

An earthquake slip zone is a magnetic recorder

Yu-Min Chou, Sheng-Rong Song, Charles Aubourg, Teh-Quei Lee, Anne-Marie Boullier, Yen-Fang Song, En-Chao Yeh, Li-Wei Kuo, Chien-Ying Charles Wang

► To cite this version:

Yu-Min Chou, Sheng-Rong Song, Charles Aubourg, Teh-Quei Lee, Anne-Marie Boullier, et al.. An earthquake slip zone is a magnetic recorder. Geology, 2012, 40 (6), pp.551-554. 10.1130/G32864.1. hal-00662971

HAL Id: hal-00662971 https://hal.science/hal-00662971

Submitted on 25 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 An earthquake slip zone is a magnetic recorder
- 2 Yu-Min Chou^{1,2}, Sheng-Rong Song^{1,3}* Charles Aubourg⁴, Teh-Quei Lee^{3,5}, Anne-Marie
- 3 Boullier^{3,6}, Yen-Fang Song⁷, En-Chao Yeh^{3,8}, Li-Wei Kuo¹, and Chien-Ying Wang⁹
- 4 ¹Department of Geosciences, National Taiwan University, 1, Roosevelt Rd. Section 4, Taipei
- 5 10617, Taiwan
- 6 ²Géosciences & Environnement Cergy, Université de Cergy-Pontoise, 5 mail Gay Lussac,
- 7 Neuville sur Oise, 95031 Cergy-Pontoise cedex, France
- 8 ³International Laboratory (LIA) ADEPT, CNRS-NSC, France-Taiwan
- 9 ⁴Laboratoire des Fluides Complexes et Réservoirs. IPRA. CNRS. Université de Pau. 64013. Pau
- 10 cedex
- ⁵Institute of Earth Sciences, Academia Sinica, 128, Sec. 2, Academia Road, Nangang, Taipei 115
- 12 Taiwan
- ⁶ISTerre, CNRS, Université Joseph Fourier, Maison des Géosciences, BP 53, 38041 Grenoble
- 14 Cedex 9, France
- ¹⁵ ⁷National Synchrotron Radiation Research Center, 101, Hin-Ann Road, Hsinchu Science Park,
- 16 Hsinchu 30076, Taiwan
- ⁸Department of Earth Sciences, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd.,
- 18 Wenshan District, Taipei 11677, Taiwan
- ⁹Department of Earth Sciences and Institute of Geophysics, National Central University, No.300,
- 20 Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan
- 21 *E-mail: srsong@ntu.edu.tw.
- 22 ABSTRACT

Publisher: GSA Journal: GEOL: Geology

Article ID: G32864 23 During an earthquake, the physical and the chemical transformations along a slip zone 24 lead to an intense deformation within the gouge layer of a mature fault zone. Because the gouge 25 contains ferromagnetic minerals, it has the capacity to behave as a magnetic recorder during an 26 earthquake. This constitutes a conceivable way to identify earthquakes slip zones. In this paper, 27 we investigate the magnetic record of the Chelungpu fault gouge that hosts the principal slip 28 zone of the Chi-Chi earthquake (M_w 7.6, 1999, Taiwan) using Taiwan Chelungpu-fault Drilling 29 Project core samples. Rock magnetic investigation pinpoints the location of the Chi-Chi mm-30 thick principal slip zone within the 16-cm thick gouge at \sim 1 km depth. A modern magnetic 31 dipole of Earth magnetic field is recovered throughout this gouge but not in the wall rocks nor in 32 the two other adjacent fault zones. This magnetic record resides essentially in two magnetic 33 minerals; magnetite in the principal slip zone, and neoformed goethite elsewhere in the gouge. 34 We propose a model where magnetic record: 1) is preserved during inter-seismic time, 2) is 35 erased during co-seismic time and 3) is imprinted during post-seismic time when fluids cooled 36 down. We suggest that the identification of a stable magnetic record carried by neoformed 37 goethite may be a signature of friction-heating process in seismic slip zone.

38 INTRODUCTION

The Chi-Chi earthquake (M_w 7.6, 21 September 1999) is the largest inland earthquake to hit Taiwan during the last century. The ~85 km rupture along the Chelungpu thrust extends from the North to the South (Fig. 1A). Five years after the earthquake, two boreholes (holes A and B 40 m apart, Taiwan Chelungpu-fault Drilling Project, TCDP) were drilled through ~2 km of alternating sandstones and siltstones of Early-Pliocene age. The boreholes provided fresh and unaltered material suitable for paleomagnetic investigation. In borehole B, three fault zones, labeled FZB1136, FZB1194, and FZB1243 have been identified within the Chinshui Formation

46	using core observations and physical properties measurements (Hirono et al., 2007) (Fig. 1B).
47	From an independent data set, it was proposed that the 16 cm-thick gouge of FZB1136 contained
48	the principal slip zone (PSZ) of the Chi-Chi earthquake at 1,136.38 m (Boullier et al., 2009). The
49	Chi-Chi PSZ accommodated a co-seismic displacement of ~8 m with a maximum 3 m/s velocity
50	(Ma et al., 2006). To explain some characteristics of the low-friction in the northern part of the
51	fault rupture, several authors have inferred the role of fluids and thermal pressurization processes
52	(Boullier et al., 2009; Ishikawa et al., 2008). Mishima et al. (2009) reported evidence of
53	neoformed magnetite (Fe ₃ O ₄) in Chelungpu gouges possibly due to temperature elevation
54	>400°C. Assuming that magnetite formed by nucleation-growth process, we expect that
55	magnetite has the capability to record durably Earth's magnetic field. To check the existence of
56	this record, we present a paleomagnetic and rock magnetic investigations of the three major fault
57	zones within TCDP hole B. We identify for the first time a magnetic record that is directly
58	related to a large magnitude earthquake. This magnetic record is carried by magnetite within the
59	PSZ and neoformed goethite in the entire gouge.
60	METHODS
61	In 2008, U-channels (plastic box of ~20 cm long and 2 \times 2 cm large) were used as core
62	samples from the working half of TCDP hole-B within the gouge layers of the three FZB1136
63	(1,136.22–1,1336.43 m), FZB1194 (1,194.67–1,194.89 m), and FZB1243 (1,243.33–1,243.51 m)
64	fault zones. One U-channel sample was from the wall rock of the Pliocene siltstones of the
65	Chinshui Formation (1,133.55–1,133.69 m). The U-channels are oriented geographically, with an
66	error <20° using the bedding orientation (dip 30° toward N105°; Wu et al., 2008; Yeh et al.,
67	2007). The natural remanent magnetization (NRM) of each U-channel has been analyzed in the
68	automated stepwise AF demagnetization process (up to 100 mT) using a 755 SRM cryogenic

69	magnetometer manufactured by 2G Enterprises. The residual field inside the shielded room is
70	<500 nT. A principal component analysis was used to infer paleomagnetic components. The
71	mean vector was averaged out using Fisher statistics (Fisher, 1953). The stable paleomagnetic
72	components are characterized by declination (D), inclination (I), distribution parameter (κ), and
73	the angle of confidence at the 95% level (α_{95}). To obtain complementary information on the
74	NRM, we performed thermal demagnetization of non-oriented core fragments (<5 mm). The S-
75	ratio profile was measured along each U-channel. The S-ratio (IRM-0.3T/IRM+1T, where IRM is
76	the isothermal remanent magnetization) is a proxy of magnetic coercivity (Thomson and Oldfield,
77	1986). It is measured at room temperature with a magnetic field applied first with 1 Tesla and
78	second in the opposite way with -0.3 Tesla. In practical, an S-ratio close to 1 is an indication of
79	magnetically soft minerals as magnetite. Its decrease points for the presence of magnetically hard
80	minerals as goethite and hematite. A Transmission X-ray Microscope (TXM) image was
81	obtained from a 15 μ m-thick gouge sample of FZB1136 using the beamline 01B1 from the
82	National Synchrotron Radiation Research Center (NSRRC) in Taiwan.
83	RESULTS
84	Within the Chinshui Formation, the NRM carries multiple paleomagnetic components
85	with a main component of normal polarity (Fig. 1C). Its $\sim 40^{\circ}$ counter clockwise deviation from
86	the modern dipole implies that this component is not a modern record. In comparison to the wall
87	rock, the analysis of the FZB1136 gouge reveals a stable and single characteristic remanent
88	magnetization of normal polarity, throughout its 16 cm-thick layer (Fig. 1D). This component is
89	close to the 1999 international geomagnetic reference field from central Taiwan (Fig. 1C). It
90	resides essentially in hard coercive minerals because ~60% of the NRM remains after 100 mT

91 alternating field demagnetization (Fig. 1E). The thermal demagnetization of core fragment

92	reveals a linear decrease of NRM directed straight to the origin without evidence of secondary
93	components (Fig. 2A) . This is confirmed by the analysis of directional data (not shown). The
94	analysis of the FZB1194 and FZB1243 gouges revealed multiple paleomagnetic components
95	with both normal and reverse magnetic polarities (Fig. 1C). These components are lying in a
96	southern direction and at a distance from the 1999 IGRF magnetic dipole field. After comparing
97	the paleomagnetic results within the three fault zones and the wall rock, it is proposed that the
98	single component observed throughout the FZB1136 gouge is the most recent magnetic record,
99	and more than likely contemporaneous with the 1999 Chi-Chi seismic event.
100	The information is provided on the magnetic carriers of the FZB1136 gouge using the
101	unblocking temperature spectrum of NRM (Fig. 2A), transmission X-ray microscope
102	observations (Fig. 2B) and the magnetic coercivity parameters (Fig. 2C). Within the gouge, the
103	principal maximum unblocking temperature is close to 120 °C (Fig. 2A) and is consistent with
104	the Néel temperature of goethite (α -FeOOH, T _N = 120 °C), a magnetically hard antiferromagnet
105	(Hunt et al., 1995). Transmission X-ray microscopy reveals the occurrence of scattered,
106	elongated (<5 µm long) and dense grains in the gouge, which are likely goethite (Fig. 2B).
107	Within the Chi-Chi PSZ (1,136.38 m, Boullier et al., 2009), the maximum unblocking
108	temperature is close to 580 °C (Fig. 2A), which is the Curie temperature of magnetite (Fe ₃ O ₄), a
109	magnetically soft ferrimagnet (Hunt et al., 1995). Thus, the single paleomagnetic component of
110	Chi-Chi PSZ resides, essentially, in magnetite. The record of coercivity parameters (S-ratio)
111	pinpoints the relative contribution of magnetite and goethite within the FZB1136 gouge (Fig. 2C).
112	The S-ratio profile shows one relative minimum (magnetically hard) at 1,136.30 m and one
113	maximum (magnetically soft) within the Chi-Chi PSZ. The S-ratio profile is consistent with a
114	larger distribution of goethite in the center of the gouge layer, and a larger distribution of

115 magnetite in the Chi-Chi PSZ. It shows that the S-ratio profile is an index to identify the most

116 recent PSZ in the Chi-Chi gouge.

117 DISCUSSION AND CONCLUSIONS

118 From these observations, a model of the paleomagnetic record is proposed for FZB1136. 119 During an earthquake, we proffer three main types of magnetization that are acquired within the 120 slip zones: 1) a thermo-remanent magnetization (TRM) acquired post-seismically on the cooling 121 of the slip zone (Ferré et al., 2005); 2) a chemical remanent magnetization (CRM) acquired post-122 seismically and carried by neoformed magnetic minerals (Nakamura et al., 2002); and 3) an IRM 123 acquired co-seismically during earthquake lightning (EOL) (Ferré et al., 2005). An EOL 124 magnetization would be perpendicular to the fault plane (Ferré et al., 2005), which is not the case 125 for the component of magnetization within the Chi-Chi gouge (Fig. 1C). Thus, we propose that 126 EQL may be excluded as a magnetization process and only thermal-related and chemical-related 127 magnetic records are considered in the FZB1136 gouge. Because the magnetic carriers of the 128 magnetic record are different, we have to distinguish scenarios in the Chi-Chi PSZ and in the rest 129 of the gouge. A temperature elevation due to frictional heating is expected during a co-seismic 130 slip (Rice, 2006). Frictional heating depends on the fault slip rate, displacement, friction 131 coefficient, normal stress, and physical properties of the fault rocks. The ultimate phase of this 132 process involves melting, with the formation of pseudotachylytes (Di Toro et al., 2006). The 133 temperature peaks in the gouge and the Chi-Chi PSZ are still being debated, but generally, a 134 lower limit of 400 °C is accepted (Boullier et al., 2009; Mishima et al., 2009). The PSZ cooling 135 lasts only tens of seconds and the thermal aureole extends less than the width of the PSZ (Kano 136 et al., 2006). Upon cooling, a TRM is imprinted in the magnetic minerals contained in the PSZ 137 and the baked contact. Within the 16 cm of gouge that carries the stable paleomagnetic

138	component, only the millimeter-thick heated layers on both sides of the Chi-Chi PSZ have the
139	potential to carry a friction-induced TRM. Experimental heating of the FZB1136 gouge showed
140	that magnetite formed above 400 °C (Mishima et al., 2009). It is therefore proposed that the
141	paleomagnetic record of the Chi-Chi's PSZ and baked contact is partly a TRM carried by former
142	magnetic minerals and partly a CRM carried by neoformed magnetite.
143	The paleomagnetic record in the 16 cm gouge is essentially carried by goethite and other
144	processes of magnetization should be viewed apart from the Chi-Chi's PSZ and baked contact.
145	To date, this is the first time that goethite has been reported in the Chelungpu fault. Nakamura
146	and Nagahama (2001) observed similar \sim 5 μ m goethite within the Nojima fault gouge (Japan).
147	They suggested that the goethite growth postdates the grain alignment of silicate minerals.
148	Within the FZB1136, scattered \sim 5 µm elongated goethite could be observed, which supports the
149	theory that goethite growth postdates the broad texture of gouge (Fig. 2B). In order to crystallize,
150	goethite requires water (free energy $-488.6 \text{ kJ mol}^{-1}$), T < 200 °C, low pH and iron (Cornell and
151	Schwertmann, 2003). Therefore, the goethite attests to the presence of water in FZB1136. Recent
152	geochemical investigations in the FZB1136 gouge suggest the presence of pore fluids with a
153	minimum temperature of 350 °C (Ishikawa et al., 2008). It is then possible that goethite formed
154	upon the cooling of the pore fluids. The source of iron could possibly be brought about by the
155	dissolution of iron sulphide in the FZB1136 gouge (Yeh et al., 2007). The dissolution of pyrite
156	not only releases Fe^{2+} and SO_4^{2-} ions but also decreases the fluid's pH (Nakamura, 2001). It is
157	therefore suggested that goethite is formed post-seismically within a few days of the
158	earthquake's occurrence. Upon growing larger than the $\sim 1800 \text{ nm}^3$ blocking volume (minimum
159	volume for recording remanent magnetization, Cornell and Schwertmann, 2003), the goethite
160	acquired a CRM. The recovery of a single component record from within the FZB1136 gouge,

161	Article ID: G32864 unlike adjacent fault zones, implies the partial or complete removal of the magnetic records of
162	ancient slip zones. It remains to be proven whether or not this behavior is related to earthquakes
163	of large magnitudes (e.g., $M_w > 7$).
164	The post-seismic magnetic record is instantaneous in the geological time scale, but it has
165	the potential to survive for millions or even billions of years (Néel, 1955). Thus, the fault gouge
166	can retain the magnetic record during inter-seismic time. It is suggested that the fault gouge
167	magnetic record is a record of the latest earthquake event if only a single component is recovered,
168	as in the case of the Chi-Chi gouge. If several components are detected, as in the fault zones
169	FZB1194 and FZB1243, it is possible that the components overlap each other due to perturbation.
170	Therefore, we propose the following scenario of a cycle of magnetic record during a large
171	earthquake similar to Chi-Chi (Fig. 3). 1) During inter-seismic periods, the magnetic record of
172	the latest large earthquake is preserved within the fault gouge. 2) During the co-seismic period,
173	the gouge acts essentially as a magnetic eraser. Both the temperature elevation above the
174	unblocking temperature of magnetic minerals and the chemical degradation of these minerals
175	lead to the partial-to-complete demagnetization of the gouge. The exact mechanisms remain to
176	be definitively determined but, in the Chi-Chi gouge, the >350 °C hot fluids (Ishikawa et al.,
177	2008) have probably demagnetized the former goethite. 3) During post-seismic period, the gouge
178	acts as a magnetic recorder. The cooling of the gouge and/or fluids leads to a TRM imprint.
179	Similarly, neoformed minerals resulting from any form of chemical process has the potential to
180	carry a CRM. If confirmed by further studies, this proposed seismic cycle of magnetic records
181	opens new horizons for paleoseismology as well as for the PSZ identification and dating. To
182	identify a PSZ, methods based on microscopy (Boullier et al., 2009), geochemistry (Hirono et al.,
183	2008) or physical properties (Wu et al., 2007) are not one-to-one because several PSZ may stack

184	together in the gouge. In this study, the Chi-Chi gouge layer was identified using the orientation
185	of the magnetic record; the location of the mm-thick Chi-Chi's PSZ was pinpointed using rock
186	magnetism characteristics. This constitutes a new, fast and non-destructive way to find the most
187	recent PSZ.
188	ACKNOWLEDGMENTS
189	We would like to express our gratitude to the working group of the TCDP. We thank
190	Dr. GC. Yin of NSRRC for the maintenance of the TXM and Dr. Keng S. Liang of NSRRC
191	for his support in this project. We also thank CC. Chen (Academia Sinica) for his assistance
192	when using SQUID, and KC. Yeh (Academia Sinica) for helping to cut difficult gouge
193	material into a U-channel. MK. Wang, TM. Tsao, P. Robion, C. David, L. Louis, and F.
194	Humbert are acknowledged for their constructive criticisms. This paper benefited from
195	constructive reviews by C. Wibberley, an anonymous reviewer and B. Opdyke. YM. Chou
196	acknowledges the french Ministère des Affaires Etrangères for an EIFFEL Doctorat grant.
197	REFERENCES CITED
198	Boullier, AM., Yeh, EC., Boutareaud, S., Song, SR., and Tsai, CH., 2009, Microscale
199	anatomy of the 1999 Chi-Chi earthquake fault zone: Geochemistry Geophysics Geosystems,
200	v. 10, Q03016, doi:03010.01029/02008GC002252.
201	Cornell, R.M., and Schwertmann, U., 2003, The Iron oxides: Structure, properties, reactions,
202	occurrences, and uses: Wiley-VCH, 664 p.
203	Di Toro, G., T. Hirose, S. Nielsen, G. Pennacchioni, T. Shimamoto, 2006. Natural and
204	experimental evidence of melt lubrication of faults during earthquakes, Science, v. 311, p.

647-649, doi:10.1126/science.1121012. 205

206	Ferré, E.C., Zechmeister, M.S., and Geissman, J.W., MathanaSekaran, N., and Kocak, K., 2005,
207	The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations
208	and implication for coseismic electrical currents: Tectonophysics, v. 402, no. 1-4, p. 125-
209	139, doi:10.1016/j.quaint.2008.06.015.
210	Fisher, R., 1953, Dispersion on a sphere: Proceedings of the Royal Society of London. Series A:
211	Mathematical and Physical Sciences, v. 217, no. 1130, p. 295-305,
212	doi:10.1098/rspa.1953.0064.
213	Hirono, T., Yeh, EC., Lin, W., Sone, H., Mishima, T., Soh, W., Hashimoto, Y., Matsubayashi,
214	O., Aoike, K., Ito, H., Kinoshita, M., Murayama, M., Song, SR., Ma, KF., Hung, JH.,
215	Wang, CY., Tsai, YB., Kondo, T., Nishimura, M., Moriya, S., Tanaka, T., Fujiki, T.,
216	Maeda, L., Muraki, H., Kuramoto, T., Sugiyama, K., and Sugawara, T., 2007,
217	Nondestructive continuous physical property measurements of core samples recovered from
218	hole B, Taiwan Chelungpu-Fault Drilling Project: Journal of Geophysical Research, v. 112,
219	B07404, doi:07410.01029/02006JB004738.
220	Hirono, T., Sakaguchi, M., Otsuki, K., Sone, H., Fujimoto, K., Mishima, T., Lin, W., Tanikawa,
221	W., Tanimizu, M., Soh, W., Yeh, EC., and Song, SR., 2008, Characterization of slip zone
222	associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and
223	microstructural observations of the Taiwan Chelungpu fault: Tectonophysics, v. 449, no. 1-
224	4, p. 63–84, doi:10.1016/j.tecto.2007.12.002.
225	Hunt, C.P., Subir, K.B., Jiamao, H., Peter, A.S., Eric, O., Weiwei, S., and Tungsheng, L., 1995,
226	Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western
227	Loess Plateau of China: Geophysical Journal International, v. 123, no. 1, p. 232-244,

228 doi:10.1111/j.1365-246X.1995.tb06672.x.

- 229 Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi, M., Hirono, T.,
- 230 Mishima, T., Tanikawa, W., Lin, W., Kikuta, H., Soh, W., and Song, S.-R., 2008, Coseismic
- fluid-rock interactions at high temperatures in the Chelungpu fault: Nature Geoscience, v. 1,
- 232 no. 10, p. 679–683, doi:10.1038/ngeo308.
- 233 Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., and Ma, K.-F., 2006, Heat
- signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake:
- 235 Geophysical Research Letters, v. 33, L14306, doi:14310.11029/12006GL026733.
- 236 Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F.,
- 237 Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., and Wu, H.-Y., 2006, Slip zone and energetics
- of a large earthquake from the Taiwan Chelungpu-fault Drilling Project: Nature, v. 444,
- 239 no. 7118, p. 473–476, doi:10.1038/nature05253.
- 240 Mishima, T., Hirono, T., Nakamura, N., Tanikawa, W., Soh, W., and Song, S.-R., 2009, Changes
- to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi
- earthquake: Earth, Planets, and Space, v. 61, no. 6, p. 797–801.
- 243 Nakamura, N. and Nagahama, H., 2001, Changes in magnetic and fractal properties of fractured
- granites near the Nojima Fault, Japan: The Island Arc, v. 10, no. 3–4, p. 486–494,
- 245 doi:10.1111/j.1440-1738.2001.00347.x.
- 246 Nakamura, N., Hirose, T., and Borradaile, G. J., 2002, Laboratory verification of submicron
- 247 magnetite production in pseudotachylytes: relevance for paleointensity studies: Earth and
- 248 Planetary Science Letters, v. 201, no. 1, p. 13-18, doi:10.1016/S0012-821X(02)00704-5.
- 249 Néel, L., 1955, Some theoretical aspects of rock magnetism: Advances in Physics, v. 4, p. 191–
- 250 243, doi:10.1080/00018735500101204.

- 251 Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res.,
- 252 111, B05311, doi:10.1029/2005JB004006.
- 253 Thompson, R. and Oldfield, F., 1986, Environmental Magnetism: London, Allen and Unwin, 227
- 254

p.

- 255 Wu, H.-Y., Ma, K.-F., Zoback, M., Boness, N., Ito, H., Hung, J.-H., and Hickman, S., 2007,
- 256 Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed
- from geophysical logs: Geophysical Research Letters, v. 34, L01303,
- doi:01310.01029/02006GL028050.
- 259 Wu, Y.-H., Yeh, E.-C., Dong, J.-J., Kuo, L.-W., Hsu, J.-Y., and Hung, J.-H., 2008, Core-log
- 260 integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project: Geophysical
- 261 Journal International, v. 174, no. 3, p. 949–965, doi:10.1111/j.1365-246X.2008.03841.x.
- 262 Yeh, E.-C., Sone, H., Nakaya, T., Ian, K.-H., Song, S.-R., Hung, J.-H., Lin, W., Hirono, T.,
- 263 Wang, C.-Y., Ma, K.-F., Soh, W., and Kinoshita, M., 2007, Core description and
- 264 characteristics of fault zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project:
- 265 Terrestrial Atmospheric Oceanic Sciences, v. 18, no. 2, p. 327–357,
- 266 doi:10.3319/TAO.2007.18.2.327(TCDP).

267 FIGURE CAPTIONS

- Figure 1. Locations, major fault zones and paleomagnetic records. (A) A geological map
- showing the epicenter of Chi-Chi earthquake (M_w 7.6, 1999) and the Taiwan Chelungpu-fault
- 270 Drilling Program (TCDP) drilling site at 120.73916°E, 24.20083°N (Modified from Ma et al.,
- 271 2006). FZB stands for Fault Zone of hole B. (B) A Schematic log of the borehole showing the
- three major fault zones of the Chelungpu fault within the Chinshui Formation. (C) Equal-area
- 273 stereo-plot displaying the Chelungpu fault plane and the mean paleomagnetic components

274 recorded in the three fault zones and wall rock. Due to the orientation of the borehole B, there is 275 an error of $\pm 20^{\circ}$ in declination for all paleomagnetic component. This error is indicated for the 276 FZB1136 gouge component. We plot the orientation of an expected earthquake lightning (EOL) 277 according to the model of Ferré et al. (2005) with 20° error in orientation. The black (open) 278 symbols correspond to the downward (upward) hemisphere. The cross indicates the 1999 279 international geomagnetic reference field (IGRF) dipole magnetic vector ($D = 0.2^{\circ}$, $I = 29.7^{\circ}$). The wall rock's main component lies away from the modern magnetic field ($D = 322^\circ$, $I = 48^\circ$, κ 280 = 99, α_{95} = 4°; range 10–80 mT). The FZB1136 gouge component (D = 348°, I = 48°, κ = 140, 281 282 $\alpha_{95} = 2^{\circ}$) is the closest to the modern magnetic field and statistically different from a hypothetic 283 EQL. Within the FZB1194 gouge, normal and reverse components are southerly oriented (D =284 235°, I = 27°, $\kappa = 110$, $\alpha_{95} = 8^{\circ}$ and D = 154°, I = -52°, $\kappa = 144$, $\alpha_{95} = 5^{\circ}$), respectively. Within 285 the FZB1243 gouge, normal and reverse components are also oriented southerly ($D = 125^{\circ}$, I =11°, $\kappa = 189$, $\alpha_{95} = 4^{\circ}$ and $D = 125^{\circ}$, $I = -10.0^{\circ}$, $\kappa = 280$, $\alpha_{95} = 3^{\circ}$), respectively. (D) The natural 286 287 remanent magnetization (NRM) orthogonal plot of FZB1136 gouge (depth 1.136.33 m). Open 288 (black) circles represent projection of the vector along the vertical (horizontal) plane. (E) Curves 289 of normalized NRM intensity of FZB1136 and wall rock. 290 Figure 2. NRM thermal demagnetization, TXM photo, and S-ratio. (A) The NRM thermal 291 demagnetization for a gouge sample (depth of 1.136.34 m) and the Chi-Chi's principal slip zone 292 (PSZ) (depth of 1,136.38 m) within FZB1136. In the gouge, there is a break-in-slope near 150 °C

- where $\sim 80\%$ of the NRM is lost. The remaining part of the NRM has a maximum unblocking
- temperature close to 580 °C. In the Chi-Chi's PSZ, the maximum unblocking temperature is
- 295 close to 580 °C. (B) The TXM photo from a 15 μ m thick polished-section collected from a
- 296 gouge within FZB136. Scattered elongated dense minerals with a low aspect ratio 2:25 and

297	maximum length of 5 μ m are likely to be goethite. (C) The S-ratio profile along the U-channel.
298	The lowest value of the S-ratio (magnetically hard) is located at a depth of 1,136.30 m, near the
299	center of the gouge and corresponds to the highest concentration in goethite. The Chi-Chi's PSZ
300	is marked by an enhancement of the S-ratio, which is consistent with a larger contribution of
301	magnetite.
302	Figure 3. The magnetic record cycle of a fault gouge. 1) During an inter-seismic period, the
303	magnetic record of an old earthquake is preserved within the fault gouge through geological
304	times. 2) During a co-seismic period, the gouge acts as a magnetic eraser. At the PSZ and baked
305	contact the temperature elevation and chemical degradation lead to the partial-to-complete
306	demagnetization of the gouge. The co-seismic hot fluids probably demagnetized the former
307	goethite. 3) During a post-seismic period, the gouge acts as a magnetic recorder. Cooling of the
308	gouge or fluids leads to a thermo-remanent magnetization (TRM) imprint. Neoformed minerals
309	resulting from any form of chemical processes, including cooling, carry a chemical-remanent
310	magnetization (CRM).
311	¹ GSA Data Repository item 2012xxx, xxxxxxxx, is available online at
312	www.geosociety.org/pubs/ft2012.htm, or on request from editing@geosociety.org or Documents

313 Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

ratio Ś

