K(G · λ))
⊂ πk′,k (K · Cρ

hol(z)) [1]

⊂ K ′ · C′ρ
hol(z). [2]

Equality [1] is due to the fact that ∆K(G ·λ) ⊂ λ+C(z) ⊂ Cρ
hol(z) when λ ∈ Cρ

hol(z)
(see Lemma 3.3). Equality [2] corresponds to c). �

Remark 3.16. When the Lie algebra g is simple the set G · Chol(z) ⊂ g∗se is a
maximal closed convex G-invariant cone. See [33, 44].
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We finish the section by considering the restriction of the irreducible represen-

tation V G
λ to the reductive subgroup G′. We will denoted K̂hol(z) ⊂ K̂ the subset

∧∗
+∩Cρ

hol(z). We see that K̂hol(z) and Ĝhol(z) are the same set but they parametrize
representations of different groups (K and G respectively).

We start with the

Proposition 3.17. Let b ∈ K̂hol(z), λ ∈ Ĝhol(z) and µ ∈ K̂ ′. We have

• If [V K′

µ : V K
b |K′ ] 6= 0 then µ ∈ K̂ ′

hol(z).

• If [V K′

µ : V G
λ |K′ ] 6= 0 then µ ∈ Ĝ′

hol(z).

Proof. We use here the ”Restriction to subgroup” property of Theorem 3.11.
For the first point, we know after the Borel-Weil Theorem that V K

b = QK(K ·b),
and then V K

b |K ′ = QK′(K · b). Then [V K′

µ : V K
b |K′ ] 6= 0 only if b belongs to

Image(ΦK′

K·b) = πk′,k(K · b) ⊂ K ′ · C′ρ
hol(z). But K ′ · C′ρ

hol(z)(t
′)∗ = C′ρ

hol(z) since

C′ρ
hol(z) is WK′ -invariant. We have proved finally that b ∈ K̂ ′

hol(z).
For the second point, it works the same. We know that V G

λ |K′ = QΦ
K′(G · λ).

Hence V K′

µ occurs in the restriction V G
λ |K′ only if µ belongs to the image of the

moment map ΦK′

G·λ = πk′,k ◦ ΦK
G·λ. Since ∆K(G · λ) ⊂ Cρ

hol(z) (see Lemma 3.3), we
have

Image(ΦK′

G·λ) = πk′,k

(
Image(ΦK

G·λ)
)

= πk′,k

(
K ·∆K(G · λ)

)

⊂ πk′,k

(
K · Cρ

hol(z))
)
⊂ K ′ · C′ρ

hol(z),

where the last inclusion is point (c) of Proposition 3.15. We have then proved that

V K′

µ occurs in the restriction V G
λ |K′ only if

µ ∈ Image(ΦK′

G·λ) ∩ (t′)∗ ⊂ (K ′ · C′ρ
hol(z)) ∩ (t′)∗ = C′ρ

hol(z).

The last equality is due to the fact that C′ρ
hol(z) is a WK′ -invariant subset of (t′)∗.

�

We denote by Ĝ′ the unitary dual of G′, and by Ĝ′
d the subset of classes

of square integrable irreducible unitary representations. The elements of Ĝ′
d are

called discrete series representations of G′ and Ĝ′
d contains the holomorphic ones :

Ĝ′
hol(z) →֒ Ĝ′

d.

Since the moment map ΦG′

G·λ is proper, we know, thanks to the work of T.
Kobayashi [27] and Duflo-Vargas [15], that the unitary representation V G

λ is dis-
cretely admissible relatively to G′. It means that we have an Hilbertian direct
sum

V G
λ |G′ =

⊕

Π∈Ĝ′
d

mλ(Π) Π

where the multiplicities mλ(Π) are finite. In fact, we can be more precise.

Proposition 3.18. Let λ ∈ Ĝhol(z). The multiplicty mλ(Π) is non-zero only if

Π = V G′

µ for some µ ∈ Ĝ′
hol(z). This means that we have

V G
λ |G′ =

⊕

µ∈Ĝ′
hol

(z)

mλ(µ) V
G′

µ ,

with mλ(µ) finite for any µ.
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Proof. Recall the parametrization of Ĝ′
d given by Harish-Chandra. Let (∧′)∗ ⊂ (t′)∗

be the weight lattice. Let R(g′, t′)+ be a choice of positive roots and let ρ′ be half
the sum of its elements. The set (∧′)∗+ρ′ does not depend of the choice ofR(g′, t′)+:
we denote it by (∧′)∗ρ. Let (t

′)∗+ ⊂ (t′)∗ be the Weyl chamber corresponding to the

choice of a set R(k′, t′)+ of positive roots.
The discrete series representations of G′ are parametrized by

Ĝ′
d := {µ ∈ (t′)∗, g′ − regular} ∩ (∧′)∗ρ ∩ (t′)∗+.

At µ ∈ Ĝ′
d, Harish-Chandra associates a square integrable unitary representation

ΠG′

µ : µ is the Harish-Chandra parameter, and

µB := µ− ρ′c + ρ′n(µ)

is the corresponding Blattner parameter. Here ρ′n(µ) is associated to R′
n(µ). It is

a classical fact that µB ∈ (∧′)∗ ∩ (t′)∗+, and that the representation V K′

µB
occurs in

ΠG′

µ |K′ with multiplicity one : µB is the minimal K ′-types of ΠG′

µ in the sense of

Vogan. Moreover the map µ 7→ µB induces a bijection between Ĝ′
d ∩ C′

hol(z) and

Ĝ′
hol(z) and we have ΠG′

µ = V G′

µB
.

Let µ ∈ Ĝ′
d such that [ΠG′

µ : V G
λ |G′ ] 6= 0. The Proposition will be proved if we

check that µ ∈ C′
hol(z). Since [V K′

µB
: ΠG′

µ |K′ ] = 1, we have [V K′

µB
: V G

λ |K′ ] 6= 0.

Thanks to Proposition 3.17, we have then µB ∈ C′ρ
hol(z) : µB = 2ρ′n(z) + ξ with

ξ ∈ C′
hol(z). Hence

µ = (ρ′n(z) + ρ′c) + (ρ′n(z)− ρ′n(µ)) + ξ.

The term ρ′ := ρn(z) + ρ′c is associated to the choice of positive roots R(g′, t′)+ :=
R(k′, t′)+ ∪R′

n(z). Thus we have (ρ′, α) > 0 for any α ∈ R′
n(z).

The term ρ′n(z)− ρ′n(µ) is equal to the sum
∑

〈α,z〉>0

(α,µ)<0

α

and then (ρ′n(z)− ρ′n(µ), α) ≥ 0 for any α ∈ R′
n(z). Finally we have proved that

(µ, α) = (ρ′n(z) + ρ′c, α)︸ ︷︷ ︸
>0

+(ρ′n(z)− ρ′n(µ), α)︸ ︷︷ ︸
≥0

+(ξ, α)︸ ︷︷ ︸
≥0

is positive for any α ∈ R′
n(z), thus µ ∈ C′

hol(z). �

3.6. Jakobsen-Vergne’s formula. The aim of this section is to give a direct proof
of the following result of Jakobsen-Vergne [23].

Theorem 3.19 (Jakobsen-Vergne). The multiplicity mλ(µ) is equal to the multi-

plicity of the representation of V K′

µ in S•(p/p′)⊗ V K
λ |K′ .

Let us denote

(19) R−∞(G, z)

the Z-module formed by the infinite sum
∑

λ∈Ĝhol(z)
mλ V G

λ withmλ ∈ Z. Similarly,

we define R−∞(K, z) ⊂ R−∞(K) as the sub-module formed by the infinite sum∑
µ∈∧∗

+
nµ V K

µ where nµ ∈ Z is non-zero only if µ ∈ K̂hol(z).

We have the following basic result.
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Lemma 3.20. • The restriction to K defines a morphism

(20) rK,G : R−∞(G, z) → R−∞(K, z)

that is injective.
• The product by S•(p) defines a map from R−∞(K, z) into itself.

Proof. Let us prove the first point. Thanks to Corollary 3.14, we have V G
λ =∑

µ∈∧∗
+
Q((G · λ)µ) V K

µ . Then

rK,G

( ∑

λ∈Ĝhol(z)

mλ V G
λ

)
:=

∑

λ∈Ĝhol(z)

mλ V G
λ |K

=
∑

µ∈∧∗
+

( ∑

λ∈Ĝhol(z)

mλQ((G · λ)µ)
)
V K
µ .

We know that Q((G · λ)µ) 6= 0 only if ‖λ‖ ≤ ‖µ‖ and µ ∈ C(z). Hence the sum
nµ :=

∑
λ∈Ĝhol(z)

mλQ((G · λ)µ) has a finite number of non-zero term and nµ 6= 0

only if µ ∈ Chol(z).
Let A =

∑
λ∈Ĝhol(z)

mλ V G
λ be a non-zero element in R−∞(G, z). Let λA ∈

Ĝhol(z) such that ‖λA‖ is minimal among the set {‖λ‖ | mλ 6= 0}. Let rK,G(A) =∑
µ nµ V K

µ . Then

nλA
:= mλA

+
∑

λ6=λA

mλQ((G · λ)λA
).

But mλ = 0 if ‖λ‖ < ‖λA‖ and Q((G · λ)λA
) = 0 if λ 6= λA and ‖λ‖ ≥ ‖λA‖ (see

second point of Corollary 3.14). We have checked that nλA
= mλA

6= 0 and then
rK,G(A) 6= 0.

Let us check the second point. Let A =
∑

µ∈∧∗
+
nµV

K
µ ∈ R−∞(K, z). Then

A⊗ S•(p) =
∑

µ∈C(z)

nµV
K
µ ⊗ S•(p)

=
∑

θ

( ∑

µ∈C(z)

nµQ((G · µ)θ)
)
V K
θ .

Like before, the term Q((G ·µ)θ) is non-zero only if ‖µ‖ ≤ ‖θ‖ and θ ∈ C(z). Hence
the sum

∑
µ∈C(z) nµQ((G·µ)θ) has a finite number of non-zero term and is non-zero

only if θ ∈ C(z). �

Let us consider the similar morphism rK′,G′ : R−∞(G′, z) → R−∞(K ′, z) for the
reductive subgroup G′. We consider the following elements of R−∞(G′, z):

V G
λ |G′ =

∑

µ∈Ĝ′
hol

(z)

mλ(µ) V
G′

µ , and

δ :=
∑

µ∈Ĝ′
hol

(z)

nλ(µ) V
G′

µ ,

where nλ(µ) := [V K′

µ : S•(p/p′)⊗VK
λ |K′ ]. Theorem 3.19 will be proved if we check

that rK′,G′(V G
λ |G′) = rK′,G′(δ). But rK′,G′(V G

λ |G′) = V G
λ |K′ = S•(p) ⊗ V K

λ |K′ ,
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and

rK′,G′(δ) =
∑

µ∈Ĝ′
hol

(z)

nλ(µ) V
G′

µ |K′

= S•(p′)⊗
( ∑

µ∈Ĝ′
hol

(z)

nλ(µ) V
K′

µ

)
[1]

= S•(p′)⊗
( ∑

µ∈Ĝ′
hol

(z)

[V K′

µ : S•(p/p′)⊗ V K
λ |K′ ] V K′

µ

)

= S•(p)⊗ V K
λ |K′

The second point of Lemma 3.20 insures that the product in [1] is well-defined.

We need to explain the last equality. Note that [V K′

µ , S•(p/p′)⊗V K
λ |K′ ] 6= 0 implies

[V K′

µ , S•(p)⊗V K
λ |K′ ] 6= 0 and then µ ∈ Ĝ′

hol(z) (see Proposition 3.17). This insures
that the sum ∑

µ∈Ĝ′
hol

(z)

[V K′

µ : S•(p/p′)⊗ V K
λ |K′ ] V K′

µ ∈ R−∞(K ′, z)

is equal to S•(p/p′)⊗ V K
λ |K′ .

3.7. Formal geometric quantization of G-actions. In this section we consider
the Hamiltonian action of a connected real reductive Lie group G on a symplectic
manifold (M,ΩM ). We suppose that the action of G on M is proper and that the
moment map ΦG

M : M → g∗ is proper. We know that we have a global slice Y ⊂ M
such that

M ≃ G×K Y,

and that the G-orbits in the image of ΦG
M are parametrized by the Kirwan polytope

∆K(Y ).
Let us suppose the existence of a G-equivariant pre-quantum line bundle LM →

M . Note that LM is completely determined by its restriction LY → Y to the sub-
manifold Y : here LY is a K-equivariant pre-quantum line bundle over (Y,ΩY ). For
any dominant weight µ, we see that the reduce space

Mµ,G := (ΦG
M )−1(G · µ)/G

coincides with Yµ,K := (ΦK
M )−1(K · µ)/K. Hence its quantization

Q(Mµ,G) := Q(Yµ,K) ∈ Z

is well-defined (see Section 3.3).
We suppose also that G satisfies (13), and we fix a complex structure ad(z) on

p. Let Cρ
hol(z) ⊂ t∗ be the corresponding cone.

Lemma 3.21. Let Let (M,ΩM ,ΦG
M ) be a Hamiltonian manifold. Suppose that the

image of ΦG
M is contained in G · Cρ

hol(z) ⊂ g∗se. Then :

(1) the Kirwan polytopes ∆K(Y ) ⊂ ∆K(M) are contained in Cρ
hol(z),

(2) the functions 〈ΦK
Y , z〉 and 〈ΦK

M , z〉 take strictly positive values.

Proof. The Kirwan polytope ∆K(M) = πk,g

(
Image(ΦG

M )
)
∩ t∗+ is contained in

⋃

λ∈Cρ
hol

(z)

∆K(G · λ) ⊂ Cρ
hol(z),
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where the last inclusion is a consequence of point (a) in Proposition 3.3. The first
point is proved. Hence we get, thanks to (14), the following relations

Image(〈ΦK
Y , z〉) ⊂ Image(〈ΦK

M , z〉) ⊂ 〈∆K(M), z〉 ⊂ 〈Cρ
hol(z), z〉 ⊂ [c,+∞[

with c = 〈ρ(z), z〉 = 1
2 dim p. �

We have the following notion of formal geometric quantization that extends the
case of compact Lie group actions.

Definition 3.22. Let (M,ΩM ,ΦG
M ) be a pre-quantized Hamiltonian manifold, such

that the moment map ΦG
M is a proper map from M into G · Cρ

hol(z). Then we define
the formal geometric quantization of M as the following element of R−∞(G, z):

Q−∞
G (M) :=

∑

µ∈Ĝhol(z)

Q(Mµ,G) V
G
µ .

Let rK,G : R−∞(G, z) → R−∞(K, z) be the restriction morphism defined in
Lemma 3.20. Recall that in the setting of Definition 3.22, the moment map ΦK

M is
proper (see Theorem 2.9). Then the formal geometric quantization of M relatively
to the K-action is well-defined : Q−∞

K (M) ∈ R−∞(K).
We have proved in Theorem 2.9, that the sets of critical points of the function

‖ΦG
M‖2, ‖ΦK

M‖2 and ‖ΦK
Y ‖2 are equal. We will be interested by one of the following

hypothesis:

Assumption 3.23. • A1 The set Cr(‖ΦG
M‖2) is compact.

• A2 The map 〈ΦG
M , z〉 : M → R is proper.

In the following Lemma, we exhibit examples where the Assumptions A1 or A2

are satisfied.

Lemma 3.24. • Suppose that we are in the algebraic setting: the manifold M
is real algebraic and the map ΦG

M is a proper algebraic map. Then Cr(‖ΦG
M‖2) is

compact.
• Suppose that the Lie algebra g is simple. Then, in the context of Definition

3.22, the map 〈ΦG
M , z〉 : M → R is proper.

Proof. Let us prove the first point. The map ϕ := ‖ΦG
M‖2 : M → R is a real

algebraic map on a real algebraic manifold. Thus the set Cr(ϕ) is an algebraic
variety, and by a standard Theorem of Whitney, it as a finite number of connected
components C1, · · · , Cp. Each Ci is contained in ϕ−1(ϕ(Ci)) which is compact since
ϕ is proper. The proof is completed.

For the second point we use the result of Proposition 2.11, and the facts that,
since g is simple, [p, p] = k and the center ck of k is reduced to Rz.

The function 〈ΦG
M , z〉, which is the moment map for the S1-action, is proper

if and only if As(∆K(M)) ∩ (Rz)⊥ = {0}. Since ∆K(M) ⊂ Cρ
hol(z) (see Lemma

3.21), it is sufficient to prove that Chol(z)∩ (Rz)⊥ = {0}. Let ξ ∈ Chol(z). We have

〈ξ, z〉 = −b(ξ̃, z) = 2
∑

β∈Rn(z)
〈β, ξ̃〉 with 〈β, ξ̃〉 = (β, ξ) ≥ 0. If 〈ξ, z〉 = 0, we must

have (β, ξ) = 0, ∀β ∈ Rn(z) or equivalently [ξ̃, p] = 0. Then ξ̃ commutes with all

elements in [p, p] = k, i.e. ξ̃ ∈ ck = Rz. Finally, we have proved that ξ ∈ (Rz)⊥ and

ξ̃ ∈ Rz, hence ξ = 0. �
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We can now state the main result of this section.

Theorem 3.25. If Assumptions A1 or A2 are satisfied, we have the following
relation

rK,G

(
Q−∞

G (M)
)
= Q−∞

K (M).

Proof. We have

rK,G

(
Q−∞

G (M)
)

=
∑

µ∈Ĝhol(z)

Q(Mµ,G) V
G
µ |K

=
( ∑

µ∈∧∗
+
∩Cρ

hol
(z)

Q(Yµ) V
K
µ

)
⊗ S•(p) [1]

= Q−∞
K (Y )⊗ S•(p) [2].

Note that the product in [1] and [2] are well defined thanks to Lemma 3.20. In
[2] we use the fact that Q−∞

K (Y ) =
∑

µ∈∧∗
+
∩Cρ

hol
(z) Q(Yµ)V

K
µ since by hypothesis

∆K(Y ) ⊂ Cρ
hol(z). So Theorem 3.25 follows from the following equality

(21) Q−∞
K (G×K Y ) = Q−∞

K (Y )⊗ S•(p),

that will be proved in Sections 4.4 and 4.6. �

We consider now a connected reductive subgroup G′ ⊂ G such that z ∈ g′. The

coadjoint orbit G · λ is pre-quantized when λ ∈ Ĝhol(z) and we have obviously

Q−∞
G (G · λ) = V G

λ . The moment map ΦG′

G·λ : G · λ → (g′)∗ relative to the G′-action

on G · λ is proper. In fact we have more : the map 〈ΦG′

G·λ, z〉 : G · λ → R is proper,
thus Assumption A2 holds.

We are interested in the compact reduced spaces

(G · λ)µ,G′ := (ΦG′

G·λ)
−1(G′ · µ)/G′,

for µ′ ∈ Ĝhol(z). We are now able to prove the following

Theorem 3.26. Let λ ∈ Ĝhol(z). Then we have the following relation

V G
λ |G′ = Q−∞

G′ (G · λ)
in R−∞(G′, z). It means that for any µ ∈ Ĝ′

hol(z), the multiplicity of the represen-

tation V G′

µ in the restriction V G
λ |G′ is equal to the geometric quantization

Q
(
(G · λ)µ,G′

)
∈ Z

of the (compact) reduced space (G · λ)µ,G′ .

Proof. Since the restriction morphism rK′,G′ : R−∞(G′, z) → R−∞(K ′, z) is injec-
tive (see Lemma 3.20) it suffices to prove that

(22) rK′,G′

(
V G
λ |G′

)
= rK′,G′

(
Q−∞

G′ (G · λ)
)
.

But the left hand side of (22) is equal to the restriction V G
λ |K′ , while the right

hand side is equal to Q−∞
K′ (G · λ) thanks to Theorem 3.25. Theorem 3.13 tells us

that Q−∞
K (G · λ) = V G

λ |K and the functoriality of the quantization process Q−∞

(see Theorem 3.11) insures that the restriction V G
λ |K′ = Q−∞

K (G · λ)|K′ is equal to

Q−∞
K′ (G · λ). �
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We can finish this section by extending the functoriality of the quantization
process Q−∞ relatively to the restrictions.

Definition 3.27. An element m :=
∑

λ∈Ĝhol(z)
mλ V G

λ ∈ R−∞(G, z) is admissible

relatively to G′ if the projection πg′,g is proper when restricted to the subset G ·
Support(m) ⊂ G · Cρ

hol(z), where Support(m) = {λ |mλ 6= 0} ⊂ Ĝhol(z).
The same definition holds for the couple (K ′,K).

When m ∈ R−∞(G, z) is G′-admissible, we can define its restriction

rG′,G(m) :=
∑

λ∈Ĝhol(z)

mλV
G
µ |G′

=
∑

µ∈Ĝ′
hol

(z)


 ∑

λ∈Ĝhol(z)

mλQ((G · λ)µ,G′)


V G′

µ ∈ R−∞(G′, z).

Note that for any µ ∈ Ĝ′
hol(z) the sum

∑
λ∈Ĝhol(z)

mλQ((G ·λ)µ,G′) has only a finite

number of non-zero term. Similarly, when n =
∑

b∈K̂hol(z)
nb V K

b ∈ R−∞(K, z) is

K ′-admissible, we can define its restriction

rK′,K(n) :=
∑

b∈K̂hol(z)

nbV
K
b |K′

=
∑

µ∈K̂′
hol

(z)


 ∑

b∈K̂hol(z)

nbQ((K · b)a,K′)


V K′

a ∈ R−∞(K ′, z).

We will used the following Lemma that will be proved in the Appendix.

Lemma 3.28. Let m ∈ R−∞(G, z) that is G′-admissible. Then rK,G(m) ∈ R−∞(K, z)
is K ′-admissible and the following relation

rK′,K ◦ rK,G(m) = rK′,G′ ◦ rG′,G(m)

holds in R−∞(K ′, z).

We finish this section with the following

Theorem 3.29. Let (M,ΩM ,ΦG
M ) be a pre-quantized Hamiltonian manifold. Sup-

pose that Image(ΦG
M ) ⊂ G · Chol(z), and that the map 〈ΦG

M , z〉 is proper. Let G′ be
a reductive subgroup such that z ∈ g′. Then:

• The map ΦG′

M is proper and Image(ΦG′

M ) ⊂ G′ · C′ρ
hol(z). So Q−∞

G′ (M) ∈
R−∞(G′, z) is well defined.

• The element Q−∞
G (M) ∈ R−∞(G, z) is G′-admissible and we have

rG′,G

(
Q−∞

G (M)
)
= Q−∞

G′ (M).

Proof. The map ΦG′

M is proper since 〈ΦG
M , z〉 is proper. The point concerning the

image of ΦG′

M is a consequence of point (d) in Proposition 3.15. Let m = Q−∞
G (M) ∈

R−∞(G, z). By definition Support(m) is contained in Image(ΦG
M ), and then G ·

Support(m) ⊂ Image(ΦG
M ). Since the moment map ΦG′

M is proper, we know that
the projection πg′,g is proper when restricted to Image(ΦG

M ). This implies that
m ∈ R−∞(G, z) is G′-admissible.
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We have then

rK′,G′ ◦ rG′,G

(
Q−∞

G (M)
)

= rK′,K ◦ rK,G

(
Q−∞

G (M)
)

[1]

= rK′,K

(
Q−∞

K (M)
)

[2]

= Q−∞
K′ (M). [3]

Here [1] follows from Lemma 3.28, [2] follows from Theorem 3.25 and [3] is the
consequence of Theorem 3.11. We have checked that

rK′,G′ ◦ rG′,G

(
Q−∞

G (M)
)
= Q−∞

K′ (M) = rK′,G′

(
Q−∞

G′ (M)
)
.

Since the map rK′,G′ is injective, it follows that rG′,G

(
Q−∞

G (M)
)
= Q−∞

G′ (M). �

3.8. Geometric quantization of the slice Y . Let λ ∈ Ĝ′
hol(z). Consider5 the

coadjoint orbit G′ · λ associated to the holomorphic discrete series representation
V G′

λ . Let G be a reductive subgroup of G′ such that z ∈ g. We know that we have
a geometric decomposition

G′ · λ = G×K Y

where Y ⊂ G′ · λ is a closed K-invariant symplectic sub-manifold.
We have two ways of computing the multiplicity of mλ(µ) of V

G
µ in V G′

λ . First,
after Jakobsen-Vergne, we know that

mλ(µ) =
[
V K
µ : S•(p′/p)⊗ V K′

λ |K
]
,

and Theorem 3.26 tells us also that

mλ(µ) = Q((G′ · λ)µ,G) = Q(Yµ,K).

We would like to understand a priori why Q(Yµ,K) = [V K
µ : S•(p′/p)⊗ V K′

λ |K ] for

any µ ∈ K̂hol(z), or equivalently why we have the relation

(23) Q−∞
K (Y ) = S•(p′/p)⊗ V K′

λ |K .

Note that Assumption A2 holds in this setting : the map 〈ΦG
G′·λ, z〉 is proper.

Let us consider a more general situation. Let (M,ΩM ,ΦG
M ) be a pre-quantized

Hamiltonian G-manifold. We suppose the G-action proper, and that the moment
map ΦG

M takes values in G · Cρ
hol(z). We suppose furthermore that Assumption A2

holds. Let Y ⊂ M be the symplectic slice. The aim of this section is to compute
Q−∞

K (Y ) in a way similar to (23).

Let X be a connected component of Y z . Let us fix a K-invariant almost complex
structure on X which is compatible with the symplectic structure. Let

RRK(X ,−)

be the corresponding Riemann-Roch character (see Section 4.2). Recall that, if
LX denotes the restriction of the Kostant-Souriau line bundle LM on X , we have
QK(X ) = RRK(X , LX ).

Let NX → X be the normal bundle of X in Y : it inherits a complex structure
JX and a linear endomorphism L(z) on the fibres. We have a decomposition NX =

5In this section, we interchange the role of the groups G and G′ in order to minimize the primes
in the notation.
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∑
a∈R

N a
X where N a

X = {v ∈ NX | L(z)v = aJX (v)} is a sub-bundle of NX . We

define the vector bundle N±,z
X :=

∑
±a>0 NX and

|N |z = N+,z
X ⊕N−,z

X .

Theorem 3.30. We have the following equality in R−∞(K):

Q−∞
K (Y ) =

∑

X

(−1)rXRRK
(
X , LX ⊗ det(N+,z

X )⊗ S•(|NX |z)
)
,

where rX is the complex rank of N+,z
X .

The proof will be given in Section 4.5.
Let us explain how the formulas of Jakobsen-Vergne can be recover with Theorem

3.30. When M = G′ · λ, the sub-manifolds Y z and Mz are both equal to K ′ · λ.
The restriction of the Kostant-Souriau line bundle LM → M on Y z is [Cλ] :=
K ′ ×K′

λ
Cλ → K ′ · λ. Relation (8) tells us that the normal bundle N1 of Y in M is

equal to the trivial bundle p × Y , and the normal bundle N2 of Y z in M is equal
to Y z × p′. Hence the normal bundle of Y z in Y is

N = N2/(N1|Y z ) = Y z × (p′/p).

We check that N+,z = 0 : this is due to the fact that the function 〈ΦG
G′·λ, z〉 takes

its minimal value on Y z = K ′ · λ (see Lemma 7.3 in [34]). So |N |z = N is the
trivial complex bundle with fiber (p′/p, ad(z)). Theorem 3.30 gives

Q−∞
K (Y ) = RRK (K ′ · λ, [Cλ]⊗ S•(p′/p))

= RRK′

(K ′ · λ, [Cλ]) |K ⊗ S•(p′/p)

= V K′

λ |K ⊗ S•(p′/p). [1]

In [1], we use that RRK′

(K ′ · λ, [Cλ]) = V K′

λ thanks to the Borel-Weil theorem.

4. Transversally elliptic operators

The aim of this section is to give a proof of Theorem 3.25 and 3.30. In the first
section, we briefly introduce the material we need from the theory of transversally
elliptic operator. And in Section 4.3 we recall the definition of the geometric quan-
tization process QΦ. In the rest of this paper, K will denoted a connected compact
Lie group.

4.1. Transversally elliptic operators. Here we give the basic definitions from
the theory of transversally elliptic symbols (or operators) defined by Atiyah-Singer
in [1]. For an axiomatic treatment of the index morphism see Berline-Vergne [8, 9]
and Paradan-Vergne [37]. For a short introduction see [34].

Let X be a compact K-manifold. Let p : TX → X be the projection, and let
(−,−)X be a K-invariant Riemannian metric. If E0, E1 are K-equivariant complex
vector bundles over X , a K-equivariant morphism

σ ∈ Γ(TX , hom(p∗E0, p∗E1))

is called a symbol on X . The subset of all (x, v) ∈ TX where6 σ(x, v) : E0
x → E1

x is
not invertible is called the characteristic set of σ, and is denoted by Char(σ).

6The map σ(x, v) will be also denote σ|x(v)
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In the following, the product of a symbol σ by a complex vector bundle F → M ,
is the symbol σ⊗F defined by σ⊗F (x, v) = σ(x, v)⊗IdFx

from E0
x⊗Fx to E1

x⊗Fx.
Note that Char(σ ⊗ F ) = Char(σ).

Let TKX be the following subset of TX :

TKX = {(x, v) ∈ TX , (v,XX (x))
X
= 0 for all X ∈ k} .

A symbol σ is elliptic if σ is invertible outside a compact subset of TX (i.e.
Char(σ) is compact), and is K-transversally elliptic if the restriction of σ to TKX
is invertible outside a compact subset of TKX (i.e. Char(σ) ∩ TKX is compact).
An elliptic symbol σ defines an element in the equivariant K0-theory of TX with
compact support, which is denoted byK0

K(TX ), and the index of σ is a virtual finite

dimensional representation of K, that we denote IndexKX (σ) ∈ R(K) [3, 4, 5, 6].
A K-transversally elliptic symbol σ defines an element of K0

K(TKX ), and the
index of σ is defined as a trace class virtual representation of K, that we still denote
IndexKX (σ) ∈ R−∞(K) [1].

Using the excision property, one can easily show that the index map IndexKU :
K0

K(TKU) → R−∞(K) is still defined when U is a K-invariant relatively compact
open subset of a K-manifold (see [34][section 3.1]).

Suppose now that the groupK is equal to the product K1×K2. An intermediate
notion between the “ellipticity” and “K1 ×K2-transversal ellipticity” is the “K1-
transversal ellipticity”. When a K1 ×K2-equivariant symbol σ is K1-transversally
elliptic, its index IndexK1×K2

X (σ) ∈ R−∞(K1×K2), viewed as a generalized function
on K1 ×K2, is smooth relatively to the variable in K2 [1, 9, 37]. It implies that :

• IndexK1×K2

X (σ) =
∑

λ∈K̂1
θλ ⊗ V K1

λ with θλ ∈ R(K2),

• we can restrict IndexK1×K2

X (σ) to the subgroup K1 and

(24) IndexK1×K2

X (σ)|K1
=
∑

λ∈K̂1

dim(θλ)V
K1

λ = IndexK1

X (σ).

Here dim : R(K2) → Z is the morphism induced by the restriction to 1 ∈ K2.

Let us recall the multiplicative property of the index map for the product of
manifolds that was proved by Atiyah-Singer in [1]. Consider a compact Lie group
K2 acting on two manifolds X1 and X2, and assume that another compact Lie
group K1 acts on X1 commuting with the action of K2. The external product of
complexes on TX1 and TX2 induces a multiplication (see [1]):

⊙ : K0
K1×K2

(TK1
X1)×K0

K2
(TK2

X2) −→ K0
K1×K2

(TK1×K2
(X1 ×X2)).

Let us recall the definition of this external product. For k = 1, 2, we consider
equivariant morphisms7 σk : E+

k → E−
k on TXk. We consider the equivariant

morphism on T(X1 ×X2)

σ1 ⊙ σ2 : E+
1 ⊗ E+

2 ⊕ E−
1 ⊗ E−

2 −→ E−
1 ⊗ E+

2 ⊕ E+
1 ⊗ E−

2

defined by

(25) σ1 ⊙ σ2 =

(
σ1 ⊗ Id −Id⊗ σ∗

2

Id⊗ σ2 σ∗
1 ⊗ Id

)
.

7In order to simplify the notation, we do not make the distinctions between vector bundles on
TX and on X .
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We see that the set Char(σ1⊙σ2) ⊂ TX1×TX2 is equal to Char(σ1)×Char(σ2).
We suppose now that the morphisms σk are respectively Kk-transversally elliptic.
Since TK1×K2

(X1×X2) 6= TK1
X1×TK2

X2, the morphism σ1⊙σ2 is not necessarily
K1×K2-transversally elliptic. Nevertheless, if σ2 is taken almost homogeneous, then
the morphism σ1 ⊙ σ2 is K1 ×K2-transversally elliptic (see [37]). So the exterior
product a1 ⊙ a2 is the k-theory class defined by σ1 ⊙ σ2, where ak = [σk] and σ2 is
taken almost homogeneous.

The following property is a useful tool (see [1][Lecture 3] and [37]).

Theorem 4.1 (Multiplicative property). For any [σ1] ∈ K0
K1×K2

(TK1
X1) and any

[σ2] ∈ K0
K2

(TK2
X2) we have

IndexK1×K2

X1×X2
([σ1]⊙ [σ2]) = IndexK1×K2

X1
([σ1])⊗ IndexK2

X2
([σ2]).

4.2. Riemann-Roch character. Let M be a compact K-manifold equipped with
an invariant almost complex structure J . Let p : TM → M be the projection.
The complex vector bundle (T∗M)0,1 is K-equivariantly identified with the tan-
gent bundle TM equipped with the complex structure J . Let h be the Hermitian
structure on (TM,J) defined by : h(v, w) = Ω(v, Jw) − iΩ(v, w) for v, w ∈ TM .
The symbol

Thom(M,J) ∈ Γ
(
TM, hom(p∗(∧even

C TM), p∗(∧odd
C TM))

)

at (m, v) ∈ TM is equal to the Clifford map

(26) cm(v) : ∧even
C TmM −→ ∧odd

C TmM,

where cm(v).w = v∧w−ι(v)w for w ∈ ∧•
C
TmM . Here ι(v) : ∧•

C
TmM → ∧•−1

C
TmM

denotes the contraction map relative to h. Since cm(v)2 = −‖v‖2Id, the map cm(v)
is invertible for all v 6= 0. Hence the characteristic set of Thom(M,J) corresponds
to the 0-section of TM .

Definition 4.2. To any K-equivariant complex vector bundle E → M , we associate
its Riemann-Roch character

RRK(M,E) := IndexKM (Thom(M,J)⊗ E) ∈ R(K).

Remark 4.3. The character RRK(M,E) is equal to the equivariant index of the

Dolbeault-Dirac operator DE :=
√
2(∂E + ∂

∗

E), since Thom(M,J)⊗ E corresponds
to the principal symbol of DE (see [7][Proposition 3.67]).

4.3. Definition of QΦ. Let (M,ΩM ,ΦK
M ) be a compact Hamiltonian K-manifold

pre-quantized by an equivariant line bundle LM . Let J be an invariant almost com-
plex structure compatible with Ω. Let RRK(M,−) be the corresponding Riemann-
Roch character. The topological index of Thom(M,J) ⊗ LM ∈ K0

K(TM) is equal

to the analytical index of the Dolbeault-Dirac operator
√
2(∂LM

+ ∂
∗

LM
) :

(27) QK(M) = RRK(M,LM ).

When M is not compact the topological index of Thom(M,J) ⊗ LM is not
defined. In order to extend the notion of geometric quantization to this setting we
deform the symbol Thom(M,J) ⊗ L in the “Witten” way [34, 35, 29]. Consider
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the identification ξ 7→ ξ̃, k∗ → k defined by a K-invariant scalar product on k∗. We
define the Kirwan vector field on M :

(28) κm =

(
Φ̃K

M (m)

)

M

(m), m ∈ M.

Definition 4.4. The symbol Thom(M,J) ⊗ L pushed by the vector field κ is the
symbol cκ defined by the relation

cκ|m(v) = Thom(M,J)⊗ L|m(v − κm)

for any (m, v) ∈ TM . More generally, if E → M is an equivariant complex vector
bundle, one defines the symbol cκE with the same relation (with E at the place of
L).

Note that cκ|m(v) is invertible except if v = κm. If furthermore v belongs to
the subset TKM of tangent vectors orthogonal to the K-orbits, then v = 0 and
κm = 0. Indeed κm is tangent to K ·m while v is orthogonal.

Since κ is the Hamiltonian vector field of the function −1
2 ‖ΦK

M‖2, the set of zeros
of κ coincides with the set of critical points of ‖ΦK

M‖2. Finally we have

Char(cκ) ∩TKM ≃ Cr(‖ΦK
M‖2).

In general Cr(‖ΦK
M‖2) is not compact, so cκ does not define a transversally elliptic

symbol on M . In order to define a kind of index of cκ, we proceed as follows. For
any invariant open relatively compact subset U ⊂ M the set Char(cκ|U )∩TKU ≃
Cr(‖Φ‖2) ∩ U is compact when

(29) ∂U ∩ Cr(‖Φ‖2) = ∅.
When (29) holds we denote

(30) QΦ
K(U) := IndexKU (cκ|U ) ∈ R−∞

tc (K)

the equivariant index of the transversally elliptic symbol cκ|U .
Let us recall the description of the critical points of ‖ΦK

M‖2, when the moment

map ΦK
M is proper. We knows that m ∈ Cr(‖ΦK

M‖2) if and only if β̃M (m) = 0 for
β = Φ(m). Hence the set Cr(‖ΦK

M‖2) has the following decomposition

Cr(‖ΦK
M‖2) =

⋃

β∈k∗

M β̃ ∩ (ΦK
M )−1(β) =

⋃

β∈B

K · (M β̃ ∩ (ΦK
M )−1(β))︸ ︷︷ ︸

Zβ

,

where B is a subset of the Weyl chamber t∗+. We denote by Br ⊂ t∗ the open ball
{ξ ∈ t∗ | ‖ξ‖ < r}. The following Proposition is proved in [39].

Proposition 4.5. • For any r > 0, the set B ∩Br is finite.
• The set of singular values of ‖ΦK

M‖2 : M → R forms a sequence 0 ≤ r1 < r2 <
. . . < rk < . . . which is finite if and only if Cr(‖ΦK

M‖2) is compact. In the other
case limk→∞ rk = ∞.

For any β ∈ B, we consider a relatively compact open invariant neighbourhood
Uβ of Zβ such that Cr(‖ΦK

M‖2) ∩ Uβ = Zβ. The excision property tell us that the

generalized character QΦ
K(Uβ) = IndexKUβ

(cκ|Uβ
) does not depend of the choice of

Uβ. In order to simplify the notations we consider the following
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Definition 4.6. • We denote Qβ
K(M) ∈ R−∞

tc (K) the equivariant index8 of the
transversally elliptic symbol cκ|Uβ

.

• When E → M is an equivariant complex vector bundle, we denote RRK
β (M,E)

the equivariant index of the transversally elliptic symbol cκE |Uβ
.

The following crucial property is proved in [29, 39].

Theorem 4.7. A representation V K
λ occurs in the generalized character Qβ

K(M) ∈
R−∞(K) only if ‖λ‖ ≥ ‖β‖.

Definition 4.8. The generalized character QΦ
K(M) ∈ R−∞(K) is defined by

(31) QΦ
K(M) =

∑

β∈B

Qβ
K(M).

The sum (31) converges in R−∞(K) since we know after Theorem 4.7 that the

multiplicity of V K
λ in Qβ

K(M) is zero when ‖β‖ > ‖λ‖.
We finish this section, by recalling a result that will be needed in Section 4.5.

Suppose that k = k1 ⊕ k2 where [k1, k2] = 0 and ki are the Lie algebras of closed

connected subgroups Ki. We assume that the moment map ΦK1

M : M → k∗1 relative
to the K1-action is proper. Let us explain how we can use the K-invariant proper
map ‖ΦK1

M ‖2 instead of ‖ΦK
M‖2 in order to defined the the geometric quantization

QΦ
K(M).
Let us choose t = t1⊕ t2 such that ti ⊂ ki is a maximal abelian sub-algebras. We

start a decomposition

(32) Cr(‖ΦK1

M ‖2) =
⋃

β∈B1

K · (M β̃ ∩ (ΦK1

M )−1(β))︸ ︷︷ ︸
Z1

β

,

with B1 ⊂ t∗1.

Let κ1 be the Hamiltonian vector field of −1
2 ‖ΦK1

M ‖2, and let cκ1 be the corre-
sponding pushed symbol. For any β ∈ B1, we consider a relatively compact open

K-invariant neighbourhood U1
β of Z1

β such that Cr(‖ΦK1

M ‖2)∩U1
β = Z1

β . We denote

Qβ,1
K (M) ∈ R−∞(K) the equivariant index of the K1-transversally elliptic symbol

cκ1 |U1
β
. Theorem 4.7 admits the following extension

Theorem 4.9. A representation V K
λ occurs in the generalized character Qβ,1

K (M)
only if ‖λ1‖ ≥ ‖β‖. Here λ ∈ ∧∗ ⊂ t∗ is decomposed in λ = λ1 ⊕ λ2 with λi ∈ t∗i .

Like in Definition 4.8, we can define the generalized characterQΦ1

K (M) ∈ R−∞(K)
by

(33) QΦ1

K (M) =
∑

β∈B1

Qβ,1
K (M).

In [39][Section 4.1], we prove the following

Theorem 4.10. Let (M,ΩM ,ΦK
M ) be a proper Hamiltonian K-manifold that is

pre-quantized. If the moment map ΦK1

M : M → k∗1 is proper, we have

QΦ
K(M) = QΦ1

K (M)

in R−∞(K).

8The index of cκ|Uβ
was denoted RR

K

β
(M,L) in [34]
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4.4. Proof of Theorem 3.25 under Assumption A1. In this section we con-
sider the manifold M = G×K Y , where (Y,ΩY ,Φ

K
Y ) is a Hamiltonian K-manifold

pre-quantized by a line bundle LY . We suppose that the moment map ΦK
Y is proper,

and that the Kirwan polytope ∆K(Y ) is contained in the cone Cρ
hol(z) ⊂ t∗se.

Then on M , we have an induced G-invariant symplectic form ΩM and a moment
map ΦG

M : M → g∗ defined by ΦG
M ([g, y]) = g · ΦK

M (y). We know that the line
bundle LM = (G× LY )/K pre-quantizes the Hamiltonian manifold (M,ΩM ,ΦG

M ).
Let us consider the K-action on M : the moment map ΦK

M is also proper.
We are then in a setting where the formal geometric quantization of M and Y

relatively to the K-action are well defined: QΦ
K(M), QΦ

K(Y ) ∈ R−∞(K). The aim
of this section is to prove that

(34) QΦ
K(M) = QΦ

K(Y )⊗ S•(p),

when (M,ΩM ,ΦG
M ) satisfies Assumption A1. Then the set (see Theorem 2.9)

Cr(‖ΦG
M‖2) = Cr(‖ΦK

M‖2) = Cr(‖ΦK
Y ‖2) =

⋃

β∈B

K ·
(
Y β̃ ∩ (ΦK

Y )−1(β)
)

︸ ︷︷ ︸
Zβ

is compact: the parametrizing set B is finite. So we have QΦ
K(M) =

∑
β∈B Qβ

K(M)

and QΦ
K(Y ) =

∑
β∈B Qβ

K(Y ), and we reduce to show the following

Theorem 4.11. For any β ∈ B, the following relation

(35) Qβ
K(M) = Qβ

K(Y )⊗ S•(p),

holds in R−∞(K).

Proof. Let κM be the Kirwan vector field on M associated to the moment map
ΦK

M . Let JM a K-invariant almost complex structure compatible with ΩM , and let
Uβ ⊂ M be a (small) neighbourhood of Zβ in M .

The symbol Thom(M,JM )⊗ LM pushed by the vector field κM is denoted cκM .

By definition Qβ
K(M) is the equivariant index of the K-transversally elliptic symbol

cκM |Uβ
. Note that Qβ

K(M) does not depend on the choice of the neighbourhood Uβ

nor on the choice of the almost complex structure on Uβ ⊂ M .
We use the K-diffeomorphism ϕ : p× Y ≃ M defined by ϕ(X, y) = [eX , y]. The

Kirwan vector field κp×Y := ϕ∗(κM ) is defined by the relations : κp×Y (X, y) =
(κ1(X, y), κ2(X, y)) ∈ Tp × Y where9

κ1(X, y) = AY (y), κ2(X, y) = −[A,X ] and A = [eX · Φ̃K
Y (y)]k.

The Kostant-Souriau line bundle ϕ∗(LM ) is K-diffeomorphic with LY since Y
is a deformation retract of p × Y . Let us compute the pull-back of the symplectic
form Ωp×Y = ϕ∗(ΩM ) at (0, y). For v, v′ ∈ TyY and η, η′ ∈ T0p = p, we have

Ωp×Y (η ⊕ v, η′ ⊕ v′) = ΩM (v ⊕ η · y, v′ ⊕ η′ · y)
= ΩY (v, v

′) + 〈ΦK
Y (y), [η, η′]〉.

Lemma 4.12. 〈ξ, [η, ad(z)η]〉 = −([ξ̃, η], [z, η]) < 0 for any ξ ∈ K · Cρ
hol(z) and any

η ∈ p \ {0}.

9[Z]k and [X]p are respectively the k and p components of Z ∈ g.



34 PAUL-EMILE PARADAN

Proof. Recall that the scalar product on g is defined by (X,Y ) = −b(X,Θ(Y )).
Hence

〈ξ, [η, ad(z)η]〉 = −b(ξ̃,Θ([η, ad(z)η]))

= (ad(z)ad(ξ̃)η, η)

= (ad(z)ad(ξ̃′)η′, η′)

where ξ = k · ξ′ with ξ′ ∈ Cρ
hol(z) and η = k · η′ for some k ∈ K. We can then check

that the symmetric endomorphism ad(z)ad(ξ̃′) : p → p is negative definite when
ξ′ ∈ Cρ

hol(z): the Lemma is proved. �

If JY is a K-invariant almost complex structure on Y compatible with ΩY , the
last Lemma tells us that (−ad(z), , JY ) is a K-invariant almost complex structure
on p× Y compatible with Ωp×Y in a neighbourhood of Y .

Let us fix Uβ , such that ϕ−1(Uβ) = Br × Vβ where Vβ is a neighbourhood of
Zβ in Y and Br := {X ∈ p | ‖X‖ < r}. The almost complex structure JM on
Uβ defined by ϕ∗(JM ) = (−ad(z), , JY ) is compatible with ΩM if Vβ and Br are
small enough. Finally we see that the symbol ϕ∗(cκM |Uβ

) is equal to the product
σ1 ⊙ σ2|Br×Vβ

, where

σ2(X, y; η, v) = c(v − κ1(X, y)), (X, y; η, v) ∈ T(p × Y ),

acts on ∧∗
C
TyY ⊗ LY , and

σ1(X, y; η, v) = c(η − κ2(X, y)), (X, y; η, v) ∈ T(p× Y ),

acts on ∧∗
C
p− (here p− denotes the complex K-module (p,−ad(z))).

Let κY be the Kirwan vector field on Y associated to the moment map ΦK
Y .

We denoted cκY , the symbol Thom(Y, JY )⊗ LY pushed by the vector field κY . By

definition Qβ
K(Y ) is the equivariant index of the K-transversally elliptic symbol

cκY |Vβ
.

The Atiyah symbol Atp on p is defined by the following relations : for (X, η) ∈
Tp,

(36) Atp(X, η) := c(η + [z,X ]) : ∧even
C p− −→ ∧odd

C p−.

Lemma 4.13. The symbols σ1 ⊙ σ2|Br×Vβ
and Atp ⊙ cκY |Br×Vβ

define the same

class in K0
K(TK(Br × Vβ)).

Proof. We consider the paths s ∈ [0, 1] 7→ As := [esX · Φ̃K
Y (y)]k, κ

s
1(X, y) = As

Y (y),
and κs

2(X, y) = −[As, X ]. We define then the paths at the level of symbols : σs
1

and σs
2. We check that

Char(σs
1 ⊙ σs

2) ∩TK(Y × p) = {(X, y; v, η) | v = As
Y (y) = 0, and η = [As, X ] = 0}.

But since ΦK
Y (y) ∈ k∗se, the condition [As, X ] = [eX · Φ̃K

Y (y), X ]p = 0 forces X to be
equal to 0. Hence we get

Char(σs
1 ⊙ σs

2) ∩TK(Y × p) ≃ Cr(‖ΦK
Y ‖2)× {0}, ∀s ∈ [0, 1].

We have proved that s ∈ [0, 1] 7→ σs
1 ⊙ σs

2|Br×Vβ
is an homotopy of transversally

elliptic symbols: σ1 ⊙ σ2 and σ0
1 ⊙ σ0

2 define the same class in K0
K(TK(Br × Vβ)).

We see that σ0
2 = cκY and we have

σ0
1(X, y; η, v) = c(η + [Φ̃K

Y (y), X ]).
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We consider another path of symbols

τ t(X, y; η, v) = c(η + [tΦ̃K
Y (y) + (1− t)z,X ]), t ∈ [0, 1].

We check that if (X, y; η, v) ∈ Char(τ t ⊙ cκY ) ∩TK(p× Y ) then the vector η ⊕ v ∈
T(X,y)(p × Y ) is orthogonal to the vector field generated by Φ̃K

Y (y) and we have

moreover v = κY (y) and η = −[tΦ̃K
Y (y) + (1 − t)z,X ]. Thus

0 = ‖κY (y)‖2 +
(
[tξ̃ + (1− t)z,X ], [ξ̃, X ]

)

= ‖κY (y)‖2 + t ‖[ξ̃, X ]‖2 + (1 − t)
(
[z,X ], [ξ̃, X ]

)

︸ ︷︷ ︸
δ

where ξ = ΦK
Y (y) ∈ K · Cρ

hol(z). Since ξ is strongly elliptic and thanks to Lemma
4.12, we know that the term δ is strictly positive if X 6= 0, thus κY (y) = 0 and
X = 0.

We have proved that t ∈ [0, 1] 7→ τ t⊙cκY |Br×Vβ
is an homotopy ofK-transversally

elliptic symbols: σ0
1 ⊙ σ0

2 and Atp ⊙ cκY define the same class in K0
K(TK(Br ×

Vβ)). �

At this stage we know that

Qβ
K(M) = IndexKBr×Vβ

(
Atp|Br

⊙ cκY |Vβ

)
∈ R−∞(K).

Since cκY ⊙Atp is also K-transversally elliptic on Vβ×p, the excision property gives
also

Qβ
K(M) = IndexKVβ×p

(
Atp ⊙ cκY |Vβ

)
∈ R−∞(K).

Let S1 be the circle subgroup ofK with Lie algebra equal to Rz. We can consider
p as a S1×K-manifold. We note that the Atiyah symbol Atp is S1×K-equivariant
and S1-transversally elliptic. Its index is computed in [1], see also [34][Section 5].
We have the following relation

IndexS
1×K

p (Atp) = S•(p)

in R−∞(S1 ×K).
So we have two classes Atp ∈ K0

S1×K(TS1p), and cκY |Vβ
∈ K0

K(TKVβ). By the

multiplicative property (see Theorem 4.1) we know that their product Atp⊙cκY |Vβ
∈

K0
K×S1(TK×S1(Y × p)) has the following S1 ×K-equivariant index

IndexS
1×K

p×Vβ
(Atp ⊙ cκY |Vβ

) = IndexS1×K
p (Atp)⊗ IndexKVβ

(cκY |Vβ
)

= S•(p)⊗ IndexKVβ
(cκY |Vβ

)

= S•(p)⊗Qβ
K(Y ) ∈ R−∞(S1 ×K).

Finally, thanks to the restriction property (24), we know that

Qβ
K(M) = IndexKp×Vβ

(
Atp ⊙ cκY |Vβ

)
∈ R−∞(K)

is equal to the restriction of

IndexS
1×K

p×Vβ
(Atp ⊙ cκY |Vβ

) = S•(p)⊗Qβ
K(Y ) ∈ R−∞(S1 ×K)

to the subgroup K →֒ S1 ×K. The Theorem is then proved. �
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Remark 4.14. The Assumption A1 is used because we don’t how to prove the
equality

∑

β∈B

(
Qβ

K(Y )⊗ S•(p)
)
=


∑

β∈B

Qβ
K(Y )


⊗ S•(p)

when the set B is not finite, e.g. the set Cr(‖ΦK
M‖2) is non-compact.

4.5. Proof of Theorem 3.30. Here we work with a pre-quantized Hamiltonian
K-manifold (P,ΩP ,Φ

K
P ), and we assume that the map 〈ΦK

P , z〉 is proper. Here Rz
is the Lie algebra of a circle subgroup S1 ⊂ K contained in the center of K.

We are in the context of Theorem 4.10. We have a decomposition k = k1 ⊕ k2
where k1 := Rz and k2 are ideals of k and the moment map 〈ΦK

P , z〉 relative to the
S1-action is proper. Then we have the following equality

(37) Q−∞
K (M) = QΦ

K(P ) = Q〈Φ,z〉
K (P ) ∈ R−∞(K)

where the right hand side is computed via a localization procedure on the set Cr(ϕP )
of critical points of the proper map ϕP := (〈ΦK

P , z〉)2. We note that

Cr(ϕP ) = ϕ−1
P (0)

⋃
P z.

We are interested in the following cases

(1) P is a proper Hamiltonian G-manifold (M,ΩM ,ΦG
M ) with a moment map

taking values in G · Cρ
hol(z), and which satisfies Assumption A2.

(2) P is the symplectic slice Y of the former case M := G×K Y .

Thanks to Lemma 3.21, we know that in the two cases described above, the
proper map ϕP is strictly positive : hence ϕ−1

P (0) = ∅. Let us compute the gener-

alized character Q〈Φ,z〉
K (P ) in this case.

Let κϕ be the Hamiltonian vector field of −1
2 ϕP . The symbol Thom(P, JP ) ⊗

LP pushed by the vector field κϕ is denoted c
ϕ
P . Let BP the set of connected

component of P z. For any X ∈ BP , we consider a relatively compact open K-
invariant neighbourhood UX of X such that Cr(ϕP )∩UX = X . We denote QX

K(P ) ∈
R−∞(K) the equivariant index of the S1-transversally elliptic symbol cϕ|UX .

When ϕ−1
P (0) = ∅, the generalized character Q〈Φ,z〉

K (P ) is defined by the relation

(38) Q〈Φ,z〉
K (P ) =

∑

X∈BP

QX
K(P ) ∈ R−∞(K).

For X ∈ BP , we denote

• LX the restriction of the Kostant-Souriau line bundle LP on X ,
• NX the normal bundle of X in P , and |NX |z ,N+,z

X are the z-polarized
versions (see Section 3.8).

If we use (37) and (38), the proof of Theorem 3.30 is reduced to the following

Proposition 4.15. We have the following equality in R−∞(K):

(39) QX
K(P ) = (−1)rXRRK

(
X , LX ⊗ det(N+,z

X )⊗ S•(|NX |z)
)
,

where rX is the complex rank of N+,z
X .

Proof. Relations (5) show that κϕ = 〈ΦK
P , z〉zP . Since 〈ΦK

P , z〉 > 0 in a neighbour-
hood of UX , we can replace κϕ by the vector field zP without changing the index of
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the corresponding transversally elliptic operator. This means that QX
K(M) is equal

to the index of σz |UX , where the symbol σz is defined by : for (m, v) ∈ TP ,

(40) σz(m, v) := c(v − zP (m)) : ∧even
C TmP ⊗ LP |m −→ ∧odd

C TmP ⊗ LP |m.

We have proved in [34][Theorem 5.8], that the index of σz |UX is equal to the right
hand side of (39). Hence the proof is completed. �

We want now to clarify the convergence of the sum that appears in (38), when
P z is non-compact.

Let T be a maximal torus in K: it contains the circle subgroup S1. Let ∧ ⊂ t

be the lattice which is the kernel of exp : t → T . Let zo ∈ R>0z ∩ ∧ that generates
the sub-lattice Rz ∩ ∧: the torus S1 acts on an irreducible representation V K

µ

through the character t 7→ tn with n = 〈µ,zo〉
2π ∈ Z. We have then a graduation

R(K) =
∑

n∈Z
Rn(K) where Rn(K) is the group generated by the representations

V K
µ such that 〈µ,zo〉

2π = n. We see that Rn(K) · Rm(K) ⊂ Rn+m(K).

For any n ∈ Z, we denote R≥n(K) (resp. R−∞
≥n (K)) the subgroup formed by the

finite (resp. infinite) sum
∑

l≥n El where El ∈ Rl(K). We have the following basic
lemma

Lemma 4.16. • If A ∈ R−∞
≥n (K) and B ∈ R−∞

≥m (K), then the product A · B is

well-defined and belongs to R−∞
≥n+m(K).

• An infinite sum
∑

n≥0 An, with An ∈ R−∞
≥n (K), converges in R−∞

≥0 (K).

Proof. The proof is left to the reader. �

For X ∈ BP , the action of S1 is trivial on X , and relation (11) shows that S1 acts
on the fibres of Kostant-Souriau line bundle LX through the character t 7→ tn(X ),

where n(X ) =
〈ΦK

P (X ),zo〉
2π is a strictly positive integer.

Proposition 4.17. • The generalized character QX
K(P ) belongs to R−∞

≥n(X )(K).

• The sum
∑

X∈BP
QX

K(P ) converges in R−∞
≥0 (K).

Proof. The generalized character QX
K(P ) is equal to the sum (−1)r(X )

∑
p≥0 Ep,

with

Ep = RRK(X , LX ⊗ det(N+,z
X )⊗ Sp(|NX |z)) ∈ R(K).

Since the group S1 acts on the fibres of the polarized bundles N+,z
X and |NX |z

through characters tn with n > 0, we see that Ep ∈ R≥n(X )+p(K). Hence QX
K(P ) =

(−1)r(X )
∑

p≥0 Ep converges in R−∞
≥n(X )(K).

For the second point we see that
∑

X∈BP
QX

K(P ) =
∑

n≥0 An with

An =
∑

n(X )=n

QX
K(P ) ∈ R−∞

≥n (K).

The former sum is finite (and then well-defined) because the map 〈ΦK
P , zo〉 is proper

: for any C > 0, we have only a finite number of X ∈ BP such that 〈ΦK
P (X ), zo〉 ≤ C.

The last point is proved.
�
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4.6. Proof of Theorem 3.25 under Assumption A2. The proof of Theorem
3.25, in the case where Assumption A2 is satisfied, follows directly of the results
of the Section 4.5 applied to the following two cases:

(1) (M,ΩM ,ΦG
M ) is a proper Hamiltonian G-manifold with a moment map

taking values in G · Cρ
hol(z), and which satisfies Assumption A2.

(2) Y is the symplectic slice of the former case M := G×K Y .

Note that the fixed point set Mz and Y z coincide. For a connected component
X of Y z, let NX (resp. N ′

X ) be the normal bundle of X in M (resp. Y ). Since the
normal bundle of Y in M is the trivial bundle Y × p, we have NX = N ′

X ⊕ p. A
small computation shows that

N+,z
X = (N ′

X )+,z and |NX |+,z = |N ′
X |+,z ⊕ (p, ad(z)).

Finally (37) and Proposition 39 gives

Q−∞
K (M) =

∑

X

(−1)rXRRK
(
X , LX ⊗ det(N+,z

X )⊗ S•(|NX |z)
)

=
∑

X

(−1)rXRRK
(
X , LX ⊗ det(N ′

X )+,z ⊗ S•(|N ′
X |z)⊗ S•(p)

)

=

(∑

X

(−1)rXRRK
(
X , LX ⊗ det(N ′

X )+,z ⊗ S•(|N ′
X |z)

)
)

⊗ S•(p)

= Q−∞
K (Y )⊗ S•(p).

We know that the term
∑

X (−1)rXRRK (X , LX ⊗ det(N ′
X )+,z ⊗ S•(|N ′

X |z)) be-

longs to R−∞
≥0 (K) (see Proposition 4.17). We see also that S•(p) ∈ R−∞

≥0 (K).

Hence their product is well-defined (see Lemma 4.16).

5. Appendix: proof of Lemma 3.28

Let m =
∑

µ∈Ĝhol(z)
mµV

G
µ ∈ R−∞(G, z) that is G′-admissible : the map πg′,g :

G · Support(m) → (g′)∗ is proper. We start with the

Lemma 5.1. • There exists a closed subset Cm ⊂ C′ρ
hol(z) such that

πg′,g (G · Support(m)) = G′ · Cm.
• The projection πk′,g′ : G′ · Cm → (k′)∗ is proper.
• The projection πk′,k : πk,g(G · Support(m)) → (k′)∗ is proper.

Proof. First we note that G · Support(m) is closed in g∗. Thanks to point (d)
of Proposition 3.15, we know that πg′,g (G · Support(m)) = G′ · Cm, with Cm =
πg′,g(G · Support(m)) ∩ (t′)∗ ⊂ C′ρ

hol(z). The properness assumption forces G′ ·Cm

(resp. Cm) to be closed in (g′)∗ (resp. C′ρ
hol(z)). The first point is proved.

Let BR := {ξ′ ∈ (t′)∗ | ‖ξ′‖ ≤ R}, and consider eX
′ · λ′ ∈ G′ · Cm ∩ π−1

k′,g′(BR).

Since ‖πk′,g′(eX
′ · λ′) ≥ ‖λ′‖, we see that λ′ belongs to a compact subset K of

C′ρ
hol(z). Then there exists a constant c(K) > 0 such that ‖πk′,g′(eY · λ′)‖ ≥

c(K)‖X ′‖2 for any Y ∈ p′ and λ′ ∈ K (see the proof of Proposition 2.9). Finally,

we have proved that eX
′ · λ′ belongs to a compact subset of G′ · Cm.

Let η ∈ G · Support(m) such that ξ = πk,g(η) ∈ π−1
k′,k(BR). Then πk′,k(ξ) =

πk′,g(η) = πk′,g′ ◦πg′,g(η) ∈ BR. Thanks to the former point, we know that πg′,g(η)
is bounded. Since πg′,g : G · Support(m) → (g′)∗ is proper, it implies that η and
ξ = πk,g(η) are bounded.
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�

Consider now the restriction of m ∈ R−∞(G, z) to K and G′. The generalized
character n := rK,G(m) =

∑
λ∈K̂hol(z)

nλV
K
λ , is defined by the relations

nλ =
∑

µ∈Ĝhol(z)

mµQ((G · µ)λ,K),

and q := rG′,G(m) =
∑

ν∈Ĝ′
hol

(z) qνV
G′

ν , is defined by the relations

qν =
∑

µ∈Ĝhol(z)

mµQ((G · µ)ν,G′),

We see that λ ∈ Support(n) only if there exists µ such that mµQ((G·µ)λ,K) 6= 0:
hence

Support(n) ⊂ πk,g (G · Support(m)) .

Since πk′,k is proper on πk,g (G · Support(m)), we have that πk′,k is proper on K ·
Support(n). Thus n ∈ R−∞(K, z) is K ′-admissible.

We will now compare the following two elements ofR−∞(K ′, z) : A := rK′,K(n) =∑
δ∈K̂′

hol
(z) aδV

K′

δ and B := rK′,G′(q) =
∑

δ∈K̂′
hol

(z) bδV
K′

δ .

By definition, we have

aδ =
∑

λ∈K̂hol(z)

nλQ((K · λ)δ,K′)

=
∑

µ∈Ĝhol(z)

mµ


 ∑

λ∈K̂hol(z)

Q((G · µ)λ,K)Q((K · λ)δ,K′)




︸ ︷︷ ︸
Xµ,δ

,

and

bδ =
∑

ν∈Ĝ′
hol

(z)

qνQ((G′ · ν)δ,K′)

=
∑

µ∈Ĝhol(z)

mµ


 ∑

ν∈Ĝhol(z)

Q((G′ · ν)δ,K′)Q((G · µ)ν,G′)




︸ ︷︷ ︸
Yµ,δ

.

We have

Xµ,δ =
∑

λ∈K̂hol(z)

Q((G · µ)λ,K)Q((K · λ)δ,K′)

=
∑

λ∈K̂hol(z)

[V K
λ : V G

µ |K ] · [V K′

δ : V K′

λ |K ]

= [V K′

δ : V G
µ |K′ ]

which is finite if mµ 6= 0. Similarly, we check that Yµ,δ = [V K′

δ : V G
µ |K′ ].

Finally, we have proved that rK′,K ◦ rK,G(m) = A = B = rK′,G′ ◦ rG′,G(m).
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Invent. Math., 124, 1996, p. 51-101.
[10] L. Corwin and F.P. Greenleaf, Spectrum and multiplicities for restrictions of unitary

representations in nilpotent Lie groups, Pacific Journal of Mathematics, 135, 1988, p. 233-
267.

[11] G. Deltour, Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomor-
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