Abstract-The paper contributes to video quality assessment of delivered content without reference. We propose a no-reference video quality assessment metric taking into account the behavior of the human visual system. The proposed metric called Weighted Macro-Block Error Rate (WMBER) is based on macro-block error detection and is weighted by visual saliency maps. Both measures are extracted from a partially decoded H.264 AVC stream. First of all, we propose a new saliency map fusion method to improve the spatiotemporal saliency model. Then a supervised learning method called Similarity Weighted Average is considered to predict subjective MOS from objective video quality metric. The Similarity Weighted Average method is improved in order to be adapted to a training database or a content. The performance of the proposed metric is evaluated on two subjective experimental databases from LaBRI and IRCCyN. The results are compared with two Full-Reference metrics MSE and SSIM. The evaluation shows that the proposed metric provides an accurate prediction of subjective measures.
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I. INTRODUCTION

ith the introduction of HDTV Broadcast over DVB-T/S 1&2 [START_REF]Digital Video Broadcasting[END_REF], and the wide use of IPTV services by Internet Service Providers, the quality assessment of broadcasted video services became an important research topic for both academia and industries. The research on quality assessment was emphasized in the last few years by a need for optimization of bandwidth resources allocation, better system design, and optimal geographical positioning of broadcast equipments. The quality assessment of the delivered HD content would satisfy user requirements and enhance its quality of experience 1 Manuscript received January 9, 2012. H. Boujut is with the LaBRI UMR CNRS 5800 University of Bordeaux, 351 cours de la Liberation 33405 Talence cedex, France (phone: +33 5 40003880; fax: +33 5 40006669; e-mail: boujut@labri.fr).
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(QoE). Video quality assessment (VQA) was required due to the introduction of lossy video coding standards at the beginning of the 80's. As adopted in ITU-T recommendation [START_REF]11 Methodology for the subjective assessment of the quality of television pictures[END_REF], the majority of VQA techniques which were proposed so far, had only tackled the degradations induced by encoding process. Today, HD delivery raises new challenges such as how to objectively assess the quality of impaired video stream at the decoder side which may suffer from signal degradation and packet errors. Transmission errors generate strong visual degradations due to simple error resilience mechanisms used in the end-to-end delivery chain. These mechanisms are implemented in typical industrial decoders of the actual HDTV standard H.264/AVC [START_REF] Iso/Iec | H.264 Advanced Video Coding[END_REF]. As delivered HD video is to be perceived by the human vision system (HVS), we believe that quality assessment mechanism has to be designed accordingly to user perception and experience. Towards this objective, we propose an accurate definition of saliency maps in video scenes [START_REF] Le Meur | Predicting visual fixations on video based low-level visual features[END_REF]. Furthermore, our proposed objective quality metric takes into account the loss of blocks in H.264 encoded HD stream during delivery. Many actors are involved in the broadcast delivery chain. For this reason, we believe that a no-reference (NR) VQA scheme will be useful to evaluate transmitted video streams. We also think that a NR VQA scheme will have an important impact on different stakeholders involved in the delivery chain, from content producers to content consumers passing through network operators and service providers.

A very large and extensive research was conducted for full reference (FR) VQA. Its outcomes can be successfully used for designing efficient NR VQA metrics. Specifically, spatial VQA metrics were exhaustively studied [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF], [START_REF] Panayides | Atherosclerotic plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264[END_REF], [START_REF] You | Balancing Attended and Global Stimuli in Perceived Video Quality Assessment[END_REF] on the basis of modeling the sensitivity of HVS. These models of visual attention include local color contrast orientation and global statistics of features in a given image, or only in a Region of Interest (ROI) [START_REF] Panayides | Atherosclerotic plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264[END_REF]. A rather complete analysis of these approaches is given in [START_REF] Soundararajan | Study of subjective and objective quality assessment of video[END_REF]. In [START_REF] Wang | Video quality assessment based on structural distortion measurement[END_REF], [START_REF] Wang | Video quality assessment using a statistical model of human visual speed perception[END_REF], and [START_REF] Ninassi | Considering temporal variation of spatial visual distorsions in video quality assessment[END_REF], another approach considering motion and its variations along the elapsed time is used for weighting spatial quality indices. This approach is also explicitly incorporated in visual saliency maps for weighting full reference distortion metrics resulting in Weighted Mean Squared Error (WMSE) [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF], as well in other objective (FR) weighted metrics such as Weighted Peak Signal-to-Noise Ratio (WPSNR) referenced in [START_REF] Seshadrinathan | Motion Tuned Spatio-temporal Quality Assessment of Natural Videos[END_REF]. The NR video quality assessment research has made a significant progress and as explained in [START_REF] Seshadrinathan | Motion Tuned Spatio-temporal Quality Assessment of Natural Videos[END_REF], a general motion-tuned spatiotemporal framework is now proposed for NR VQA. This [START_REF] Barkowsky | Temporal trajectory aware video quality measure[END_REF]. Here, the authors introduce temporal tracking of degradations on moving objects, imitating in this way user behavior in the perception of video content: Humans focus their attention on degraded objects. The elapsed time during which they gaze at degraded objects, is also modeled. The process results in tree maps: spatial degradations, observation time and reliability, which then are combined via multiplicative pooling. The main principles of TetraVQM are improved in [START_REF] Engelke | Modelling Saliency Awarness for Objective Video Quality Assessment[END_REF] with more sophisticated saliency modeling. Remaining in the framework of FR quality assessment, the authors propose to decrease a VQA metric by a weighted saliency map. In their paper, the authors use a saliency map which was created from gaze patterns to avoid the possible errors in the prediction of saliency.

The NR VQA metrics still remain a research challenge and contrary to FR metrics [16], they are not yet normalized in recommendations of ITU-T. Furthermore, as it is stated in the position paper [START_REF] Hemami | No-reference image and video quality estimation: Applications and human-motivated design[END_REF], a NR Quality Estimator has to be designed "to achieve the required accuracy for its application over the set of input content and artifacts for which it was designed". The contribution of our paper consists in proposing a new NR VQA metric called Weighted Macro-Block Error Rate (WMBER) to assess the quality of HD video encoded in H.264/AVC for video delivery via broadcast channels and IP networks. We evaluate the quality loss resulting from transmission and decoding. Specifically, the metric is designed to detect degradations induced by macro-block losses. The temporal artifacts caused by transmission delays such as jerkiness, have not been yet considered. However, these temporal artifacts can be modeled as loss. The three steps of measuring, pooling and quality score mapping [START_REF] Hemami | No-reference image and video quality estimation: Applications and human-motivated design[END_REF] are developed in this framework. In [START_REF] Hemami | No-reference image and video quality estimation: Applications and human-motivated design[END_REF], the proposed "paramount" condition for NR metrics is to incorporate as much information about HVS as possible. Therefore, we weighted a simple and fast measure on a compressed stream by a spatiotemporal saliency map built at the decoder end. In our work, we have decided to only evaluate video quality degradation caused by transmission artifacts. As a result, the reference video in our case -the Source Reference Channel (SRC) in VQEG terminology -is an "ideally" delivered codestream, that is a decoded H.264/AVC video code-stream transmitted without any loss. The impaired video we evaluate -processed video stream (PVS) in VQEG terminology -are sequences which are decoded after transmission via a noisy channel and concealed by the error concealment mechanism from the decoder. The transmission loss models -the Hypothetic Reference Circuit (HRC) in VQEG terminologyare a combination of network loss profile and video decoder with their own error concealment mechanism.

To build our NR VQA metric WMBER [START_REF] Boujut | A Metric For No Reference video quality assessment for HD TV Delivery based on Saliency Maps[END_REF], our first step is to define a visual saliency map computed from compressed H.264/AVC code-stream. It includes motion, transmission errors and pixels. Motion is directly extracted from codestream motion vectors. Transmission errors are identified when parsing the code stream at the decoder end. Finally pixel values are obtained after decoding. The automatic saliency map obtained is evaluated against subjective saliency maps built from gaze tracking reference databases (IRCCyN [START_REF] Engelke | Modelling Saliency Awarness for Objective Video Quality Assessment[END_REF] and LaBRI [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF]). Theses subjective saliency maps are computed with a method inspired from D. S. Wooding [START_REF] Wooding | Eye Movements of Large Populations: II. Deriving Regions of Interest, Coverage, and Similarity using Fixation maps[END_REF]. To measure the performance of the automatic saliency map model, two evaluations are performed. First, the automatic saliency map "objective" quality is analyzed. This analysis is achieved by comparing objective saliency maps with subjective saliency maps. Then the performances of the WMBER weighted by the automatic saliency maps are compared with the WMBER weighted by the subjective saliency maps.

The gradient energy and the count of erroneous blocks are also required to be implemented at the decoder end for WMBER calculation. The whole block diagram of the method is presented in Fig. 1.

The pooling strategy for WMBER computation is composed of two levels: saliency map pooling (see the block "Saliency map pooling" in Fig. 1) and error measurement pooling. The error measurement pooling is performed with the erroneous block count, the error map and gradient (see block "error pooling" in Fig. 1).

Spatial and temporal saliencies are also pooled when building the spatiotemporal saliency map. After error pooling process, are only kept damaged macro-blocks with artifacts caused by transmission loss on transformed coefficients or motion vectors.

The mapping-to-quality strategy still remains an open issue. Despite the cubic polynomial regression proposed in VQEG report [START_REF]Report on the Validation of Video Quality Models for High Definition Video Content[END_REF], the prediction of quality score was implemented in recent works with other forms of regression, such as exponential regression [START_REF] You | Balancing Attended and Global Stimuli in Perceived Video Quality Assessment[END_REF], [START_REF] Bhat | A new perceptual quality metric for compressed video[END_REF], or with classical machine learning tools such as neural networks [START_REF] Callet | A Convolutional Neural Network Approach for Objective Video Quality Assessment[END_REF], [START_REF] Li | Blind Image Quality Assessment Using a General Regression Neural Network[END_REF]. Here we choose a machine learning approach based on a classifier weighted by an exponential similarity measure. This machine learning approach is called "similarity weighted average" and is introduced in [START_REF] Billot | Axiomatization of an exponential similarity function[END_REF]. The purpose of the similarity weighted average is to predict Mean Opinion Score (MOS) from objective quality measurements (i.e. WMBER scores). Then, predicted MOS are compared with MOS obtained in psychovisual experiments accordingly to ITU-R BT500.11 protocol on 69 subjects.

For these experiments, several packet loss profiles are simulated in the scenario of video transmission over IP networks. For broadcast applications, other loss models are explored, such as Bit-Error Rate (BER) due to signal fading and interference.

The remainder of our paper is organized as follows. Section II describes the method for building an automatic saliency maps and the evaluation methodology with an NSS measure as proposed in [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF]. In section III, we introduce a new low-cost, high accurate NR VQA metric WMBER which uses the saliency map we compute at the decoder end. Section IV presents the learning approach for prediction of subjective metrics (MOS). Evaluation results for both proposed saliency maps and NR VQA metric are shown in section V. Section VI concludes this work and outlines its perspectives.

II. SPATIOTEMPORAL VISUAL SALIENCY MAP FROM H.264 CODE-STREAM

The HVS has the property of focusing the attention on narrow areas in the visual scene called salient areas. These salient areas send stimulus to the HVS. Inside video scenes, salient stimuli are characterized by high color contrasts, motion, and edge orientation.

In the literature, the saliency of a visual scene is generally depicted by two saliency maps, the "spatial" and the "temporal" saliency maps [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF]. We will focus on both aspects to propose a saliency map model built on the decoder side.

A. Spatial saliency map built from the impaired decoded stream. Spatial and/or temporal saliency maps are always computed from the original video for FR quality metrics and in other visual attention studies. The saliency of video content changes in the presence of compression and transmission artifacts. In [START_REF] Hadar | The influence of image compression on target acquisition[END_REF], the authors study the influence of MPEG2 video compression on the human observation of video content in the specific cases of target detection and tracking. They state that gaze patterns become more random and unfocused on target as the compression ratio increases. The reason is the attraction of human eyes by strong compression artifacts outside the target region. The same statement is done by the authors of [START_REF] Shoham | A novel perceptual image quality measure for block based image compression[END_REF] in JPEG-compressed still images. Finally, the authors of [START_REF] Mittal | Task Dependence of Visual Attention on Compressed Videos: Point of Gaze Statistics and Analysis[END_REF] also study the influence of compression ratio to the gaze attraction. The authors conclude that the focus of attention is more concerned by the dynamic contents of the scene. Nevertheless, the results shown for high distortion video confirm the same phenomenon.

In the case of transmission errors, conventional decoders apply error concealment mechanisms, which correct errors on video frames with more or less success. Therefore, our proposal for computation of spatial saliency map on the decoded video stream consists in applying exactly the same method as if the spatial saliency map was computed on the original non-degraded video.

The spatial saliency map ܵ ௌ is mainly based on color, contrast and luminance [START_REF] Ninassi | Considering temporal variation of spatial visual distorsions in video quality assessment[END_REF]. If the decoder error concealment mechanism manages to recover a transmission error on a block without inducing any discontinuity with surrounding blocks, then the eye will not be attracted by the artifact and no saliency will be induced by the transmission and decoding. If, on the contrary, a visible artifact is induced, then the area becomes salient.

To build spatial saliency map on the decoded frames we used the method from [START_REF] Le Meur | Predicting visual fixations on video based low-level visual features[END_REF].

The spatial saliency map extraction is based on the sum of 7 color contrast descriptors in the HSI domain. The 7 color contrast descriptors are: hue contrast, saturation contrast, intensity contrast, opposite color contrast, warm and cold color contrast, dominance of warm colors, and dominance of brightness and hue. The seven descriptors ܸ ఋ are computed for each pixel ݏ of a frame ݅ using the 8-connected neighborhood. Then, to get the final spatial saliency map ܵ ௌ , the 7 descriptors are combined for each pixel ݏ accordingly to [START_REF]Digital Video Broadcasting[END_REF].

ܵ ௌ ሺݏ ሻ = 1 7 ܸ ఋ ሺݏ ሻ ఋୀଵ (1) 
Finally, ܵ ௌ is normalized (2) between 0 and 1 according to its maximum value ܵ ௫ .

ܵ ௌ ᇲ ሺݏ ሻ = ܵ ௌ ሺݏ ሻ/ܵ ௫ (2) 
As we stated above, we compute the spatial saliency maps on the decoded frames. In Fig. 2 we present two extreme cases for H.264/AVC compressed stream in typical broadcast applications: one with no transmission artifacts (upper row) and another one with strong transmission artifacts (lower row). As a result, a complementary saliency appears in the areas of loss.

B. Temporal saliency maps

The temporal saliency map ܵ ் models the attraction of attention to motion singularities in a scene. Two sources for saliency can be used. The first source is the transformed domain, such as Gabor decomposition of both, video frames and optical flow field [START_REF] Seshadrinathan | Motion Tuned Spatio-temporal Quality Assessment of Natural Videos[END_REF]. The second is the baseband pixel domain, as shown in [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF]. Temporal saliency maps were recently proposed on the basis of residual motion with respect to global model [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF]. The latter is estimated using image signal on pixel basis. In our proposal, we take profit of motion information already present in a video code-stream. The primary motion features such as macro-block and sub macroblock motion vectors of H.264 are used to estimate the global model and compute the residual motion. The global scheme for temporal saliency map computation is presented in Fig. 3.

The main step here is to estimate a global motion model. In this work, we follow the preliminary study from [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF] and use a complete first order affine model (3):

ݔ݀ = ܽ ଵ + ܽ ଶ ሺݔ -ݔ ை ሻ + ܽ ଷ ሺݕ -ݕ ை ሻ ݕ݀ = ܽ ସ + ܽ ହ ሺݕ -ݕ ை ሻ + ܽ ሺݕ -ݕ ை ሻ (3) 
Here ߠ = ሺܽ ଵ , ܽ ଶ , … , ܽ ሻ ் is the parameter vector of the global model (3) and ሺ݀ݔ , ݕ݀ ሻ ் is the motion vector of a macro-block. To estimate this model, we used robust least square estimator presented in [START_REF] Krämer | Scene similarity measure for video content segmentation in the framework of rough indexing paradigm[END_REF]. We denote this motion vector ܸ ߠ ሬሬሬԦሺݏ ݅ ሻ. Our goal is now to extract the local motion in video frames i.e. residual motion with regard to model [START_REF] Iso/Iec | H.264 Advanced Video Coding[END_REF]. Therefore, we need to extract reliable motion vectors from H.264 code stream to compare with ܸ ߠ ሬሬሬԦሺݏ ݅ ሻ. A 3 steps processing of H.264 motion vectors based on the standard architecture is thus fulfilled. First, in H.264/AVC a macro-block or a sub macro-block may refer to multiple frames. This is the reason why all the vectors extracted from code stream have to be normalized by the distance from reference frame to current frame. The purpose of this normalization is to express the correct instantaneous motion in the current frame. We implement this normalization by simply weighting the motion vector by inverse temporal distance to the reference frame of each block.

The second particularity of H.264 is that some blocks can be intra-coded. We need local motion; hence we will recover a mean value of its motion vector from 2∆ܶ frames: ∆ܶ from the past and ∆ܶ from the future. With a short ∆ܶ, we use a simple 0-order prediction of block positions in previous and future frame for computational cost saving. This is depicted in Fig. 3 by motion interpolation block.

Taking into account that H.264 allows variable size of blocks, we interpolate MB motion vectors up to the smallest size of block (4x4 pixels). This is done by simple zero order interpolation of motion field.

The motion vectors from H.264 code stream are obtained at a 4x4 pixel resolution. We denote this motion vector ܸ ܥ ሬሬሬԦሺݏ ݅ ሻ.

The residual motion is computed as a difference between sub macro-block motion vectors and estimated global motion vectors.

ܸ ܴ ሬሬሬԦሺݏ ݅ ሻ = ܸ ߠ ሬሬሬԦሺݏ ݅ ሻ -ܸ ܥ ሬሬሬԦሺݏ ݅ ሻ (4) 
Another problem we face is the filtering of flat areas (see the block "Flat area filtering" in Fig. 4). Indeed, due to the illposed problem of motion estimation, the code stream contains erroneous vectors on flat areas. These motion vectors are usually very noisy and yield a strong residual motion. We remove these improper values by detecting flat area located in the background. Detecting flat areas is performed by computing and thresholding the gradient energy. Here we use a simple region growing algorithm. Starting from a single macro-block for which the energy of the gradient ‖∇‖ ଶ തതതതതതത is lower than a threshold. We stress that the process of removing flat areas has to be applied to the background. If a small size flat area is a part of foreground object, its saliency should not be reduced. Coming back to the foundations of digital image processing we use the definition of a background by Azriel Rosenfeld [START_REF] Rosenfeld | Digital Topology[END_REF]: "the background" component of a visual scene touches at least one of the borders. Thus our regiongrowing algorithm starts from the borders of a frame and agglutinates blocks whose gradient energy is lower than a threshold. The propagation stops in the direction of the first encountered "non-flat" block. The remaining blocks on borders are explored until all flat areas have been removed. Obviously, such an assumption can be criticized when an object enters in the camera field, but in this case we hope to get the saliency by a spatial contrast.

In Fig. 4 we illustrate the contribution of flat areas filtering. The original frame is presented in Fig. 4 (a). Then in Fig. 4 (b) we show the temporal saliency without flat area detection and in Fig. 4 (c) the temporal saliency map with the flat area removal we proposed.

Finally, the temporal saliency map ܵ ் ሺݏ ሻ is computed by filtering the amount of residual motion in the frame. The authors of [START_REF] Le Meur | Predicting visual fixations on video based low-level visual features[END_REF] reported, as established by S. Daly, that the human eye cannot follow objects with a velocity higher than 80 deg./s [START_REF] Daly | Engineering Observations from Spatio-velocity and Spatiotemporal Visual Models[END_REF]. In this case, the saliency is null. S. Daly has also demonstrated that the saliency reaches its maximum with motion values between 6 deg./s and 30 deg./s. According to this psycho-visual constraints, the filter proposed in [START_REF] Le Meur | Predicting visual fixations on video based low-level visual features[END_REF] is given by [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF].

ܵ ் ሺݏ ሻ = ە ۖ ۔ ۖ ۓ ଵ ܸ ோ ሬሬሬሬԦ ሺݏ ሻ ݂݅ 0 ≤ ܸ ோ ሬሬሬሬԦ ሺݏ ሻ < ݒ Ԧ ଵ 1 ݂݅ ݒ Ԧ ଵ ≤ ܸ ோ ሬሬሬሬԦ ሺݏ ሻ < ݒ Ԧ ଶ ଵ ܸ ோ ሬሬሬሬԦ ሺݏ ሻ + ଼ ହ ݂݅ ݒ Ԧ ଶ ≤ ܸ ோ ሬሬሬሬԦ ሺݏ ሻ < ݒ Ԧ ௫ 0 ݂݅ ܸ ோ ሬሬሬሬԦ ሺݏ ሻ ≥ ݒ Ԧ ௫ (5) 
with ݒ Ԧ ଵ = 6 ,ݏ/.݃݁݀ ݒ Ԧ ଶ = 30 ݏ/.݃݁݀ and ݒ Ԧ ௫ = 80 .ݏ/.݃݁݀ We follow this filtering scheme in temporal saliency map computation.

Due to the use of motion vectors from H.264 code stream and simple but efficient interpolation schemes, the computation of temporal saliency map is faster than real time (i.e. full decoding time).

C. Spatiotemporal saliency map

A spatiotemporal saliency map may be produced by combining the spatial and temporal saliency. Spatiotemporal saliency map fusion methods present in the literature remain simple. In [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF], the authors review spatiotemporal saliency maps such as the "mean", "max" and a multiplicative "and" maps obtained on spatial and temporal maps as arguments. To obtain an integrated spatiotemporal saliency map, three steps are generally required. The two first steps rely on extracting both spatial and temporal saliency maps. The last step is the fusion. Several models which give good results already exist [START_REF] Le Meur | Predicting visual fixations on video based low-level visual features[END_REF], [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF] to predict the saliency of a video scene. In [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF], we proposed a new method for fusion of saliency maps in a logspace. In this paper, we introduce a faster alternative: a squared sum of both spatial and temporal saliency maps. We denote resulting saliency maps respectively ܵ ைீ ௌି் and ܵ ௌொோா ௌି் . The ܵ ைீ ௌି் [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF] is defined by ( 6) with ߙ = 0.5. This fusion method has the same advantage as multiplicative saliency map ܵ ௨ ௌି் [START_REF] Boujut | A Metric For No Reference video quality assessment for HD TV Delivery based on Saliency Maps[END_REF] that gives more importance to regions which have both high spatial and high temporal saliencies. ܵ ைீ ௌି் is better than ܵ ௨ ௌି் as it still exhibits saliency when one of the primary saliencies, the temporal saliency, is low (we note that in video, null spatial saliency with high temporal saliency is improbable, because motion is perceived through luminance changes).

ܵ ைீ ௌି் ሺݏ ሻ = ߙ logሺܵ ௌ ሺݏ ሻ + 1ሻ + ሺ1 -ߙሻ logሺܵ ் ሺݏ ሻ + 1ሻ (6) 
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The squared fusion method ܵ ௌொோா ௌି் we propose in this paper is defined by [START_REF] You | Balancing Attended and Global Stimuli in Perceived Video Quality Assessment[END_REF]. This fusion method has similar fusion properties as ܵ ைீ ௌି் when the temporal saliency is null. Its advantage is an obvious computational time-saving.

ܵ ௌொோா ௌି் ሺݏ ሻ = ሺܵ ௌ ሺݏ ሻ + ܵ ் ሺݏ ሻሻ ଶ (7) 
The proposed spatiotemporal saliency map is an "objective" map which is built on features extracted from the video. It models the human perception dependency on low-level features which are contrasts and motion. In order to assess how spatiotemporal saliency maps are correlated to human visual attention, we compare these automatic saliency maps with the "subjective" visual saliency maps ܵ ௦௨ ሺݏ ሻ. Subjective saliency maps can be obtained during experiments on the human subjects with eye-trackers. Such saliency maps are used in this work as the benchmark for "objective" saliency maps we build at the decoder end.

D. Spatiotemporal visual saliency map from gaze tracking

The construction of "subjective" visual saliency maps from observation of human gaze fixations on images or video is still an open issue and there is not any unified methodology. The building of such saliency maps is based on the so-called fixation maps, which were probably the most exhaustively studied by D. S. Wooding [START_REF] Wooding | Eye Movements of Large Populations: II. Deriving Regions of Interest, Coverage, and Similarity using Fixation maps[END_REF]. Fixation maps are successfully used for studying human attention in visual analysis tasks [START_REF] Yanulevskaya | An image statistics based model for fixation prediction[END_REF].

In [START_REF] Wooding | Eye Movements of Large Populations: II. Deriving Regions of Interest, Coverage, and Similarity using Fixation maps[END_REF], Wooding proposes a fixation map as a landscape of Gaussians centered on fixation points. In the case of eyetrackers with a high sampling rate such as 1000 Hz (see [START_REF] Yanulevskaya | An image statistics based model for fixation prediction[END_REF]), a supplementary processing is needed to extract fixation points. In our case as in the experiments in [START_REF] Engelke | Modelling Saliency Awarness for Objective Video Quality Assessment[END_REF], a standard eye-tracker with a sampling rate of 60Hz is used. Since the video frame rate (25Hz) and the eye-tracker sampling rate (60Hz) are very closed, we consider each eye-tracker measurement as a fixation point. On each fixation point, a 2 dimensional Gaussian is centered with a 2 visual degrees standard deviation as in the Wooding's method. The height of the Gaussian is unitary at the fixation point. Then, for a given frame, all from fixation points of all observers are cumulated into a "landscape" and the sum is normalized by the maximum in a frame.

Examples of saliency maps from gaze-tracking are presented in Fig. 5.

In order to compare "subjective" and automatic "objective" saliency maps, different strategies can be considered. Some of these strategies are referenced in [START_REF] Wooding | Eye Movements of Large Populations: II. Deriving Regions of Interest, Coverage, and Similarity using Fixation maps[END_REF]. Wooding proposes a differential saliency map obtained by a simple subtraction of normalized saliency maps ܵ ௌି் and ܵ ௦௨ . ܵ ௌି் and ܵ ௦௨ can also be compared with the Normalized Scan Path (NSS), which was introduced in [START_REF] Peters | Components of bottom-up gaze allocation in natural images[END_REF] and used in [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF]. We use the NSS as well and present the results in section V-B.

III. A NO-REFERENCE VIDEO QUALITY ASSESSMENT METRIC: WMBER

In this section, we describe the proposed NR quality assessment metric Weighted Macro Block Error Rate (WMBER). The block-diagram of WMBER computation is presented in Fig. 1.

The method is based on MB error detection. During the decoding process, the first step is to detect error location. This could be done by extracting the errors in the compressed stream. After recognizing the error in the compressed stream, we find the address of the MB forming a so-called MB Error Map (see "Error Maps" on Fig. 1). It means that if only one coefficient or motion vector is damaged in the MB, the whole MB is labeled as damaged. When the MB type is P or B, it is also labeled as damaged if the motion vector points to a damaged MB on the reference frame. The characteristic function of a MB is thus defined as ݎݎܧ . ݎݎܧ equals to one for damaged blocks and 0 otherwise. Then, the standard H.264/AVC spatiotemporal error concealment is applied. The purpose of our algorithm is to measure video quality in networks with transmission loss and not to measure the quality of compression. According to section II, we compute the spatiotemporal saliency map for all frames after error concealment. To improve the results, we need to take another parameter into account, which is the norm of the gradient in a block. It is well known that the human visual system is sensitive to low spatial frequencies and surrounding edges. If we consider a strong visible artifact on the block border, then it will be expressed in the higher gradient energy. In case of strongly textured blocks, the visible artifacts are possible due to the encoding inside a block. In this case we cannot make any distinction between the loss or the coding process. We found, that considering gradient energy for saliency computation inside a block enhances the saliency due to network transmission errors. Blockiness generated by transmission loss is for instance very noticeable by HVS on regions with low spatial activity. Hence, the norm of gradient ‖∇I‖ is computed in the whole error-concealed frame I and normalized between 0 and 1. The gradient is computed on Y component of YUV decoded frames by Sobel operator [START_REF] Sobel | Neighbourhood coding of binary images fast contour following and general array binary processing[END_REF]. This step is shown by the block « Gradient Energy » in Fig. 1. For each labeled macro-block, the mean of the normalized norm of the gradient in this block ฮ∇ ഢ തതതതതത ฮ is computed [START_REF] Soundararajan | Study of subjective and objective quality assessment of video[END_REF].

ฮ∇ ഢ തതതതതത ฮ = 1 |ܾ݉ | ‖∇ܫሺݏሻ‖ ݔܽ݉ ௦ ሺ‖∇ܫሺݏሻ‖ሻ ௦∈ (8)
With ܾ݉a macro-block and ݏa pixel of ܾ݉ .

The saliency measure ܵ ഥ for a block ܤ is derived from the spatiotemporal saliency map as an average saliency of all pixels in a block. For WMBER computation we weight the saliency by the average gradient norm from [START_REF] Soundararajan | Study of subjective and objective quality assessment of video[END_REF]. Therefore, areas with high gradient on block borders will get more weight in the final decision on saliency. Finally the WMBER is computed by [START_REF] Wang | Video quality assessment based on structural distortion measurement[END_REF] for each decoded frame ܫ except IDR frames because the temporal saliency map is not available.

ܴܧܤܯܹ = 1 - ∑ ݎݎܧ‪ቂ • ฮ∇ ฮ തതതതതതതതത • ܵ ഥ ቃ ே ್ ୀଵ ∑ ܵ ഥ (9)
With ܰ the number of macro-blocks in a frame ݈.

Here ܵ ప ഥ is a mean saliency of a block computed from pixelbased saliency in [START_REF] You | Balancing Attended and Global Stimuli in Perceived Video Quality Assessment[END_REF]. According to equation ( 9), when ܴܧܤܯܹ is close to 1, the quality of the frame is high. On the contrary, when ܴܧܤܯܹ is close to 0, the quality of the frame is poor. To compute the WMBER for the whole video sequence, the average WMBER of all frames is calculated, as this is usually done for other VQ metrics (see e.g. [START_REF] Bhat | A new perceptual quality metric for compressed video[END_REF]).

IV. MOS PREDICTION FOR EVALUATION OF SALIENCY BASED

METRICS

In this section, we propose to use supervised learning method called average classifier [START_REF] Billot | Axiomatization of an exponential similarity function[END_REF] to predict subjective quality (MOS) values from objective quality metrics, such as WMBER and FR VQA SSIM or MSE. This prediction method requires a training data set of ݊ known pairs ሺݔ , ݕ ሻ to predict unknown ݕ from measured .ݔ Here, ሺݔ , ݕ ሻ pairs are objective metric values (WMBER, SSIM or MSE) ݔ , associated with subjective metric values (MOS) ݕ . The prediction of ݕ given ݔ is performed using equation ( 10) known as a weighted mean classifier with similarity function [START_REF] Ninassi | Considering temporal variation of spatial visual distorsions in video quality assessment[END_REF].

ݕ = ∑ ݔ‪݅݉ሺݏ , ݕ‪ሻݔ ୀଵ ∑ ݔ‪ሺݏ , ݔሻ ୀଵ (10) 
,ݖ‪݅݉ሺݏ ݔሻ = ݔ|-‪ሾݔ݁ -|ݖሿ

In their original paper [START_REF] Billot | Axiomatization of an exponential similarity function[END_REF], the authors show good generalization properties of the classifier due to the monotonicity of the exponential similarity measure [START_REF] Ninassi | Considering temporal variation of spatial visual distorsions in video quality assessment[END_REF]. This is the reason why we choose this prediction scheme. The other reason is that similarity weighted average does not require a heavy training as it is the case for many classifiers such as Neuronal Networks and SVMs. However, the similarity function [START_REF] Ninassi | Considering temporal variation of spatial visual distorsions in video quality assessment[END_REF] depends on the value range of the objective metric. Indeed, the minimum similarity value that we denote ߝ is obtained when the distance ݀ between ݖ and ݔ reaches theoretical maximum value [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF]. We denote this distance ݀ ௫ . For instance, ݀ ௫ = 1 for WMBER and SSIM metrics.

݉݅ݏሺ݀ ௫ ሻ = ݀-‪ሾݔ݁ ௫ ሿ = ߝ (12) 
This means that the similarity weight in the classifier for samples ݔ which are very far (݀ ௫ = 1) from current measure, still remains high. Note that for ݀ ௫ = 1, ݉݅ݏሺ݀ ௫ ሻ ≈ 0.36. Hence, taking into account the normalization of VQ metrics WMBER, SSIM and normalized MSE, we propose to modify the similarity measure as defined in [START_REF] Seshadrinathan | Motion Tuned Spatio-temporal Quality Assessment of Natural Videos[END_REF].

,ݖ‪݅݉′ሺݏ ݔሻ = ݔ|ߣ-‪ሾݔ݁ -|ݖሿ (13) 
From ( 12) and ( 13), the normalization parameter ߣ can be obtained for maximal theoretical values ݀ ௫ as:

ߣ = -ln ሺߝሻ ݀ ௫ (14) 
Furthermore, the normalization parameter ߣ can be adapted to a kind of content or a training database. The problem, here, is to optimize the parameter ߣ maximizing a payoff. We define the following logical payoff function ܨሺߣሻ measuring prediction qualities such as Pearson Correlation Coefficient (PCC), Spearman Rank-Order Correlation Coefficient (SROCC), Root Mean-Squared Error (RMSE) and Outlier Ratio (OR) evaluated on the training database:

ܨሺߣሻ = ە ۖ ۖ ۖ ۖ ۔ ۖ ۖ ۖ ۖ ۓ ൜ 0, ݂݅ ܥܥܲ ᇱ ሺߣሻ < 0 1, ݁ݖ݅ݓݎ݁‪ℎݐ + ൜ 0, ݂݅ ܥܥܱܴܵ ᇱ ሺߣሻ < 0 1, ݁ݖ݅ݓݎ݁‪ℎݐ + ൜ 0, ݂݅ ܧܵܯܴ ᇱ ሺߣሻ > 0 1, ݁ݖ݅ݓݎ݁‪ℎݐ + ൜ 0, ݂݅ ܱܴ ᇱ ሺߣሻ > 0 1, ݁ݖ݅ݓݎ݁‪ℎݐ (15) 
with ߣ > 0 and ܴ′ሺߣሻ is the derivative of a function ܴሺߣሻ.

The optimization with regards to ߣ was implemented by bisection method.

In the VQEG Report on the Validation of the Video Quality Models for High Definition Video Content [START_REF]Report on the Validation of Video Quality Models for High Definition Video Content[END_REF], the authors propose to use a cubic polynomial function (16) to map the objective metric values ݔ to the MOS .ݕ In [START_REF] Bhat | A new perceptual quality metric for compressed video[END_REF] and [START_REF] You | Balancing Attended and Global Stimuli in Perceived Video Quality Assessment[END_REF] exponential regression is used as it is recommended in former reports of VQEG for standard definition streams [START_REF]Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase 1, FR-TV 1[END_REF]. In section V we compare the prediction results of MOS with supervised learning approach and the polynomial regression method.

ݕ = ݔܽ ଷ + ݔܾ ଶ + ݔܿ + ݀ (16) 

V. EVALUATION AND RESULTS

A. Subjective experiments To evaluate our work, we have generated a database at LaBRI from H.264 decoded full HD video; we further call it "LaBRI DB". The LaBRI DB is partially generated from a non-compressed open source video available in [START_REF]The Open Video Project[END_REF]. Since the availability of reference databases with subjective quality assessment data (MOS) for the VQA of H.264 encoded streams is coming true [START_REF] Simone | Subjective assessment of H.264/AVC video sequences transmitted over a noisy channel[END_REF], we are able to use the video DB produced by IRCCyN [START_REF] Engelke | Modelling Saliency Awarness for Objective Video Quality Assessment[END_REF]. We call it "IRCCyN DB".

LaBRI DB

We carried out subjective experiments to measure the quality of HDTV transmitted over lossy networks. To get more participants and more reliable results, the experiment was done in two research laboratories: LaBRI at the University of Bordeaux and Communication Systems Engineering Dept. at the Ben Gurion University of the Negev (BGU). Ten different video sequences of 10 seconds were selected to compose a representative sample of broadcasted HDTV programs. The selection of video sequences was done according to two features called spatial and temporal information, described in ITU-T Rec. P.910 [START_REF].910 Subjective video quality assessment methods for multimedia applications[END_REF]. Video sequences come from four different corpora: The Open Video Project [START_REF]The Open Video Project[END_REF], NTIA/ITS [39] and TUM/Taurus Media Technik [START_REF] Keimel | Visual quality of current coding technologies at high definition IPTV bitrates[END_REF].

Video sequences were encoded into the H.264/AVC format [3] using the x264 [START_REF] Videolan | a free h264/avc encoder[END_REF] software with a bit-rate of 6000Kb/s. Two models of transmission impairments were applied to each video sequence (Table 1). The first one, called IP model, simulates IP packet networks according to ITU-T Rec. G.1050 [START_REF]1050 Network model for evaluating multimedia transmission performance over Internet Protocol[END_REF]. Hence, three kinds of networks: managed, semi-managed and unmanaged were simulated using five packet loss profiles. The second model, called RF model, simulates radio frequency transmission impairments by introducing bit corruption in Transport Stream (TS) packets. To simulate the RF model, three levels of bit corruption were chosen. After processing the 10 video sources (SRC) with the 8 impairment profiles, 80 processed video sequences (PVS) were generated. So, the total number of video sequences assessed by the experiment participants was 90.

The experiment was carried out by following the ACR-HR experimental protocol described in the VQEG Report on the Validation of the Video Quality Models for High Definition Video Content [START_REF]Report on the Validation of Video Quality Models for High Definition Video Content[END_REF]. The experiment room and the lightning conditions were compliant with the ITU-R Rec. BT.500-11 [START_REF]11 Methodology for the subjective assessment of the quality of television pictures[END_REF]. The distance between the subject head and the screen was three times the height of the screen. The video sequences were displayed with a resolution of 1920x1080 pixels using a HDMI cable. In order to be compliant with ITU-R Rec. BT500.11, the experimentation time was 30 minutes. To avoid the "learning effect" each participant has seen the video sequences in a random order and a "warm-up" session of 5 minutes was done before starting the experiment. Hence, 39 participants were gathered: 11 at LaBRI and 28 at BGU. MOS and DMOS subjective metrics were computed by using methods described in [START_REF]Report on the Validation of Video Quality Models for High Definition Video Content[END_REF] and [START_REF]11 Methodology for the subjective assessment of the quality of television pictures[END_REF]. Eye-tracking measurements are only available for 13 subjects.

IRCCyN DB

In this paper, we also evaluate our method on a video database provided by IRCCyN Lab [START_REF] Engelke | Modelling Saliency Awarness for Objective Video Quality Assessment[END_REF]. The IRCCyN DB is composed of 20 SD resolution video sequences. As in LaBRI DB all the video sequences were encoded with H.264/AVC and we consider the encoded video sequence without transmission impairments as the source (SRC). Four packet loss profiles were applied on each SRC. The subjective experiment was carried out by following ITU-R BT500.11 [START_REF]11 Methodology for the subjective assessment of the quality of television pictures[END_REF] protocol and 30 subjects have participated. MOS and DMOS metrics were computed as described in [START_REF]11 Methodology for the subjective assessment of the quality of television pictures[END_REF].

B.

Evaluation of saliency maps In this section, we compare the "objective quality" of the objective spatiotemporal saliency maps ܵ ௨ ௌି் , ܵ ைீ ௌି் and ܵ ௌொோா ௌି் with regard to the subjective spatiotemporal saliency map ܵ ௦௨ . Here, we use the NSS metric that was proposed in [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF] instead of the PCC. In fact the correlation coefficient is very dependent on the Gaussian that was applied to build the subjective saliency map ܵ ௦௨ from gaze positions. NSS is a Z-Score that expresses the divergence of the subjective saliency map from the objective saliency maps. The NSS computation for a frame ݈ is depicted by equation [START_REF] Hemami | No-reference image and video quality estimation: Applications and human-motivated design[END_REF]. Here, ܵ ே denotes the objective saliency map ܵ normalized to have a zero mean and a unit standard deviation, ܺ ത means an average. When ܵ ௦௨ఫ × ܵ ఫ ே തതതതതതതതതതതതതതതതത is higher than the average objective saliency, the NSS is positive; it means that the gaze locations are inside the saliency depicted by the objective saliency map.

In other words, higher the NSS is, more objective and subjective saliency map are similar.

ܰܵܵ = ܵ ௦௨ఫ × ܵ ఫ ே തതതതതതതതതതതതതതതതത -ܵ ఫ തതതതതത ߪ ቀܵ ቁ (17) 
The NSS score for a video sequence is obtained by computing the average of NSS for all frames as in [START_REF] Marat | Modelling Spatio-Temporal Saliency To Predict Gaze Direction For Short Videos[END_REF]. Then the overall NSS score on each video database is the average NSS of all video sequences. Results are presented in Table 2. For both databases, the results of the proposed fusion method (i.e. Square fusion) are better than the state of the art fusion method (i.e. Multiplicative fusion). Log fusion despite good visual results gives low NSS due to scale change with regard to the second evaluation on the target task of VQA.

C. Evaluation of NR saliency based metric WMBER

This section presents the evaluation results of the proposed NR metric WMBER. The performance of WMBER is compared with the FR metrics PSNR and SSIM. Several saliency maps are tested to compute the WMBER:

-The temporal saliency map (Temporal) -The spatial saliency map (Spatial) -The Multiplication spatiotemporal saliency map (Multiplication) -The Log spatiotemporal saliency map (Log) -The Square spatiotemporal saliency map (Square) -The saliency map from eye-tracking measurements (EyeTracker). To compare the metrics, we use four evaluation criteria: PCC, SROCC, RMSE and OR [START_REF] You | Balancing Attended and Global Stimuli in Perceived Video Quality Assessment[END_REF]. The Similarity Weighted Average MOS prediction method is also compared with the polynomial regression method (16).

All the results are presented in Table 3 and Table 4. For both databases and both prediction methods, the WMBER with Squared saliency map provides the best results for the fully automatic methods.

The "target" comparison of our proposed saliency map with regards to the subjective saliency map in ultimate quality assessment task shows very good performances of the proposed method. In average, on IRCCyN DB with SD content, the target evaluation criteria values PCC, SROCC, RMSE are only 10% lower than those obtained with eyetracker saliency map. On the LaBRI database, the results obtained with our proposed saliency map are even 5% better on all four PCC, SROCC, RMSE and OR. The difference between IRCCyN and LaBRI database results can be explained that LaBRI database is in full HD. Our method provides finer saliency with full HD.

Overall the proposed NR VQA WMBER metric gives for all cases better results than MSE and SSIM FR metrics.

We also test the contribution of the new prediction scheme by weighted average classifier into global quality assessment scheme. In Fig. 6 we show the improvement in terms of four quality criteria with adequate choice of ߣ, see section IV. Fig. 6 illustrates how the minimal accepted similarity value (see equation [START_REF] Boujut | Weighted-MSE based on Saliency map for assessing video quality of H.264 video streams[END_REF] in section IV) impacts the quality of prediction. With decrease of this parameter a clear improvement is observed. In Fig. 7, we show a scatter plot of prediction of MOS with standard ߣ = 1 (see equation ( 11)) and optimal ߣ computed according to method we propose in section IV. One can see that the optimal ߣ ensures almost one to one correspondence between MOS and predicted MOS. The experiments were conducted using 64 bits double precision floats which allow fine tuning of ߣ parameter.

Meanwhile the proposed prediction scheme gives approximately the same results as baseline polynomial regression. Since the similarity weighted average prediction method is based on an incremental learning scheme, it can easily be improved by enriching the training database.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we were interested in NR quality assessment of video content delivery over IP and radio-frequency broadcasting networks which are subject to loss. For both HD and SD video quality content encoded in actual H.264/AVC, we proposed a new NR quality metric truly using the information contained in transmitted stream such as error detection and motion vectors extraction, combined with image signal from decoded frames. The metric is based on visual saliency maps built at the decoder end. To predict subjective video quality metric in terms of MOS, we used a supervised learning approach such as weighted average classifier with exponential similarity function and we proposed a new normalization approach for this similarity measure.

The new metrics and the prediction methods were exhaustively tested with 11 loss profiles on IRCCyN and LaBRI databases. The experiments conducted on both databases according to the VQEG evaluation protocol show that the proposed No-Reference metric WMBER provides more accurate results than classical Full-Reference metrics such as MSE and SSIM.

We show that the proposed method for visual saliency maps construction outperforms multiplicative saliency pooling and gives very close results to subjective saliency maps build from eye-tracker data.

The proposed prediction method on the basis of similarity weighted average give similar results as VQEG polynomial regression with our modification proposal.

In conclusion, we believe that the proposed NR quality metric has very good applications perspective as it doesn't require any modification of actual broadcast chain. All the intelligence is at the decoder side. Furthermore, the reuse of information during the decoding process gives seducing perspective for real-time implementation. Moreover we see an interesting perspective in the study of supervised learning approaches for prediction of video quality as a function of content genre and "usefulness". This is, to our knowledge, one of the objective of the VQA community. 
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 12345 Fig. 1. Block-diagrams for WMBER computation and MOS prediction

Fig. 6
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TABLE 1

 1 

		LOSS PROFILES OF LABRI DB
	Model	Profile	Loss	Burst
	IP	0	0.05%	No
		1	1%	No
		2	1%	Yes
		3	5%	No
		4	5%	Yes
	RF	5	0.01%	No
		6	0.1%	No
		7	1%	No
		TABLE 2	
	NSS RESULTS OF FUSION METHODS
		Multiplication	Log	Square
	LaBRI DB	0.773	0.042	0.994
	IRCCyN	0.024	-0,545	1,059
	DB			

TABLE 3

 3 

					METRICS RESULTS ON LABRI DB			
	MOS prediction	MSE	SSIM	WMBER (Temporal)	WMBER (Spatial)	WMBER (Multiplication)	WMBER (Log)	WMBER (Square)	WMBER (EyeTracker)
	Similarity Weighted Average	PCC SROCC RMSE OR	0.831 0.782 0.581 0.044	0.768 0.765 0.750 0.073	0.928 0.890 0.410 0.013	0.925 0.871 0.424 0.000	0.930 0.879 0.432 0.000	0.935 0.882 0.402 0.000	0.938 0.903 0.404 0.000	0.887 0.841 0.467 0.024
		PCC	0.799	0.746	0.930	0.921	0.930	0.931	0.940	0.897
	Polynomial	SROCC	0.819	0.684	0.881	0.868	0.869	0.879	0.881	0.833
	regression	RMSE	0.648	0.698	0.387	0.432	0.398	0.389	0.369	0.468
		OR	0.019	0.074	0.013	0.013	0.002	0.002	0.000	0.015
						TABLE 4				
					METRICS RESULTS ON IRCCYN DB			
	MOS prediction	MSE	SSIM	WMBER (Temporal)	WMBER (Spatial)	WMBER (Multiplication)	WMBER (Log)	WMBER (Square)	WMBER (EyeTracker)
	Similarity Weighted Average	PCC SROCC RMSE OR	0.367 0.367 0.893 0.184	0.369 0.409 0.825 0.173	0.351 0.364 0.821 0.173	0.407 0.355 0.811 0.149	0.393 0.364 0.820 0.167	0.402 0.393 0.810 0.144	0.470 0.443 0.793 0.153	0.567 0.558 0.734 0.087
		PCC	0.426	0.391	0.358	0.347	0.348	0.387	0.468	0.527
	Polynomial	SROCC	0.458	0.407	0.326	0.345	0.341	0.362	0.444	0.495
	regression	RMSE	1.604	0.811	0.892	1.193	1.406	1.139	0.790	0.707
		OR	0.123	0.119	0.206	0.171	0.191	0.171	0.133	0.079
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