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PLANE WAVEGUIDES WITH CORNERS IN THE

SMALL ANGLE LIMIT

MONIQUE DAUGE AND NICOLAS RAYMOND

ABSTRACT. The plane waveguides with corners considered here are infinite V-shaped strips

with constant thickness. They are parametrized by their sole opening angle. We study the

eigenpairs of the Dirichlet Laplacian in such domains when their angle tends to 0. We provide

multi-scale asymptotics for eigenpairs associated with the lowest eigenvalues. For this, we

investigate the eigenpairs of a one-dimensional model which can be viewed as their Born-

Oppenheimer approximation. We also investigate the Dirichlet Laplacian on triangles with

sharp angles. The eigenvalue asymptotics involve powers of the cube root of the angle, while

the eigenvector asymptotics include simultaneously two scales in the triangular part, and one

scale in the straight part of the guides.

1. INTRODUCTION AND MAIN RESULTS

1.1. Motivations and related questions. Quantum waveguides refer to meso- or nanoscale

wires (or thin sheets) inside electronic devices. They can be modelled by one-electron Schrö-

dinger operators with potentials having high contrast in their values. In many situations, such

Schrödinger operators can be approximated by a simple Laplace operator with Dirichlet condi-

tions on the boundary of the wires [14]. The presence of bound states is an undesirable effect

which is nevertheless frequent and useful to predict. The same Laplace-Dirichlet problems

arise for TE modes in electromagnetic waveguides [9].

This is a well-known fact, from the papers [15, 14, 10, 11], that curvature makes discrete

spectrum to appear in waveguides. Moreover the analysis of this spectrum can be accurately

performed in the thin tube limit (in dimension 2 and 3, see [14, Section 5]). In fact, this

asymptotical regime corresponds to a semiclassical limit so that the standard techniques of

[22] could have been used to investigate that problem.

Curvature inducing discrete spectrum, this is then a natural question to ask what happens

in dimension 2 when there is corner (infinite curvature): does discrete spectrum always ex-

ist? This question is investigated with the L-shape waveguide in [16] where the existence of

discrete spectrum is proved. For an arbitrary angle too, this existence is proved in [3] and an

asymptotic study of the ground energy is done when θ goes to π
2

(where θ is the semi-opening

of the waveguide). Another question which arises is the estimate of the lowest eigenvalues in
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the regime θ → 0. This problem is analyzed in [9] through matched asymptotic expansions

and electromagnetic experiments. This is precisely the question we tackle in this paper: We

are going to prove rigorous and complete asymptotics for the eigenpairs in plane waveguides

with corner (also called “broken strips”) as θ tends to 0. We have provided in [13] numerical

experiments by the finite element method for this situation too.

For the case of dimension 3, we can cite the paper [17] which deals with the Dirichlet

Laplacian in a conical layer. In this case, there is an infinite number of eigenvalues below the

essential spectrum. The other initial motivation for the present investigation is our previous

work [4] in which we study the Neumann realization on R
2
+ = {(s, t) ∈ R

2 : t > 0} of the

Schrödinger operator −∂2s −∂2t +(t cos θ− s sin θ)2 in the regime θ → 0 (see also [26, 23]). It

turns out that the lowest eigenfunctions of this operator are concentrated near the cancellation

line of the potential as it is confirmed by numerical experiments which also enlighten the link

between a confining electric potential and a strip with Dirichlet boundary conditions.

While performing our analysis of plane waveguides with corners, we will precisely study the

Dirichlet problem on an isosceles triangle with a small angle. This subject is already dealt with

in [18, Theorem 1] where four-term asymptotics is proved for the lowest eigenvalue, whereas

a three-term asymptotics for the second eigenvalue is provided in [18, Section 2]. Finally,

we can mention the papers [19, 20] whose results provide two-term asymptotics for the thin

rhombi and also [5] which deals with a regular case (thin ellipse for instance), see also [6].

1.2. The Dirichlet Laplacian on the broken guide. Here we introduce the family of broken

guidesΩθ, parametrized by the angle θ, and give basic properties of the spectrum of the positive

Laplacian with Dirichlet condition in Ωθ. Then we state our main result related to the behavior

as θ → 0 of the Rayleigh quotients µGui,n(θ) of these operators.

1.2.1. Basic properties. Let us denote by (x1, x2) the Cartesian coordinates of the plane and

by 0 = (0, 0) the origin. The positive Laplace operator is given by −∂21 − ∂22 . The domains

of interest are the “broken waveguides” which are infinite V-shaped open sets: For any angle

θ ∈
(

0, π
2

)

we introduce

(1.1) Ωθ =
{

(x1, x2) ∈ R
2 : x1 tan θ < |x2| <

(

x1 +
π

sin θ

)

tan θ
}

.

Note that its width is independent from θ, normalized to π, and θ represents the (half) opening

of the V, see Fig. 1. The limit case where θ = π
2

corresponds to the straight strip (−π, 0)× R.

The aim of this paper is the investigation of the lowest eigenvalues of the positive Dirichlet

Laplacian ∆Dir
Ωθ

in the small angle limit θ → 0.

The operator ∆Dir
Ωθ

is a positive unbounded self-adjoint operator with domain

Dom(∆Dir
Ωθ
) = {ψ ∈ H1

0 (Ωθ) : ∆ψ ∈ L2(Ωθ)}.
When θ ∈

(

0, π
2

)

, the boundary of Ωθ is not smooth, it is polygonal. The presence of the

non-convex corner with vertex 0 is the reason for the space Dom(∆Dir
Ωθ
) to be distinct from

H2 ∩ H1
0 (Ωθ). Nevertheless this domain can be precisely characterized as follows. Let us

introduce polar coordinates (ρ, ϕ) centered at the origin, with ϕ = 0 coinciding with the upper

part x2 = x1 tan θ of the boundary of Ωθ. Let χ be a smooth radial cutoff function with support
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FIGURE 1. The broken guide Ωθ (here θ = π
6
). Cartesian and polar coordinates.

in the region x1 tan θ < |x2| and χ ≡ 1 in a neighborhood of the origin. We introduce the

explicit singular function

(1.2) ψθ
sing(x1, x2) = χ(ρ) ρπ/ω sin

πϕ

ω
, with ω = 2(π − θ).

Then there holds, see the classical references [25, 21]:

(1.3) Dom(∆Dir
Ωθ
) =

(

H2 ∩H1
0 (Ωθ)

)

⊕ [ψθ
sing]

where [ψθ
sing] denotes the space generated by ψθ

sing.

When θ = π
2
, we simply have Dom(∆Dir

Ωθ
) = H2 ∩H1

0 (Ωθ).

We gather in the following statement several important preliminary properties for the spec-

trum of ∆Dir
Ωθ

. All these results are proved in the literature. We briefly indicate hereafter what

are the main arguments of the proofs, and where details can be found.

Proposition 1.1. (i) If θ = π
2
, ∆Dir

Ωθ
has no discrete spectrum. Its essential spectrum is the

closed interval [1,+∞).

(ii) For any θ in the open interval (0, π
2
) the essential spectrum of ∆Dir

Ωθ
coincides with

[1,+∞).

(iii) For any θ ∈ (0, π
2
), the discrete spectrum of ∆Dir

Ωθ
is nonempty and finite. In other words,

∆Dir
Ωθ

has at least one eigenvalue below 1, but a finite number of them.

(iv) For any θ ∈ (0, π
2
) and any eigenvalue in the discrete spectrum of ∆Dir

Ωθ
, the associated

eigenvectors ψ are even with respect to the horizontal axis: ψ(x1,−x2) = ψ(x1, x2).

(v) For any θ ∈ (0, π
2
), let µGui,n(θ), n = 1, . . ., be the n-th Rayleigh quotient of ∆Dir

Ωθ
. Then,

for any n ≥ 1, the function θ 7→ µGui,n(θ) is continuous and increasing.

Proof. (i) is a clear consequence of the separation of variables in Ωπ/2 = (−π, 0)× R.

(ii) is a consequence of the fact that outside a compact set, Ωθ is the union of two strips

isometric to (0,+∞)× (0, π).

(iii) The fact that there are eigenvalues below the essential spectrum is known since [3]. See

also in [13, §4] another proof based on a more general argument developed in [14, 10, 11] for
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waveguides with curvature. The fact that there is only a finite number of such eigenvalues is

proved in [13, §5] using a similar method as [28, Theorem 2.1].

(iv) Since the domain and the operator are invariant by the symmetry x2 7→ −x2, the eigen-

vectors are even of odd with respect to the horizontal axis. An argument of monotonicity for

Dirichlet eigenvalues excludes the odd eigenvectors, see [13, §2.2] for details.

(v) The monotonicity of the Rayleigh quotients is a consequence of the previous point and a

suitable change of variable which transform the operator −∆ in a domain depending on θ into

an operator depending on θ on a fixed domain, see [13, §3] for details. �

1.2.2. Statement of the main result. If we let A(x) = Ai(−x), where Ai is the standard Airy

function, then we can consider zA(n) the n-th zero of A. We can now state one of the main

results of this paper, giving a complete asymptotic expansion1 of the eigenvalues µGui,n(θ) in

powers of θ1/3.

Theorem 1.2. For all N0, there exists θ0 > 0, such that for θ ∈ (0, θ0) the N0 first eigenvalues

of ∆Dir
Ωθ

exist. These eigenvalues, denoted by µGui,n(θ), admit the expansions:

µGui,n(θ) ∼
θ→0

∑

j≥0

γ∆j,nθ
j/3 with γ∆0,n =

1

4
, γ∆1,n = 0, and γ∆2,n = 2(4π

√
2)−2/3zA(n)

and the term of order θ is not zero. The corresponding eigenvectors have multi-scale expan-

sions in powers of θ1/3 with terms independent of θ, and with terms at the scale x1θ
1/3 when

x1 < 0.

Remark 1.3. Once the asymptotic expansions of the eigenvalues are proved and quasi-modes

at any order constructed, this is standard to deduce the asymptotic expansions of the eigen-

functions (see [22]).

1.3. Organization of the paper. In Section 2, we discuss the different reductions to simpli-

fied operators and introduce the main notation used in this paper. In Section 3 we investigate

through a construction of quasimodes and an ODE analysis the one dimensional toy model

−κ2∂2z + W with the discontinuous triangular potential W equal to −z when z ≤ 0 and 1
when z > 0. In Section 4 we study a one dimensional approximation of the Dirichlet problem

on a triangle with small angle. By Agmon estimates and a projection method, this leads in

Section 5 to results on triangles in the small angle limit. Finally, in Section 6, we perform

another construction of quasimodes for the waveguide and introduce in particular Dirichlet-

to-Neumann operators to solve a transmission problem; we complete the proof by comparing

with the triangle case. We conclude our paper by discussing relations between the eigenvector

asymptotics and the reentrant corner singularity. We also discuss the extension of our results

on X-shaped waveguides (crossing straight wires).

1 By the notation λ(h) ∼
h→0

∑

j≥0 cjh
jρ (with a positive ρ) we mean that for any positive integer J we have

the estimate

|λ(h) −∑

0≤j≤J cjh
jρ| ≤ CJ h(J+1)ρ for h small enough.
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2. REDUCTIONS

This section is devoted to the introduction of reduced and simplified operators that we will

encounter throughout this paper. In particular we will use the symmetry of the waveguide to

reduce the investigation to an half-guide. This first simplification makes a discontinuity in the

boundary conditions to appear (see Figure 2). In fact we will see that this jump in the boundary

conditions creates a trap for the eigenfunctions so that these one are led to live near the non-

convex corner. This concentration of the eigenfunctions will be deduced from the so-called

Born-Oppenheimer approximation (a projection method) introduced in this section. Finally,

due to this localization, we will introduce the Dirichlet Laplacian on triangles.

2.1. Half-guide and triangles.

2.1.1. The half-guide. As a consequence of the parity properties of the eigenvectors of ∆Dir
Ωθ

,

cf. point (iv) of Proposition 1.1, we can reduce the spectral problem to the half-guide

(2.1) Ω+
θ = {(x1, x2) ∈ Ωθ : x2 > 0} .

We define the Dirichlet part of the boundary by ∂DirΩ
+
θ = ∂Ωθ ∩ ∂Ω+

θ , and the corresponding

variational space (the form domain)

H1
Mix(Ω

+
θ ) =

{

ψ ∈ H1(Ω+
θ ) : ψ = 0 on ∂DirΩ

+
θ

}

.

Then the new operator of interest, denoted by ∆Mix

Ω+

θ

, is the Laplacian with mixed Dirichlet-

Neumann conditions on Ω+
θ . Its domain is:

Dom(∆Mix

Ω+

θ
) =

{

ψ ∈ H1
Mix(Ω

+
θ ) : ∆ψ ∈ L2(Ω+

θ ) and ∂2ψ = 0 on x2 = 0
}

.

Then the operators ∆Dir
Ωθ

and ∆Mix

Ω+

θ

have the same eigenvalues below 1 and the eigenvectors of

the latter are the restriction to Ω+
θ of the former.

2.1.2. Rescaling of the half-guide. In order to analyze the asymptotics θ → 0, it is useful to

rescale the integration domain and transfer the dependence on θ into the coefficients of the

operator. For this reason, let us perform the following linear change of coordinates:

(2.2) x = x1
√
2 sin θ, y = x2

√
2 cos θ,

which maps Ω+
θ onto Ω+

π/4 which will serve as reference domain, see Fig. 2. That is why we

set for simplicity

(2.3) Ω := Ω+
π/4 , ∂DirΩ = ∂DirΩ

+
π/4 , and H1

Mix(Ω) =
{

ψ ∈ H1(Ω) : ψ = 0 on ∂DirΩ
}

.

Then, ∆Mix

Ω+

θ

is unitarily equivalent to the operator defined on Ω by:

(2.4) DGui(θ) := −2 sin2θ ∂2x − 2 cos2θ ∂2y ,

with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of Ω. We

let h = tan θ ; after a division by 2 cos2 θ, we get the new operator:

(2.5) LGui(h) = −h2∂2x − ∂2y ,
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θ

Ωθ

π
4

Ω

Neumann Neumann

FIGURE 2. The half-guide Ω+
θ for θ = π

6
and the reference domain Ω.

with domain:

Dom(LGui(h)) =
{

ψ ∈ H1
Mix(Ω) : LGui(h)ψ ∈ L2(Ω) and ∂yψ = 0 on y = 0

}

.

2.1.3. The triangles. We will also need to introduce the triangular end of this waveguide:

(2.6) Triθ = {(x1, x2) ∈ Ωθ : x1 < 0}
and the corresponding Dirichlet Laplacian denoted by ∆Dir

Triθ
.

Prior to the investigation of LGui(h), we are to going to study LTri(h) which denotes the

same operator −h2∂2x − ∂2y with Dirichlet conditions on the triangular end Tri of the model

waveguide Ωπ/4

(2.7) Tri =
{

(x, y) ∈ R
2 : −π

√
2 < x < 0 and |y| < x+ π

√
2
}

.

2.2. Born-Oppenheimer approximation and models. As mentioned at the beginning of this

section, we will use a projection method to analyze LGui(h). This method is based on the

original idea of Born and Oppenheimer (see [7]) which was used to study the Hamiltonian of

molecules (see [27, 24]). By analogy with this situation, we can say that, in this paper, x plays

the role of the nuclei variables whereas y plays the role of the electrons and where h would

represent a mass ratio. The variable x is sometimes said to be the slow variable and y the fast

variable. Therefore we will broaden the ”molecular idea” to our waveguide situation.

2.2.1. Schrödinger operators in one dimension. In the analysis of LTri(h) and LGui(h), we

will see that its so-called Born-Oppenheimer approximation will play an important role:

(2.8) HBO,Gui(h) = −h2∂2x + V (x),

where

V (x) =















π2

4(x+ π
√
2)2

when x ∈ (−π
√
2, 0),

1

2
when x ≥ 0.

This effective potential V is obtained by replacing −∂2y in the expression of LGui(h) by its

lowest eigenvalue on each slice of Ω at fixed x. When h goes to zero, the behavior of the

ground eigenpairs of HBO,Gui(h) is driven by the structure of the potential near its minimum,
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attained at x = 0: In a neighborhood of x = 0, V can be approximated by its left and right

tangents, which provides the approximate potential Vapp defined by

Vapp(x) =















1

8
− 1

4π
√
2
x when x ∈ (−π

√
2, 0),

1

2
when x ≥ 0.

After the change of variables z =
√
2x/(3π) and the change of parameter κ = 4h/(3π

√
3),

we find the correspondence

(2.9) − h2∂2x + Vapp(x) ∼
3

8
Htoy(κ)[z; ∂z ] +

1

8

where the toy model operator Htoy(κ)[z; ∂z] is defined as:

(2.10) Htoy(κ) = −κ2∂2z +W (z) with W (z) =

{

−z when z ≤ 0,
1 when z ≥ 0.

This toy model invites us to recall the properties of the Airy operator.

2.2.2. The Airy function and its zeros. Let us recall the basic properties of the Airy operator,

i.e. the Dirichlet realization on L2(R−) of the operator −∂2z − z. This is standard that this

(positive) operator has compact resolvent. Thus, its spectrum can be described as an increasing

sequence of eigenvalues tending to +∞. Let us use the traditional notation Ai for the Airy

function. We recall that it satisfies:

−Ai′′ + zAi = 0.

All along this paper, we will use A the reverse Airy function, i.e. A(z) = Ai(−z). We recall

that A does not vanish on R−, is exponentially decreasing when z → −∞ and that its zeros

(which are simple) form an increasing sequence of positive numbers tending to +∞.

Notation 2.1. The n-th zero of A will be denoted by zA(n).

If (λ, ψλ) is an eigenpair of the Airy operator, we have −ψ′′
λ − zψλ = λψλ, hence the equation

−ψ′′
λ − (z + λ)ψλ = 0. We deduce that there exists a number c(λ) so that:

ψλ(z) = c(λ)A(z + λ).

With those remarks, we can see that the spectrum of the Airy operator is {zA(n), n ≥ 1} and

these eigenvalues are simple.

2.2.3. Born-Oppenheimer approximation on the triangle. Finally, let us introduce the Dirich-

let realization on L2((−π
√
2, 0)) of:

(2.11) HBO,Tri(h) = −h2∂2x +
π2

4(x+ π
√
2)2

.

This operator is the Born-Oppenheimer approximation of the operator LTri(h) on the triangle

Tri and will be the first order approximation of HBO,Gui(h) defined in (2.8).



8 MONIQUE DAUGE AND NICOLAS RAYMOND

2.3. Asymptotic expansions of eigenvalues. We are now in position to state the results on

eigenvalue expansion that we have proved in this paper.

2.3.1. Toy model in one dimension. The lowest eigenvalues of the toy model (2.10) admit

analytic expansions with respect to κ1/3 (when κ is small enough):

Theorem 2.2. For all N0 ∈ N, there exists κ0 > 0 such that, for κ ∈ (0, κ0), there exists

at least N0 eigenvalues of Htoy(κ) below 1. Denoting by λtoy,n(κ) the increasing sequence of

these eigenvalues, we have the converging expansions for 1 ≤ n ≤ N0 and κ small enough:

λtoy,n(κ) = κ2/3
+∞
∑

j=0

αj,nκ
j/3 with first coefficient α0,n = zA(n).

The corresponding eigenvectors have expansions in powers of κ1/3 with the scales z/κ2/3 when

z < 0 and z/h when z > 0, see (3.7)-(3.8).

2.3.2. Triangles. The lowest eigenvalues of the triangle Triθ admit expansions at any order in

powers of θ1/3. We first state the result for the scaled operator LTri(h) introduced in §2.1.3:

Theorem 2.3. The eigenvalues of LTri(h), denoted by λTri,n(h), admit the expansions:

λTri,n(h) ∼
h→0

∑

j≥0

βj,nh
j/3 with β0,n =

1

8
, β1,n = 0, and β2,n = (4π

√
2)−2/3zA(n),

the terms of odd rank being zero for j ≤ 8. The corresponding eigenvectors have expansions

in powers of h1/3 with both scales x/h2/3 and x/h, see (5.14).

In terms of the physical domain Triθ, we deduce immediately from the previous theorem

that the eigenvalues of ∆Dir
Triθ

, denoted by µTri,n(θ), admit the expansions:

µTri,n(θ) ∼
h→0

∑

j≥0

β∆
j,nθ

j/3 with β∆
0,n =

1

4
, β∆

1,n = 0, and β∆
2,n = 2(4π

√
2)−2/3zA(n),

the coefficients β∆
j,n having the same properties as the βj,n. Performing the dilatation:

x̃1 = sin 2θ x1 x̃2 = sin 2θ x2,

we transform Triθ into a new isosceles triangle with angle α = 2θ and two sides with length c =
2π. Let us denote by µ

T̃ri,n(α) its Dirichlet eigenvalues. It is easy to see that the eigenvalues

satisfy the relation:

µTri,n(θ) = (sinα)2µ
T̃ri,n(α),

so that we find back the result of [18, Theorem 1].

Remark 2.4. As it will be seen in the proof, the existence of a non-zero coefficient β9,n at the

order 9 in the expansion of λTri,n(h) reduces to the evaluation of an integral, see (5.12). If

β9,n 6= 0, there is a nonzero odd term after O(α2/3) in the asymptotics of µ
T̃ri,1(α).
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2.3.3. Broken guides. Finally, we state the approximation result for the eigenvalues of the

scaled operator LGui(h) introduced in (2.5):

Theorem 2.5. For allN0, there exists h0 > 0, such that for h ∈ (0, h0) theN0 first eigenvalues

of LGui(h) exist. These eigenvalues, denoted by λGui,n(h), admit the expansions:

λGui,n(h) ∼
h→0

∑

j≥0

γj,nh
j/3 with γ0,n =

1

8
, γ1,n = 0, and γ2,n = (4π

√
2)−2/3zA(n)

and the term of order h is not zero. The corresponding eigenvectors have expansions in powers

of h1/3 with the scale x/h when x > 0, and both scales x/h2/3 and x/hwhen x < 0, see (6.11).

Deducing the eigenvalues in the waveguide Ωθ (Theorem 1.2) is an obvious consequence of

this theorem.

2.4. Notation and terminology. The L2 norm will always be denoted by ‖ · ‖, in general

without mention of the integration domain. For a subset S ⊂ R and a point p ∈ R, dist(S, p)
is the distance between S and p, i.e. infs∈S |s− p|.

We denote by S(A) the spectrum of a self-adjoint operator A, by Sess(A) its essential spec-

trum, and by Sdis(A) its discrete spectrum. An eigenmode (or eigenpair) of A is a pair (λ, ψ)
with ψ in the domain ofA, such that Aψ = λψ; then λ is the eigenvalue and ψ the eigenvector.

A quasimode for A is a pair (λ̃, ψ̃) such that ‖Aψ̃ − λ̃ψ̃‖ ≤ ε‖ψ̃‖ with ε small; λ is the quasi-

eigenvalue and ψ the quasi-eigenvector. The spectral theorem implies that dist(S(A), λ̃) ≤ ε.

Domain Notation Variables Main operators

Scaled Triangle Tri (2.7) (x, y) (2.2) LTri(h) = −h2∂2x − ∂2y

Rectangle Rec (5.2) (u, t) (5.1) LRec(h) (5.3)

Half-strip Hst = R− × (−1, 1) (s, t) (5.5)
∑

j L2jh
2j/3 (5.7)

(σ, t) (5.5)
∑

j N3jh
j (5.8)

Scaled half-guide Ω (2.3) (x, y) (2.2) LGui(h) = −h2∂2x − ∂2y

Left half-strip Hlef = R− × (0, 1) (s, t)
∑

j L2jh
2j/3 Notation 6.2

(σ, t)
∑

j N lef
3j h

j Notation 6.2

Right half-strip Hrig = R+ × (0, 1) (σ, τ) (6.2)
∑

j N rig
3j h

j Notation 6.2

TABLE 1. Main notation for domains, variables and operators.

3. TOY MODEL IN ONE DIMENSION

This subsection is devoted to the proof of Theorem 2.2 devoted to the spectral asymptotics

of the operator Htoy(κ) defined in (2.10). This proof is divided into two steps. First, we

construct quasimodes for Htoy(κ), and second, we show that the lowest quasi-eigenvalues are

the approximations of the lowest eigenvalues of Htoy(κ) of the same rank.
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3.1. Construction of quasimodes. In this section we prove in particular the following:

Proposition 3.1. For all N0 ∈ N
∗, there exists κ0 > 0 and C > 0 such that for κ ∈ (0, κ0):

(3.1) dist
(

Sdis(Htoy(κ)), κ
2/3zA(n)

)

≤ Cκ, n = 1, · · ·N0.

Proof. The basic tool for the proof is the construction of quasimodes and the application of the

spectral theorem. Convenient quasimodes are given by power series in κ1/3 of profiles at the

scales

(3.2) s = κ−2/3z when z ≤ 0 (left) and σ = κ−1z when z ≥ 0 (right).

More precisely we look for quasi-eigenfunctions ψκ in the form:

(3.3) ψκ(z) ∼
{

∑

j≥0Ψlef,j(s) κ
j/3 when z ≤ 0

∑

j≥0Φrig,j(σ) κ
j/3 when z ≥ 0 ,

and quasi-eigenvalues in the form:

(3.4) ακ ∼ κ2/3
∑

j≥0

αjκ
j/3 as κ→ 0.

The continuity conditions at z = 0 provide the formal identities:

(3.5)

{

∑

j≥0Ψlef,j(0) κ
j/3 =

∑

j≥0Φrig,j(0) κ
j/3

κ−2/3
∑

j≥0 ∂sΨlef,j(0) κ
j/3 = κ−1

∑

j≥0 ∂σΦrig,j(0) κ
j/3,

and the formal eigen-equation is

(3.6) − κ2ψ′′
κ(z) +W (z)ψκ(z) = ακψκ(z) z ∈ R.

• Determination of α0. Collecting the terms in κ2/3 in (3.6) and using (3.3)-(3.5) we obtain:
{

−Φ′′
rig,0(σ) + Φrig,0(σ) = 0 for σ > 0, and Φ′

rig,0(0) = 0,

−Ψ′′
lef,0(s)− sΨlef,0(s) = α0Ψlef,0(s) for s < 0, and Ψlef,0(0) = Φrig,0(0).

We deduce first that Φrig,0 = 0 and thus Ψlef,0(0) = 0. This implies that α0 is a zero of the

reverse Airy function A. At this stage we can choose a positive integer n, take α0 = zA(n) and

Ψlef,0 as the corresponding normalized eigenfunction g(n).

• Determination of α1. Collecting the terms in κ, we get the equations:
{

−Φ′′
rig,1 + Φrig,1 = 0 for σ > 0, and Φ′

rig,1(0) = Ψ′
lef,0(0),

−Ψ′′
lef,1 − sΨlef,1 − α0Ψlef,1 = α1Ψlef,0 for s < 0, and Ψlef,1(0) = Φrig,1(0).

We find first:

Φrig,1(σ) = −Ψ′
lef,0(0)e

−σ.

Moreover we obtain the existence of a number α1 and of an exponentially decreasing Ψlef,1

solution of the second equation with the help of the following lemma:
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Lemma 3.2. Let n ≥ 1. We denote by g(n) an eigenvector of the operator −∂2s − s associated

with the eigenvalue zA(n) and normalized in L2(R−). Let f = f(s) be a real function with

exponential decay and let c ∈ R. Then there exists a unique α ∈ R such that the problem:
(

−∂2s − s− zA(n)
)

g = f + αg(n) in R−, with g(0) = c,

has a solution with exponential decay. There holds

α = c g′(n)(0)−
∫ 0

−∞
f(s) g(n)(s) ds.

• Further terms. A similar procedure can be reproduced at each step, providing the construc-

tion of Φrig,j , then αj and Ψlef,j , for any j ≥ 2.

• Expressions for quasimodes. Relying on the previous iterative constructions we can set for

all integer J ≥ 0

(3.7) ψ[J ]
κ (z) =























J+2
∑

j=0

Ψlef,j

( z

κ2/3

)

κj/3 when z ≤ 0

J+2
∑

j=0

Φrig,j

(z

κ

)

κj/3 +Ψ′
lef,J+2(0) κ

J/3z χ
(z

κ

)

when z ≥ 0 ,

where χ is a smooth cutoff function equal to 1 near 0. By construction, ψ
[J ]
κ and its first

derivative are continuous in z = 0. Moreover ψ
[J ]
κ is exponentially decreasing as z → ±∞.

Therefore it belongs to the domain of Htoy(κ). With this remark and taking the error introduced

by χ into account, we get for all κ0 > 0:

(3.8)

∥

∥

∥

(

Htoy(κ)− κ2/3
(

zA(n) +
J+2
∑

j=1

αjκ
J/3

)

)

ψ[J ]
κ

∥

∥

∥
≤ C(J, n, κ0) κ

1+J/3, ∀κ ≤ κ0.

Hence
∥

∥

(

Htoy(κ)− κ2/3zA(n)
)

ψκ

∥

∥ ≤ C(n, κ0) κ, ∀κ ≤ κ0,

and the spectral theorem applies. In particular, for κ small enough, the discrete spectrum of

Htoy(κ) is not empty since Sess(Htoy(κ)) = [1,+∞). �

Remark 3.3. We have proved in fact more than Proposition 3.1. The expression (3.7) of quasi-

modes and corresponding estimates (3.8) will provide an asymptotic expansion for the eigen-

vectors of Htoy(κ), once one knows Proposition 3.4 below.

3.2. Localization of the lowest eigenvalues. We now want to refine Proposition 3.1 by prov-

ing that the λtoy,n(κ) are power series with respect to κ1/3 and whose coefficients are given by

(3.4). We begin to prove the following proposition:

Proposition 3.4. For all N0 ∈ N
∗, there exists κ0 > 0 and C > 0 such that for κ ∈ (0, κ0):

(3.9) |λtoy,n(κ)− κ2/3zA(n)| ≤ Cκ, n = 1, · · ·N0.
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Proof. Let N0 ∈ N
∗. As a consequence of Proposition 3.1, we have in particular that, for all

κ ∈ (0, κ0), the first N0 eigenvalues λtoy,n(κ) (denoted by λn for shortness) exist and satisfy:

(3.10) |λn| ≤ C(N0) κ
2/3, κ ∈ (0, κ0), n = 1, · · ·N0.

Let us denote by ψn an eigenfunction associated with λn so that 〈ψn, ψm〉 = 0 if n 6= m. For

z < 0 we have:

−κ2ψ′′
n − zψn = λnψn.

Thus, there exists a coefficient cn(κ) such that:

(3.11) ψn(z) = cn(κ)A(κ
−2/3z + κ−2/3λn), z < 0.

For z > 0 we have the equation −κ2ψ′′
n = λnψn, hence the existence of dn(κ) such that:

(3.12) ψn(z) = dn(κ)e
−κ−1z

√
1−λn , z > 0.

The transmission conditions at z = 0 imply:

cn(κ)A(κ
−2/3λn) = dn(κ), cn(κ)κ

1/3A′(κ−2/3λn) = −dn(κ)
√

1− λn.

This implies:

(3.13) A(κ−2/3λn) = − κ1/3√
1− λn

A′(κ−2/3λn).

We infer:

|A(κ−2/3λn)| ≤ C(N0) κ
1/3.

Since κ−2/3λn is bounded, see (3.10), and the zeros of the Airy function being isolated and

simple, we deduce that for all n ∈ {1, · · · , N0}, there exists p = p(n, κ) such that:

|κ−2/3λn − zA(p)| ≤ C(N0)κ
1/3.

Note that p is bounded too. It remains to prove that p = n for κ small enough. In view

of Proposition 3.1, it suffices now to prove than if κ is small enough and n 6= m (with n,

m ≤ N0), the integers p(n, κ) and p(m, κ) are distinct. Let us prove this by contradiction.

Since the considered sets of integers n, m and p are finite, the negation of what we want to

prove can be written as

∃m,n, p ∈ N, ∀κ1 > 0, ∃κ ∈ (0, κ1) such that p(m, κ) = p(n, κ) = p.

The eigenfunctions can be taken in the form:

ψj(z) =

{

A(κ−2/3z + κ−2/3λj) when z ≤ 0

A(κ−2/3λj) e
−κ−1z

√
1−λj when z ≥ 0 ,

for j = m,n,

and we have

〈ψn, ψm〉 =
∫

z<0

A(κ−2/3z + κ−2/3λn)A(κ
−2/3z + κ−2/3λm) dz +O(κ5/3) = 0.

A rescaling leads to:
∣

∣

∣

∣

∫

z<0

A(z + κ−2/3λn)A(z + κ−2/3λm) dz

∣

∣

∣

∣

≤ C(N0)κ.
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By assumption, κ−2/3λn = zA(p) +O(κ1/3) and κ−2/3λm = zA(p) +O(κ1/3). For j = n,m,

A being Lipschitz on (−∞,M ] for all M , there exists D(N0) > 0 such that for all z < 0:

|A(z + κ−2/3λj)− A(z + zA(p))| ≤ D(N0)κ
1/3, for j = m,n,

so that:
∣

∣

∣

∣

∫

z<0

A(z + κ−2/3λn)A(z + κ−2/3λm) dz −
∫

z<0

A2(z + zA(p)) dz

∣

∣

∣

∣

≤ D̃(N0)κ
1/3.

We deduce:

∀κ1 > 0, ∃κ ∈ (0, κ1) such that

∣

∣

∣

∣

∫

z<0

A2(z + zA(p)) dz

∣

∣

∣

∣

≤ D̃(N0)κ
1/3

which leads to a contradiction and ends the proof of Proposition 3.4. �

3.3. Proof of Theorem 2.2. Let us observe that Proposition 3.4 allows to separate the first N0

eigenvalues when κ < κ0. Let us write δ = κ1/3. We let:

λ̆n(δ) := δ−2λtoy,n(δ
3),

so that λ̆n(δ) is uniformly bounded for n = 1, . . . , N0 and δ < κ
1/3
0 .

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

Essential spectrum
First eigenvalues
Analytic extension

FIGURE 3. The first two eigenvalues λtoy,1 and λtoy,2 as functions of δ = κ1/3.

We rewrite (3.13) in the form:

(3.14) A(λ̆n(δ)) = − δ
√

1− δ2λ̆n(δ)
A′(λ̆n(δ)).

We know that A is analytic and, using again the simplicity of its zeros, we can apply the

analytic implicit function theorem near δ = 0 and for all n ∈ {1, · · · , N0}, which, together

with (3.7)-(3.8) and Proposition 3.4, ends the proof of Theorem 2.2.
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FIGURE 4. The eigenvalues λtoy,1 (left) and λtoy,2 (right) as functions of δ =
κ1/3, zoom near the bottom of the essential spectrum.

Remark 3.5. From (3.14), we can deduce that the λ̆n(δ) are solutions of the analytic equation:

(3.15) (1− δ2λ̆)A(λ̆)2 − δ2 A′(λ̆)2 = 0

This equation provides an analytic extension of the functions δ 7→ λ̆n(δ), hence of λtoy,n =

δ2λ̆n(δ), in the sense of analytic curves. We represent in Figures 3 and 4 the first two eigenval-

ues and their analytic extensions. Taking the continuity and monotonicity of the eigenvalues

with respect to δ into account, we can see that any branch which starts by δ 7→ λ(δ) =
δ2zA +O(δ3) represents an eigenvalue while λ(δ) is less that 1. Beyond 1, the Rayleigh quo-

tient stays ≡ 1, but the curve λ(δ) has an analytic extension as a continuation of a branch of

roots of the equation (3.15).

4. BORN-OPPENHEIMER APPROXIMATION FOR THE TRIANGLE

This section is devoted to the analysis of HBO,Tri(h) defined in (2.11). We are going to

prove:

Theorem 4.1. The eigenvalues of HBO,Tri(h), denoted by λBO,Tri,n(h), admit the expansions:

λBO,Tri,n(h) ∼
h→0

∑

j≥0

β̂j,nh
2j/3, with β̂0,n =

1

8
and β̂1,n = (4π

√
2)−2/3zA(n).

Again, the proof is essentially organized in two steps. The first step is the construction of

quasimodes which proves that quasi-eigenvalues are close to true eigenvalues. The second step

uses Agmon type exponential localization for true eigenvectors to prove that true eigenvalues

are close to quasi-eigenvalues.
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4.1. Quasimodes. In this subsection, we construct quasimodes and prove the proposition:

Proposition 4.2. For all N0 ∈ N
∗, there exists h0 > 0 and C > 0 such that for h ∈ (0, h0):

(4.1) dist
(

Sdis(HBO,Tri(h)),
1

8
+ h2/3(4π

√
2)−2/3zA(n)

)

≤ Ch4/3, n = 1, · · ·N0.

Proof. The proper scale in x is h2/3 as can be seen by approximating the potential in x = 0
by its tangent and recognizing the Airy operator. Thus, we will construct quasimodes ψh as

functions of s = h−2/3x: We look for quasimodes (λh, ψh) in the form of series

λh ∼
∑

j≥0

β̂jh
2j/3 and ψh(x) ∼

∑

j≥0

Ψj(s)h
2j/3

in order to solve HBO,Tri(h)ψh = λhψh in the sense of formal series. A Taylor expansion at

x = 0 of the potential V yields:

HBO,Tri(h) ∼ −h2∂2x +
∑

j≥0

Vjx
j , with V0 =

1

8
and V1 = − 1

4π
√
2
,

which, in s variable, becomes

(4.2) HBO,Tri(h) ∼
1

8
+ h2/3

(

− ∂2s + V1s
)

+
∑

j≥2

h2j/3Vjs
j.

The construction of the terms β̂j and Ψj is similar (even simpler) than for Proposition 3.1.

• The expansion (4.2) yields that β̂0 =
1
8
, and collecting the terms in h2/3 and we obtain:

(4.3) −Ψ′′
0(s)−

s

4π
√
2
Ψ0(s) = β̂1Ψ0(s) ∀s < 0 and Ψ0(0) = 0.

Thus for any chosen positive integer n we can take β̂1 = (4π
√
2)−2/3zA(n) together with

(4.4) Ψ0(s) = A
(

(4π
√
2)−1/3s+ zA(n)

)

.

• Collecting the terms in h4/3 we obtain

−Ψ′′
1(s) + V1sΨ1(s)− β̂1Ψ1(s) = β̂2Ψ0 − V2s

2Ψ0 ∀s < 0 and Ψ1(0) = 0.

The compatibility condition states that β̂2〈Ψ0,Ψ0〉 = V2〈s2Ψ0,Ψ0〉. This determines β̂2 and

implies the existence of a unique solution Ψ1 ∈ L2(R−) such that 〈Ψ1,Ψ0〉 = 0.

• This procedure can be continued at any order and determines (β̂j ,Ψj) at each step. This

construction depends on the choice of the integer n and can be done for any positive integer n.

• To conclude, we consider a smooth non-negative cutoff function χlef satisfying:

(4.5) χlef(x) = 1 for x ∈
(

− π√
2
,+∞

)

and χlef(x) = 0 for x ≤ −π,

and introduce for any J ≥ 0 the quasimode (β
[J ]
h , ψ

[J ]
h ) with:

(4.6) β
[J ]
h =

J
∑

j=0

β̂jh
2j/3 and ψ

[J ]
h (x) = χlef(x)

J
∑

j=0

Ψj

( x

h2/3

)

h2j/3.
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Thanks to this cut-off ψ
[J ]
h satisfies Dirichlet condition in −π

√
2, and in 0 by construction.

Using the exponential decay of x 7→ Ψj(h
−2/3x) and the definition of Ψj and β̂j , we get for

any h0 > 0 the existence of C(n, J, h0) > 0 such that:

(4.7)

∥

∥

∥

(

HBO,Tri(h)− β
[J ]
h

)

ψ
[J ]
h

∥

∥

∥
≤ C(n, J, h0) h

2(J+1)/3, ∀h ∈ (0, h0).

This proves the existence of quasimodes at any order and ends the proof of Proposition 4.2. �

4.2. Agmon estimates. In this subsection, we prove Agmon estimates (see [1, 2]) for the

eigenfunctions of HBO,Tri(h). The role of Agmon estimates is to replace an explicit knowledge

of the solution at infinity like in (3.11)-(3.12) by suboptimal exponential estimates.

Here we prove two kinds of estimates: near x = 0 and near x = −π
√
2. In the analysis of

triangles (cf. Section 5.2), we will meet the same estimates. Let us consider an eigenpair (λ, ψ)
of HBO,Tri(h). The Agmon identity writes, for some Lipschitz function Φ to be determined:

(4.8)

∫ 0

−π
√
2

h2|∂x(eΦψ)|2 + V (x)|eΦψ|2 − h2|Φ′eΦ|2 − λ|(eΦψ)|2 dx = 0.

It is a consequence of Proposition 4.2 that the lowest N0 eigenvalues λ of HBO,Tri(h) satisfy:

(4.9) |λ− 1
8
| ≤ Γ0 h

2/3,

for some positive constant Γ0 depending on N0.

4.2.1. Agmon estimates near x = 0. We use (4.8) and the convexity of V to get the inequality:

∫ 0

−π
√
2

h2|∂x(eΦψ)|2 +
(

1

8
− x

4π
√
2

)

|eΦψ|2 − h2|Φ′eΦ|2 − λ|(eΦψ)|2 dx ≤ 0.

With (4.9), we deduce:

∫ 0

−π
√
2

− x

4π
√
2
|eΦψ|2 − h2|Φ′eΦ|2 − Ch2/3|(eΦψ)|2 dx ≤ 0.

This leads to the choice

Φ(x) = η h−1|x|3/2,
for a number η > 0 to be chosen small enough. We get:

∫ 0

−π
√
2

( |x|
4π

√
2
− 9

4
η2|x| − Ch2/3

)

|eΦψ|2 dx ≤ 0.

For η small enough, we obtain the existence of η̃ > 0 such that:

∫ 0

−π
√
2

(

η̃|x| − Ch2/3
)

|eΦψ|2 dx ≤ 0.
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Splitting the integral into the parts −π
√
2 < x < −Dh2/3 (where Φ is unbounded) and

−Dh2/3 < x < 0 (where Φ is bounded) with η̃D − C = d > 0, we find:
∫ −Dh2/3

−π
√
2

d h2/3|eΦψ|2 dx ≤
∫ −Dh2/3

−π
√
2

(

η̃|x| − Ch2/3
)

|eΦψ|2 dx

≤
∫ 0

−Dh2/3

(

η̃|x|+ Ch2/3
)

|eΦψ|2 dx ≤ C̃h2/3
∫ 0

−Dh2/3

|ψ|2 dx.

We deduce the proposition:

Proposition 4.3. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of HBO,Tri(h) satisfying |λ− 1

8
| ≤ Γ0h

2/3, we have:
∫ 0

−π
√
2

eη0h
−1|x|3/2

(

|ψ|2 + |h2/3∂xψ|2
)

dx ≤ C0‖ψ‖2.

4.2.2. Agmon estimates near x = −π
√
2. We use again (4.8) and (4.9):

∫ 0

−π
√
2

h2|∂x(eΦψ)|2 +
(

π2

4(x+ π
√
2)2

− 1

8

)

|eΦψ|2 − h2|Φ′eΦψ|2 − Ch2/3|(eΦψ)|2 dx ≤ 0.

We take:

Φ(x) = −ρh−1 ln
(

D−1(x+ π
√
2)
)

,

where we choose ρ ∈ (0, π
2
) so that there holds:

∫ 0

−π
√
2

(

(π2

4
− ρ2

)

(x+ π
√
2)−2 − 1

8

)

|eΦψ|2 − Ch2/3|(eΦψ)|2 dx ≤ 0,

and D > 0 large enough so that
(π2

4
− ρ2

)

D2 − 1

8
> 0.

Then we split the integral into the parts −π
√
2 < x < −π

√
2 + D (where Φ is unbounded)

and −π
√
2 + D < x < 0 (where Φ is bounded) and the same procedure as in the previous

paragraph leads to the proposition:

Proposition 4.4. Let Γ0 > 0 and ρ0 ∈ (0, π
2
). There exist h0 > 0, C0 > 0 such that for any

h ∈ (0, h0) and all eigenpair (λ, ψ) of HBO,Tri(h) satisfying |λ− 1
8
| ≤ Γ0h

2/3, we have:
∫ 0

−π
√
2

(x+ π
√
2)−ρ0/h

(

|ψ|2 + |h ∂xψ|2
)

dx ≤ C0‖ψ‖2.

4.3. Proof of Theorem 4.1. Let us fix N0 and consider the N0 first eigenvalues of HBO,Tri(h)
denoted by λn = λBO,Tri,n(h). For each n ∈ {1, · · ·N0}, we choose a normalized ψn in the

eigenspace of λn so that 〈ψn, ψm〉 = 0 for n 6= m. Let us introduce the space:

EN0
(h) = span(ψ1, . . . , ψN0

).

We recall that, for h small enough, (4.9) holds. We can write:

HBO,Tri(h)ψn = λnψn
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so that (the ψn are orthogonal in L2 and for the quadratic form), for all ψ ∈ EN0
(h):

QBO,Tri,h(ψ) ≤ λN0
‖ψ‖2.

For ε0 small enough we introduce a smooth cutoff function χ being 0 for |x+ π
√
2| ≤ ε0 and

1 for |x+ π
√
2| ≥ 2ε0. Proposition 4.4 implies that:

QBO,Tri,h(χψ) ≤ (λN0
+O(h∞))‖χψ‖2.

Then, the convexity of the potential allows to write:
〈(

−h2∂2x −
1

4π
√
2
x+

1

8

)

χψ, χψ

〉

≤ (λN0
+O(h∞))‖χψ‖2,

where we have used the convexity. The dimension of χEN0
(h) isN0 so that, with the properties

of the Airy operator and the mini-max principle, we get:

1

8
+ (4π

√
2)−2/3zA(N0) ≤ λN0

+O(h∞).

This is true for all fixed N0 and, combined with Proposition 4.2, provides the separation of the

lowest eigenvalues of HBO,Tri(h):
∣

∣

∣
λBO,Tri,n(h)−

(1

8
+ h2/3(4π

√
2)−2/3zA(n)

)
∣

∣

∣
≤ Ch4/3.

Finally, with (4.6)-(4.7), we obtain Theorem 4.1.

5. TRIANGLE WITH DIRICHLET BOUNDARY CONDITION

The aim of this section is to prove Theorem 2.3. As usual, the proof will be divided into two

main steps: a construction of quasimodes and the use of the true eigenfunctions of LTri(h) as

quasimodes for the Born-Oppenheimer approximation in order to obtain a lower bound for the

true eigenvalues.

We first perform a change of variables to transform the triangle into a rectangle:

(5.1) u = x ∈ (−π
√
2, 0), t =

y

x+ π
√
2
∈ (−1, 1).

so that Tri is transformed into

(5.2) Rec = (−π
√
2, 0)× (−1, 1).

The operator LTri(h) becomes:

(5.3) LRec(h)(u, t; ∂u, ∂t) = −h2
(

∂u −
t

u+ π
√
2
∂t

)2

− 1

(u+ π
√
2)2

∂2t ,

with Dirichlet boundary conditions on ∂Rec. The equation LTri(h)ψh = βhψh is transformed

into the equation

LRec(h)ψ̂h = βhψ̂h with ψ̂h(u, t) = ψh(x, y).
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5.1. Quasimodes. This subsection is devoted to the proof of the following proposition.

Proposition 5.1. There are sequences (βj,n)j≥0 for any integer n ≥ 1 so that there holds:

For all N0 ∈ R and J ∈ N, there exists h0 > 0 and C > 0 such that for h ∈ (0, h0)

(5.4) dist
(

Sdis

(

LTri(h)
)

,

J
∑

j=0

βj,nh
j/3

)

≤ Ch(J+1)/3, n = 1, · · ·N0.

Moreover, we have: β0,n = 1
8
, β1,n = 0, and β2,n = (4π

√
2)−2/3zA(n).

Proof. We want to construct quasimodes (βh, ψh) for the operator LTri(h)(∂x, ∂y). It will be

more convenient to work on the rectangle Rec with the operator LRec(h)(u, t; ∂u, ∂t). We

introduce the new scales

(5.5) s = h−2/3u and σ = h−1u,

and we look quasimodes (βh, ψ̂h) in the form of series

(5.6) βh ∼
∑

j≥0

βjh
j/3 and ψ̂h(u, t) ∼

∑

j≥0

(

Ψj(s, t) + Φj(σ, t)
)

hj/3

in order to solve LRec(h)ψ̂h = βhψ̂h in the sense of formal series. As will be seen hereafter, an

Ansatz containing the scale h−2/3u alone (like for the Born-Oppenheimer operator HBO,Tri(h))
is not sufficient to construct quasimodes for LRec(h). Expanding the operator in powers of h2/3,

we obtain the formal series:

(5.7) LRec(h)(h
2/3s, t; h−2/3∂s, ∂t) ∼

∑

j≥0

L2jh
2j/3 with leading term L0 = − 1

2π2
∂2t

and in powers of h:

(5.8) LRec(h)(hσ, t; h
−1∂σ, ∂t) ∼

∑

j≥0

N3jh
j with leading term N0 = −∂2σ −

1

2π2
∂2t .

In what follows, in order to finally ensure the Dirichlet conditions on the triangle Tri, we will

require for our Ansatz the boundary conditions, for any j ∈ N:

Ψj(0, t) + Φj(0, t) = 0, −1 ≤ t ≤ 1(5.9)

Ψj(s,±1) = 0, s < 0 and Φj(σ,±1) = 0, σ ≤ 0.(5.10)

More specifically, we are interested in the ground energy λ = 1
8

of the Dirichlet problem for

L0 on the interval (−1, 1). Thus we have to solve Dirichlet problems for the operators N0 − 1
8

and L0 − 1
8

on the half-strip

(5.11) Hst = R− × (−1, 1),

and look for exponentially decreasing solutions. The situation is similar to that encountered in

thin structure asymptotics with Neumann boundary conditions. The following lemma shares

common features with the Saint-Venant principle, see for example [12, §2].
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Lemma 5.2. We denote the first normalized eigenvector of L0 on H1
0 ((−1, 1)) by c0:

c0(t) = cos

(

πt

2

)

.

Let F = F (σ, t) be a function in L2(Hst) with exponential decay with respect to σ and let

G ∈ H3/2((−1, 1)) be a function of t with G(±1) = 0. Then there exists a unique γ ∈ R such

that the problem
(

N0 −
1

8

)

Φ = F in Hst, Φ(σ,±1) = 0, Φ(0, t) = G(t) + γc0(t),

admits a (unique) solution in H2(Hst) with exponential decay. There holds

γ = −
∫ 0

−∞

∫ 1

−1

F (σ, t) σc0(t) dσdt−
∫ 1

−1

G(t) c0(t) dt.

The following two lemmas are consequences of the Fredholm alternative.

Lemma 5.3. Let F = F (s, t) be a function in L2(Hst) with exponential decay with respect to

s. Then, there exist solution(s) Ψ such that:
(

L0 −
1

8

)

Ψ = F in Hst, Ψ(s,±1) = 0

if and only if
〈

F (s, ·), c0
〉

t
= 0 for all s < 0. In this case, Ψ(s, t) = Ψ⊥(s, t) + g(s)c0(t)

where Ψ⊥ satisfies
〈

Ψ(s, ·), c0
〉

t
≡ 0 and has also an exponential decay.

Then, we will also need a rescaled version of Lemma 3.2.

Lemma 5.4. Let n ≥ 1. We recall that zA(n) is the n-th zero of the reverse Airy function, and

we denote by

g(n) = A
(

(4π
√
2)−1/3s+ zA(n)

)

the eigenvector of the operator −∂2s − (4π
√
2)−1s with Dirichlet condition on R− associated

with the eigenvalue (4π
√
2)−2/3zA(n). Let f = f(s) be a function in L2(R−) with exponential

decay and let c ∈ R. Then there exists a unique β ∈ R such that the problem:
(

−∂2s −
s

4π
√
2
− (4π

√
2)−2/3zA(n)

)

g = f + βg(n) in R−, with g(0) = c,

has a solution in H2(R−) with exponential decay.

Now we can start the construction of the terms of our Ansatz (5.6).

• Terms in h0. The equations provided by the constant terms are:

L0Ψ0 = β0Ψ0(s, t), N0Φ0 = β0Φ0(s, t)

with boundary conditions (5.9)-(5.10) for j = 0, so that we choose β0 = 1
8

and Ψ0(s, t) =
g0(s)c0(t). The boundary condition (5.9) provides: Φ0(0, t) = −g0(0)c0(t) so that, with

Lemma 5.2, we get g0(0) = 0 and Φ0 = 0. The function g0(s) will be determined later.
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• Terms in h1/3. Collecting the terms of order h1/3, we are led to:

(L0 − β0)Ψ1 = β1Ψ0 − L1Ψ1 = β1Ψ0, (N0 − β0)Φ1 = β1Φ0 −N1Φ1 = 0

with boundary conditions (5.9)-(5.10) for j = 1. Using Lemma 5.3, we find β1 = 0, Ψ1(s, t) =
g1(s)c0(t), g1(0) = 0 and Φ1 = 0.

• Terms in h2/3. We get:

(L0 − β0)Ψ2 = β2Ψ0 − L2Ψ0, (N0 − β0)Φ2 = 0,

where L2 = −∂2s + s
π3

√
2
∂2t and with boundary conditions (5.9)-(5.10) for j = 2. Lemma 5.3

provides the equation in s variable
〈

(β2Ψ0 − L2Ψ0(s, ·)), c0
〉

t
= 0, s < 0.

Taking the formula Ψ0 = g0(s)c0(t) into account this becomes

β2g0(s) =

(

−∂2s −
s

4π
√
2

)

g0(s).

This equation leads to take β2 = (4π
√
2)−2/3zA(n) and for g0 the corresponding eigenfunction

g(n). We deduce (L0 − β0)Ψ2 = 0, then get Ψ2(s, t) = g2(s)c0(t) with g2(0) = 0 and Φ2 = 0.

• Terms in h3/3. We get:

(L0 − β0)Ψ3 = β3Ψ0 + β2Ψ1 − L2Ψ1, (N0 − β0)Φ3 = 0,

with boundary conditions (5.9)-(5.10) for j = 3. The scalar product with c0 (Lemma 5.3)

and then the scalar product with g0 (Lemma 5.4) provide β3 = 0 and g1 = 0. We deduce:

Ψ3(s, t) = g3(s)c0(t), and g3(0) = 0, Φ3 = 0.

• Terms in h4/3. We get:

(L0 − β0)Ψ4 = β4Ψ0 + β2Ψ2 −L4Ψ0 −L2Ψ2, (N0 − β0)Φ4 = 0,

where

L4 =

√
2

π
t∂t∂s −

3

4π4
s2∂2t ,

and with boundary conditions (5.9)-(5.10) for j = 4. The scalar product with c0 provides

an equation for g2 and the scalar product with g0 determines β4. By Lemma 5.3 this step

determines Ψ4 = Ψ⊥
4 + c0(t)g4(s) with a non-zero Ψ⊥

4 and g4(0) = 0. Since by construction
〈

Ψ⊥
4 (0, ·), c0

〉

t
= 0, Lemma 5.2 yields a solution Φ4 with exponential decay. Note that it also

satisfies
〈

Φ4(σ, ·), c0
〉

t
= 0 for all σ < 0.

• Terms in h5/3. We get:

(L0 − β0)Ψ5 = β5Ψ0 + β2Ψ3 − L2Ψ3, (N0 − β0)Φ5 = 0,

and with boundary conditions (5.9)-(5.10) for j = 5. We find β5 = 0, g3 = 0, Ψ5 = g5(s)c0(t),
g5(0) = 0, Φ5 = 0.
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• Terms in h6/3. We get:

(L0 − β0)Ψ6 = β6Ψ0 + β4Ψ2 + β2Ψ4 −L2Ψ4 − L4Ψ2, (N0 − β0)Φ6 = β2Φ4,

and with boundary conditions (5.9)-(5.10) for j = 6. This determines β6, g4, Ψ6 = Ψ⊥
6 +

c0(t)g6(s), g6(0) = 0, and Φ6 with exponential decay due to the orthogonality of Φ4 to c0.

• Terms in h7/3. We get:

(L0 − β0)Ψ7 = β7Ψ0 + β2Ψ5 − L2Ψ5, (N0 − β0)Φ7 = −N3Φ4,

where

N3 =
2

π
√
2
t∂σ∂t +

σ

π3
√
2
∂2t ,

and with boundary conditions (5.9)-(5.10) for j = 7. We take β7 = 0, g5 = 0, Ψ7 = g7(s)c0(t).
Then, Lemma 5.2 induces a value for the trace g7(0) so that there exists Φ7 with an exponential

decay. Note that if there holds:

(5.12)

∫

Hst

(N3Φ4)(σ, t) σc0(t) dσdt 6= 0,

we would deduce by Lemma 5.2 that g7(0) 6= 0.

• Terms in h8/3. We get:

(L0 − β0)Ψ8 = β8Ψ0 + β6Ψ2 + β4Ψ4 + β2Ψ6 − L8Ψ0 −L6Ψ2 −L4Ψ4 − L2Ψ6,

(N0 − β0)Φ8 = β4Φ4 + β2Φ6.

This determines β8, g6 and Ψ8 = Ψ⊥
8 + c0g8, the trace g8(0) and the exponentially decreasing

solution Φ8.

• Terms in h9/3. We get:

(L0 − β0)Ψ9 = β9Ψ0 + β2Ψ7 − L2Ψ7, (N0 − β0)Φ9 = β2Φ7 −N3Φ6.

We find β9, g7 and then Ψ9 = Ψ⊥
9 + c0g9 and g9(0), Φ9. Note that if g7(0) 6= 0, i.e. if (5.12)

holds, we would deduce that β9 6= 0.

• Continuation. The construction of the further terms goes on along the same lines. This

leads to define the quasimodes for LTri(h):

β
[J ]
h =

J
∑

j=0

βjh
j/3,(5.13)

ψ
[J ]
h = χlef(x)

J
∑

j=0

(

Ψj

( x

h2/3
,

y

x+ π
√
2

)

+ Φj

(x

h
,

y

x+ π
√
2

)

)

hj/3,(5.14)

where χlef is defined in (4.5). The conclusion follows from the spectral theorem. �



PLANE WAVEGUIDES WITH CORNERS IN THE SMALL ANGLE LIMIT 23

5.2. Agmon estimates. On our way to prove Theorem 2.3, we now state Agmon estimates

like for HBO,Tri(h). Let us first notice that, due to Proposition 5.1, the lowest eigenvalues of

LTri(h) still satisfy an estimate like (4.9). It turns out that we have the following lower bound,

for all ψ ∈ Dom(QTri,h):

QTri,h(ψ) ≥
∫

Tri

h2|∂xψ|2 +
π2

4(x+ π
√
2)2

|ψ|2 dxdy.

Thus, the analysis giving Propositions 4.3 and 4.4 applies exactly in the same way and we

obtain:

Proposition 5.5. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1

8
| ≤ Γ0h

2/3, we have:
∫

Tri

eη0h
−1|x|3/2

(

|ψ|2 + |h2/3∂xψ|2
)

dxdy ≤ C0‖ψ‖2.

Proposition 5.6. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and ρ0 > 0 such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1

8
| ≤ Γ0h

2/3, we have:
∫

Tri

(x+ π
√
2)−ρ0/h

(

|ψ|2 + |h ∂xψ|2
)

dxdy ≤ C0‖ψ‖2.

5.3. Approximation of the first eigenfunctions by tensor products. In this subsection, we

will work with the operator LRec(h) rather than LTri(h). Let us consider the firstN0 eigenvalues

of LRec(h) (shortly denoted by λn). In each corresponding eigenspace, we choose a normalized

eigenfunction ψ̂n so that 〈ψ̂n, ψ̂m〉 = 0 if n 6= m. As in Section 4.3, we introduce:

EN0
(h) = span(ψ̂1, . . . , ψ̂N0

).

Let us define Q0
Rec the following quadratic form:

Q0
Rec(ψ̂) =

∫

Rec

(

1

2π2
|∂tψ̂|2 −

1

8
|ψ̂|2

)

(u+ π
√
2) dudt,

associated with the operator L0
Rec = Idu ⊗

(

− 1
2π2∂

2
t − 1

8

)

on L2(Rec, (u + π
√
2)dudt). We

consider the projection on the eigenspace associated with the eigenvalue 0 of − 1
2π2∂

2
t − 1

8
:

(5.15) Π0ψ̂(u, t) =
〈

ψ̂(u, ·), c0
〉

t
c0(t),

where we recall that c0(t) = cos
(

π
2
t
)

. We can now state a first approximation result:

Proposition 5.7. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all ψ̂ ∈ EN0
(h):

0 ≤ Q0
Rec(ψ̂) ≤ Ch2/3‖ψ̂‖2

and

‖(Id−Π0)ψ̂‖+ ‖∂t(Id− Π0)ψ̂‖ ≤ Ch1/3‖ψ̂‖.
Moreover, Π0 : EN0

(h) → Π0(EN0
(h)) is an isomorphism.
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Proof. If ψ̂ = ψ̂n, we have:

QRec,h(ψ̂n) = λn‖ψ̂n‖2.
From this we infer:

QRec,h(ψ̂n) ≤
(

1

8
+ Ch2/3

)

‖ψ̂n‖2.

The orthogonality of the ψ̂n (in L2 and for the quadratic form) allows to extend this inequality

to ψ̂ ∈ EN0
(h):

QRec,h(ψ̂) ≤
(

1

8
+ Ch2/3

)

‖ψ̂‖2.

This clearly implies:

Q0
Rec(ψ̂) ≤ Ch2/3‖ψ̂‖2.

Π0ψ̂ being in the kernel of L0
Rec, we have:

Q0
Rec(ψ̂) = Q0

Rec((Id−Π0)ψ̂).

If we denote by µ2 the second eigenvalue of the 1D operator − 1
2π2 ∂

2
t − 1

8
, we get by the

min-max principle:

Q0
Rec((Id− Π0)ψ̂) ≥ µ2‖(Id−Π0)ψ̂‖2.

Now the conclusions are standard. �

5.4. Reduction to the Born-Oppenheimer approximation. In this section, we prove The-

orem 2.3 by using the projections of the true eigenfunctions (Π0ψn) as test functions for the

Born-Oppenheimer approximation. Let us consider an eigenpair (λ, ψ) of LTri(h) such that

(4.9) holds. We let ψ̂(u, t) = ψ(x, y). Then, (λ, ψ̂) satisfies:

−h2
(

∂2u −
2t∂u∂t

u+ π
√
2
+

2t∂t

(u+ π
√
2)2

+
t2∂2t

(u+ π
√
2)2

)

ψ̂ − 1

(u+ π
√
2)2

∂2t ψ̂ = λψ̂.

The main idea is to determine the (differential) equation satisfied by Π0ψ̂. In other words we

will compute and control the commutator between the operator and the projection Π0. For

that purpose, a few lemmas will be necessary. The first one is an estimate established in the

original coordinates (x, y) in the triangle Tri:

Lemma 5.8. For all k ∈ N, there exist h0 > 0 and C > 0 such that we have, for h ∈ (0, h0):
∫

Tri

(x+ π
√
2)−k|∂yψ|2 dxdy ≤ C‖ψ‖2.

Proof. The equation satisfied by ψ is:

(−h2∂2x − ∂2y)ψ = λψ.

Multiplying by (x+π
√
2)−k, taking the scalar product with ψ and integrating by parts we find:

∫

Tri

(x+ π
√
2)−k|∂yψ|2 dxdy ≤ C

∫

Tri

(x+ π
√
2)−k

(

|ψ|2 + h2(x+ π
√
2)−1|ψ||∂xψ|

)

dxdy.

Using the Agmon estimates of Proposition 5.6 with ρ0/h ≥ k + 1 we deduce the lemma. �
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We can now prove:

Lemma 5.9. There exist h0 > 0 and C > 0 such that we have, for h ∈ (0, h0):
∥

∥

∥

〈

(u+ π
√
2)−1t∂u∂tψ̂, c0(t)

〉

t

∥

∥

∥

L2(du)
≤ Ch−1‖ψ̂‖.

Proof. Integrating by parts in t for any fixed u ∈ (−π
√
2, 0), we find:

∣

∣

∣

〈

(u+ π
√
2)−1t∂u∂tψ̂, c0(t)

〉

t

∣

∣

∣
≤ C

∫ 1

−1

(u+ π
√
2)−1|∂uψ̂| dt

≤ C

(
∫ 1

−1

(u+ π
√
2)−2|∂uψ̂|2 dt

)1/2

.

To have the lemma, it remains to prove that

∫

Rec

(u+ π
√
2)−2|∂uψ̂|2 dudt ≤ Ch−2

∫

Rec

|ψ̂|2 dudt.

We have:

∫

Rec

(u+ π
√
2)−2|∂uψ̂|2 dudt =

∫

Tri

(x+ π
√
2)−3

∣

∣

∣

∣

(

∂x +
y∂y

x+ π
√
2

)

ψ

∣

∣

∣

∣

2

dxdy

and we apply Lemma 5.8 to control the term in ∂y. We end the proof using the Agmon esti-

mates of Proposition 5.6. �

The same kind of computations yields:

Lemma 5.10. There exist h0 > 0 and C > 0 such that we have, for h ∈ (0, h0):
∥

∥

∥

〈

(u+ π
√
2)−2t∂tψ̂, c0(t)

〉

t

∥

∥

∥

L2(du)
≤ C‖ψ̂‖.

Finally, we have:

Lemma 5.11. There exist h0 > 0 and C > 0 such that we have, for h ∈ (0, h0):
∥

∥

∥

〈

(u+ π
√
2)−2t2∂2t ψ̂, c0(t)

〉

t

∥

∥

∥

L2(du)
≤ C‖ψ̂‖.

From Lemmas 5.9, 5.10 and 5.11, and from Proposition 5.7, we infer:

Proposition 5.12. Let Γ0 > 0. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all

eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1
8
| ≤ Γ0h

2/3, we have:

∥

∥

∥

∥

(

−h2∂2u +
π2

4(u+ π
√
2)2

− λ

)

Π0ψ̂

∥

∥

∥

∥

≤ Ch‖Π0ψ̂‖.



26 MONIQUE DAUGE AND NICOLAS RAYMOND

• Proof of Theorem 2.3. We deduce, from Proposition 5.12, for all n ∈ {1, · · · , N0}:
∥

∥

∥

∥

(

−h2∂2u +
π2

4(u+ π
√
2)2

)

Π0ψ̂n

∥

∥

∥

∥

≤ (λTri,N0
(h) + Ch)‖Π0ψ̂n‖.

From this inequality, we infer, for all ψ ∈ EN0
(h):

∥

∥

∥

∥

(

−h2∂2u +
π2

4(u+ π
√
2)2

)

Π0ψ̂

∥

∥

∥

∥

≤ (λTri,N0
(h) + Ch)‖Π0ψ̂‖

and thus:

QBO,Tri,h(Π0ψ̂) ≤ (λTri,N0
(h) + Ch)‖Π0ψ̂‖.

It remains to apply the min-max principle to the N0 dimensional space Π0EN0
(h) (see Propo-

sition 5.7) and Theorem 4.1 to get the separation of eigenvalues. Then, the conclusion follows

from Proposition 5.1.

6. APPLICATION TO THE WAVEGUIDE

In this section, we prove Theorem 2.5. Firstly, we construct quasimodes and secondly we

use Agmon estimates reduce to the triangle case. On the left, LGui(h) writes, in the coordinates

(u, t) defined in (5.1):

(6.1) Llef
Gui(h) = −h2

(

∂u −
t

u+ π
√
2
∂t

)2

− 1

(u+ π
√
2)2

∂2t

and on the right, we let:

(6.2) u = x, τ =
y − x

π
√
2

and the operator writes:

(6.3) Lrig
Gui(h) = −h2

(

∂u −
1

π
√
2
∂τ

)2

− 1

2π2
∂2τ .

The integration domain is (−π
√
2,+∞)× (0, 1) = Ωlef ∪ Ωrig where:

Ωlef = (−π
√
2, 0)× (0, 1) and Ωrig = (0,+∞)× (0, 1).

The boundary conditions are Dirichlet on (0,∞)×{0}∪ (−π
√
2,∞)×{1} and Neumann on

(−π
√
2, 0)× {0}.

6.1. Quasimodes. The aim of this subsection is to prove the following proposition:

Proposition 6.1. For any n ≥ 1, there exists a sequence (γj,n) such that, for all N0 ∈ N and

J ∈ N, there exists h0 > 0 and C > 0 such that for h ∈ (0, h0):

(6.4) dist
(

Sdis

(

LGui(h)
)

,

J
∑

j=0

γj,nh
j/3

)

≤ Ch(J+1)/3, n = 1, · · ·N0.

Moreover, we have: γ0,n = 1
8
, γ1,n = 0 and γ2,n = (4π

√
2)−2/3zA(n).
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6.1.1. Preliminaries.

• Ansatz, boundary and transmission conditions. In order to construct quasimodes for LGui(h)
of the form (γh, ψh), we use the coordinates (u, t) on the left and (u, τ) on the right and look

for quasimodes ψ̂h(u, t, τ) = ψh(x, y). Such quasimodes will have the form on the left:

(6.5) ψlef(u, t) ∼
∑

j≥0

hj/3
(

Ψlef,j(h
−2/3u, t) + Φlef,j(h

−1u, t)
)

,

and on the right:

(6.6) ψrig(u, τ) ∼
∑

j≥0

hj/3Φrig,j(h
−1u, τ)

associated with quasi-eigenvalues:

γh ∼
∑

j≥0

γjh
j/3.

We will denote s = h−2/3u and σ = h−1u. Since ψh has no jump across the line x = 0, we

find that ψlef and ψrig should satisfy two transmission conditions on the line u = 0:

ψlef(0, t) = ψrig(0, t) and

(

∂u −
t

π
√
2
∂t

)

ψlef(0, t) =

(

∂u −
∂τ

π
√
2

)

ψrig(0, t),

for all t ∈ (0, 1). For the Ansätze (6.5)-(6.6) these conditions write for all j ≥ 0

Ψlef,j(0, t) + Φlef,j(0, t) = Φrig,j(0, t)(6.7)

∂σΦlef,j(0, t) + ∂sΨlef,j−1(0, t)−
t∂t

π
√
2
Φlef,j−3(0, t)−

t∂t

π
√
2
Ψlef,j−3(0, t)(6.8)

= ∂σΦrig,j(0, t)−
∂τ

π
√
2
Φrig,j−3(0, t),

where we understand that the terms associated with a negative index are 0.

Notation 6.2. We still set s = h−2/3u and σ = h−1u. Like in the case of the triangle Tri, the

operators Llef
Gui and Lrig

Gui, cf. (6.1)-(6.3), written in variables (s, t) and (σ, t) expand in powers

of h2/3 and h, respectively. Now we have three operator series:

• Llef
Gui(h)(h

2/3s, t; h−2/3∂s, ∂t) ∼
∑

j≥0 L2jh
2j/3. The operators are the same as for Tri,

but they are defined now on the half-strip Hlef := (−∞, 0)× (0, 1).

• Llef
Gui(h)(hσ, t; h

−1∂σ, ∂t) ∼
∑

j≥0N lef
3j h

j defined on Hlef.

• Lrig
Gui(h)(hσ, τ ; h

−1∂σ, ∂τ ) ∼
∑

j≥0N rig
3j h

j defined on Hrig := (0,∞)× (0, 1).

We agree to incorporate the boundary conditions on the horizontal sides of Hlef in the defini-

tion of the operators Lj , N lef
j , and N rig

j :

• Neumann-Dirichlet ∂tΨ(s, 0) = 0 and Ψ(s, 1) = 0 (s < 0) for Lj ,

• Neumann-Dirichlet ∂tΦ(σ, 0) = 0 and Ψ(σ, 1) = 0 (σ < 0) for N lef
j ,

• Pure Dirichlet Φ(σ, 0) = 0 and Ψ(σ, 1) = 0 (σ > 0) for N rig
j .
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Note that

(6.9) N lef
0 = −∂2σ −

1

2π2
∂2t and N rig

0 = −∂2σ −
1

2π2
∂2τ .

• Dirichlet-to-Neumann operators. Here we introduce the Dirichlet-to-Neumann operators

T rig and T lef which we use to solve the problems in the variables (σ, t). We denote by I the

interface {0} × (0, 1) between Hrig and Hlef.

On the right, and with Notation 6.2, we consider the problem:
(

N rig
0 − 1

8

)

Φrig = 0 in Hrig and Φrig(0, t) = G(t)

where G ∈ H
1/2
00 (I). Since the first eigenvalue of the transverse part of N rig

0 − 1
8

is positive,

this problem has a unique exponentially decreasing solution Φrig. Its exterior normal derivative

−∂σΦrig on the line I is well defined in H−1/2(I). We define:

T rigG = ∂nΦrig = −∂σΦrig.

We have:

〈T rigG,G〉 = Qrig(Φrig) ≥ C‖G‖2
H

1/2
00

(I)
.

On the left, we consider the problem:
(

N lef
0 − 1

8

)

Φlef = 0 in Hlef and Φlef(0, t) = G(t)

where G ∈ H
1/2
00 (I).

For all G ∈ H
1/2
00 (I) such that Π0G = 0 (where Π0 is defined in (5.15)), this problem has a

unique exponentially decreasing solution Φlef . Its exterior normal derivative ∂σΦlef on the line

I is well defined in H−1/2(I). We define:

T lefG = ∂nΦlef = ∂σΦlef .

We have:

〈T lefG,G〉 = Qlef(Φlef) ≥ 0.

Proposition 6.3. The operator T rig + T lefΠ1 is coercive on H
1/2
00 (I) with Π1 = Id − Π0. In

particular, it is invertible from H
1/2
00 (I) onto H−1/2(I).

This proposition allows to prove the following lemma which is in the same spirit as Lemma

5.2, but now for transmission problems on Hlef ∪ Hrig (we recall that c0(t) = cos(π
2
t)):

Lemma 6.4. Let Flef = Flef(σ, t) and Frig = Frig(σ, τ) be real functions defined on Hlef

and Hrig, respectively, with exponential decay with respect to σ. Let G0 ∈ H
1/2
00 (I) and

H ∈ H−1/2(I) be data on the interface I = ∂Hlef ∩ ∂Hrig. Then there exists a unique

coefficient ζ ∈ R and a unique trace G ∈ H
1/2
00 (I) such that the transmission problem















(

N lef
0 − 1

8

)

Φlef = Flef in Hlef , Φlef(0, t) = G(t) +G0(t) + ζc0(t),
(

N rig
0 − 1

8

)

Φrig = Frig in Hrig, Φrig(0, t) = G(t),

∂σΦlef(0, t)− ∂σΦrig(0, t) = H(t) on I,
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admits a (unique) solution (Φlef ,Φrig) with exponential decay.

Proof. Let (Φ0
lef , ζ0) be the solution provided by Lemma 5.2 for the data F = Flef and G = 0.

Let Φ0
rig be the unique exponentially decreasing solution of the problem

(

N rig
0 − 1

8

)

Φ0
rig = Frig in Hrig, Φ0

rig(0, t) = 0.

LetH0 be the jump ∂σΦ
0
rig(0, t)−∂σΦ0

lef(0, t). If we define the new unknownsΦ1
rig = Φrig−Φ0

rig

and Φ1
lef = Φlef − Φ0

lef , the problem we want to solve becomes
(

N lef
0 − 1

8

)

Φ1
lef = 0 in Hlef, Φ1

lef(0, t) = G(t) + (ζ − ζ0)c0(t),

(

N rig
0 − 1

8

)

Φ1
rig = 0 in Hrig, Φ1

rig(0, t) = G(t),

∂σΦ
1
rig(0, t)− ∂σΦ

1
lef(0, t) = H(t)−H0(t) on I.

Using Proposition 6.3 we can setG = (T rig+T lefΠ1)
−1(H−H0), which ensures the solvability

of the above problem. �

6.1.2. Construction of quasimodes.

• Terms of order h0. Let us write the “interior” equations:

lefs : L0Ψlef,0 = γ0Ψlef,0

lefσ : N lef
0 Φlef,0 = γ0Φlef,0

rig : N rig
0 Φrig,0 = γ0Φrig,0 .

The boundary conditions are:

Ψlef,0(0, t) + Φlef,0(0, t) = Φrig,0(0, t),

∂σΦlef,0(0, t) = ∂σΦrig,0(0, t).

We get:

γ0 =
1

8
, Ψlef,0 = g0(s)c0(t).

We now apply Lemma 6.4 with Flef = 0, Frig = 0, G0 = 0, H = 0 to get

G = 0 and ζ = 0.

We deduce: Φlef,0 = 0, Φrig,0 = 0 and, since ζ = −g0(0), g0(0) = 0. At this step, we do not

have determined g0 yet.

• Terms of order h1/3. The interior equations read:

lefs : L0Ψlef,1 = γ0Ψlef,1 + γ1Ψlef,0

lefσ : N lef
0 Φlef,1 = γ0Φlef,1 + γ1Φlef,0

rig : N rig
0 Φrig,1 = γ0Φrig,1 + γ1Φrig,0.

Using Lemma 5.3, the first equation implies:

γ1 = 0, Ψlef,1(s, t) = g1(s)c0(t).
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The boundary conditions are:

g1(0)c0(t) + Φlef,1(0, t) = Φrig,1(0, t),

g′0(0)c0(t) + ∂σΦlef,1(0, t) = ∂σΦrig,1(0, t).

The system becomes:

lefσ :
(

N lef
0 − 1

8

)

Φlef,1 = 0,

rig :
(

N rig
0 − 1

8

)

Φrig,1 = 0.

We apply Lemma 6.4 with Flef = 0, Frig = 0, G0 = 0, H = −g′0(0)c0(t) to get:

G = −g′0(0)(T rig + T lefΠ1)
−1c0.

Since G = Φrig,1 and ζ = −g1(0), this determines Φlef,1, Φrig,1 and g1(0).

• Terms of order h2/3. The interior equations write:

lefs : L2Ψlef,0 + L0Ψlef,2 =
∑

l+k=2

γlΨlef,k

lefσ : N lef
0 Φlef,2 =

∑

l+k=2

γlΦlef,k

rig : N rig
0 Φrig,2 =

1

8
Φrig,2,

with

L2Ψlef,0 = −g′′0(s)c0(t) +
1

π3
√
2
sg0(s)∂

2
t (c0).

Lemma 5.3 and then Lemma 5.4 imply:

(6.10) − g′′0 −
1

4π
√
2
sg0 = γ2g0.

Thus, γ2 is one of the eigenvalues of the Airy operator and g0 an associated eigenfunction. In

particular, this determines the unknown functions of the previous steps. We are led to take:

Ψlef,2(s, t) = Ψ⊥
lef,2 + g2(s)c0(t), with Ψ⊥

lef,2 = 0

and to the system:

lefσ :
(

N lef
0 − 1

8

)

Φlef,2 = 0

rig :
(

N rig
0 − 1

8

)

Φrig,2 = 0.

Using Lemma 6.4, we find

G = −g′1(0)(T rig + T lefΠ1)
−1c0.

This determines Φrig,2, Φlef,2 and g2(0). The function g1 is still unknown at this step.
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• Further terms. Let us assume that we can write Ψlef,k = Ψ⊥
lef,k + gk(s)c0(t) for 0 ≤ k ≤

j and that (gk)0≤k≤j−2 and (Ψ⊥
lef,k)0≤k≤j are determined. Let us also assume that gj−1(0),

(γk)0≤k≤j , (Φrig,k)0≤k≤j−1, (Φlef,k)0≤k≤j−1 are already known. Finally, we assume that gj(0),
Φlef,j , Φrig,j are known once gj−1 is determined and that all the functions have an exponential

decay.

Let us collect the terms of order h(j+1)/3. The interior equations write:

lefs :

j+1
∑

k=0

LkΨlef,j+1−k =

j+1
∑

k=0

γkΨlef,j+1−k

lefσ :

j+1
∑

k=0

N lef
k Φlef,j+1−k =

j+1
∑

k=0

γkΦlef,j+1−k

rig :

j+1
∑

k=0

N rig
k Φrig,j+1−k =

j+1
∑

k=0

γkΦrig,j+1−k,

We examine the first equation and notice that L1 = 0 and γ1 = 0 so that Ψlef,j does not appear.

We can write this equation in the form:

(

L0 −
1

8

)

Ψlef,j+1 = −L2Ψlef,j−1 − γ2Ψlef,j−1 − γj+1Ψlef,0

−
j+1
∑

k=4

LkΨlef,j+1−k −
j

∑

k=3

γkΨlef,j+1−k.

We apply Lemma 5.3 and we obtain an equation in the form:

−g′′j−1 −
1

4π
√
2
sgj−1 − γ2gj−1 = f + γj+1g0,

where f and gj−1(0) are known. Then, Lemma 5.4 applies and provides a unique value of γj+1

such that gj−1 has an exponential decay. From the recursion assumption, we deduce that gj(0),
Φlef,j , Φrig,j are now determined. Lemma 5.3 uniquely determines Ψ⊥

lef,j+1 such that:

Ψlef,j+1 = Ψ⊥
lef,j+1 + gj+1(s)c0(t).

We can now write the system in the form:

lefσ :
(

N lef
0 − 1

8

)

Φlef,j+1 = Flef

rig :
(

N rig
0 − 1

8

)

Φrig,j+1 = Frig,

where Flef , Frig have an exponential decay. The transmission conditions are, cf. (6.7)–(6.8):

Φlef,j+1(0, t) = Φrig,j+1(0, t)−Ψlef,j+1(0, t)

= Φrig,j+1(0, t)−Ψ⊥
lef,j+1(0, t)− gj+1(0)c0(t)

and

∂σΦlef,j+1(0, t)− ∂σΦrig,j+1(0, t) = H(t) = −g′j(0)c0(t) + H̃(t),
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where H̃ is known. We can apply Lemma 6.4 which determines Φrig,j+1, Φlef,j+1 (with an

exponential decay) and gj+1(0) once gj is known.

• Quasimodes. The previous construction leads to introduce:

(6.11a) ψ̂
[J ]
h (u, t) =























J+2
∑

j=0

(

Ψlef,j

( u

h2/3
, t
)

+ Φlef,j

(u

h
, t
))

hj/3 when u ≤ 0

J+2
∑

j=0

Φrig,j

(u

h
, τ
)

hj/3 + u χrig
(u

h

)

RJ,h(τ) when u ≥ 0 ,

where the correction term

RJ,h(τ) = ∂sΨlef,J+2(0, τ)h
J/3(6.11b)

−
J+2
∑

j=J

(

t∂t

π
√
2

(

Ψlef,j(0, τ) + Φlef,j(0, τ)
)

)

hj/3 +
J+2
∑

j=J

∂τ

π
√
2
Φrig,j(0, τ) h

j/3

is added to make ψ̂
[J ]
h satisfy the transmission condition (6.8). Here we have used a smooth

cutoff function χrig being 1 near 0. By construction, ψ
[J ]
h defined by the identity

(6.11c) ψ
[J ]
h (x, y) = χlef(u) ψ̂

[J ]
h (u, t)

belongs to the domain of LGui(h). Using the exponential decays, for all J ∈ N we get the

existence of h0 > 0, C(J, h0) > 0 such that for h ∈ (0, h0):

∥

∥

∥

(

LGui(h)−
J+2
∑

j=0

γjh
j/3

)

ψ
[J ]
h

∥

∥

∥
≤ C(J, h0) h

1+J/3.

6.2. Agmon estimates and consequences. In this last subsection, we prove Theorem 2.5. For

that purpose, we first state Agmon estimates to show that the first eigenfunctions are essentially

living in the triangle Tri so that we can compare the problem in the whole guide with the

triangle.

Proposition 6.5. Let (λ, ψ) be an eigenpair of LGui(h) such that |λ− 1
8
| ≤ Ch2/3. There exist

α > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0), we have:
∫

x≥0

eαh
−1x

(

|ψ|2 + |h∂xψ|2
)

dxdy ≤ C‖ψ‖2.

Proof. The proof is left to the reader, the main ingredients being the IMS formula and the fact

that HBO,Gui is a lower bound of LGui(h) in the sense of quadratic forms (see the analysis of

Propositions 4.3 and 4.4). See also [13, Proposition 6.1] for a more direct method. �

• Proof of Theorem 2.5. Let ψh
n be an eigenfunction associated with λGui,n(h) and assume

that the ψh
n are orthogonal in L2(Ω), and thus for the bilinear form BGui,h associated with the

operator LGui(h).

We choose ε ∈ (0, 1
3
) and introduce a smooth cutoff χhat the scale h1−ε for positive x

χh(x) = χ(xhε−1) with χ ≡ 1 if x ≤ 1
2
, χ ≡ 0 if x ≥ 1
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and we consider the functions χhψh
n. We denote:

EN0
(h) = span(χhψh

1 , . . . , χ
hψh

N0
).

We have:

QGui,h(ψ
h
n) = λGui,n(h)‖ψh

n‖2
and deduce by the Agmon estimates of Proposition 6.5:

QGui,h(χ
hψh

n) =
(

λGui,n(h) +O(h∞)
)

‖χhψh
n‖2.

In the same way, we get the ”almost”-orthogonality, for n 6= m:

BGui,h(χ
hψh

n, χ
hψh

m) = O(h∞).

We deduce, for all v ∈ EN0
(h):

QGui,h(v) ≤
(

λGui,N0
(h) +O(h∞)

)

‖v‖2.
We can extend the elements of EN0

(h) by zero so that QGui,h(v) = QTriε,h(v) for v ∈ EN0
(h)

where Triε,h is the triangle with vertices (−π
√
2, 0), (h1−ε, 0) and (h1−ε, h1−ε + π

√
2). A

dilation reduces us to:
(

1 +
h1−ε

π
√
2

)−2

(−h2∂2x̃ − ∂2ỹ)

on the triangle Tri. The lowest eigenvalues of this new operator admits the lower bounds
1
8
+ zA(n)h

2/3 − Ch1−ε ; in particular, we deduce:

λGui,N0
(h) ≥ 1

8
+ zA(N0)h

2/3 − Ch1−ε.

This provides the separation of the eigenvalues and, joint with Proposition 6.1, this implies

Theorem 2.5.

6.3. Conclusion.

6.3.1. Back to the physical coordinates. The two-term asymptotics

Ψlef
0 (s, t)1s<0 + h1/3

(

Φlef
1 (σ, t)1σ<0 + Φrig

1 (σ, τ)1σ>0

)

provides us with the leading behavior of the eigenvectors in the scaled half-guide Ω. It is

interesting to come back to the physical domain and to interpret this two-term asymptotics

in the original variables (x1, x2). We have to chain formulas (2.2) giving (x, y), (5.1) giving

(u, t), (6.2) giving (u, τ), and (5.5) giving s and σ. We have also to take the relation h = tan θ
into account.

Returning to section 6.1.2 and more particularly to (6.10) — and Lemma 5.4, we find that

Ψlef
0 (s, t) = A

(

(4π
√
2)−1/3s + zA(n)

)

cos
(πt

2

)

.

Coming back to physical variables (x1, x2) we find that

Ψlef
0 (s, t) = A

(( θ

2π

)1/3

x1 + zA(n)
)

cos
(x2
2

− θx1
2π

)

+O(θ2) as θ → 0.



34 MONIQUE DAUGE AND NICOLAS RAYMOND

As for the term Φ1 := Φlef
1 1σ<0 + Φrig

1 1σ>0, we find that there exists a profile Φ̌1 independent

of θ such that

Φ1(σ, t1σ<0 + τ1σ>0) = Φ̌1(x̌1, x̌2) +O(θ2) as θ → 0.

Here x̌1 = x1 and

x̌2 =











πx2 cos θ

π + x1 sin θ
if x1 < 0,

x2 cos θ − x1 sin θ if x1 > 0.

This profile Φ̌1 is exponentially decreasing as x̌1 → ±∞. It is solution of a transmission

problem with smooth data for the Laplace operator on the infinite strip R× (0, π) with mixed

Neumann-Dirichlet conditions on the bottom side x̌2 = 0, and Dirichlet on x̌2 = π. Hence, it

is piecewise H2 modulo the addition of a multiple of the singular function ψ0
sing, cf. (1.2).

The consequence of this is that the coefficient of the singularity ψθ
sing for a normalized eigen-

vector of ∆Dir
Ωθ

behaves as O(θ1/3) as θ → 0.

6.3.2. X-shaped waveguides. Our results provide without any difficulty the structure of the

eigenpairs of lowest energy in the small angle limit when the domain is formed by the union

of two infinite strips of same width π crossing with an angle 2θ (this model appears in the

physical literature, see [8]). The two non-convex corners of this structure are at the dis-

tance π
sin θ

= O(θ−1). This X-structure can be viewed as a double symmetric V-structure

and the eigenmodes can be constructed from the V-structure eigenmodes since they interact

very weakly (their lower scale is θ1/3). Nevertheless they do interact by an exponentially small

tunnelling effect which would be interesting to investigate.
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