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Abstract—The paper contributes to video quality assessment of 

delivered content without reference. We propose a no-reference 
video quality assessment metric taking into account the behavior of 
the human visual system. The proposed metric called Weighted 
Macro-Block Error Rate (WMBER) is based on macro-block error 
detection and is weighted by visual saliency maps. Both measures 
are extracted from a partially decoded H.264 AVC stream. First of 
all, we propose a new saliency map fusion method to improve the 
spatiotemporal saliency model. Then a supervised learning method 
called Similarity Weighted Average is considered to predict 
subjective MOS from objective video quality metric. The Similarity 
Weighted Average method is improved in order to be adapted to a 
training database or a content. The performance of the proposed 
metric is evaluated on two subjective experimental databases from 
LaBRI and IRCCyN. The results are compared with two Full-
Reference metrics MSE and SSIM. The evaluation shows that the 
proposed metric provides an accurate prediction of subjective 
measures. 

 
Index Terms No-reference, video quality assessment, saliency 

map, supervised learning, visual attention, H.264 

I. INTRODUCTION 

ith the introduction of HDTV Broadcast over DVB-T/S 
1&2 [1], and the wide use of IPTV services by Internet 

Service Providers, the quality assessment of broadcasted video 
services became an important research topic for both academia 
and industries. The research on quality assessment was 
emphasized in the last few years by a need for optimization of 
bandwidth resources allocation, better system design, and 
optimal geographical positioning of broadcast equipments. 
The quality assessment of the delivered HD content would 
satisfy user requirements and enhance its quality of experience 

 
1 Manuscript received January 9, 2012.  
H. Boujut is with the LaBRI UMR CNRS 5800 University of Bordeaux, 

351 cours de la Liberation 33405 Talence cedex, France (phone: +33 5 
40003880; fax: +33 5 40006669; e-mail: boujut@labri.fr).  

J. Benois-Pineau is with the LaBRI UMR CNRS 5800 University of 
Bordeaux, 351 cours de la Liberation 33405 Talence cedex, France (e-mail: 
benois-p@labri.fr). 

T. Ahmed is with the LaBRI UMR CNRS 5800 University of Bordeaux, 
351 cours de la Liberation 33405 Talence cedex, France (e-mail: 
tad@labri.fr). 

O. Hadar is with the Communication Systems Engineering Dept. of Ben 
Gurion University of the Negev, Beer Sheva 84105, Israel (e-mail: 
hadar@cse.bgu.ac.il) 

P. Bonnet is with Audemat Worldcast Systems, 20, avenue Neil 
Armstrong, Parc d’activite J. F. Kennedy 33700 Bordeaux-Merignac, France 
(e-mail: bonnet@worldcastsystems.com). 

(QoE). Video quality assessment (VQA) was required due to 
the introduction of lossy video coding standards at the 
beginning of the 80’s. As adopted in ITU-T recommendation 
[2], the majority of VQA techniques which were proposed so 
far, had only tackled the degradations induced by encoding 
process. Today, HD delivery raises new challenges such as 
how to objectively assess the quality of impaired video stream 
at the decoder side which may suffer from signal degradation 
and packet errors. Transmission errors generate strong visual 
degradations due to simple error resilience mechanisms used 
in the end-to-end delivery chain. These mechanisms are 
implemented in typical industrial decoders of the actual 
HDTV standard H.264/AVC [3]. As delivered HD video is to 
be perceived by the human vision system (HVS), we believe 
that quality assessment mechanism has to be designed 
accordingly to user perception and experience. Towards this 
objective, we propose an accurate definition of saliency maps 
in video scenes [4]. Furthermore, our proposed objective 
quality metric takes into account the loss of blocks in H.264 
encoded HD stream during delivery. Many actors are involved 
in the broadcast delivery chain. For this reason, we believe 
that a no-reference (NR) VQA scheme will be useful to 
evaluate transmitted video streams. We also think that a NR 
VQA scheme will have an important impact on different 
stakeholders involved in the delivery chain, from content 
producers to content consumers passing through network 
operators and service providers. 

A very large and extensive research was conducted for full 
reference (FR) VQA. Its outcomes can be successfully used 
for designing efficient NR VQA metrics. Specifically, spatial 
VQA metrics were exhaustively studied [5], [6], [7] on the 
basis of modeling the sensitivity of HVS. These models of 
visual attention include local color contrast orientation and 
global statistics of features in a given image, or only in a 
Region of Interest (ROI) [6]. A rather complete analysis of 
these approaches is given in [8]. In [9], [10], and [11], another 
approach considering motion and its variations along the 
elapsed time is used for weighting spatial quality indices. This 
approach is also explicitly incorporated in visual saliency 
maps for weighting full reference distortion metrics resulting 
in Weighted Mean Squared Error (WMSE) [12], as well in 
other objective (FR) weighted metrics such as Weighted Peak 
Signal-to-Noise Ratio (WPSNR) referenced in [13]. The NR 
video quality assessment research has made a significant 
progress and as explained in [13], a general motion-tuned 
spatiotemporal framework is now proposed for NR VQA. This 
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framework incorporates spatial quality and temporal quality 
indexes which are computed from the decomposition of video 
signal in Gabor wavelet domain. By a multiplicative pooling, 
spatial and temporal quality indexes give a global quality 
index which is called MOVIE index. Another complete 
framework for spatiotemporal degradations assessment is the 
TetraVQM algorithm [14]. Here, the authors introduce 
temporal tracking of degradations on moving objects, 
imitating in this way user behavior in the perception of video 
content: Humans focus their attention on degraded objects. 
The elapsed time during which they gaze at degraded objects, 
is also modeled. The process results in tree maps: spatial 
degradations, observation time and reliability, which then are 
combined via multiplicative pooling. The main principles of 
TetraVQM are improved in [15] with more sophisticated 
saliency modeling. Remaining in the framework of FR quality 
assessment, the authors propose to decrease a VQA metric by 
a weighted saliency map. In their paper, the authors use a 
saliency map which was created from gaze patterns to avoid 
the possible errors in the prediction of saliency.  

The NR VQA metrics still remain a research challenge and 
contrary to FR metrics [16], they are not yet normalized in 
recommendations of ITU-T. Furthermore, as it is stated in the 
position paper [17], a NR Quality Estimator has to be designed 
“to achieve the required accuracy for its application over the 
set of input content and artifacts for which it was designed”. 
The contribution of our paper consists in proposing a new NR 
VQA metric called Weighted Macro-Block Error Rate 
(WMBER) to assess the quality of HD video encoded in 
H.264/AVC for video delivery via broadcast channels and IP 
networks. We evaluate the quality loss resulting from 
transmission and decoding. Specifically, the metric is designed 
to detect degradations induced by macro-block losses. The 
temporal artifacts caused by transmission delays such as 
jerkiness, have not been yet considered. However, these 
temporal artifacts can be modeled as loss. The three steps of 
measuring, pooling and quality score mapping [17] are 
developed in this framework. In [17], the proposed 
“paramount” condition for NR metrics is to incorporate as 
much information about HVS as possible. Therefore, we 
weighted a simple and fast measure on a compressed stream 
by a spatiotemporal saliency map built at the decoder end. In 
our work, we have decided to only evaluate video quality 
degradation caused by transmission artifacts. As a result, the 
reference video in our case – the Source Reference Channel 
(SRC) in VQEG terminology – is an “ideally” delivered code-
stream, that is a decoded H.264/AVC video code-stream 
transmitted without any loss. The impaired video we evaluate 
– processed video stream (PVS) in VQEG terminology – are 
sequences which are decoded after transmission via a noisy 
channel and concealed by the error concealment mechanism 
from the decoder. The transmission loss models – the 
Hypothetic Reference Circuit (HRC) in VQEG terminology – 
are a combination of network loss profile and video decoder 
with their own error concealment mechanism.  

To build our NR VQA metric WMBER [18], our first step 
is to define a visual saliency map computed from compressed 

H.264/AVC code-stream. It includes motion, transmission 
errors and pixels. Motion is directly extracted from code-
stream motion vectors. Transmission errors are identified 
when parsing the code stream at the decoder end. Finally pixel 
values are obtained after decoding. The automatic saliency 
map obtained is evaluated against subjective saliency maps 
built from gaze tracking reference databases (IRCCyN [15] 
and LaBRI [12]). Theses subjective saliency maps are 
computed with a method inspired from D. S. Wooding [19]. 
To measure the performance of the automatic saliency map 
model, two evaluations are performed. First, the automatic 
saliency map “objective” quality is analyzed. This analysis is 
achieved by comparing objective saliency maps with 
subjective saliency maps. Then the performances of the 
WMBER weighted by the automatic saliency maps are 
compared with the WMBER weighted by the subjective 
saliency maps. 

The gradient energy and the count of erroneous blocks are 
also required to be implemented at the decoder end for 
WMBER calculation. The whole block diagram of the method 
is presented in Fig. 1. 

The pooling strategy for WMBER computation is 
composed of two levels: saliency map pooling (see the block 
“Saliency map pooling” in Fig. 1) and error measurement 
pooling. The error measurement pooling is performed with the 
erroneous block count, the error map and gradient (see block 
“error pooling” in Fig. 1). 

Spatial and temporal saliencies are also pooled when 
building the spatiotemporal saliency map. After error pooling 
process, are only kept damaged macro-blocks with artifacts 
caused by transmission loss on transformed coefficients or 
motion vectors. 

The mapping-to-quality strategy still remains an open issue. 
Despite the cubic polynomial regression proposed in VQEG 
report [20], the prediction of quality score was implemented in 
recent works with other forms of regression, such as 
exponential regression [7], [21], or with classical machine 
learning tools such as neural networks [22], [23]. Here we 
choose a machine learning approach based on a classifier 
weighted by an exponential similarity measure. This machine 
learning approach is called “similarity weighted average” and 
is introduced in [24]. The purpose of the similarity weighted 
average is to predict Mean Opinion Score (MOS) from 
objective quality measurements (i.e. WMBER scores). Then, 
predicted MOS are compared with MOS obtained in psycho-
visual experiments accordingly to ITU-R BT500.11 protocol 
on 69 subjects.  

For these experiments, several packet loss profiles are 
simulated in the scenario of video transmission over IP 
networks. For broadcast applications, other loss models are 
explored, such as Bit-Error Rate (BER) due to signal fading 
and interference. 

The remainder of our paper is organized as follows. Section 
II describes the method for building an automatic saliency 
maps and the evaluation methodology with an NSS measure as 
proposed in [25]. In section III, we introduce a new low-cost, 
high accurate NR VQA metric WMBER which uses the 
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saliency map we compute at the decoder end. Section IV 
presents the learning approach for prediction of subjective 
metrics (MOS). Evaluation results for both proposed saliency 
maps and NR VQA metric are shown in section V. Section VI 
concludes this work and outlines its perspectives. 

II. SPATIOTEMPORAL V ISUAL SALIENCY MAP FROM H.264 

CODE-STREAM 

The HVS has the property of focusing the attention on 
narrow areas in the visual scene called salient areas. These 
salient areas send stimulus to the HVS. Inside video scenes, 
salient stimuli are characterized by high color contrasts, 
motion, and edge orientation.  

In the literature, the saliency of a visual scene is generally 
depicted by two saliency maps, the “spatial” and the 
“temporal” saliency maps [25]. We will focus on both aspects 
to propose a saliency map model built on the decoder side. 

A. Spatial saliency map built from the impaired 
decoded stream.   

Spatial and/or temporal saliency maps are always computed 
from the original video for FR quality metrics and in other 
visual attention studies. The saliency of video content changes 
in the presence of compression and transmission artifacts. In 
[26], the authors study the influence of MPEG2 video 
compression on the human observation of video content in the 
specific cases of target detection and tracking. They state that 
gaze patterns become more random and unfocused on target as 
the compression ratio increases. The reason is the attraction of 
human eyes by strong compression artifacts outside the target 
region. The same statement is done by the authors of [27] in 
JPEG-compressed still images. Finally, the authors of [28] 
also study the influence of compression ratio to the gaze 
attraction. The authors conclude that the focus of attention is 
more concerned by the dynamic contents of the scene. 
Nevertheless, the results shown for high distortion video 
confirm the same phenomenon.  

In the case of transmission errors, conventional decoders 
apply error concealment mechanisms, which correct errors on 
video frames with more or less success. Therefore, our 
proposal for computation of spatial saliency map on the 
decoded video stream consists in applying exactly the same 
method as if the spatial saliency map was computed on the 
original non-degraded video. 

The spatial saliency map ��� is mainly based on color, 
contrast and luminance [11]. If the decoder error concealment 
mechanism manages to recover a transmission error on a block 
without inducing any discontinuity with surrounding blocks, 
then the eye will not be attracted by the artifact and no 
saliency will be induced by the transmission and decoding. If, 
on the contrary, a visible artifact is induced, then the area 
becomes salient.  

To build spatial saliency map on the decoded frames we 
used the method from [4].  

The spatial saliency map extraction is based on the sum of 7 
color contrast descriptors in the HSI domain. The 7 color 
contrast descriptors are: hue contrast, saturation contrast, 

intensity contrast, opposite color contrast, warm and cold 
color contrast, dominance of warm colors, and dominance of 
brightness and hue. The seven descriptors �� are computed for 
each pixel �� of a frame � using the 8-connected neighborhood. 
Then, to get the final spatial saliency map	���, the 7 
descriptors are combined for each pixel �� accordingly to (1). 
 

���
��� = 17���
���
�

���
 (1) 

 
Finally, ���is normalized (2) between 0 and 1 according to 

its maximum value	����. 
 ����
��� = ���
���/���� (2) 
 

As we stated above, we compute the spatial saliency maps 
on the decoded frames. In Fig. 2 we present two extreme cases 
for H.264/AVC compressed stream in typical broadcast 
applications: one with no transmission artifacts (upper row) 
and another one with strong transmission artifacts (lower row). 
As a result, a complementary saliency appears in the areas of 
loss. 

B. Temporal saliency maps 

The temporal saliency map �� models the attraction of 
attention to motion singularities in a scene. Two sources for 
saliency can be used. The first source is the transformed 
domain, such as Gabor decomposition of both, video frames 
and optical flow field [13]. The second is the baseband pixel 
domain, as shown in [12]. Temporal saliency maps were 
recently proposed on the basis of residual motion with respect 
to global model [25]. The latter is estimated using image 
signal on pixel basis. In our proposal, we take profit of motion 
information already present in a video code-stream. The 
primary motion features such as macro-block and sub macro-
block motion vectors of H.264 are used to estimate the global 
model and compute the residual motion. The global scheme 
for temporal saliency map computation is presented in Fig. 3. 

The main step here is to estimate a global motion model. In 
this work, we follow the preliminary study from [12] and use a 
complete first order affine model (3): 

 ��� = �� + ��
�� − ��� + � 
!� − !���!� = �" + �#
!� − !�� + �$
!� − !�� (3) 

 
Here % = 
��, ��, … , �$�� is the parameter vector of the 

global model (3) and 
��� , �!��� is the motion vector of a 
macro-block. To estimate this model, we used robust least 
square estimator presented in [29]. We denote this motion 

vector �%((()
���. Our goal is now to extract the local motion in 
video frames i.e. residual motion with regard to model (3). 
Therefore, we need to extract reliable motion vectors from 

H.264 code stream to compare with �%((()
���. A 3 steps 
processing of H.264 motion vectors based on the standard 
architecture is thus fulfilled. First, in H.264/AVC a macro-
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block or a sub macro-block may refer to multiple frames. This 
is the reason why all the vectors extracted from code stream 
have to be normalized by the distance from reference frame to 
current frame. The purpose of this normalization is to express 
the correct instantaneous motion in the current frame. We 
implement this normalization by simply weighting the motion 
vector by inverse temporal distance to the reference frame of 
each block.  

The second particularity of H.264 is that some blocks can 
be intra-coded. We need local motion; hence we will recover a 
mean value of its motion vector from 2∆- frames: ∆- from 
the past and ∆- from the future. With a short ∆-, we use a 
simple 0-order prediction of block positions in previous and 
future frame for computational cost saving. This is depicted in 
Fig. 3 by motion interpolation block. 

Taking into account that H.264 allows variable size of 
blocks, we interpolate MB motion vectors up to the smallest 
size of block (4x4 pixels). This is done by simple zero order 
interpolation of motion field. 

The motion vectors from H.264 code stream are obtained at 

a 4x4 pixel resolution. We denote this motion vector �.((()
���.  
The residual motion is computed as a difference between 

sub macro-block motion vectors and estimated global motion 
vectors.  

 

�/((()
��� = �%((()
��� − 	�.((()
��� (4) 
 
Another problem we face is the filtering of flat areas (see 

the block “Flat area filtering” in Fig. 4). Indeed, due to the ill-
posed problem of motion estimation, the code stream contains 
erroneous vectors on flat areas. These motion vectors are 
usually very noisy and yield a strong residual motion. We 
remove these improper values by detecting flat area located in 
the background. Detecting flat areas is performed by 
computing and thresholding the gradient energy. Here we use 
a simple region growing algorithm. Starting from a single 
macro-block for which the energy of the gradient ‖∇‖�2222222 is 
lower than a threshold. We stress that the process of removing 
flat areas has to be applied to the background. If a small size 
flat area is a part of foreground object, its saliency should not 
be reduced. Coming back to the foundations of digital image 
processing we use the definition of a background by Azriel 
Rosenfeld [30]: “the background” component of a visual 
scene touches at least one of the borders. Thus our region-
growing algorithm starts from the borders of a frame and 
agglutinates blocks whose gradient energy is lower than a 
threshold. The propagation stops in the direction of the first 
encountered “non-flat” block. The remaining blocks on 
borders are explored until all flat areas have been removed. 
Obviously, such an assumption can be criticized when an 
object enters in the camera field, but in this case we hope to 
get the saliency by a spatial contrast.  

In Fig. 4 we illustrate the contribution of flat areas filtering. 
The original frame is presented in Fig. 4 (a). Then in Fig. 4 (b) 
we show the temporal saliency without flat area detection and 

in Fig. 4 (c) the temporal saliency map with the flat area 
removal we proposed. 

Finally, the temporal saliency map ��
��� is computed by 
filtering the amount of residual motion in the frame. The 
authors of [4] reported, as established by S. Daly, that the 
human eye cannot follow objects with a velocity higher than 
80 deg./s [31]. In this case, the saliency is null. S. Daly has 
also demonstrated that the saliency reaches its maximum with 
motion values between 6 deg./s and 30 deg./s. According to 
this psycho-visual constraints, the filter proposed in [4] is 
given by (5). 

 

��
��� =
34
5
46

���7(((()
��� �8 0 ≤ �7(((()
��� < <)�
1 �8 <)� ≤ �7(((()
��� < <)��$=�7(((()
��� +	># �8 <)� ≤ �7(((()
��� < <)���
0 �8 �7(((()
��� ≥ <)���

@ (5) 

 
with <)� = 6	�BC./�, <)� = 30	�BC./� and <)��� =80	�BC./�. 
We follow this filtering scheme in temporal saliency map 

computation.  
Due to the use of motion vectors from H.264 code stream 

and simple but efficient interpolation schemes, the 
computation of temporal saliency map is faster than real time 
(i.e. full decoding time). 

C. Spatiotemporal saliency map 

A spatiotemporal saliency map may be produced by 
combining the spatial and temporal saliency. Spatiotemporal 
saliency map fusion methods present in the literature remain 
simple. In [25], the authors review spatiotemporal saliency 
maps such as the “mean”, “max” and a multiplicative “and” 
maps obtained on spatial and temporal maps as arguments. To 
obtain an integrated spatiotemporal saliency map, three steps 
are generally required. The two first steps rely on extracting 
both spatial and temporal saliency maps. The last step is the 
fusion. Several models which give good results already exist 
[4], [25] to predict the saliency of a video scene. In [12], we 
proposed a new method for fusion of saliency maps in a log-
space. In this paper, we introduce a faster alternative: a 
squared sum of both spatial and temporal saliency maps. We 
denote resulting saliency maps respectively �F�G��H� and ��IJK7L��H� . The �F�G��H� [12] is defined by (6) with M = 0.5. This 
fusion method has the same advantage as multiplicative 
saliency map 	��OP��H� [18] that gives more importance to 
regions which have both high spatial and high temporal 
saliencies. �F�G��H� is better than 	��OP��H� as it still exhibits 
saliency when one of the primary saliencies, the temporal 
saliency, is low (we note that in video, null spatial saliency 
with high temporal saliency is improbable, because motion is 
perceived through luminance changes). 
 �F�G��H�
��� = M log
���
��� + 1� + 
1 − M� log
��
��� + 1� (6) 
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The squared fusion method 	��IJK7L��H�  we propose in this 
paper is defined by (7). This fusion method has similar fusion 
properties as �F�G��H� when the temporal saliency is null. Its 
advantage is an obvious computational time-saving.  
 ��IJK7L��H� 
��� = 
���
��� + ��
����� (7) 
 

The proposed spatiotemporal saliency map is an “objective” 
map which is built on features extracted from the video. It 
models the human perception dependency on low-level 
features which are contrasts and motion. In order to assess 
how spatiotemporal saliency maps are correlated to human 
visual attention, we compare these automatic saliency maps 

with the “subjective” visual saliency maps �TOUV
���. 
Subjective saliency maps can be obtained during experiments 
on the human subjects with eye-trackers. Such saliency maps 
are used in this work as the benchmark for “objective” 
saliency maps we build at the decoder end.  

D. Spatiotemporal visual saliency map from gaze 
tracking  

The construction of “subjective” visual saliency maps from 
observation of human gaze fixations on images or video is still 
an open issue and there is not any unified methodology. The 
building of such saliency maps is based on the so-called 
fixation maps, which were probably the most exhaustively 
studied by D. S. Wooding [19]. Fixation maps are successfully 
used for studying human attention in visual analysis tasks 
[32]. 

In [19], Wooding proposes a fixation map as a landscape of 
Gaussians centered on fixation points. In the case of eye-
trackers with a high sampling rate such as 1000 Hz (see [32]), 
a supplementary processing is needed to extract fixation 
points. In our case as in the experiments in [15], a standard 
eye-tracker with a sampling rate of 60Hz is used. Since the 
video frame rate (25Hz) and the eye-tracker sampling rate 
(60Hz) are very closed, we consider each eye-tracker 
measurement as a fixation point. On each fixation point, a 2 
dimensional Gaussian is centered with a 2 visual degrees 
standard deviation as in the Wooding’s method. The height of 
the Gaussian is unitary at the fixation point. Then, for a given 
frame, all Gaussians from fixation points of all observers are 
cumulated into a “landscape” and the sum is normalized by 
the maximum in a frame.  

Examples of saliency maps from gaze-tracking are 
presented in Fig. 5. 

In order to compare “subjective” and automatic “objective” 
saliency maps, different strategies can be considered. Some of 
these strategies are referenced in [19]. Wooding proposes a 
differential saliency map obtained by a simple subtraction of 

normalized saliency maps ���H� and �TOUV. ���H� and �TOUV 
can also be compared with the Normalized Scan Path (NSS), 
which was introduced in [33] and used in [25]. We use the 
NSS as well and present the results in section V-B. 

III.  A NO-REFERENCE VIDEO QUALITY ASSESSMENT METRIC: 
WMBER 

In this section, we describe the proposed NR quality 
assessment metric Weighted Macro Block Error Rate 
(WMBER). The block-diagram of WMBER computation is 
presented in Fig. 1.  

The method is based on MB error detection. During the 
decoding process, the first step is to detect error location. This 
could be done by extracting the errors in the compressed 
stream. After recognizing the error in the compressed stream, 
we find the address of the MB forming a so-called MB Error 
Map (see “Error Maps” on Fig. 1). It means that if only one 
coefficient or motion vector is damaged in the MB, the whole 
MB is labeled as damaged. When the MB type is P or B, it is 
also labeled as damaged if the motion vector points to a 
damaged MB on the reference frame. The characteristic 
function of a MB is thus defined as WXX�. WXX� equals to one 
for damaged blocks and 0 otherwise. Then, the standard 
H.264/AVC spatiotemporal error concealment is applied. The 
purpose of our algorithm is to measure video quality in 
networks with transmission loss and not to measure the quality 
of compression. According to section II, we compute the 
spatiotemporal saliency map for all frames after error 
concealment. To improve the results, we need to take another 
parameter into account, which is the norm of the gradient in a 
block. It is well known that the human visual system is 
sensitive to low spatial frequencies and surrounding edges. If 
we consider a strong visible artifact on the block border, then 
it will be expressed in the higher gradient energy. In case of 
strongly textured blocks, the visible artifacts are possible due 
to the encoding inside a block. In this case we cannot make 
any distinction between the loss or the coding process. We 
found, that considering gradient energy for saliency 
computation inside a block enhances the saliency due to 
network transmission errors. Blockiness generated by 
transmission loss is for instance very noticeable by HVS on 
regions with low spatial activity. Hence, the norm of gradient ‖∇I‖ is computed in the whole error-concealed frame I and 
normalized between 0 and 1. The gradient is computed on Y 
component of YUV decoded frames by Sobel operator [34]. 
This step is shown by the block « Gradient Energy » in Fig. 1. 
For each labeled macro-block, the mean of the normalized 
norm of the gradient in this block Z∇�U[222222Z is computed (8). 

 

Z∇�U[222222Z = 1|] P̂| � ‖∇_
��‖]��T
‖∇_
��‖�T∈�Ua
 (8) 

With ]^P − a macro-block and � − a pixel of ]^P. 
 

The saliency measure �Pb  for a block cP  is derived from the 
spatiotemporal saliency map as an average saliency of all 
pixels in a block. For WMBER computation we weight the 
saliency by the average gradient norm from (8). Therefore, 
areas with high gradient on block borders will get more weight 
in the final decision on saliency. Finally the WMBER is 
computed by (9) for each decoded frame _V except IDR frames 
because the temporal saliency map is not available. 
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decW/P = 1 − ∑ gWXXP ∙ Z∇�UaZ222222222 ∙ �PbijklaP�� ∑�Pb  (9) 

With m�Ua the number of macro-blocks in a frame n. 
 

Here �ob  is a mean saliency of a block computed from pixel-
based saliency in (7). According to equation (9), when decW/P is close to 1, the quality of the frame is high. On the 
contrary, when decW/P is close to 0, the quality of the frame 
is poor. To compute the WMBER for the whole video 
sequence, the average WMBER of all frames is calculated, as 
this is usually done for other VQ metrics (see e.g. [21]). 

IV.   MOS PREDICTION FOR EVALUATION OF SALIENCY BASED 

METRICS 

 
In this section, we propose to use supervised learning 

method called similarity-weighted average classifier [24] to 
predict subjective quality (MOS) values from objective quality 
metrics, such as WMBER and FR VQA SSIM or MSE. This 
prediction method requires a training data set of p known pairs 
�� , !�� to predict unknown ! from measured �. Here, 
�� , !�� 
pairs are objective metric values (WMBER, SSIM or MSE) ��, 
associated with subjective metric values (MOS) 	!�. The 
prediction of ! given � is performed using equation (10) 
known as a weighted mean classifier with similarity function 
(11). 

 

! = ∑ ��]
�� , ��!�q���∑ �
�� , ��q���  (10) 

��]
r, �� = B�st−|� − r|u (11) 

 
In their original paper [24], the authors show good 

generalization properties of the classifier due to the 
monotonicity of the exponential similarity measure (11). This 
is the reason why we choose this prediction scheme. The other 
reason is that similarity weighted average does not require a 
heavy training as it is the case for many classifiers such as 
Neuronal Networks and SVMs. However, the similarity 
function (11) depends on the value range of the objective 
metric. Indeed, the minimum similarity value that we denote v 
is obtained when the distance � between r and � reaches 
theoretical maximum value (12). We denote this distance ����. For instance, ���� = 1 for WMBER and SSIM 
metrics. 

 ��]
����� = B�st−����u = v (12) 
 
This means that the similarity weight in the classifier for 

samples �� which are very far (���� = 1) from current 
measure, still remains high. Note that for ���� = 1, ��]
����� ≈ 0.36. Hence, taking into account the 
normalization of VQ metrics WMBER, SSIM and normalized 

MSE, we propose to modify the similarity measure as defined 
in (13). 

 ��]′
r, �� = B�st−y|� − r|u (13) 
 
From (12) and (13), the normalization parameter y can be 

obtained for maximal theoretical values ���� as: 
 

y = −ln	
v�����  (14) 

 
Furthermore, the normalization parameter y can be adapted 

to a kind of content or a training database. The problem, here, 
is to optimize the parameter y maximizing a payoff. We define 
the following logical payoff function {
y� measuring 
prediction qualities such as Pearson Correlation Coefficient 
(PCC), Spearman Rank-Order Correlation Coefficient 
(SROCC), Root Mean-Squared Error (RMSE) and Outlier 
Ratio (OR) evaluated on the training database: 

 

{
y� =

34
44
45
44
44
6 |0, �8	}..~
y� < 01, ��ℎBX��rB @

+
|0, �8	�/�..~
y� < 01, ��ℎBX��rB @

+
|0, �8	/e�W~
y� > 01, ��ℎBX��rB @

+
|0, �8	�/~
y� > 01, ��ℎBX��rB @

@ (15) 

with y > 0 and /′
y�	is the derivative of a function /
y�. 
 
The optimization with regards to y was implemented by 

bisection method. 
In the VQEG Report on the Validation of the Video Quality 

Models for High Definition Video Content [20], the authors 
propose to use a cubic polynomial function (16) to map the 
objective metric values � to the MOS !. In [21] and [7] 
exponential regression is used as it is recommended in former 
reports of VQEG for standard definition streams [35]. In 
section V we compare the prediction results of MOS with 
supervised learning approach and the polynomial regression 
method. 
 ! = �� + ^�� + �� + � (16) 
 

V. EVALUATION AND RESULTS 

A. Subjective experiments 

To evaluate our work, we have generated a database at 
LaBRI from H.264 decoded full HD video; we further call it 
“LaBRI DB”. The LaBRI DB is partially generated from a 
non-compressed open source video available in [36]. Since the 
availability of reference databases with subjective quality 
assessment data (MOS) for the VQA of H.264 encoded 
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streams is coming true [37], we are able to use the video DB 
produced by IRCCyN [15]. We call it “IRCCyN DB”. 

 
LaBRI DB 

We carried out subjective experiments to measure the 
quality of HDTV transmitted over lossy networks. To get 
more participants and more reliable results, the experiment 
was done in two research laboratories: LaBRI at the 
University of Bordeaux and Communication Systems 
Engineering Dept. at the Ben Gurion University of the Negev 
(BGU). Ten different video sequences of 10 seconds were 
selected to compose a representative sample of broadcasted 
HDTV programs. The selection of video sequences was done 
according to two features called spatial and temporal 
information, described in ITU-T Rec. P.910 [38]. Video 
sequences come from four different corpora: The Open Video 
Project [36], NTIA/ITS [39] and TUM/Taurus Media Technik 
[40]. 

Video sequences were encoded into the H.264/AVC format 
[3] using the x264 [41] software with a bit-rate of 6000Kb/s. 
Two models of transmission impairments were applied to each 
video sequence (Table 1). The first one, called IP model, 
simulates IP packet networks according to ITU-T Rec. G.1050 
[42]. Hence, three kinds of networks: managed, semi-managed 
and unmanaged were simulated using five packet loss profiles. 
The second model, called RF model, simulates radio 
frequency transmission impairments by introducing bit 
corruption in Transport Stream (TS) packets. To simulate the 
RF model, three levels of bit corruption were chosen. After 
processing the 10 video sources (SRC) with the 8 impairment 
profiles, 80 processed video sequences (PVS) were generated. 
So, the total number of video sequences assessed by the 
experiment participants was 90. 

The experiment was carried out by following the ACR-HR 
experimental protocol described in the VQEG Report on the 
Validation of the Video Quality Models for High Definition 
Video Content [20]. The experiment room and the lightning 
conditions were compliant with the ITU-R Rec. BT.500-11 
[2]. The distance between the subject head and the screen was 
three times the height of the screen. The video sequences were 
displayed with a resolution of 1920x1080 pixels using a 
HDMI cable. In order to be compliant with ITU-R Rec. 
BT500.11, the experimentation time was 30 minutes. To avoid 
the “learning effect” each participant has seen the video 
sequences in a random order and a “warm-up” session of 5 
minutes was done before starting the experiment. Hence, 39 
participants were gathered: 11 at LaBRI and 28 at BGU. MOS 
and DMOS subjective metrics were computed by using 
methods described in [20] and [2]. Eye-tracking measurements 
are only available for 13 subjects. 
 
IRCCyN DB 

In this paper, we also evaluate our method on a video 
database provided by IRCCyN Lab [15]. The IRCCyN DB is 
composed of 20 SD resolution video sequences. As in LaBRI 
DB all the video sequences were encoded with H.264/AVC 
and we consider the encoded video sequence without 

transmission impairments as the source (SRC). Four packet 
loss profiles were applied on each SRC. The subjective 
experiment was carried out by following ITU-R BT500.11 [2] 
protocol and 30 subjects have participated. MOS and DMOS 
metrics were computed as described in [2]. 

B. Evaluation of saliency maps  

In this section, we compare the “objective quality” of the 
objective spatiotemporal saliency maps ��OP��H�, �F�G��H� and ��IJK7L��H�  with regard to the subjective spatiotemporal saliency 

map �TOUV. Here, we use the NSS metric that was proposed in 
[25] instead of the PCC. In fact the correlation coefficient is 
very dependent on the Gaussian that was applied to build the 

subjective saliency map �TOUV from gaze positions. NSS is a Z-
Score that expresses the divergence of the subjective saliency 
map from the objective saliency maps. The NSS computation 
for a frame n is depicted by equation (17). Here, ��UVj  denotes 
the objective saliency map ��UV normalized to have a zero 
mean and a unit standard deviation, �2 means an average. 

When �TOU�P × ��U�j P22222222222222222 is higher than the average objective 

saliency, the NSS is positive; it means that the gaze locations 
are inside the saliency depicted by the objective saliency map. 
In other words, higher the NSS is, more objective and 
subjective saliency map are similar. 
 

m��P = �TOU�P × ��U�j P22222222222222222 − ��U�P222222
� ���UVP�  (17) 

 
The NSS score for a video sequence is obtained by 

computing the average of NSS for all frames as in [25]. Then 
the overall NSS score on each video database is the average 
NSS of all video sequences. Results are presented in Table 2. 
For both databases, the results of the proposed fusion method 
(i.e. Square fusion) are better than the state of the art fusion 
method (i.e. Multiplicative fusion). Log fusion despite good 
visual results gives low NSS due to scale change with regard 
to the second evaluation on the target task of VQA. 

C. Evaluation of NR saliency based metric WMBER 

This section presents the evaluation results of the proposed 
NR metric WMBER. The performance of WMBER is 
compared with the FR metrics PSNR and SSIM. Several 
saliency maps are tested to compute the WMBER: 

− The temporal saliency map (Temporal) 
− The spatial saliency map (Spatial) 
− The Multiplication spatiotemporal saliency map 

(Multiplication) 
− The Log spatiotemporal saliency map (Log) 
− The Square spatiotemporal saliency map (Square) 
− The saliency map from eye-tracking measurements 

(EyeTracker). 
To compare the metrics, we use four evaluation criteria: PCC, 
SROCC, RMSE and OR [7]. The Similarity Weighted 
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Average MOS prediction method is also compared with the 
polynomial regression method (16).  

All the results are presented in Table 3 and Table 4. For 
both databases and both prediction methods, the WMBER 
with Squared saliency map provides the best results for the 
fully automatic methods. 

The “target” comparison of our proposed saliency map with 
regards to the subjective saliency map in ultimate quality 
assessment task shows very good performances of the 
proposed method. In average, on IRCCyN DB with SD 
content, the target evaluation criteria values PCC, SROCC, 
RMSE are only 10% lower than those obtained with eye-
tracker saliency map. On the LaBRI database, the results 
obtained with our proposed saliency map are even 5% better 
on all four PCC, SROCC, RMSE and OR. The difference 
between IRCCyN and LaBRI database results can be 
explained that LaBRI database is in full HD. Our method 
provides finer saliency with full HD. 

Overall the proposed NR VQA WMBER metric gives for 
all cases better results than MSE and SSIM FR metrics.  

We also test the contribution of the new prediction scheme 
by weighted average classifier into global quality assessment 
scheme. In Fig. 6 we show the improvement in terms of four 
quality criteria with adequate choice of y, see section IV. Fig. 
6 illustrates how the minimal accepted similarity value (see 
equation (12) in section IV) impacts the quality of prediction. 
With decrease of this parameter a clear improvement is 
observed. In Fig. 7, we show a scatter plot of prediction of 
MOS with standard y = 1 (see equation (11)) and optimal y 
computed according to method we propose in section IV. One 
can see that the optimal y ensures almost one to one 
correspondence between MOS and predicted MOS. The 
experiments were conducted using 64 bits double precision 
floats which allow fine tuning of y parameter. 

Meanwhile the proposed prediction scheme gives 
approximately the same results as baseline polynomial 
regression. Since the similarity weighted average prediction 
method is based on an incremental learning scheme, it can 
easily be improved by enriching the training database.  

VI. CONCLUSION AND PERSPECTIVES 

In this paper, we were interested in NR quality assessment 
of video content delivery over IP and radio-frequency 
broadcasting networks which are subject to loss. For both HD 
and SD video quality content encoded in actual H.264/AVC, 
we proposed a new NR quality metric truly using the 
information contained in transmitted stream such as error 
detection and motion vectors extraction, combined with image 
signal from decoded frames. The metric is based on visual 
saliency maps built at the decoder end. To predict subjective 
video quality metric in terms of MOS, we used a supervised 
learning approach such as weighted average classifier with 
exponential similarity function and we proposed a new 
normalization approach for this similarity measure. 

The new metrics and the prediction methods were 
exhaustively tested with 11 loss profiles on IRCCyN and 

LaBRI databases. The experiments conducted on both 
databases according to the VQEG evaluation protocol show 
that the proposed No-Reference metric WMBER provides 
more accurate results than classical Full-Reference metrics 
such as MSE and SSIM. 

We show that the proposed method for visual saliency maps 
construction outperforms multiplicative saliency pooling and 
gives very close results to subjective saliency maps build from 
eye-tracker data. 

The proposed prediction method on the basis of similarity 
weighted average give similar results as VQEG polynomial 
regression with our modification proposal.  

In conclusion, we believe that the proposed NR quality 
metric has very good applications perspective as it doesn’t 
require any modification of actual broadcast chain. All the 
intelligence is at the decoder side. Furthermore, the reuse of 
information during the decoding process gives seducing 
perspective for real-time implementation. Moreover we see an 
interesting perspective in the study of supervised learning 
approaches for prediction of video quality as a function of 
content genre and “usefulness”. This is, to our knowledge, one 
of the objective of the VQA community. 
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Fig. 1. Block-diagrams for WMBER computation and MOS prediction 

 
 
 
 

(a) (b) (a) (b) 

Fig. 2. Illustration of spatial saliency map construction on decoded video: 
(a) original decoded frame, (b) spatial saliency map. Sequences 7 and 12, 

LaBRI database at 6 MBps. First row: SRC, second: PVS 
 

 
 

 
Fig. 3. Block-diagram for temporal saliency map estimation. 

 
 
 
 

(a) (b) (c) 
Fig. 4. Residual motion computation, “station 2 – TUM”, LaBRI DB at 

6MBps: (a) Original frame, (b) “Heat-map” of temporal saliency map before 
flat area filtering, (c) “Heat map“ of temporal saliency map after flat area 

filtering. 
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(a) (b) 
Fig. 5. Example of saliency maps from gaze tracking. (a) Original frames, 

(b) Saliency maps. 
 
 

 
TABLE 1 

LOSS PROFILES OF LABRI DB 
Model Profile Loss Burst 
IP 0 0.05% No 

1 1% No 
2 1% Yes 
3 5% No 
4 5% Yes 

RF 5 0.01% No 
6 0.1% No 
7 1% No 

 
TABLE 2 

NSS RESULTS OF FUSION METHODS 
 Multiplication Log Square 
LaBRI DB 0.773 0.042 0.994 
IRCCyN 
DB 

0.024 -0,545 1,059 

 

 
 

 
Fig. 6 Similarity Weighted Average performance on LaBRI DB with 

WMBER(Square) 
 
 
 
 

 
Fig. 7 MOS vs MOSp of Similarity Weighted Average on LaBRI DB with 

WMBER(Square) 
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TABLE 3 

METRICS RESULTS ON LABRI DB 

 
 
 
 

TABLE 4 
METRICS RESULTS ON IRCCYN DB 

 
 

MOS prediction MSE SSIM 
WMBER 

(Temporal) 
WMBER 
(Spatial) 

WMBER 
(Multiplication) 

WMBER 
(Log) 

WMBER 
(Square) 

WMBER 
(EyeTracker) 

Similarity 
Weighted 
Average 

PCC 0.831 0.768 0.928 0.925 0.930 0.935 0.938 0.887 
SROCC 0.782 0.765 0.890 0.871 0.879 0.882 0.903 0.841 
RMSE 0.581 0.750 0.410 0.424 0.432 0.402 0.404 0.467 
OR 0.044 0.073 0.013 0.000 0.000 0.000 0.000 0.024 

Polynomial 
regression 

PCC 0.799 0.746 0.930 0.921 0.930 0.931 0.940 0.897 
SROCC 0.819 0.684 0.881 0.868 0.869 0.879 0.881 0.833 
RMSE 0.648 0.698 0.387 0.432 0.398 0.389 0.369 0.468 
OR 0.019 0.074 0.013 0.013 0.002 0.002 0.000 0.015 

MOS prediction MSE SSIM 
WMBER 

(Temporal) 
WMBER 
(Spatial) 

WMBER 
(Multiplication) 

WMBER 
(Log) 

WMBER 
(Square) 

WMBER 
(EyeTracker) 

Similarity 
Weighted 
Average 

PCC 0.367 0.369 0.351 0.407 0.393 0.402 0.470 0.567 
SROCC 0.367 0.409 0.364 0.355 0.364 0.393 0.443 0.558 
RMSE 0.893 0.825 0.821 0.811 0.820 0.810 0.793 0.734 
OR 0.184 0.173 0.173 0.149 0.167 0.144 0.153 0.087 

Polynomial 
regression 

PCC 0.426 0.391 0.358 0.347 0.348 0.387 0.468 0.527 
SROCC 0.458 0.407 0.326 0.345 0.341 0.362 0.444 0.495 
RMSE 1.604 0.811 0.892 1.193 1.406 1.139 0.790 0.707 
OR 0.123 0.119 0.206 0.171 0.191 0.171 0.133 0.079 


