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BMO Martingales and Positive Solutions of Heat Equations

In this paper, we develop a new approach to establish gradient estimates for positive solutions to the heat equation of elliptic or subelliptic operators on Euclidean spaces or on Riemannian manifolds. More precisely, we give some estimates of the gradient of logarithm of a positive solution via the uniform bound of the logarithm of the solution. Moreover, we give a generalized version of Li-Yau's estimate. Our proof is based on the link between PDE and quadratic BSDE. Our method might be useful to study some (nonlinear) PDEs.

Introduction

In this article, we study positive solutions u of a linear parabolic equation

L - ∂ ∂t u = 0 in (0, ∞) × M , (1.1) 
where M is either the Euclidean space R n and L is an elliptic or sub-elliptic operator of secondorder L = 1 2 m α=1 A 2 α + A 0 , {A 0 , • • • , A m } is a family of vector fields on R n , or M is a complete manifold of dimension n with Riemannian metric (g ij ), and 2L is the Laplace-Beltrami operator

∆ = 1 √ g n i,j=1 ∂ ∂x i √ gg ij ∂ ∂x j ,
where g denotes the determinate of (g ij ) and (g ij ) is the inverse of the matrix (g ij ).

The well-posedness and the regularity theory for (1.1) are parts of the classical theory in partial differential equations, see [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF], [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] and [START_REF] Lieberman | Second order parabolic differential equations[END_REF] for details. On the other hand, it remains an interesting question to devise precise estimates of a solution u in terms of the (geometric) structures of (1.1). There is already a large number of papers devoted to this question. Among many interesting results, let us cite two of them which are most relevant to the present paper. The first result is a classical result under the name of semigroup domination, first discovered by Donnelly and Li [START_REF] Donnelly | Lower bounds for the eigenvalues of Riemannian manifolds[END_REF], which says that if the Ricci curvature is bounded from below by C, then

|∇P t u 0 | ≤ e -Ct P t |∇u 0 |, for u 0 ∈ C 1 b (M ), (1.2) 
where (P t ) t≥0 is the heat semigroup on M , so that the left-hand side is the norm of the gradient of u(t, •) = P t u 0 a solution to the heat equation

1 2 ∆ - ∂ ∂t u = 0 in (0, ∞) × M (1.3)
with initial data u(0, •) = u 0 , while the right-hand side P t |∇u 0 | is a solution of (1.3) with initial data |∇u 0 |. The second result is Li-Yau's estimate first established in [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF]. If the Ricci curvature is non-negative, and if u is a positive solution of (1.3) then

|∇ log u| 2 -2 ∂ ∂t log u ≤ n t for t > 0 .
(1.4)

In fact, in the same paper [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF], Li and Yau also obtained a gradient estimate for positive solutions in terms of the dimension and a lower bound (which may be negative) of the Ricci curvature, though less precise. Their estimates in negative case have been improved over the years, see for example [START_REF] Yau | On the Harnack inequalities of partial differential equations[END_REF], [START_REF] Yau | Harnack inequality for non-self-adjoint evolution equations[END_REF], [START_REF] Bakry | Harnack inequalities on a manifold with positive or negative Ricci curvature[END_REF] and [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF].

In this paper we prove several gradient estimates for the positive solutions of (1.1). Let us first mention some simple ones for illustration.

Theorem 1.1 Let M be a complete manifold with non-negative Ricci curvature. Suppose u is a positive solution of (1.3) with initial data u 0 > 0, then

|∇ log u(t, •)| 2 ≤ 4 t || log u 0 || ∞ , for t > 0, (1.5) 
where || • || ∞ denotes the L ∞ norm on M .

Remark 1.2 As pointed out by the referee, (1.5) can be derived from the reverse logarithmic Sobolev inequality due to Bakry and Ledoux [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF]. In fact, from the reverse logarithmic Sobolev inequality, tP t (u 0 )(x)| log P t (u 0 )| 2 (x) ≤ 2[P t (u 0 log u 0 )(x) -P t (u 0 )(x) log P t (u 0 )(x)],

from which we derive (1.5). However, our method is useful to study estimates for other (nonlinear) PDEs with subelliptic operators, see Theorems 3.8 and 3.9 in Section 3.

Remark 1.3 Theorem 1.1 is very closed to Harnack estimate for the heat equation which is dimension free, see R. Hamilton [START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF]. The relation between the Bakry-Ledoux reverse logarithmic Sobolev inequality and a slight improvement of Hamilton's Harnack inequality was discussed in a very interesting paper by X. D. Li [START_REF] Li | Hamilton's Harnack inequality and the W-entropy formula on complete Riemannian manifolds[END_REF].

Indeed we will establish a similar estimate for the heat equation with a sub-elliptic operator, under similar curvature conditions, and indeed we will establish a gradient estimate for a complete manifold whose Ricci curvature is bounded from below.

Theorem 1.4 Let M be a complete manifold of dimension n with non-negative Ricci curvature. Suppose u is non-negative solution to the heat equation of (1.3) 

with initial data u 0 > 0. If C ∈ [0, ∞] such that -∆ log u 0 ≤ C, then |∇ log u| 2 -2 ∂ ∂t log u ≤ C t n C + 1 for t ≥ 0.
By setting C = ∞ we recover Li-Yau's estimate (1.4).

The novelty of the present paper is not so much about the gradient estimates in Theorem 1.1 and Theorem 1.4, what is interesting of the present work is the approach we are going to develop in order to discover and prove these gradient estimates. Our approach brings together with the martingale analysis to the study of a class of non-linear PDEs with quadratic growth. Of course the connection between the harmonic analysis, potential theory and martingales is not new, which indeed has a long tradition, standard books may be mentioned in this aspect, such as [START_REF] Doob | Stochastic processes[END_REF], [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF], [START_REF] Durrett | Brownian motion and martingales in analysis[END_REF] and etc., what is new in our study is an interesting connection between the BMO martingales and positive solutions of the heat equation (1.3).

To take into account of the positivity, it is better to consider the Hopf transformation of a positive solution u to (1.3), i.e. f = log u, then f itself solves a parabolic equation with quadratic non-linear term, namely

1 2 ∆ - ∂ ∂t f = - 1 2 |∇f | 2 in [0, ∞) × M . (1.6)
The preceding equation (1.6) is an archetypical example of a kind of semi-linear parabolic equations with quadratic growth which has attracted much attention recently associated with backward stochastic differential equations, for example Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF], Briand-Hu [START_REF] Briand | BSDE with quadratic growth and unbounded terminal value[END_REF], Delbaen et al. [START_REF] Delbaen | Backward SDEs with superquadratic growth[END_REF] and etc.

The main idea may be described as the following. Suppose f is a smooth solution of the nonlinear equation (1.6), and X t = B t + x where B is a standard Brownian motion on a complete probability space. Let

Y t = f (T -t, X t ) and Z t = (Z i t ) where Z i t = ∇ i f (T -t, X t
), ∇ i is the covariant derivative written in a local orthonormal coordinate system. Then, Itô's lemma applying to f and X may be written as

Y T -Y t = n i=1 T t Z i s dB i s - 1 2 T t |Z s | 2 ds. (1.7)
On the other hand, it was a remarkable discovery by Bismut [START_REF] Bismut | Théorie probabiliste du contrôle des diffusions[END_REF] (for a special linear case) and Pardoux-Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] that given the terminal random variable Y T ∈ L 2 (Ω, F T , P), there is actually a unique pair (Y, Z) where Y is a continuous semimartingale and Z is a predictable process which satisfies (1.7). The actual knowledge that Z is the gradient of Y may be restored if Y T = f 0 (X T ). The backward stochastic differential equation (1.7) with a bounded random terminal Y T , which has a non-linear term of quadratic growth and thus is not covered by Pardoux-Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], was resolved by Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF]. Observe that the martingale part of Y is the Itô integral of Z against Brownian motion B (which is denoted by Z.B). It can be shown that, if Y is bounded, then Z.B is a BMO martingale up to time T , so that the exponential martingale 

E(h(Z).B) t = exp n i=1 t 0 h i (Z s )dB i s - 1 
E Q T t |Z s | 2 ds F t ≤ 4||Y || ∞ .
Finally the sub-martingale property of |Z t | 2 allows to move |Z s | 2 (for s ∈ (t, T )) out from the time integral on the left-hand side of the previous inequality, which in turn yields the gradient estimate.

Let us now give a heuristic probabilistic proof to Theorem 1.4 to explain from where such estimates come from. Let f = log u, and G = -∆f . Then one can show that

G = |∇f | 2 -2f t
(where f t stands for the time derivative ∂ ∂t f for simplicity). Moreover, G satisfies

(L - ∂ ∂t )G = 1 n G 2 + H, where H = (|∇∇f | 2 - 1 n G 2 ) + 2Ric(∇f, ∇f ),
and H ≥ 0. We suppose here G > 0. Consider the BSDE:

dY t = Z t dB t + 1 n Y 2 t dt, Y T = G(0, x + B T ). Then Y t ≥ G(T -t, x + B t ).
Setting

U t = 1 Y t , V t = - Z t Y 2 t ,
then (U, V ) satisfies the following quadratic BSDE:

dU t = - 1 n dt + V t dB t + |V t | 2 U t dt.
Using BMO martingale techniques, one can prove that there exists a new probability measure Q under which Bt = B t + t 0

Vs

Us ds is a Brownian motion. Hence

dU t = - 1 n dt + V t d Bt ,
from which we deduce that

U 0 = T n + E Q [U T ],
and

Y 0 = 1 T n + E Q 1 Y T
which yields the estimate in Theorem 1.4.

Even though the above heuristic proof is probabilistic (which can be made rigorous), we prefer to give a pure analytic proof in the last section.

The paper is organized as follows. Next section is devoted to some basic facts about quadratic BSDEs including BMO martingales. Section 3 establishes the gradient estimates for some linear parabolic PDEs on Euclidean space, while Section 4 establishes these estimates on complete manifold. Last section is devoted to establish a generalized Li-Yau estimate via analytic tool.

BSDE and BMO martingales

Let us begin with an interesting result about BSDEs with quadratic growth. The kind of BSDEs we will deal with in this paper has the following form

dY = m j=1 Z j F j (Y, Z)dt + m j=1 Z j dB j , Y T = ξ, (2.1) 
with terminal value ξ ∈ L ∞ (Ω, F T , P) which is given, where B = (B 1 , • • • , B m ) is a standard Brownian motion, (F t ) t≥0
is the Brownian filtration associated with B, and F j are continuous function on R × R m with at most linear growth: there is a constant

C 1 ≥ 0 such that |F (y, z)| ≤ C 1 (1 + |y| + |z|) ∀(y, z) ∈ R × R m .
According to Peng [START_REF] Peng | Probabilistic interpretation for systems of quasilinear parabolic partial differential equations[END_REF] and as we have seen in the Introduction, if u is a bounded smooth solution to the following non-linear parabolic equation

∂ ∂t u + d j=1 F j (u, ∇u) ∂u ∂x j = 1 2 ∆u in [0, ∞) × R m , (2.2) 
with initial data u 0 , then

Y t = u(T -t, B t + •) and Z t = ∇u(T -t, B t + •) is a solution pair of (2.1) with terminal value Y T = u 0 (B T + •).
The special feature of (2.2) is that the maximum principle applies, which implies that global solutions (here global means for large t) exist for the initial value problem of the system as long as the initial data is bounded (though, this constraint can be relaxed a bit, but for the simplicity we content ourself to the bounded initial data problem). The maximum principle implies that as long as u is a solution to (2.2) then |u(x, t)| ≤ ||u 0 || ∞ . Therefore, if the initial data u 0 is bounded, and F j are global Lipschitz, then, according to Theorem 6.1 on page 592, [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF], u exists for all time, and both u and ∇u are bounded on

R m × [0, T ].
The maximum principle for (2.1) however remains true even for a bounded random terminal value (so called non Markovian case), which in turn yields that the martingale part of Y is a BMO martingale. This is the context of the following Proposition 2.1 Suppose that ξ ∈ L ∞ (Ω, F T , P). There exists a unique solution (Y, Z) to (2.1) such that Y is bounded and M = Z.B is a square integrable martingale. Moreover M = Z.B is a BMO martingale up to time T , and

||Y (t)|| ∞ ≤ ||ξ|| ∞ ∀t ∈ [0, T ].
Proof. The existence and uniqueness is already given in [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF]. The fact that M = Z.B is a BMO martingale up to time T is proved in [START_REF] Morlais | Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem[END_REF]. Then there exists a constant C 2 > 0 such that

E T t |Z s | 2 ds F t ≤ C 2 . Let N t = d j=1 t 0 F j (Y s , Z s )dB j s . Since N, N T -N, N t = T t j |F j (Y s , Z s )| 2 ds ≤ T t C 2 1 (1 + |Y s | + |Z s |) 2 ds, so there exists a constant C 3 > 0 such that E { N, N T -N, N t | F t } ≤ C 3 .
Therefore N is a BMO martingale. Hence the stochastic exponential E(-N ) is a martingale up to T . Define a probability measure Q on (Ω, F T ) by dQ/dP = E(-N ) T . Then, according to Girsanov's theorem Bt = B t + N, B t is a Brownian motion up to time T under Q, and (Y, Z) is a solution to the simple BSDE dY t = Z t .d Bt under the probability Q, whose solution is given by

Y t = E Q {ξ|F t } = E{E(-N ) T E(-N ) -1 t ξ|F t } for t ≤ T . (2.
3)

It particularly implies that ||Y t || ∞ ≤ ||ξ|| ∞ .

Stochastic flows and gradient estimates

Let A 0 , A 1 , • • • , A m be m+1 smooth vector fields on Euclidean space R n , where n is a non-negative integer. Then, we may form a sub-elliptic differential operator of second order in R n :

L = 1 2 m α=1 A 2 α + A 0 , (3.1) 
here we add a factor 1 2 in order to save the constant √ 2 in front of Brownian motion which will appear frequently in computations in the remaining of the paper. Our goal is to devise an explicit gradient estimate for a (smooth) positive solution u of the heat equation

L - ∂ ∂t u = 0, on (0, ∞) × R n , (3.2) 
by utilizing the BSDE associated with the Hopf transformation f = log u, which satisfies the semi-linear parabolic equation

L - ∂ ∂t f = - 1 2 m α=1 |A α f | 2 , on (0, ∞) × R n . (3.3)

Stochastic flow

The first ingredient in our approach is the theory of stochastic flows defined by the following stochastic differential equation

dϕ = A 0 (ϕ)dt + m α=1 A α (ϕ) • dw α , ϕ(0, •) = x, (3.4) 
where •d denotes the Stratonovich differential, developed by Baxendale [START_REF] Baxendale | Brownian motions in the diffeomorphism group[END_REF], Bismut [START_REF] Bismut | Mécanique aléatoire[END_REF], Eells and Elworthy [START_REF] Eells | Stochastic dynamical systems. Control theory and topics in functional analysis[END_REF], Malliavin [START_REF] Malliavin | Géométrie différentielle stochastique[END_REF], Kunita [START_REF] Kunita | On the representation of solutions of stochastic differential equations[END_REF] and etc. The reader may refer to Ikeda and Watanabe [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] for a definite account. To ensure the global existence of a stochastic flow, we require the following condition to be satisfied.

Condition 3.1 Let A α = n j=1 A j α ∂ ∂x j . Assume that A j α have bounded derivatives.
By writing (3.4) in terms of Itô's stochastic integrals, namely

dϕ j = A j 0 + 1 2 m α=1 A i α ∂A j α ∂x i (ϕ)dt + m α=1 A j α (ϕ)dw α , ϕ(0, •) = x, (3.5) 
where (and thereafter) Einstein's summation convention has been used: repeated indices such as l is summed up from 1 up to n. The existence and uniqueness of a strong solution follow directly from the standard result in Itô's theory, which in turn determines a diffusion process in R n with the infinitesimal generator L.

In fact, more can be said about the unique strong solution, and important consequences are collected here which will be used later on. Suppose w = (w t ) is a standard Brownian motion (started at 0) with its Brownian filtration (F t ) t≥0 on the classical Wiener space (Ω, F, P) of dimension m, so that w = (w t ) t≥0 is the coordinate process on the space Ω of continuous paths in R m with initial zero. Then, there is a measurable mapping ϕ : R + × Ω × R n -→ R n and a probability null set N , which possess the following properties.

1. w → ϕ(t, w, x) is F t -measurable for t ≥ 0 and x ∈ R n , and ϕ(0, w, x) = x for every w ∈ Ω \ N and x ∈ R n .

2. t → ϕ(t, w, x) is continuous, that is ϕ(•, w, x) ∈ C(R + , R n ), for w ∈ Ω \ N and x ∈ R n . t → ϕ(t, •, x) is a continuous semimartingale for any x ∈ R n . 3. x → ϕ(t, w, x) is a diffeomorphism of R n for each w ∈ Ω \ N and t ≥ 0. That is x → ϕ(t, w, x)
is smooth and its inverse exists, and the inverse is also smooth.

4. The family {ϕ(t, •, x) : t ≥ 0, x ∈ R n } is a stochastic flow:

ϕ(t + s, w, x) = ϕ(t, θ s w, ϕ(s, w, x))
for all t, s ≥ 0, x ∈ R n and w ∈ Ω \ N , where θ s : Ω → Ω is the shift operator sending a path w to a path θ s w(t) = w(t + s) for t ≥ 0.

5. For each x ∈ R n , ϕ(t) = ϕ(t, •, x) (or denoted by ϕ(t, x)) is the unique strong solution of (3.4).

6. Let J i j (t, w, x) = ∂ϕ i (t,w,x) ∂x j for i, j ≤ n. Then J i j (0, w, x) = δ i j and J solves the following SDE

dJ i j = ∂A i 0 ∂x l (ϕ)J l j dt + m α=1 ∂A i α ∂x l (ϕ)J l j • dw α , J i j (0) = δ i j , (3.6) 
and its inverse matrix K = J -1 = (K i j ) solves

dK i j = -K i l ∂A l 0 ∂x j (ϕ)dt - m α=1 K i l ∂A l α ∂x j (ϕ) • dw α , K i j (0) = δ i j . (3.7) 
In our computations below, we have to use Itô's integrals rather than Stratonovich's ones. Therefore we would like to rewrite (3.6, 3.7) in terms of Itô's differential, so

dJ i j = m α=1 ∂A i α ∂x l (ϕ)J l j dw α + ∂A i 0 ∂x l + 1 2 m α=1 A k α ∂ 2 A i α ∂x l ∂x k + ∂A k α ∂x l ∂A i α ∂x k (ϕ)J l j dt, (3.8) 
and

dK i j = - m α=1 K i l ∂A l α ∂x j (ϕ)dw α -K i l ∂A l 0 ∂x j + 1 2 m α=1 A k α ∂ 2 A l α ∂x j ∂x k - ∂A k α ∂x j ∂A l α ∂x k (ϕ)dt.
(3.9)

Structure assumptions

We introduce some technical assumptions on the structure of the Lie algebra generated by the family of vector fields {A 0 , A 1 , • • • , A m }, in addition to Condition 3.1. Recall that A α = A j α ∂ ∂x j , and A j α,β , A j α,β,γ etc. are the corresponding coefficients in Lie brackets

[A α , A β ] = A j α,β ∂ ∂x j , [A α , [A β , A γ ]] = A j α,β,γ ∂ ∂x j etc.,
where Let us suppose the following Frobenius integrability condition: there exist some bounded smooth coefficients c l β,α (x), such that

A j α,β = A i α ∂A j β ∂x i -A i β ∂A j α ∂x i , A k β,β,α = A j β A i β ∂ 2 A k α ∂x i ∂x j -A j β A i α ∂ 2 A k β ∂x i ∂x j + A i β ∂A k α ∂x j ∂A j β ∂x i -2A j β ∂A i α ∂x j ∂A k β ∂x i + A i α ∂A j β ∂x i ∂A k β ∂x j . (3.10) etc. Let R k α = m β=1 A k β,β,α = m β=1 [A β , [A β , A α ]] k . (3.11) Condition 3.2 There is a constant C 1 ≥ 0 such that for any ξ = (ξ i ) i≤n , θ β = (θ i,β ) i≤n ∈ R n (β = 1, • • • , m), it holds that m α,β=1 n k=1 A k α θ k,β 2 + 2 m α,β=1 n k=1 ξ k A k β,α n i=1 A i α θ i,β +2 m α,β=1 n k=1 ξ k A k α n i=1 A i β,α θ i,β ≥ -C 1 m α=1 n k=1 A k α ξ k 2 i.e. m α,β=1 A α , θ β 2 + 2 A α , ξ A β,α , θ β + 2 A α , θ β A β,α , ξ ≥ -C 1 m α=1 A α , ξ 2 . Condition 3.3 There is a constant C 2 ≥ 0 such that for any ξ = (ξ i ) i≤n ∈ R n n i,k=1 ξ i   m α=1 (A i α R k α + 2A i α A k 0,α ) + m α,β=1 A i β,α A k β,α   ξ k ≥ -C 2 m α=1 n k=1 A k α ξ k
A β,α = m l=1 c l β,α A l , β = 0, 1, . . . , m, α = 1, . . . , m.
In other words, the Lie brackets A β,α , β = 0, 1, . . . , m, α = 1, . . . , m, must lie in the linear span of A 1 , . . . , A m . Then the conditions (3.2) and (3.3) are satisfied. Indeed,

[A β , [A β , A α ]] j = A i β ∂ ∂x i (c l β,α A j l ) -c l β,α A i l ∂A j β ∂x i = c l β,α A j β,l + ∂c l β,α ∂x i A i β A j l = (c l β,α c k β,l + ∂c k β,α ∂x i A i β )A j k . This means that [A β , [A β , A α ]]
also lies in the linear span of A 1 , . . . , A m , and the conditions (3.2) and (3.3) are easily checked.

The density processes Z α

Let us consider a smooth solution f to the following non-linear parabolic equation

L - ∂ ∂t f = h(f, A α f ), on R + × R n , (3.12) 
where h is a C 1 -function on R × R m , though our archetypical example is f = log u and u is a positive solution to equation (3.3). By Itô's formula,

Y t = Y T - m α=1 T t Z α dw α - T t h(Y, Z)ds, (3.13) 
where

Y (t, w, x) = f (T -t, ϕ(t, w, x)), Z α (t, w, x) = (A α f ) (T -t, ϕ(t, w, x))
for α = 1, • • • , m, and Z = (Z α ). The arguments w and / or x will be suppressed if no confusion may arise. Equivalently

dY = m α=1 Z α dw α + h(Y, Z)dt. (3.14) 
Our aim in this part is to show that Z is an Itô process, and derives stochastic differential equations for Z (which in turn gives its Doob-Meyer's decomposition).

It is clear that both Y and Z α (α = 1, • • • , m) are continuous semimartingales. Taking derivatives with respect to x i (i = 1, • • • , n) in the equation (3.14) one obtains

dY i = m α=1 Z α i dw α + h y (Y, Z)Y i + m α=1 h zα (Y, Z)Z α i dt, (3.15) 
where

Y i = ∂ ∂x i Y and Z α i = ∂ ∂x i Z α , i = 1, • • • , n, and 
h y = ∂ ∂y h(y, z) , h zα = ∂ ∂z α h(y, z), α = 1, • • • , m.
On the other hand, by definition,

Y i (t, •, x) = ∂ ∂x i Y (t, •, x) = ∂f ∂ϕ j (t, ϕ(t, •, x))J j i (t, •, x), so ∂f ∂ϕ k (t, ϕ(t, •, x)) = K l k (t, •, x)Y l (t, •, x).
It follows that

Z α (t, •, x) = A k α (ϕ(t, •, x)) ∂f ∂ϕ k (ϕ(t, •, x)) = A k α (ϕ(t, •, x))K l k (t, •, x)Y l (t, •, x), (3.16) 
which implies that Z is a continuous semimartingale. The equation (3.16) is not new, and has been used by many authors in different contexts.

We next would like to write down the stochastic differential equations that Z α must satisfy by using the relation (3.16), which is however an easy exercise on integration by parts. Indeed, we have

dZ α = Y l K l k ∂A k α ∂x j (ϕ)dϕ j + Y l A k α (ϕ)dK l k + A k α (ϕ)K l k dY l +Y l ∂A k α ∂x j (ϕ)d ϕ j , K l k + K l k ∂A k α ∂x j (ϕ)d ϕ j , Y l +A k α (ϕ)d K l k , Y l + 1 2 Y l K l k ∂ 2 A k α ∂x i ∂x j (ϕ)d ϕ i , ϕ j . (3.17)
Using the SDEs (3.4, 3.9) and the BSDE (3.15), through a lengthy but completely elementary computation, we establish the following Doob-Meyer's decomposition for Z

dZ α = m β=1 U α,β dw β + h z β (Y, Z)dt + K l k m β=1 A k β,α Z β l dt +K l k Y l   A k 0,α + 1 2 m β=1 A k β,β,α + A k α h y (Y, Z) - m β=1 A k β,α h z β (Y, Z)   dt, (3.18) 
where repeated indices are added up from 1 to n,

U α,β = K l k A k β,α Y l + A k α Z β l (3.19) and A k β,α = [A β , A α ] k , A k β,β,α = [A β , [A β , A α ]] k .
We are now in a position to work out the Doob-Meyer's decomposition for

|Z| 2 = m α=1 |Z α | 2
which simply follows from Itô's formula and (3.18). In order to simplify our displayed formula, we introduce the following notations:

ξ i = n j=1 K j i Y j , θ k,β = n j=1 K j k Z β j , for i, k = 1, • • • , n and β = 1, • • • , m, so that Z α = n j=1 A j α ξ j and |Z| 2 = m α=1   n j=1 A j α ξ j   2 . (3.20) Let d wβ = dw β + h z β (Y, Z)dt,
which is a Brownian motion under probability Q with the Cameron-Martin density

dQ dP Ft = exp   - m β=1 t 0 h z β (Y, Z)dw β - 1 2 t 0 m β=1 |h z β (Y, Z)| 2 ds   . (3.21)
Then, by an elementary computation,

d|Z| 2 = 2 m α,β=1 Z α ξ k A k β,α + ξ i A i α A k α θ k,β d wβ +   m α,β=1 A k α θ k,β A i α θ i,β + 2ξ k m α,β=1 A k β,α A i α + A i β,α A k α θ i,β   dt +2   h y (Y, Z) m α=1 A i α A k α - m α,β=1 A i α A k β,α h z β (Y, Z)   ξ i ξ k dt +   m α=1 A i α R k α + 2A k 0,α + m α,β=1 A i β,α A k β,α   ξ i ξ k dt. (3.22) Lemma 3.5 If h(Y, Z) = h(Y, |Z| 2 ), then d|Z| 2 = 2 m α,β=1 Z α ξ k A k β,α + ξ i A i α A k α θ k,β d wβ +   m α,β=1 A k α θ k,β A i α θ i,β + 2ξ k m α,β=1 A k β,α A i α + A i β,α A k α θ i,β   dt +   m α=1 A i α R k α + 2A k 0,α + 2A k α h y (Y, |Z| 2 ) + m α,β=1 A i β,α A k β,α   ξ i ξ k dt. (3.23) Proof. In this case i,k,α,β ξ i A i α A k β,α h z β (Y, Z)ξ k = 2 i,k,α,β h ′ ξ i A i α A k β,α A l β ξ l ξ k = -2 i,k,α,β h ′ ξ l A l β A k β,α A i α ξ i ξ k , so i,k,α,β ξ i A i α A k β,α h z β (Y, Z)ξ k = 0,
and thus (3.23) follows directly from (3.22).

Gradient estimates

Recall that f is a smooth solution to the non-linear parabolic equation (3.12), where the nonlinear term h(Y, Z) has at most quadratic growth. In order to devise explicit estimate for A α f (α = 1, • • • , m), we assume the following condition to be satisfied.

Condition 3.6 h(y, z) depends only on (y, |z| 2 ), i.e. there is a continuously differentiable function denoted again by h so that h(y, z) = h(y, |z| 2 ), and we assume that

∂ ∂y h(y, z) ≥ 0.
Then, under Conditions (3.1, 3.2, 3.3, 3.6), according to (3.23), we have

d|Z| 2 ≥ -K|Z| 2 dt + 2 Z α ξ k A k β,α + ξ i A i α A k α θ k,β d wβ , (3.24) 
where

K = C 1 + C 2 .
Lemma 

E Q {M t |F s } ≥ M s , ∀0 ≤ s < t ≤ T . (3.25) 
Proof. By Itô's formula dM = KM dt + e Kt d|Z| 2 , hence, for any 0 ≤ s ≤ t ≤ T , we have

M t -M s = K t s M r dr + t s e Kr d|Z| 2 ≥ 2 t s e Ks m α,β=1 Z α ξ k A k β,α + ξ i A i α A k α θ k,β d wβ ,
which yields (3.25).

We are now in a position to prove the following gradient estimate.

Theorem 3.8 Assume that Conditions (3.1, 3.2, 3.3) are satisfied. Then

m α=1 |A α log u(t, x)| 2 ≤ 4K 1 -e -K(T -t) || log u 0 || ∞ , (3.26) 
for any positive solution u of (3.2).

Proof. Apply the computations in the preceding sub-section to f = log u, and h(y, z) = -1 2 |z| 2 . Then, under the probability Q (defined by (3.21))

Y t = Y T - m α=1 T t Z α d wα + T t m α=1 Z α h zα (Y, Z) -h(Y, Z) ds, thus Y t = Y T - m α=1 T t Z α d wα - 1 2 T t |Z s | 2 ds,
and therefore

E Q 1 2 T t |Z s | 2 ds F t = E Q { Y T -Y t | F t } ≤ 2||Y T || ∞ ≤ 2|| log u 0 || ∞ . (3.27) 
On the other hand, M t = e Kt |Z t | 2 is a submartingale, thus one has

E Q |Z s | 2 F t ≥ e K(t-s) |Z t | 2 , ∀s ∈ [t, T ], so E Q 1 2 T t |Z s | 2 ds F t ≥ 1 2 T t e K(t-s) |Z t | 2 ds = 1 -e -K(T -t) 2K |Z t | 2 . ( 3.28) Putting (3.27, 3.28) 
together, we obtain

|Z t | 2 ≤ 4K 1 -e -K(T -t) || log u 0 || ∞ ,
which yields (3.26).

In general, we may proceed with f = ψ(u) where ψ is a concave function, and u is a positive solution to (1.1), thus f solves (3.3) with

h(y, z) = 1 2 ψ ′′ (ψ -1 (y)) |ψ ′-1 (y))| 2 |z| 2 .
We can proceed as above. Under the probability Q

Y t = Y T - m α=1 T t Z α d wα + T t m α=1 Z α h zα (Y, Z) -h(Y, Z) ds, so Y t = Y T - m α=1 T t Z α d wα + 1 2 T t ψ ′′ (ψ -1 (Y s )) |ψ ′-1 (Y s ))| 2 |Z s | 2 ds.
It is important to note that if

ψ (3) ψ ′ ≤ 2|ψ ′′ | 2 ,
then h y (y, z) ≥ 0, thus from Lemma 2.2 in [START_REF] Delbaen | Backward SDEs with superquadratic growth[END_REF],

E Q T t |Z s | 2 ds F t ≤ 4||Y T || 2 ∞ ≤ 4|| log u 0 || 2 ∞ . (3.29)
On the other hand M t = e Kt |Z t | 2 is a submartingale, thus one has

E Q |Z s | 2 F t ≥ e K(t-s) |Z t | 2 , ∀s ∈ [t, T ],
and therefore

E Q T t |Z s | 2 ds F t ≥ T t e K(t-s) |Z t | 2 ds = 1 -e -K(T -t) K |Z t | 2 . ( 3.30) 
Putting (3.29, 3.30) together, we can obtain

|Z t | 2 ≤ 4K 1 -e -K(T -t) || log u 0 || 2 ∞ ,
which yields the following estimate.

Theorem 3.9 Assume that Conditions (3.1, 3.2, 3.3) are satisfied. Moreover, ψ is concave and satisfies:

ψ (3) ψ ′ ≤ 2|ψ ′′ | 2 . Then m α=1 |A α ψ(u(t, x))| 2 ≤ 4K 1 -e -K(T -t) ||ψ(u 0 )|| 2 ∞ , (3.31) 
for any positive solution u of (3.2).

Heat equation on complete manifold

In this section, we study positive solutions of the heat equation

1 2 ∆ - ∂ ∂t u = 0, in [0, ∞) × M, (4.1) 
where M is a complete manifold of dimension n, ∆ is the Beltrami-Laplace operator. In a local coordinate system so that the Riemann metric ds 2 = g ij dx i dx j and

∆ = 1 √ g n i,j=1 ∂ ∂x i g ij √ g ∂ ∂x j ,
where g = det(g ij ) and (g ij ) is the inverse matrix of (g ij ). We prove the following Theorem 4.1 Suppose the Ricci curvature Ric ≥ -K for some K ≥ 0, and suppose u is a positive solution of (4.1) with initial data u 0 > 0. Then

|∇ log u| 2 (t, x) ≤ 2K 1 -e -Kt 2 || log u 0 || ∞ . (4.2)
Remark 4.2 This estimate can also be derived from the reverse logarithmic Sobolev inequality, as in Remark 1.2.

The preceding theorem is proved by using similar computations as in the proof of Theorem 3.7 but working on the orthonormal frame bundle O(M ) over M .

Recall that a point γ = (x, e) ∈ O(M ), where (e 1 , • • • , e n ) is an orthonormal basis of the tangent space T x M at x ∈ M . Let π : γ = (x, e) → x be the natural projection from O(M ) to M . O(M ) is a principal fibre bundle with its structure group O(n). For the general facts on differential geometry, we refer to Kobayashi and Nomizu [START_REF] Kobayashi | Foundations of differential geometry[END_REF].

Suppose The following relations will be used in what follows.

x = (x 1 , • • • , x n ) is
Lα f (γ) = Lα f • π(γ) = e k α ∂f ∂x k , for γ = (x i , e k j ) ∈ O(M ) . (4.3) 
We need the following geometric facts, whose proofs are elementary. where Ric is the Ricci curvature.

3) We also have

∆ O(M ) Lα f -Lα ∆ O(M ) f = 1 2 n β=1 [ Lβ , Lα ] Lβ f . (4.7)
Proof. The first identity (4.5) follows from the torsion-free condition. To prove (4.6) we choose a local coordinate which is orthonormal and dg ij = 0 (so that Γ k ij = 0) at the point we evaluate tensors, thus

Lα Lβ Lβ f = e j β e i β e q α ∂ 3 f ∂x q ∂x i ∂x j - ∂Γ k ij ∂x q e q α e i β e j β ∂f ∂x k , Lβ Lα Lβ f = e j α e i β e q β ∂ 3 f ∂x q ∂x i ∂x j -e q β e i α e j β ∂Γ k ij ∂x q ∂f ∂x k , and therefore [ Lβ , Lα ] Lβ f = ∂Γ k ij
∂x q e q α e i β e j βe i α e q β e j 

M f t = f (t, ϕ(t)) -f (0, ϕ(0)) - t 0 1 2 ∆ O(M ) f (s, ϕ(s))ds is a local martingale for any f ∈ C 1,2 (R + × O(M )), and 
M f t = n α=1 t 0 (L α f )(s, ϕ(s))dw α s . ( 4.9) 
We may express ϕ(t, w, γ) = (X(t, w, γ), E(t, w, γ)),

where X(t, w, γ) = π(ϕ(t, w, γ)), then {X(t, •, γ) : t ≥ 0} is a diffusion process on M starting from x = π(γ) with infinitesimal generator 1 2 ∆. {X(t, •, γ) : t ≥ 0} is a Brownian motion on M starting from x = π(γ).

In a local coordinate system (x k , e i j ), write

ϕ(t, •, γ) = (X k (t, •, γ); E i j (t, •, γ)) so that E α (t) = E i α (t) ∂ ∂x i .
Then the SDE (4.8) may be written as 

dX k t = n α=1 E k α (t) • dw α t , dE i j (t) = -n α,β,k=1 Γ(X t ) i βk E k j (t)E β α (t) • dw α t . (4.10) Let F (t) = (F (t) i j ) = E(t) -1 . Then F (t)E(t) = I so that dF i j (t) = n α,β,l=1 Γ(X t ) l βj F i l (t)E β α (t) • dw α t . (4.11) If f ∈ C 1,2 (R + × M ), then f (T, X T ) = f (t, X t ) + T t n α,k=1 E k α (s) ∂f ∂x k (s, X s )dw α s + T t ∂ ∂s + 1 2 ∆ f (s, X s )ds, (4.12 

Gradient estimate

Suppose now f satisfies the non-linear heat equation

1 2 ∆ - ∂ ∂t f = - 1 2 |∇f | 2 . ( 4.14) 
Let f be the horizontal lifting of f i.e. f = f • π, so that f satisfies the parabolic equation on

O(M ): 1 2 ∆ O(M ) - ∂ ∂t f = - 1 2 n β=1 | Lβ f | 2 . (4.15) Let T > 0. Let Y t = f (T -t, X t ) and Z α t = n k=1 E k α (t) ∂f ∂x k (t, X t ) = ( Lα f )(t, (X t , E(t))), (4.16 
)

for α = 1, • • • , n. Then |∇f (T -t, •)| 2 (X t ) = n α=1 |Z α t | 2 , (4.17) 
therefore, according to (4.12), 

Y T = Y t + T t Z α t dw α s - 1 

Li-Yau's estimate

In this section we prove Theorem 1.4. Thus, u is a positive solution to the heat equation

1 2 ∆ - ∂ ∂t u = 0, on [0, ∞) × M, (5.1) 
where M is a complete Riemannian manifold of dimension n, with non-negative Ricci curvature. Then f = log u is a solution to the semi-linear heat equation 

1 2 ∆ - ∂ ∂t f = - 1 2 |∇f | 2 , f (0, •) = f 0 . ( 5 
Let G = -∆f = |∇f | 2 -2f t .
By combining (5.3) and (5.5) together, we obtain

∂ ∂t G ≤ LG - 1 n G 2 .
(5.6)

Suppose that C > 0 and -∇ log u 0 ≤ C. Set

F = t n + 1 C (-∆f ) . Since ∂ ∂t -L F = 1 n G + t n + 1 C ∂ ∂t -L G ≤ 1 n G - t n + 1 C 1 n G 2 = 1 n G (1 -F ) ,
and therefore

L - ∂ ∂t (F -1) ≥ 1 n G (F -1) .
As -∆ log u 0 ≤ C, (F -1)(0, •) ≤ 0. Applying the maximum principle, F -1 ≤ 0, from which we obtain the estimate in Theorem 1.4.

Corollary 5.1 Suppose u is a positive solution to (5.1) 

2 . 3 . 4

 234 Remark Condition (3.1) is standard in the literature, while Conditions (3.2) and (3.3) are satisfied if A is elliptic or A satisfies the Frobenius integrability condition.

. 2 α

 2 a local coordinate system on M , then it induces a local coordinate system γ = (x k , e i j ) on O(M ) so that e j = e i j ∂∂x i . If L is a vector field, then L denotes the horizontal lifting of L to O(M ): L(x, e) = L i (x) ∂ ∂x i -Γ(x) k ij L i (x)e j l ∂ ∂e k l in a local coordinate system, where Γ k ij are the Christoffel symbols associated with the Levi-Civita connection, and L = L i ∂ ∂x i . For α = 1, • • • , n and γ = (x, e), then Lα denotes the horizontal lifting of e α , that is Lα (x, e) = e The system { L1 , • • • , Ln } is called the system of canonical horizontal vector fields. The mapping L : R n → Γ(T O(M )) where L ξ = ξ α Lα , is defined globally, and is independent of the choice of a local coordinate system. Therefore ∆ O(M ) = n α=1 L is well defined sub-elliptic operator of second order on the frame bundle O(M ), called the horizontal Laplacian. If f ∈ C 2 then ∆ O(M ) f • π = ∆f . For simplicity, any function f on M is lifted to a function f on O(M ) defined by f = f • π which is invariant under the group action by O(d).

Lemma 4 . 3 Lemma 4 . 4 (

 4344 For α = 1, • • • , n we have ∆ O(M ) Lα -Lα ∆ O(M ) Suppose f is a smooth function on M and f = f • π is the horizontal lifting of f to O(M ). 1) For α, β = 1, • • • , n [ Lα , Lβ ] f = 0 . Lα f )([ Lβ , Lα ] Lβ f ) = Ric(∇f, ∇f ),(4.6)

  t)) • dw α t , ϕ(0) = γ ∈ O(M ),(4.8)on the classical Wiener space (Ω, F, P) of dimension n. The stochastic flow associated with (4.8) is denoted by {ϕ(t, •, γ) : t ≥ 0}, which is a diffusion process in O(M ) with the infinitesimal generator

  not only Z. B is again a BMO martingale (where B is the martingale part of B under the new probability Q), but also t → |Z t | 2 is a non-negative submartingale. Next by utilizing the BSDE (1.7), we can see the BMO norm of Z. B under Q is dominated at most 2 ||Y || ∞ , that is

	then, under Q,			
	2	0	t	|h(Z s )| 2 ds
	is a uniformly integrable martingale (up to time T ), as long as h is global Lipschitz continuous. The
	main technical step in our approach is that, due to the special feature of our non-linear term in (1.6),
	we can choose h i (z) = z i (one has to go through the detailed computations below to see why this
	choice of h i is a good one), and making change of probability measure to Q by dQ dP = E(h(Z).B) T ,

  3.7 Assume that Conditions (3.1, 3.2, 3.3, 3.6) are satisfied. Then M t = e Kt |Z t | 2 is submartingale under the probability Q (up to terminal time T ):

  2 |Z s | 2 ds F t ≤ 4||f 0 || ∞ . (4.22) But on the other hand e Kt 2 |Z t | 2 is submartingale under Q, thus

	Define a probability Q by dQ dP F T	= R T where
			R t = exp	0	t	Z β dw β -	1 2	0	t	|Z| 2 ds .
	T T We will consider (4.18) as a backward stochastic differential equation. t n α=1 |Z α t | 2 ds. Then Y T = Y t + T t Z α t d wα s + 1 2 n t α=1 |Z α t | 2 ds, Applying Itô's formula to Lα f and the stochastic flow ϕ(t, •, γ) to obtain dZ α t = n β=1 hence T E Q Lβ ( Lα f )(t, ϕ(t, •, γ))dw β t t	(4.18)
	so	E Q	t	T	+ |Z s | 2 ds F t 1 2 ∆ O(M ) + =	∂ ∂t	t	Lα f (t, ϕ(t, •, γ))dt, T E Q |Z s | 2 F t ds	(4.19)
		d|Z| 2 = 2 = 2	n α=1 n α,β=1 Z α t dZ α t + Z α t ( Lβ Lα f )dw β n ≥ e Kt 2 |Z t | 2 α,β=1 t + n α,β=1 T t | Lβ Lα f | 2 dt e -Ks 2 ds = 1 -e -K 2 (T -t) K 2 |Z t | 2 ,
	However, by Lemma 4.3, which yields that and hence (4.2).			+2 |Z t | 2 ≤ n α=1 Z α t 1 -e -K 1 2 ∆ O(M ) + 2K 2 (T -t)	∂ ∂t ||f 0 || ∞ , Lα f dt .	(4.20)
	1 2	∆ O(M ) +	∂ ∂t			Lα f = Lα	1 2	∆ O(M ) +	∂ ∂t	f +	1 4	n β=1 [ Lβ , Lα ] Lβ	f
											= -	n β=1 ( Lβ f )( Lα Lβ f ) +	1 4	n β=1 [ Lβ , Lα ] Lβ f ,
	we therefore have									
						n						n
		d|Z| 2 = 2	α=1	Z α t	β=1	( Lβ Lα f ) dw β t -Z β t dt
			+	n α,β=1	| Lβ Lα f | 2 dt +	1 2	n α,β=1	( Lα f )([ Lβ , Lα ] Lβ f )dt.
	By using Lemma 4.3 we obtain			
						n						n
		d|Z| 2 = 2	α=1	Z α t	β=1 ( Lβ Lα f ) dw β t -Z β t dt
			+	n α,β=1	| Lβ Lα f | 2 dt +	1 2	Ric(∇f, ∇f )(T -t, X t )dt.	(4.21)

| Lβ Lα f | 2 (t, ϕ(t, •, γ))dt

  By using the Bochner identity one can verify that∂ ∂t |∇f | 2 = L|∇f | 2 -|∇∇f | 2 -2Ric(∇f, ∇f ) . (5.4)Since ∆f is the trace of the Hessian ∇∇f so that |∇∇f | 2 ≥ 1 n (∆f ) 2 , thus, since the Ricci curvature is non-negative, then

	∂ ∂t	|∇f | 2 ≤ L|∇f | 2 -	1 n	(∆f ) 2 .	(5.5)
						.2)
	Taking derivative in the parabolic equation (5.2) with respect to the time parameter t one
	obtains	∂ ∂t	f t = Lf t ,	(5.3)
	where	L =	1 2	∆ + ∇f.∇ .
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This follows by integrating the gradient estimates in Theorem 1.4 along geodesics, see [START_REF] Bakry | Harnack inequalities on a manifold with positive or negative Ricci curvature[END_REF] for details.