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A CONJECTURE OF GODEFROY CONCERNING JAMES’ THEOREM

HERMANN PFITZNER

Abstract. In this note we look at the interdependences between James’ theorem and the
boundary problem. To do so we show a variant of James’ sup-theorem for C(K)-spaces
conjectured by Godefroy: in order to know that a bounded weakly closed subset of a C(K)-
space is weakly compact it is enough to test the sup-attainment only for measures with
countable support.

§1. Introduction. This note is an afterthought to the solution of the boundary problem,
proved in [14] and cited in Theorem 6 below, and hopefully sheds some light onto the
interdependence between James’s theorem [12] and the boundary theorem. Both theorems
provide a criterion for weak compactness. Our idea is to show that, roughly speaking, the
two criterions are, in some sense, equivalent and dual to each other.

Less roughly speaking, let us consider an easy special case. (For notation and definitions
see below.) Let X be a Banach space with unit ball B(X) and dual X∗. Suppose we know
that each bounded linear functional on X attains its norm on B(X). Then, on the one hand,
James’ theorem says that B(X) is weakly compact and the boundary theorem (which we
apply to the dual X∗) says that the dual unit ball B(X∗) is weakly compact (because by
assumption B(X) is a boundary for X∗ and because by Banach-Alaoglu B(X∗) is compact
in the topology of pointwise convergence on B(X)). On the other hand, it is well-known
that B(X) is weakly compact iff B(X∗) is; this is due to Grothendieck’s classical double limit
criterion which displays a kind of symmetry between weak compactness in X and its dual
and which we take, in our context, as a generic theorem which includes related theorems
like the one of Eberlein-Šmulyan or of Gantmacher – or like Lemma 1 below. To resume, in
the present situation James’ theorem and the boundary theorem have equivalent conclusions
namely the weak compactness of B(X) and, respectively, of B(X∗). Note, however, that the
symmetry between both theorems is imperfect because in the example the boundary theorem
yields James’ theorem but in the converse sense only the boundary theorem for the dual X∗

is recovered by James’ theorem. In order to study to which extent James’ theorem implies
the boundary theorem and vice versa, in the general case (i.e. when the unit balls above are
replaced by arbitrary bounded subsets), it is necessary to find variants of both theorems.
We suggest two ways to do so. First, we use the main result of [14] (which is more general
than the solution of the boundary problem) in order to show a variant of James’ theorem,
Theorem 4 below, which goes back to a conjecture of Godefroy [8, p. 46]. Godefroy’s main
interest in his conjecture was the possibility to derive from it a positive solution to the
boundary problem. See (2) below for a summary of these interdependences.

The shortcoming of the just described implications in (2) is that they cannot be reversed
entirely, for example the stronger form of James’ theorem is enough to yield the boundary
theorem but cannot be recoverd entirely by the latter. (This lack of symmetry has already
been observed in the example above.) In order to remedy this, a second way to present the
interdependence of both theorems, resumed in line (4) below, is suggested: Here the stronger
form of James’ theorem is strengthend still a bit more (cf. Prop. 3) so to become equivalent
to the stronger form of the boundary theorem. The inconvenience of this second variant (4) is
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that the statements of the involved theorems are less digest than their ’classical’ counterparts
because they are more technical but this is outweighed by two convincingly short proofs.

Put differently and succintly, in this note only the proof of Godefroy’s conjecture is new;
as to the other results, attention is paid rather to their interdependence.

§2. Notation, preliminaries. To keep this note halfway self-contained we recall some
definitions and notation (which follow [14]). X and Y denote Banach spaces which are
supposed to be real but in the last section we discuss some straightforward modifications
to settle the complex case; X∗ is the dual of X , B(X) its closed unit ball. A bounded set

of a Banach space always means a norm bounded set. D
∗
denotes the w∗-closure of a set

D ⊂ X∗. If K is a topological space we endow the set of continuous real valued functions
on K, C(K), with the Hausdorff topology τp of pointwise convergence on K. If A ⊂ X and
D ⊂ X∗ are sets then A|D denotes the set of restrictions {x|D; x ∈ A} which is a subset of
C(D) where D carries the w∗-topology inherited from X∗. Similarly, D|A is defined. Recall
that a subset A of a topological space T is called relatively countably compact in T if each
countable set in A has a cluster point in T and is called relatively sequentially compact in T

if each sequence in A has a convergent subsequence with a limit in T . Recall further that a
topological Hausdorff space is called angelic if every relatively countably compact subset A
is relatively compact and if the closure and the sequential closure of such a set A coincide. It
follows from the work of Grothendieck that if K is a compact set then (C(K), τp) is angelic
([6, p. 36] or [1] for a generalization). The topology on X of pointwise convergence on D

(where D ⊂ X∗) is denoted by τD; this topology is not necessarily Hausdorff (but it is if D is
a norming set for X). Consequently we do not assume that the various compactness notions
include the Hausdorff property; however, this precaution applies only in the statement of
Theorem 2.

For a bounded subset A ⊂ X we define

aco∞(A) = {
∞∑

n=1

αnxn; αn ∈ IR,

∞∑

n=1

|αn| = 1, xn ∈ A}.

We say that a set B ⊂ B(X∗) is a boundary for X if for each x ∈ X there is b ∈ B such
that b(x) = ‖x‖. A set N ⊂ B(X∗) is called a norming set for X if ‖x‖ = supx∗∈N |x

∗(x)|
for all x ∈ X . A boundary for X is a norming set for X . Note that if N is norming for
X then its absolute convex hull aco(N ) is w∗-dense in B(X∗) by Hahn-Banach’s theorem,

and N
∗
contains extr(B(X∗)) by Milman’s converse to Krein-Milman’s theorem. Therefore

in Theorem 4 below, there would be no loss of generality if we assumed N = extr(B(X∗))
right away. Our references for unexplained Banach space notions are [13] (for boundaries in
particular see [7]), [3, 4], for James’ theorem [6].

§3. The double limit criterion. Let us first comment on Grothendieck’s double limit
criterion. As already alluded to in the introduction, the vague idea is that if in the dual X∗

something is somehow weakly compact then in X something else is also somehow weakly
compact. For a less vague formulation see the following lemma. I thank O. Kalenda and J.
Spurný for indicating relevant references like [2, 5, 9].

Lemma 1. Let F ⊂ Y and A ⊂ Y ∗ be bounded sets. If A|F
∗ (where F

∗
⊂ Y ∗∗) is relatively

countably compact in (C(F
∗
), τp) then F|aco∗(A) is relatively compact and relatively sequentially

compact in (C(aco∗(A)), τp).

If, in addition, A is norming for Y then F is relatively weakly compact.
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Proof Since F
∗
is w∗-compact, the relative countable compactness of A|F

∗ and the easy part

of the double limit criterion [6, p. 11] or [2, Cor. 2.5] yield that

lim
m

lim
n

y∗m(yn) = lim
n

lim
m

y∗m(yn)(1)

(where all involved limits are supposed to exist) for all sequences (yn) in F and (y∗m) in
A (hence also in −A). By [2, Th. 3.3] (which we read with Z = [−M,M ] where M =
supy∈F,y∗∈aco∗(A) |y

∗(y)|, K = F , ε = 0, H = (A ∪ (−A))|F ⊂ ZK), (1) holds for sequences
(y∗m) in aco(A) = co(A ∪ (−A)) too. By [6, p. 12] or [2, Cor. 2.5] (which we read with

D = aco(A), X = D
∗
, H = F|D

∗) it also holds for all sequences (y∗m) in aco∗(A) and the

relative compactness of F|aco∗(A) in (C(aco∗(A)), τp) obtains. Relative sequential compactness
follows from angelicity of (C(aco∗(A)), τp).

If A is norming for Y then aco∗(A) = B(Y ∗) and F is relatively weakly compact by

w∗-compactness of F
∗
and by Banach-Dieudonné’s theorem.

§4. Godefroy’s conjecture on James’ theorem.

Recall the main theorem of [14]:

Theorem 2 (“boundary2.0”). Let A be a bounded set in X and F ⊂ X∗ be a bounded subset
such that for each x ∈ aco∞(A) there is f ∈ F such that f(x) = supg∈co∗(F ) g(x).
If A is τF -countably compact then it is τco∗(F )-sequentially compact.

Note that, though stated more generally here, the just quoted theorem follows from [14,
Th. 9] (with G = co(F )) and the remark preceding it. This slightly better statement and
Lemma 1 enable us to prove the following a bit technical proposition by following the proof
of James’ theorem in [14, Cor. 10] almost word by word:

Proposition 3 (“ James2.1 ”). Let F ⊂ Y and A ⊂ Y ∗ be bounded sets. If each

y∗ ∈ aco∞(A
∗
) ⊂ Y ∗

attains its supremum on F then F|aco∗(A) is relatively compact and relatively sequentially
compact in (C(aco∗(A)), τp).

Proof: Suppose each y∗ ∈ aco∞(A
∗
) attains its supremum on F . Let us first note that we

may and do assume that Y is the norm closed linear span of F which allows us to identify
the (Hausdorff) w∗-topology and τF on bounded sets of Y ∗. Set X = Y ∗. The set A

∗
is

w∗-compact in Y ∗ hence τF -compact in X . Theorem 2 yields that A
∗
is τF ∗-sequentially

compact (where F
∗
⊂ Y ∗∗). Now the conclusion follows from Lemma 1.

Immediately we obtain a weaker but less technical formulation (hence the names ’James2.1’
and ’James2.0’):

Theorem 4 (“ James2.0 ”). Let N be a norming set for a Banach space Y . For a weakly
closed bounded subset F of Y to be weakly compact it is (necessary and) sufficient that each

y∗ ∈ aco∞(N
∗
) ⊂ Y ∗

attains its supremum on F .

Proof: Apply Proposition 3 with A = N , aco∗(A) = B(Y ∗). Then the conclusion follows

from the w∗-compactness of F
∗
in Y ∗∗ and Banach-Dieudonné’s theorem.

In general Theorem 4 does not generalize James’ theorem, for example for strictly convex Ba-
nach spaces we have aco∞(N

∗
) = B(Y ∗). C(K)-spaces form a natural class of Banach spaces

to which Theorem 4 might be applied, in particular for Y = l∞ and N = extr(B(M(βIN))) =

N
∗
we obtain Godefroy’s original conjecture [8, p. 46]:
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Corollary 5 (“James2.0 for l∞”). A weakly closed bounded (not necessarily convex) set
F ⊂ l∞ is weakly compact if each normalized µ ∈ M(βIN) (= (l∞)∗) with countable support
(that is to say of the form (3)) attains its supremum on F .

§5. To and fro between James’ theorem and the boundary problem.

We just saw how Godefroy’s conjecture on James’ theorem follows from Theorem 2, i.e. from
the more general form of the solution of the boundary problem; this explains the first two
arrows in the following line.

(2)

boundary2.0

double
limit
crit.−→ James2.0 −→ James2.0 for l∞

Gant-
macher−→ boundary −→ James reflexive

Almost conversely, the solution of the boundary problem follows from Godefroy’s conjecture
– cf. the third arrow in (2) – as explained in [8] and reproduced in the proof of Theorem 6
below. The last arrow in (2) (where “James reflexive” refers to James reflexivity criterion
[11]) is folklore, cf. the introduction.
The following theorem is a special case of Theorem 2 with F = B, co∗(B) = B(X∗) via
Eberlein-Šmulyan’s theorem whence the names ’boundary’ and ’boundary2.0’.

Theorem 6 (“boundary”). Let B be a boundary for a Banach space X. Then for a weakly
closed bounded subset A of X to be weakly compact it is (necessary and) sufficient that A is
τB-compact.

Proof:
By Eberlein-Šmulyan it is enough to show that every sequence (xn) in A admits a weakly
convergent subsequence which will be proved by showing that the operator

S : l1 → X

(λn) 7→
∑

λnxn

is weakly compact.
Since B is a boundary for X the set co(B) is w∗-dense in BX∗ and likewise for the images
under S∗ in (l∞)∗. By Gantmacher’s theorem, S is weakly compact if S∗ is and this in turn
happens if C = S∗(co(B)) is relatively weakly compact in l∞.
By Corollary 5 it is enough to show that each µ ∈ (l∞)∗ of the form

µ =
∞∑

n=1

αnδsn where
∞∑

n=1

|αn| = 1, sn ∈ βIN, δsn Dirac-measure at sn(3)

attains its supremum on C. (With this notation, (δj)j∈IN is the canonical basis of l1.)
For each n ∈ IN there is an ultrafilter Un on IN such that δsn = w∗ − limj,Un

δj. By τB-
compactness of A, zn = τB − limj,Un

xj exists in X for each n ∈ IN. Set z =
∑∞

n=1 αnzn.
Recalling that xj = Sδj we have S

∗∗µ(b) = b(z) for all b ∈ B by construction. By hypothesis
there is b0 ∈ B such that b0(z) = ‖z‖ hence

supµ(C) = sup(S∗∗µ)(co(B)) = sup(S∗∗µ)(B) = sup
b∈B

b(z) = ‖z‖ = b0(z)

i.e. µ attains its supremum on C at S∗b0.

Remark. There is something curious in the last proof because we deal with two boundaries
at the same time, the original one which is encoded in C in l∞ and a second and auxiliary
one, the extremal points in the dual of l∞ which appears in Theorem 4 if we write N =
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extr(B(X∗)). Is there a deeper reason behind this?

Now we modify (2) by strengthening ’James2.0’ so to obtain two equivalent statements:

boundary2.0

double
limit
crit.←→ James2.1(4)

For “−→”of (4) see the proof of Proposition 3.
Proof of “←−”of (4):
Let A ⊂ X , F ⊂ X∗ be as in Theorem 2, and suppose that A is τF -countably compact.
Consider x∗∗ =

∑
αkx

∗∗
k ∈ aco∞(A

∗
) ⊂ Y ∗ with x∗∗

k ∈ A
∗
and Y = X∗. Each x∗∗

k is a
w∗-cluster point of A hence by τF -compactness of A there is a τF -cluster point xk ∈ A

which coincides with x∗∗
k on F . Set x =

∑
αkxk. Then x and x∗∗ coincide on F . Since

x ∈ aco∞(A) there is x∗ ∈ F such that x∗∗(x∗) = x∗(x) = sup x∗∗(F ). By Proposition 3,
F|aco∗(A) is relatively compact in (C(aco∗(A)), τp), in particular F|A

∗ is relatively compact

in (C(A
∗
), τp), By Lemma 1, A|co∗(F ) is relatively sequentially compact in (C(co∗(F )), τp).

Via τF -compactness of A, this translates into τco∗(F )-sequential compactness of A hence the
conclusion.

§6. Complex scalars.

For all results the complex case follows from the real one by routine arguments.
In the complex case, the proof of Lemma 1 works with H =

⋃
θ∈[0,2π] e

iθA|F instead of

H = (A ∪ (−A))|F .
As to Theorem 2, if X is complex then we adapt the statement by substituting “|f(x)| =

supg∈co∗(F ) |g(x)|” for “f(x) = supg∈co∗(F ) g(x)”. The passage from complex to real works
like in [7, Th. 5.10]: The map x∗ 7→ Re x∗ defines an IR-linear isometry from X∗ onto (XIR)

∗

where XIR is X considered as a real Banach space. We define F̃ = {Re (λf); |λ| = 1, f ∈ F}
and G̃ = {Re (λg); |λ| = 1, g ∈ co∗(F )} in (XIR)

∗. Then A is τF -countably compact (respec-
tively τco∗(F )-sequentially compact) if and only if it is τF̃ -countably compact (respectively τG̃-

sequentially compact). The set G̃ is w∗-closed in (XIR)
∗, and supg∈co∗(F ) |g(x)| = supg̃∈G̃ g̃(x)

for all x ∈ X . For x ∈ aco∞(A) let f ∈ F be such that |f(x)| = supg∈co∗(F ) |g(x)|. Set

f̃ = Re ( |f(x)|
f(x)

f) if f(x) 6= 0 and f̃ = Re f if f(x) = 0. By construction, f̃ ∈ F̃ and

f̃(x) = supg̃∈G̃ g̃(x). Now the complex result follows from the real one.
Proposition 3 and Theorem 4 are valid for complex scalars if “attains its supremum on F”

is replaced by “admits an f0 ∈ F such that |y∗(f0)| = supf∈F |y
∗(f)|”. Analoguous remarks

hold for Corollary 5 and Theorem 6. (It has already been mentioned in [10, Th. 2.19] that
Theorem 6 holds for complex Banach spaces.)
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