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Global existence of strong solution for viscous shallow water

system with large initial data on the irrotational part

Boris Haspot∗

Abstract

We are interested in studying the Cauchy problem for the viscous shallow-water
system in dimension N ≥ 2, we show the existence of global strong solutions with
large initial data on the irrotational part of the velocity for the scaling of the equa-
tions. More precisely our smallness assumption on the initial data is supercritical for
the scaling of the equations. It allows us to give a first kind of answer to the problem
of the existence of global strong solution with large initial energy data in dimension
N = 2. To do this, we introduce the notion of quasi-solutions which consists in
solving the pressureless viscous shallow water system. We can obtain such solutions
at least for irrotationnal data which exhibit regularizing effects both on the velocity
and also on the density. This smoothing effect is purely non linear and is crucial in
order to build solution of the viscous shallow water system as perturbations of the
”quasi-solutions”. Indeed the pressure term remainder becomes small in high fre-
quencies for the scaling of the equations. To finish we prove the existence of global
strong solution with large initial data when N ≥ 2 for the viscous shallow water
system provided that the Mach number is sufficiently large.

1 Introduction

The motion of a general barotropic compressible fluid is described by the following system:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ)D(u))−∇(λ(ρ)divu) +∇P (ρ) = 0,

(ρ, u)/t=0 = (ρ0, u0).

(1.1) 0.1

Here u = u(t, x) ∈ RN stands for the velocity field, ρ = ρ(t, x) ∈ R+ is the density
and D(u) = 1

2(∇u +t ∇u) is the strain tensor. We denote by λ and µ the two viscosity
coefficients of the fluid, which are assumed to satisfy µ > 0 and λ + 2µ > 0. Such a
condition ensures ellipticity for the momentum equation and is satisfied in the physical
cases where λ + 2µ

N > 0. In the sequel we shall only consider the viscous shallow-water
system which corresponds to:

µ(ρ) = µρ with µ > 0 and λ(ρ) = 0.
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We supplement the problem with initial condition (ρ0, u0). Throughout the paper, we
assume that the space variable x ∈ RN or to the periodic box T Na with period ai, in the
i-th direction. We restrict ourselves to the case N ≥ 2.
In this paper we are interested in proving the existence of global strong solution for
the system (

0.1
1.1) with large initial data for the scaling of the equations. Before giving

our main result, let us recall some important results concerning the question of the well-
posedness for (

0.1
1.1). For small smooth perturbations of a stable equilibrium with constant

positive density, global well-posedness has been proved for the first time in
MN1
[25]. More

precisely Matsumura and Nishida obtained the existence of global strong solutions for
three-dimensional polytropic ideal fluids and no outer force with initial data chosen small
in the following spaces (ρ0 − 1, u0) ∈ H3 ×H3.
Guided in our approach by numerous works dedicated to the incompressible Navier-
Stokes equation (see e.g

Meyer
[27]) we aim at solving (

0.1
1.1) in the case where the data (ρ0, u0)

have critical regularity. By critical, we mean that we want to solve the system (
0.1
1.1) in

functional spaces with norm invariant by the changes of scales which leave (
0.1
1.1) invariant.

In the case of barotropic fluids, we can observe that the transformations:

(ρ(t, x), u(t, x)) −→ (ρ(l2t, lx), lu(l2t, lx)), l ∈ R, (1.2) 1

have that property, provided that the pressure term has been changed accordingly.
Roughly speaking we expect that such spaces are optimal in term of regularity on the
initial data in order to prove the well-posedness of the system (

0.1
1.1).

One of the main difficulty of compressible fluid mechanics is to deal with the vacuum
(which corresponds to the state ρ = 0), indeed when it occurs, the momentum equation
loses its parabolicity. That is why in the sequel we shall work around stable equilibrium
in order to be far away the vacuum, we have then the following definition.

Definition 1.1 Let us note: q = ρ− 1.

The use of critical functional frameworks led to several new well-posedness results for
compressible fluids in Besov spaces (see

CD, CH,CMZ, CMZ1,DG,Darx,JDE,arma, MAA, M3AS, H1,Mucha
[6, 7, 10, 11, 12, 14, 15, 16, 18, 17, 19, 28]).

We would like to point out that this is in general not sufficient to deal with initial data
(ρ0, u0) invariant by (

1
1.2) to obtain the existence of global strong solution. Indeed it is

important to obtain a control on the L∞ norm of the density for at least two reasons.
First it allows to consider a density which remains far way from the vacuum, it is crucial
in order to ensure the parabolic behavior of the velocity u. The second reason is related
to the estimations of the non linear term depending on the density as the pressure ,
indeed in general we need to use composition theorems. Finally it seems necessary to
control the velocity in Lipschitz norm in order to estimate the density which is governed
by a transport equation.
That is why, we restricted our study to the case where the initial data (q0, u0) are in
homogeneous Besov spaces with the thord index equal to one:

q0 ∈ B
N
p

p,1 and u0 ∈ B
N
p1
−1

p1,1

with (p, p1) ∈ [1,+∞[ suitably chosen. Indeed in this case we recall that B
N
p

p,1 is embedded
in L∞.
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Let us mention that in the literature most of the results of existence of global strong
solution with small initial data in critical space concern the system (

0.1
1.1) with constant

viscosity coefficient. In particular Danchin in
DG
[12] shows for the first time a result of

existence of global strong solution with small initial data in critical space for the scaling

of the system. More precisely the initial data are chosen as follows (q0, u0) ∈ (B
N
2
2,1 ∩

B
N
2
−1

2,1 ) × B
N
2
−1

2,1 . The main difficulty consists in obtaining suitable estimates on the
linearized system with convection terms. The crucial point is the proof of damping effect
on the density which enables to control the pressure term. This last result has been
generalized to the case of Besov space constructed on Lp space by F. Charve and R.
Danchin in

CD
[6], Chen et al in

CMZ
[10] and the author in

arma
[16] by using two different methods.

In
CD,CMZ
[6, 10], in order to get estimates on the density and the velocity in Besov space for

the linearized system (including the convection terms) associated to (
0.1
1.1), the authors

combine in a very subtle way a paralinearization method and a accurate Fourier study of
the linear system. In

arma
[16] we introduce a notion of effective velocity in high frequencies

which allows us to cancel out the coupling between the velocity and the pressure. Indeed
the system becomes simply a heat equation with a damped transport equation, as in

DG
[12]

we obtain then a L1 decay on q in the high frequency regime. In low frequencies, the
first order terms predominate, so that (

0.1
1.1) has to be treated by means of hyperbolic

energy methods (roughly speaking q and the potential part of the velocity verify a wave
equation). Let us mention also that a very interesting approach has been proposed by R.
Danchin in

Darx
[14] in order to improve the results of uniqueness inasmuch as initial velocities

in critical Besov spaces with negative indices generate a unique local solution. The key
tool is the use of Lagrangian coordinates which allows to solve the system by means of
the basic contraction mapping theorem.
However the existence of global strong solution with large initial data remains open even
in dimension N = 2 except for some very specific viscosity coefficients (see

VG
[31]). In a

remarkable work Vaigant and Kazhikhov prove the existence of global strong solution
when the viscosity coefficients are chosen such that µ(ρ) = µ and λ(ρ) = ρβ with β > 3.
To do this, they use clever energy inequalities which take into account the structure of the
viscosity coefficient by introducing the effective flux. The choice λ(ρ) = ρβ with β > 3 is
essentially due to technic restrictions when the authors prove some L∞T (Lp) estimates on
the density for any p ∈ (2,+∞) (we refer also to

MAA
[18] for a slight extension of the work

of
VG
[31] to the case β > 2).

In this paper we would like to improve the previous results by proving the existence of
global strong solution with large initial data for the scaling of the equations for the viscous
shallow water system (the initial data has to be choose irrotational in our case). Indeed
at the difference of the previous works that we mention, our smallness assumption on the
initial data is supercritical for the scaling of the equations (and in particular nonlinear).

It implies that it is possible to have initial data (q0, u0) which are large in B
N
2
2,1×(B

N
2
−1

2,1 )N

and which generates global strong solution to the system (
0.1
1.1). It gives in particular a

first kind of answer to the problem of the existence of global strong solution with large
energy initial data when N = 2 for suitable choice on the initial velocity (we refer to the
remark

r1
1 for more details).

To do this we are going to work around an irrotational quasi-solution of the system (
0.1
1.1)

(we also refer to
MAA
[18] for a such type of solution in the context of Korteweg system). More
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precisely we are interested in solving the pressureless system for an irrotational velocity
u = ∇θ. Due to the strong coupling between the velocity, the density and viscosity
tensor, we can check easily that (ρ1,−2µ∇ ln ρ1) is a particular irrotational solution of
the pressureless system if: {

∂tρ
1 − 2µ∆ρ1 = 0.

ρ1(0, ·) = ρ10.
(1.3) quasi1

Here we recall that the initial density ρ10 does not admit vacuum, it implies in particular
by the maximum principle that 1

ρ1
is bounded in L∞T (L∞(RN )) for any T > 0. It is

then natural to work around this particular quasi-solution in order to obtain global
strong solution with large initial data for (

0.1
1.1), to do this we have obviously to take into

account the effects of the pressure term P (ρ1). We can observe that the regularizing
effects on the density ρ1 enable us to consider the pressure term P (ρ1) as a small term
in high frequencies (indeed we get a gain of two derivatives on ρ1 via the equation (

quasi1
1.3)).

This is essentially due to the fact that the system (
0.1
1.1) is not completely invariant by

scaling because the pressure term.The regularizing effects on ρ1 is then absolutely crucial
and is surprising since the density is governed by a transport equation, it means that
this property is purely non linear and is due to the coupling between the density and the
velocity ( we will discuss on this point in more details in the sequel).
Let us now search solution of the form ln ρ = ln ρ1 + h2 with ρ1 = 1 + q1, ρ = ρ1eh

2
and

u = −2µ∇ ln ρ1 + u2, assuming that there is no vacuum, we can rewrite the system (
0.1
1.1)

under the following eulerian form (we recall that µ(ρ) = µρ and λ(ρ) = 0):
∂t ln ρ+ u · ∇ ln ρ+ divu = 0,

∂tu+ u · ∇u− µ∆u− µ∇divu− 2µ∇ ln ρ ·Du+∇F (ρ) = 0,

(ln ρ, u)/t=0 = (ln ρ0, u0),

(1.4) 3systeme

with F
′
(ρ) = P

′
(ρ)
ρ . By using the fact that (ρ1, u1) = (ρ1,−2µ∇ ln ρ1) is a quasi solution

with ρ1 verifying (
quasi1
1.3), it gives in particular:

∂t ln ρ1 + u1 · ∇ ln ρ1 + divu1 = 0,

∂tu
1 + u1 · ∇u1 − µ∆u1 − µ∇divu1 − 2µ∇ ln ρ1 ·Du1 = 0,

(ln ρ1, u1)/t=0 = (ln ρ10, u
1
0).

(1.5) 3systeme1

We can rewrite the system (
3systeme
1.4) as follows:

∂th
2 + u · ∇h2 + divu2 + u2 · ∇ ln ρ1 = 0,

∂tu
2 + u1 · ∇u2 + u2 · ∇u1 − 2µ∇ ln ρ1 ·Du2 − 2µ∇h2 ·Du1 − µ∆u2 − µ∇divu2

+ a∇h2 = −a∇ ln ρ1 − u2 · ∇u2 + 2µ∇h2 ·Du2,
(h2, u2)/t=0 = (h20, u

2
0).

(1.6) 0.2

where we have assumed that P (ρ) = aρ (in order to simplify the notation).
We now are going to prove the existence of global strong solution for the system (

0.2
1.6).

To do this the first step consists in proving estimate in Besov spaces on (h2, u2), it will
require an accurate study of the linearized system associated to (

0.2
1.6). In particular we
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will have to distinguish the behavior between the low and the high frequencies as in
arma
[16].

The last step is to observe that the pressure term a∇ ln ρ1 can be considered as a small
remainder term in high frequencies. Indeed roughly speaking it must be estimated in

L1(R+, B
N
p
−1

p,1 ), but if ln ρ10 is in B
N
p

p,1 then via the heat equation (
quasi1
1.3), ∇ ln ρ1 belongs

to L1(R+, B
N
p
+1

p,1 ). It means that via this gain of regularity on ∇ ln ρ1 this term is small

in high frequencies for the norm L1(R+, B
N
p
−1

p,1 ). It explains why we obtain a result of

global strong solution with a nonlinear smallness assumption on ρ10 and this one will be
supercritical for the scaling of the equations.

Definition 1.2 Furthermore we will note B̃s1,s2
(p1,r1),(p2,r2)

the Besov space where the be-
havior is Bs1

p1,r1 in low frequencies and Bs2
p2,r2 in high frequencies. If r1 = r2 we will

simplify the notation, and we will write B̃s1,s2
p1,p2,r1 for B̃s1,s2

(p1,r1),(p2,r1)
. For more details on

the definition of these spaces we refer to the definition
def1.9
2.6.

One can now state our main theorem.

Theorem 1.1 Let P (ρ) = aρ and 2 ≤ p ≤ 4, p < 2N , q ≥ 2 such that:

1

2
≤ 1

p
+

1

q
,

1

N
<

1

p
+

1

q
,

1

p
≤ 1

N
+

1

q
.

Let ρ0 = ρ10e
h20 with ρ10 = 1 + q10, u0 = −2µ∇ ln ρ10 + u20. Furthermore we assume that

ρ10 ≥ c > 0, q10 ∈ B̃
N
2
−1,N

q

2,q,1 ∩ B̃
N
2
−2,N

p
−2

2,p,1 , h20 ∈ B̃
N
2
−1,N

p

2,p,1 and u20 ∈ B̃
N
2
−1,N

p
−1

2,p,1 . There exists
ε0, ε1, C > 0 and two regular function g, g1 such that if:

Cg(‖(ρ01,
1

ρ01
)‖L∞)‖q10‖

B̃

N
2 −2,Np −2

2,p,1

exp
(
Cg1(‖(ρ01,

1

ρ01
)‖L∞)‖q10‖

B̃
N
2 −1,Nq
2,q,1

)
≤ ε1,

‖h02‖
B̃
N
2 −1,Np
2,p,1

+ ‖u02‖
B̃
N
2 −1,Np −1

2,p,1

≤ ε0 = g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

(1.7) crucinitial

then there exists a global solution (ρ, u) of the system (
0.1
1.1) written under the following

form: ρ = ρ1eh
2

and u = −2µ∇ ln ρ1 + u2 with:{
∂tρ

1 − 2µ∆ρ1 = 0,

ρ1t=0 = ρ10.
(1.8) achal

In addition we have:

h2 ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ) ∩ L1(R+, B̃
N
2
+1,N

p

2,p,1 )

and u2 ∈ C̃(R+; B̃
N
2
−1,N

p
−1

2,p,1 ) ∩ L1(R+, B̃
N
2
+1,N

p
+1

2,p,1 ).

Moreover the solution is unique if 2
N ≤

1
p + 1

q . We refer to the definition
def1.9
2.6 for the

notion of hybrid Besov spaces.theo1
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r1 Remark 1 Let us mention than the main interest of this theorem is to prove the existence
of global strong solution with large initial data for the scaling of the equation which is

new up to our knowledge. Indeed it suffices to choose q10(x) = ϕ(λx) with ϕ ∈ B̃
N
2
−2,N

2
2,1

(where p = q = 2) such that 1 + ϕ ≥ c > 0, we then verify easily that:

‖q10‖
B
N
2
2,1

= ‖ϕ‖
B
N
2
2,1

,

‖ρ10‖L∞ = ‖1 + ϕ‖L∞ ,

‖ 1

ρ10
‖L∞ = ‖ 1

1 + ϕ
‖L∞ ,

‖q10‖
B
N
2 −2

2,1

=
1

λ2
‖ϕ‖

B
N
2 −2

2,1

.

(1.9) genial

It implies that q10 verifies (
crucinitial
1.7) by choosing λ large enough. In particular it implies that

taking ϕ large in B
N
2
2,1 our initial density h01 is large in the Besov space B

N
2
2,1 which is

critical for the scaling of the equations. In addition it implies that the L∞ norm of the
density ρ0 can be chosen large (let us recall that it is not the case in

CD,CMZ,arma
[6, 10, 16]).

In particular when N = 2, it is possible to choose ϕ large in B1
2,2 which shows that there

is existence of global strong solution for large initial data in the energy space. Indeed
for the viscous shallow water system we recall that the energy data for the BD entropy
corresponds to initial data such that ∇√ρ0 and

√
ρ0u0 belong to L2(RN ) (see

BD,MV
[3, 26]

for more details). It gives in particular a first answer to the existence of global strong
solution with large initial data when N = 2 at least for a family of suitable initial data.
Indeed our case is not recover by the results of

VG
[31] since their viscosity coefficients are

completely different. This question remains obviously open for general initial data.
We could also choose q10(x) = ln(λ)ϕ(λx) with λ > 0 which improves again the size of

the large initial data in B
N
2
2,1.

Remark 2 We would like to emphasize on the fact that the density ln ρ consists in
the sum of a regular function ln ρ1 and of a small perturbation h2. This point is very
surprising in the sense that the density is governed by a hyperbolic equation which means
that a priori we do notexpect any regularizing effects on the density. It seems that there is
a singular behavior around the quasi-solution (ρ1,−µ∇ ln ρ1) and we note that this effect
is strictly non-linear. Indeed it depends on the convection term u · ∇u.
Furthermore this regularizing effect is crucial in order to deal with the term u2 · ∇ ln ρ1,
which loses one derivate. Secondly this regularizing effect allows us to consider ∇ ln ρ1

as a small remainder term in high frequencies.

Remark 3 We would like to mention that this result is strongly related to the structure
of the viscosity coefficients as we are able to construct quasi-solutions. Indeed for constant
viscosity coefficient it seems not clear how to construct quasi-solution.

Remark 4 Let us point out that that nonlinear condition of smallness as (
crucinitial
1.7) have been

proved also in some works of Chemin and Gallagher in
CG1,CG2
[8, 9] for incompressible Navier-

Stokes equations. Indeed in these works the authors prove the existence of global strong
solution for large initial data in B−1∞,∞ which is the largest critical space for the Navier-
Stokes equations. However our proof is really different of

CG1,CG2
[8, 9] since our initial data are
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completely irrotational (that is of course not the case for incompressible equation). In
addition we work around the quasi-solution which absorb the convection term, it enables
to obtain better results in term of smallness assumption (

crucinitial
1.7) compared with

CG1,CG2
[8, 9] (indeed

in these papers the authors work around the solution of the heat equation, and the process
of smallness is related to a smallness assumption on the term of convection). This is
obviously due to the fact that our system is compressible which allows us to deal with
irrotational data.

Remark 5 We could weaken the condition on (h2, u2) by following also the idea of
CH
[7],

indeed it may be possible to take u2 only in B̃
N
2
−1,N

p
−1

2,p,2 with divu0 in B̃
N
2
−2,N

p
−2

2,p,1 .

Remark 6 We think that we could treat also the general case when µ(ρ) = µρα with
α > 1− 1

N (α 6= 1) when µ and λ verify the BD entropy (see
5BD1
[5]). Indeed we have proved

in
PAM,PAM1
[22, 21] that there exists in this case quasi-solutions of the form (ρ1,− 2µα

α−1∇(ρ1)α−1)

with ρ1 solution of the fast diffusion equation or the porous medium equation:

∂tρ1 − 2µ∆(ρ1)α = 0.

When ρ1 is far away from the vacuum the previous equation has the same behavior than
a heat equation, then we can adapt our proof in a similar way.

We are going to finish by presenting a result of global strong solution with large initial
data provided that the Mach number is sufficiently large.

cor3 Theorem 1.2 Let P (ρ) = Kρ with K > 0 and 2 ≤ p ≤ 4, p < 2N , q ≥ 2 such that:

1

2
≤ 1

p
+

1

q
,

1

N
<

1

p
+

1

q
,

1

p
≤ 1

N
+

1

q

Let ρ0 = ρ10e
h20 with ρ10 = 1 + q10, u0 = −2µ∇ ln ρ10 + u20. Furthermore we assume that

ρ10 ≥ c > 0, q10 ∈ B̃
N
2
−1,N

q

2,q,1 ∩ B̃
N
2
−2,N

p
−2

2,p,1 , h20 ∈ B̃
N
2
−1,N

p

2,p,1 and u20 ∈ B̃
N
2
−1,N

p
−1

2,p,1 .

There exists ε0 > 0 (depending on h01 and the viscosity coefficient µ) such that for any
K ≤ ε0, there exits ε1 > 0 such that if

‖h02‖
B̃
N
2 −1,Np
2,p,1

+ ‖u02‖
B̃
N
2 −1,Np −1

2,p,1

≤ ε1. (1.10) bcrucinitial

then there exists a global solution (ρ, u) of the system (
3systeme
1.4) with: u = −2µ∇ ln ρ1 + u2

and ln ρ = ln ρ1 + h2 with ρ1 = 1 + q1 verifying the following system:{
∂tρ1 − 2µ∆ρ1 = 0,

ρ1(0, ·) = ρ01 = 1 + h01.

Furthermore we have:

h2 ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ) ∩ L1(R+, B̃
N
2
+1,N

p

2,p,1 )

and u2 ∈ C̃(R+; B̃
N
2
−1,N

p
−1

2,p,1 ) ∩ L1(R+, B̃
N
2
+1,N

p
+1

2,p,1 ).

Moreover the solution is unique if 2
N ≤

1
p + 1

q .

7



Remark 7 The main interest of this theorem is to prove the existence of global strong
solution for any large initial data provided that K is sufficiently small with P (ρ) = Kρ
(here K = 1

ε2
with ε the Mach number). In other terms we get global existence and

uniqueness for highly compressible fluids (which corresponds to large Mach number ε) in
any dimension N ≥ 2. Up to our knowledge it is the first time that we have a result of
global strong solution with large initial data in dimension 3 (under a condition of course
of high compressibility, it means that K must be sufficiently small in function of the
initial data). Roughly speaking K tends to be very small when ‖h01‖

B̃
N
2 −2,N2
2,1

is very large.

We are now going to consider the viscous shallow water model with friction. This model
is also called the Saint-Venant equations and is generally used in oceanography. Indeed
it allows to model vertically averaged flows in terms of the horizontal mean velocity field
u and the depth variation ρ. In the rotating framework, the model is described by the
following system:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(2µρD(u)) +
∇ρ
Fr2

+ rρu = 0,

(ρ, u)/t=0 = (ρ0, u0).

(1.11) 10.1

Fr > 0 denotes the Froude number. The turbulent regime (r ≥ 0) is obtained from the
friction condition on the bottom (see

P
[29] for more details and

BD,MAA
[3, 18] for the existence of

global weak solutions). We assume now that r = 1
2µFr2

. With this choice on r, we verify

easily that (ρ1,−2µ∇ ln ρ1) is an explicit solution of system (
10.1
1.11) if ρ1 verifies the heat

equation (
achal
1.13).

Remark 8 Let us mention in particular that we could choose initial density ρ10 in L1(RN )
with ρ10 ≥ 0. Let us emphasize that here we can take an initial density which is close
from the vacuum, this is generally an open problem for compressible fluids with degenerate
viscosity coefficients.
Indeed since ρ1 verifies the heat equation, for any t > 0 we would have ρ1(t, x) > 0 for
all (t, x) ∈]0,+∞[×RN and ρ1(t, ·) ∈ C∞(RN ) for t > 0. In particular u1(t, ·) is well
defined for t > 0.

Using similar idea than in theorem
theo1
1.1 we obtain the following result.

Theorem 1.3 Let 2 ≤ p ≤ 4, q ≥ 2 such that:

1

2
≤ 1

p
+

1

q
,

1

N
<

1

p
+

1

q
,

1

p
≤ 1

N
+

1

q

Let ρ0 = ρ10e
h20 with ρ10 = 1 + q10, u0 = −2µ∇ ln ρ10 + u20. Furthermore we assume that

ρ10 ≥ c > 0, q10 ∈ B̃
N
2
−1,N

q

2,q,1 ∩ B̃
N
2
−2,N

p
−2

2,p,1 , h20 ∈ B̃
N
2
−1,N

p

2,p,1 and u20 ∈ B̃
N
2
−1,N

p
−1

2,p,1 . There exists

ε0 depending on ρ10 such that if:

‖h02‖
B̃
N
2 −1,Np
2,p,1

+ ‖u02‖
B̃
N
2 −1,Np −1

2,p,1

≤ ε0, (1.12) crucinitialbb
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then there exists a global solution (ρ, u) of the system (
0.1
1.1) written under the following

form: ρ = ρ1eh
2

and u = −2µ∇ ln ρ1 + u2 with:{
∂tρ

1 − 2µ∆ρ1 = 0,

ρ1t=0 = ρ10.
(1.13) achal

In addition we have:

h2 ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ) ∩ L1(R+, B̃
N
2
+1,N

p

2,p,1 )

and u2 ∈ C̃(R+; B̃
N
2
−1,N

p
−1

2,p,1 ) ∩ L1(R+, B̃
N
2
+1,N

p
+1

2,p,1 ).

Moreover the solution is unique if 2
N ≤

1
p + 1

q .
theo3

Remark 9 Compared with the theorem
theo1
1.1, we do not need any assumption of smallness

on the density ρ10, it corresponds to a result of global strong solution for large initial
data when N ≥ 2. To do this we simply perturbate the explicit large strong solution
(ρ1,−2µ∇ ln ρ1) with ρ1 verifying the heat equation (

achal
1.13). It is the first result up to our

knowledge of global strong solution with large initial data for a compressible system when
N ≥ 3.

Our paper is structured as follows. In section
section2
2, we give a few notation and briefly

introduce the basic Fourier analysis techniques needed to prove our result. In section
section4
3,

we prove estimates on a linear system with convection terms. In section
section5
4 we prove the

theorems
theo1
1.1 and the theorems

cor3
1.2,

theo3
1.3.

2 Littlewood-Paley theory and Besov spaces
section2

Throughout the paper, C stands for a constant whose exact meaning depends on the
context. The notation A . B means that A ≤ CB. For all Banach space X, we
denote by C([0, T ], X) the set of continuous functions on [0, T ] with values in X. For
p ∈ [1,+∞], the notation Lp(0, T,X) or LpT (X) stands for the set of measurable functions
on (0, T ) with values in X such that t→ ‖f(t)‖X belongs to Lp(0, T ). Littlewood-Paley
decomposition corresponds to a dyadic decomposition of the space in Fourier variables.
We can use for instance any ϕ ∈ C∞(RN ), supported in C = {ξ ∈ RN/34 ≤ |ξ| ≤

8
3} and

χ ∈ C∞(RN ) supported in B(0, 43) such that:

χ(ξ) +
∑
l∈N

ϕ(2−lξ) = 1 for all ξ ∈ RN ,∑
l∈Z

ϕ(2−lξ) = 1 if ξ 6= 0.

Denoting h = F−1ϕ, we then define the dyadic blocks by:

∆lu = ϕ(2−lD)u = 2lN
∫
RN

h(2ly)u(x− y)dy and Slu = χ(2−lu).

u =
∑
k∈Z

∆ku .

This decomposition is called homogeneous Littlewood-Paley decomposition.
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2.1 Homogeneous Besov spaces and first properties

defSh Definition 2.3 We denote by S ′h the space of temperate distribution u such that:

lim
j→−∞

Sju = 0 in S ′ .

Definition 2.4 For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈ S ′(RN ) we set:

‖u‖Bsp,q = (
∑
l∈Z

(2ls‖∆lu‖Lp)q)
1
q .

The homogeneous Besov space Bs
p,q is the set of distribution u in S ′h such that ‖u‖Bsp,q <

+∞.

Remark 10 The above definition is a natural generalization of the homogeneous Sobolev
and Hölder spaces: one can show that Bs

∞,∞ is the homogeneous Hölder space Cs and
that Bs

2,2 is the homogeneous space Hs.

interpolation Proposition 2.1 The following properties holds:

1. there exists a constant universal C such that:
C−1‖u‖Bsp,r ≤ ‖∇u‖Bs−1

p,r
≤ C‖u‖Bsp,r .

2. If p1 < p2 and r1 ≤ r2 then Bs
p1,r1 ↪→ B

s−N(1/p1−1/p2)
p2,r2 .

3. Bs
′

p,r1 ↪→ Bs
p,r if s

′
> s or if s = s

′
and r1 ≤ r.

4. Moreover we have the following interpolation inequalities, it exists C > 0 such that
for any θ ∈]0, 1[ and s < s̃ we have:

‖u‖
B
θs+(1−θ)s̃
p,r

≤ ‖u‖θBsp,r‖u‖
1−θ
Bs̃p,r

,

‖u‖
B
θs+(1−θ)s̃
p,1

≤ C

θ(1− θ)(s̃− s)
‖u‖θBsp,∞‖u‖

1−θ
Bs̃p,∞

.

interpolation

Let us now recall a few product laws in Besov spaces coming directly from the paradif-
ferential calculus of J-M. Bony (see

BJM,BCD
[2, 1]).

produit1 Proposition 2.2 We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1,+∞]2 we have:

‖uv‖Bsp,r ≤ C(‖u‖L∞‖v‖Bsp,r + ‖v‖L∞‖u‖Bsp,r) . (2.14) 2.2

• Let (p, p1, p2, r, λ1, λ2) ∈ [1,+∞]2 such that:1p ≤
1
p1

+ 1
p2

, p1 ≤ λ2, p2 ≤ λ1, 1
p ≤

1
p1

+ 1
λ1

and 1
p ≤

1
p2

+ 1
λ2

. We have then the following inequalities:

if s1 + s2 +N inf(0, 1− 1
p1
− 1

p2
) > 0, s1 + N

λ2
< N

p1
and s2 + N

λ1
< N

p2
then:

‖uv‖
B
s1+s2−N( 1

p1
+ 1
p2
− 1
p )

p,r

. ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

, (2.15) 2.3
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when s1 + N
λ2

= N
p1

(resp s2 + N
λ1

= N
p2

) we replace ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

(resp ‖v‖Bs2p2,∞)

by ‖u‖Bs1p1,1
‖v‖Bs2p2,r (resp ‖v‖Bs2p2,∞∩L∞), if s1 + N

λ2
= N

p1
and s2 + N

λ1
= N

p2
we take

r = 1.
If s1 + s2 = 0, s1 ∈ (Nλ1 −

N
p2
, Np1 −

N
λ2

] and 1
p1

+ 1
p2
≤ 1 then:

‖uv‖
B
−N( 1

p1
+ 1
p2
− 1
p )

p,∞

. ‖u‖Bs1p1,1
‖v‖Bs2p2,∞ . (2.16) 2.4

If |s| < N
p for p ≥ 2 and −N

p′
< s < N

p else, we have:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p
p,∞∩L∞

. (2.17) 2.5

Remark 11 In the sequel p will be either p1 or p2 and in this case 1
λ = 1

p1
− 1
p2

if p1 ≤ p2,

resp 1
λ = 1

p2
− 1

p1
if p2 ≤ p1.

The study of non stationary PDE’s requires space of type Lρ(0, T,X) for appropriate
Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural
to localize the equation through Littlewood-Paley decomposition. But, in doing so, we
obtain bounds in spaces which are not type Lρ(0, T,X) (except if r = p). We are now go-
ing to define some useful spaces in which we will work, which are a refinement of the spaces
LρT (Bs

p,r).

Definition 2.5 Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖
L̃ρT (B

s1
p,r)

=
(∑
l∈Z

2lrs1‖∆lu(t)‖rLρ(Lp)
) 1
r .

We then define the space L̃ρT (Bs1
p,r) as the set of temperate distribution u over (0, T )×RN

such that limq→−∞ Squ = 0 in S ′((0, T )× RN ) and ‖u‖
L̃ρT (B

s1
p,r)

< +∞.

We set C̃T (B̃s1
p,r) = L̃∞T (B̃s1

p,r) ∩ C([0, T ], Bs1
p,r). Let us emphasize that, according to

Minkowski inequality, we have:

‖u‖
L̃ρT (B

s1
p,r)
≤ ‖u‖LρT (Bs1p,r) if r ≥ ρ, ‖u‖

L̃ρT (B
s1
p,r)
≥ ‖u‖LρT (Bs1p,r) if r ≤ ρ.

Remark 12 It is easy to generalize proposition
produit1
2.2, to L̃ρT (Bs1

p,r) spaces. The indices s1,
p, r behave just as in the stationary case whereas the time exponent ρ behaves according
to Hölder inequality.

In the sequel we will need composition lemma in L̃ρT (Bs
p,r) spaces.

composition Proposition 2.3 Let s > 0, (p, r) ∈ [1,+∞] and u ∈ L̃ρT (Bs
p,r) ∩ L∞T (L∞).

1. Let F ∈W [s]+2,∞
loc (RN ) such that F (0) = 0. Then F (u) ∈ L̃ρT (Bs

p,r). More precisely
there exists a function C depending only on s, p, r, N and F such that:

‖F (u)‖
L̃ρT (B

s
p,r)
≤ C(‖u‖L∞T (L∞))‖u‖L̃ρT (Bsp,r).

11



2. Let F ∈W [s]+3,∞
loc (RN ) such that F (0) = 0. Then F (u)−F ′(0)u ∈ L̃ρT (Bs

p,r). More
precisely there exists a function C depending only on s, p, r, N and F such that:

‖F (u)− F ′(0)u‖
L̃ρT (B

s
p,r)
≤ C(‖u‖L∞T (L∞))‖u‖2L̃ρT (Bsp,r)

.

Let us give now some estimates on the commutators ( see
BCD
[1] chapter 2).

alemme2 Lemma 1 Let 1 ≤ p1 ≤ p ≤ +∞ and σ ∈ (−min(Np ,
N

p
′
1

), Np +1). There exists a sequence

cq ∈ l1(Z) such that ‖cq‖l1 = 1 and a constant C depending only on N and σ such that:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp1 ≤ Ccq2−qσ‖∇v‖
B
N
p
p,∞∩L∞

‖a‖Bσp1,1 . (2.18) 52

In the limit case σ = −min(Np ,
N

p
′
1

), we have:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp1 ≤ Ccq2q
N
p ‖∇v‖

B
N
p
p,1

‖a‖
B
− Np1
p,∞

. (2.19) 53

Finally, for all σ > 0 and 1
p2

= 1
p1
− 1

p , there exists a constant C depending only on N

and on σ and a sequence cq ∈ l1(Z) with norm 1 such that:

∀q ∈ Z, ‖[v · ∇,∆q]v‖Lp ≤ Ccq2−qσ(‖∇v‖L∞‖v‖Bσp1,1 + ‖∇v‖Lp2‖∇v‖Bσ−1
p,1

). (2.20) 54

2.2 Hybrid Besov spaces

The homogeneous Besov spaces fail to have nice inclusion properties: owing to the low
frequencies, the embedding Bs

p,1 ↪→ Bt
p,1 does not hold for s > t. Still, the functions

of Bs
p,1 are locally more regular than those of Bt

p,1: for any φ ∈ C∞0 and u ∈ Bs
p,1, the

function φu ∈ Bt
p,1. This motivates the definition of Hybrid Besov spaces introduced by

R. Danchin (see
BCD,arma
[1, 16]) where the growth conditions satisfied by the dyadic blocks and the

coefficient of integrability are not the same for low and high frequencies. Hybrid Besov
spaces have been used in

arma
[16] to prove global well-posedness for compressible Navier-

Stokes equation. We generalize here a little bit the definition by allowing for different
Lebesgue norms in low and high frequencies.

def1.9 Definition 2.6 Let l0 ∈ N, s, t,∈ R, (r, r1) ∈ [1,+∞]2 and (p, q) ∈ [1,+∞]. We set:

‖u‖
B̃s,tp,q,1

=
∑
l≤l0

2ls‖∆lu‖Lp +
∑
l>l0

2lt‖∆lu‖Lq ,

and:
‖u‖

B̃s,t
(p,r),(q,r1

)
=
(∑
l≤l0

(2ls‖∆lu‖Lp)r
) 1
r +

(∑
l>l0

(2lt‖∆lu‖Lq)r1
) 1
r1 .

Remark 13 It will be important in the sequel to chose l0 big enough.

Notation 1 We will often use the following notation:

uBF =
∑
l≤l0

∆lu and uHF =
∑
l>l0

∆lu.
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Remark 14 We have the following properties:

• B̃s,s
p,p,1 = Bs

p,1.

• If s1 ≥ s3 and s2 ≥ s4 then B̃s3,s2
p,q,1 ↪→ B̃s1,s4

p,q,1 .

Proposition 2.4 We have:

‖u‖
B̃
s
2+ s̃2 ,s

′

p,q,r

≤ ‖u‖
1
2

B̃
s
2 ,s
′

p,q,r

‖u‖
1
2

B̃
s̃
2 ,s
′

p,q,r

.

hybriinter

Proof: For the proof (see
arma
[16]). �

We shall also make use of hybrid Besov-spaces.The basic idea of paradifferentiel calculus
is that any product of two distributions u and v can be formally decomposed into:

uv = Tuv + Tvu+R(u, v) = Tuv + T
′
vu

where the paraproduct operator is defined by Tuv =
∑

q Sq−1u∆qv, the remainder oper-

ator R, by R(u, v) =
∑

q ∆qu(∆q−1v + ∆qv + ∆q+1v) and T
′
vu = Tvu+R(u, v).

We recall here an important proposition on the paraproduct for hybrid Besov spaces (see
arma
[16]).

hybrid Proposition 2.5 Let p1, p2, p3, p4 ∈ [1,+∞], (s1, s2, s3, s4) ∈ R4 and (p, q) ∈ [1,+∞]2,
we have then the following inequalities:

• If 1
p ≤

1
p2

+ 1
λ ≤ 1, 1

q ≤
1
p4

+ 1
λ′
≤ 1 with (λ, λ

′
) ∈ [1,+∞]2 and p1 ≤ λ

′
, p1 ≤ λ,

p3 ≤ λ
′

then:

‖Tuv‖
B̃
s1+s2+

N
p −

N
p1
− Np2

,s3+s4+
N
q −

N
p3
− Np4

p,q,r

. ‖u‖
B̃
s1,s3
p1,p3,1

‖v‖
B̃
s2,s4
p2,p4,r

, (2.21) 62

if s1 + N
λ′
≤ N

p1
, s1 + N

λ ≤
N
p1

and s3 + N
λ′
≤ N

p3
.

• If 1
q ≤

1
p3

+ 1
p4

and s3 + s4 +N inf(0, 1− 1
p3
− 1

p4
) > 0 then∑

l≥4
2
l(s3+s4+

N
q
− N
p3
− N
p4

)‖∆lR(u, v)‖Lq . ‖u‖B̃s1,s3p1,p3,1
‖v‖

B̃
s2,s4
p2,p4,r

. (2.22) 63

• If 1
p ≤

1
p3

+ 1
p4
≤ 1, 1

p ≤
1
p3

+ 1
p2
≤ 1, 1

p ≤
1
p1

+ 1
p4
≤ 1, 1

p ≤
1
p1

+ 1
p2
≤ 1 and

s3 + s4 > 0, s3 + s2 > 0, s4 + s1 > 0, s1 + s2 > 0 then∑
l≤4

2
l(s1+s2+

N
p
− N
p1
− N
p2

)‖∆lR(u, v)‖Lp . ‖u‖
B̃
s1,

N
p3
− Np1

+s1

p1,p3,1

‖v‖
B̃
s2,

N
p4
− Np2

+s2
p2,p4,r

. (2.23) 63

with s3 = N
p3
− N

p1
+ s1 and s4 = N

p4
− N

p2
+ s2.

• If u ∈ L∞, we also have:

‖Tuv‖B̃s1,s2p,q,r
. ‖u‖L∞‖v‖B̃s1,s2p,q,r

, (2.24) 65

and if min(s1, s2) > 0 then:

‖R(u, v)‖
B̃
s1,s2
p,q,r

. ‖u‖L∞‖v‖B̃s1,s2p,q,r
. (2.25) 66
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2.3 The heat equation and the mass conservation equation
section3

Let us now give some estimates for the heat equation:

5chaleur Proposition 2.6 Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that

u0 ∈ Bs
p,r and f ∈ L̃ρ2T (B

s−2+2/ρ2
p,r ). Let u be a solution of:{

∂tu− µ∆u = f

ut=0 = u0 .

Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u‖
L̃
ρ1
T (B̃

s+2/ρ1
p,r )

≤ C
(
‖u0‖Bsp,r + ‖f‖

L̃
ρ2
T (B

s−2+2/ρ2
p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).

Let us now give some estimates in Besov spaces for the solution of the transport equation.
For more details, the reader is referred to

BCD
[1].

Proposition 2.7 Let 1 ≤ p1 ≤ p ≤ +∞, r ∈ [1,+∞] and s ∈ R be such that:

−N min(
1

p1
,

1

p′
) < s < 1 +

N

p1
.

Suppose that q0 ∈ Bs
p,r, F ∈ L1(0, T, Bs

p,r) and that q ∈ L∞T (Bs
p,r) ∩ C([0, T ];S ′) solves

the following transport equation: {
∂tq + u · ∇q = F,

q t=0 = q0.

There exists a constant C depending only on N , p, p1, r and s such that , we have for
a.e t ∈ [0, T ]:

‖q‖
L̃∞t (Bsp,r)

≤ eCU(t)
(
‖q0‖Bsp,r +

∫ t

0
e−CU(τ)‖F (τ)‖Bsp,rdτ

)
, (2.26) 20

with: U(t) =
∫ t
0 ‖∇u(τ)‖

B
N
p1
p1,∞∩L∞

dτ .
transport1

We want to study now the following damped transport equation:

(H)

{
∂tq + u · ∇q + αq = F,

q/t=0 = q0.

Above q is the unknown function. We assume that F ∈ L̃1(0, T ;Bs
p,r), that v is time

dependent vector-fields with coefficients in L1(0, T ;B
N
p1

+1

p1,1
) and α > 0 a constant.
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Proposition 2.8 Let 1 ≤ p1 ≤ p ≤ +∞, r ∈ [1,+∞] and s ∈ R be such that:

−N min(
1

p1
,

1

p′
) < s < 1 +

N

p1
.

There exists a constant C depending only on N , p, p1, r and s such that for all a ∈
L∞([0, T ], Bσ

p,r) of (H) with initial data a0 in Bs
p,r and g ∈ L1([0, T ], Bs

p,r), we have for
a.e t ∈ [0, T ]:

‖q‖
L̃∞t (Bsp,r)

+ ‖q‖
L̃1
t (B

s
p,r)
≤ eCU(t)

(
‖q0‖Bsp,r + ‖F‖

L̃1
t (B

s
p,r)

)
, (2.27) 20

with: U(t) =
∫ t
0 ‖∇u(τ)‖

B
N
p1
p1,∞∩L∞

dτ .
transport2

Proof: Applying ∆l to (H) yields:

∂t∆lq + u · ∇∆lq + α∆lq = Rl + ∆lF,

with Rl = [u · ∇,∆l]q. Multiplying by ∆la|∆la|p−2 then performing a time integration,
we easily get:

‖∆lq(t)‖Lp + α

∫ t

0
‖∆lq(s)‖Lpds ≤ ‖∆lq0‖Lp +

∫ t

0

(
‖Rl‖Lp +

1

p
‖divu‖L∞‖∆lq‖Lp

+ ‖∆lF‖Lp
)
dτ.

(2.28) a3.7

Next the term ‖Rl‖Lpmay be bounded according to lemma
alemme2
1. We get then:

‖q‖
L̃∞t (Bsp,r)

+ α‖q‖
L̃1
t (B

s
p,r)
ds ≤ ‖∆lq0‖Bsp,r +

∫ t

0

(
‖F (τ)‖Bsp,r + CU

′
(τ)‖q‖

L̃∞t (Bsp,r)

)
dτ.

We end up with Grönwall lemma by letting X(t) = ‖q‖
L̃∞t (Bsp,r)

+ α‖q‖
L̃1
t (B

s
p,r)

. �

Remark 15 Let us mention that by using the equality (
a3.7
2.28), we show easily that:

‖qHF ‖L̃∞t (Bsp,r)
+ ‖qHF ‖L̃1

t (B
s
p,r)
≤ ‖(q0)HF ‖Bsp,r + ‖F (τ)‖

L̃1(Bsp,r)

+

∫ t

0
‖∇u(τ)‖

B
N
p1
p1,∞∩L∞

‖q(τ)‖Bsp,rdτ,
(2.29) 20bis

transportHF

3 A linear model with convection
section4

In this section, we are interested in studying the linear system associated to the system
(
0.2
1.6) that we can write under the following form with u = u1 + u2:

∂th
2 + u · ∇h2 + divu2 + u2 · ∇ ln ρ1 = F,

∂tu
2 + u1 · ∇u2 + u2 · ∇u1 − 2µ∇ ln ρ1 ·Du2 − 2µ∇h2 ·Du1 − µ∆u2 − µ∇divu2

+ a∇h2 = G,

(h2, u2)/t=0 = (h20, u
2
0).

(3.30) 0.2a
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with (F,G) some external force with regularity that we shall precise in the proposition
(
Danchinbas
3.11). In our case we recall that u1 = −2µ∇ ln ρ1 with ρ1 = 1+q1 verifying the following

heat equation: {
∂tρ

1 − 2µ∆ρ1 = 0,

ρ1(0, ·) = 1 + q10.
(3.31) eqchaleur

According to the maximum principle for the heat equation (
eqchaleur
3.31), the conditions on ρ1

in theorem
theo1
1.1 and by interpolation for Besov space, it exists c,M > 0 such that for all

t ≥ 0:
0 < c ≤ ρ1(t, ·) ≤ ‖ρ10‖L∞ ≤ 1 + ‖q10‖B0

∞,1
, (3.32)

Furthermore by the propositions
5chaleur
2.6,

composition
2.3 and the initial condition on q10 in theorem

theo1
1.1 (

q10 ∈ B̃
N
q1
−1,N

q
q1,q,∞ ∩ B̃

N
2
−2,N

p
−2

2,p,1 ∩B0
∞,1) we have:

q1 ∈ L̃1
(
B̃

N
2
,N
p

2,p,1 ∩ B̃
N
2
+1,N

q
+2

2,q,∞ ∩B2
∞,1
)
∩ L̃∞

(
B̃

N
2
−2,N

p
−2

2,p,1 ∩ B̃
N
2
−1,N

q

2,q,∞ ∩B0
∞,1
)

and

u1 ∈ L̃1
(
B̃

N
2
−1,N

p
−1

2,p,1 ∩ B̃
N
2
,N
q
+1

2,q,∞ ∩B1
∞,1
)
∩ L̃∞

(
B̃

N
2
−3,N

p
−3

2,p,1 ∩ B̃
N
2
−2,N

q
−1

2,q,∞ ∩B−1∞,1
)
,

(3.33) condivect

with p, q, q1 verifying the conditions of theorem
theo1
1.1. More precisely we have by the

propositions
5chaleur
2.6,

composition
2.3 for a regular function C:

‖q1‖
L̃1
(
B̃
N
2 ,
N
p

2,p,1 ∩B̃
N
2 +1,Nq +2

2,q,∞ ∩B2
∞,1

) + ‖q1‖
L̃∞
(
B̃
N
2 −2,Np −2

2,p,1 ∩B̃
N
2 −1,Nq
2,q,∞ ∩B0

∞,1

)
. ‖q10‖

B̃
N
2 −1,Nq
2,q,∞

+ ‖q10‖
B̃
N
2 −2,Np −2

2,p,1

.

‖u1‖
L̃1
(
B̃
N
2 −1,Np −1

2,p,1 ∩B̃
N
2 ,
N
q +1

2,q,∞ ∩B1
∞,1

) + ‖u1‖
L̃∞
(
B̃
N
2 −3,Np −3

2,p,1 ∩B̃
N
2 −2,Nq −1

2,q,∞ ∩B−1
∞,1

)
. C(‖q10‖L∞ , ‖

1

ρ10
‖L∞)

(
‖q10‖

B̃
N
2 −1,Nq
2,q,∞

+ ‖q10‖
B̃
N
2 −2,Np −2

2,p,1

)
.

(3.34) techcru

Let us start with recalling some estimates in Besov space for the following system:
∂th

2 + u · ∇h2 + divu2 = F
′
,

∂tu
2 − µ∆u2 − µ∇divu2 + a∇h2 = G

′
,

(h2, u2)/t=0 = (h20, u
2
0),

(3.35) 0.2b

with (F ′, G′) external forces. More precisely in
arma,DG,CMZ
[16, 12, 10] it has been proved the following

proposition by some different methods. In particular in
arma
[16], we introduce the notion of

effective velocity which enables us to diagonalize the system (
0.2b
3.35).

Proposition 3.9 Let 2 ≤ p ≤ 4, q ≥ 2 such that:

1

2
≤ 1

p
+

1

q
,

1

N
<

1

p
+

1

q
,

1

p
≤ 1

N
+

1

q
.
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Let (h2, u2) the solution of (
0.2b
3.35). There exists a constant C depending only on µ, N , s

and s
′

such that the following estimate holds:

‖(h2, u2)(t)‖
L̃∞T (B̃

N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1 )
+ ‖(h2, u2)‖

L̃1
T (B̃

N
2 +1,Np
2,p,1 ×B̃

N
2 +1,Np +1

2,p,1 )

≤ CeV (T )
(
‖(h20, u20)‖

B̃
N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1

+ ‖(F ′, G′)‖
L̃1(B̃

N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1 )

)
.

with:

V (T ) =

∫ t

0

(
‖∇u1(s)‖

B̃
N
2 ,
N
q

2,q,1

+ ‖∇u2(s)‖
B̃
N
2 ,
N
p

2,p,1

+ ‖u1(s)‖2
B̃
N
2 ,
N
q

2,q,1

+ ‖u2(s)‖2
B̃
N
2 ,
N
p

2,p,1

)
ds.

propestim

Proof: For the sake of the completeness we are going to prove this proposition by fol-
lowing the same arguments than in

arma
[16].

What happens in low frequencies?
Let us start by studying the following system in low frequencies:

(LH)
′

{
∂th

2 + divu2 = F ′ − u · ∇h2,
∂tu

2 − µ∆u2 − µ∇divu2 + a∇h2 = G′.

Danchinbasa Proposition 3.10 Let (h2, u2) a solution of (LH)
′
, let s ∈ R. The following estimate

holds:

‖(h2, u2)BF ‖L̃∞(Bs2,1)
+ ‖(h2, u2)BF ‖L̃1(Bs+2

2,1 )
≤‖(h20, u20)BF ‖Bs2,1 + ‖(F ′, G′)BF ‖L̃1(Bs2,1)

+ ‖(u · ∇h2)BF ‖L̃1(Bs2,1)
.

Proof: In this case for j ≤ 0, in terms of Green matrix (see
CMZ
[10]), the solution of (LH)

′

can be expressed as:(
∆jh

2(t)
∆ju

2(t)

)
= W (t)

(
∆jq0
∆ju0

)
+

∫ t

0
W (t− s)

(
∆jF

′(s)−∆j(u
1 · ∇h2)(s)

∆jG
′(s)

)
ds,

with W the Green matrix. From proposition 4.4 in
CMZ
[10] and Young’s inequality we obtain

the result.

What happens in high frequencies?
To do this, we are going to consider the following pressure velocity where v2 is the solution
of the following equation:

−µ∆v2 − µ∇divv2 = a∇h2.

Let E the fundamental solution of the Laplacian operator and we verify that v2 is as
follows: 

v2 = −E ∗ (
a

2µ
∇h2) = − a

2µ
(∆)−1∇h2,

divv2 = − a

2µ
h2, curlv2 = 0.

(3.36) defv
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We set set now w2 = u2 + v2, and we observe that (h2, w2) verify the following system
(we use in particular the fact that divv2 = − a

2µh
2):

∂th
2 + u · ∇h2 + divw2 +

a

2µ
h2 = F

′
,

∂tw
2 − µ∆w2 − µ∇divw2 = G

′ − a

2µ
∂t(∆)−1∇h2,

(h2, u2)/t=0 = (h20, u
2
0).

(3.37) 0.2c

We are going now to apply the proposition
5chaleur
2.6 and following the proof of the proposition

transport2
2.8 in order to obtain estimates in Besov space on (h2, w2) in high frequencies. We have
then if N

p ∈]−min(Nq ,
N
p′

), Nq + 1], then:

‖h2HF ‖
L̃∞t (B

N
p
p,1)

+ ‖h2HF ‖
L̃1
t (B

N
p
p,1)
. ‖(h20)HF ‖

B
N
p
p,1

+ ‖F ′HF ‖
L̃1
t (B

N
p
p,1)

+ ‖divw2
HF ‖

L̃1
t (B

N
p
p,1)

+

∫ t

0
(‖∇u1(τ)‖

B
N
q
q,1

+ ‖∇u2(τ)‖
B̃
N
2 ,
N
p

2,p,1

)‖(h2(τ))HF ‖
L̃∞τ (B

N
p
p,1)
dτ

‖w2
HF ‖

L̃∞(B
N
p −1

p,1 )
+ ‖w2

HF ‖
L̃1(B

N
p +1

p,1 )
≤ C

(
‖(w2

0)HF ‖
B
N
p −1

p,1

+ ‖G′HF ‖
L̃1
t (B

N
p −1

p,1 )

+ ‖(∂t(∆)−1∇h2)HF ‖
L̃1
t (B

N
p −1

p,1 )

)
.

(3.38) rimp1

We have then:

‖h2HF ‖
L̃∞t (B

N
p
p,1)

+ ‖h2HF ‖
L̃1
t (B

N
p
p,1)

+ ‖w2
HF ‖

L̃∞(B
N
p −1

p,1 )
+ ‖w2

HF ‖
L̃1(B

N
p +1

p,1 )
.

‖(h20)HF ‖
B
N
p
p,1

+ ‖F ′HF ‖
L̃1
t (B

N
p
p,1)

+

∫ t

0
‖∇u1(τ)‖

B
N
q
q,1

‖(h2(τ))HF ‖
L̃∞τ (B

N
p
p,1)
dτ

+

∫ t

0
‖∇u2(τ)‖

B̃
N
2 ,
N
p

2,p,1

‖(h2(τ))HF ‖
L̃∞τ (B

N
p
p,1)
dτ + ‖(w2

0)HF ‖
B
N
p −1

p,1

+ ‖G′HF ‖
L̃1
t (B

N
p −1

p,1 )

+ ‖(∂t(∆)−1∇h2)HF ‖
L̃1
t (B

N
p −1

p,1 )
.

(3.39) rimp1aaa

In low frequencies we are going to work with the unknown (h2, u2) and applying the
proposition

Danchinbasa
3.10 to the system (

0.2b
3.35) we have:

‖(h2, u2)BF ‖
L̃∞t (B

N
2 −1

2,1 )
+ ‖(h2, u2)BF ‖

L̃1
t (B

N
2 +1

2,1 )
. ‖(h20, u20)BF ‖

B
N
2 −1

2,1

+ ‖(u · ∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )
+ ‖(F ′ , G′)BF ‖

L̃1
t (B

N
2 −1

2,1 )
.

(3.40) rimp2

Since we have u2 = w2 − v2 and that v2 = − a
2µ(∆)−1∇h2 it implies by proposition

singuliere
??

that:

‖u2HF ‖
L̃∞(B

N
p −1

p,1 )
+ ‖u2HF ‖

L̃1(B
N
p +1

p,1 )
. ‖w2

HF ‖
L̃∞(B

N
p −1

p,1 )
+ ‖w2

HF ‖
L̃1(B

N
p +1

p,1 )

+ ‖h2HF ‖
L̃∞(B

N
p −2

p,1 )
+ ‖h2HF ‖

L̃1(B
N
p
p,1)
.

(3.41) rimp
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Combining (
rimp1aaa
3.39), (

rimp2
3.40) and (

rimp
3.41) we have:

‖h2‖
L̃∞t (B̃

N
2 −1,Np
2,p,1 )

+ ‖h2‖
L̃1
t (B̃

N
2 +1,Np
2,p,1 )

+ ‖u2‖
L̃∞t (B̃

N
2 −1,Np −1

p,1 )
+ ‖u2‖

L̃1
t (B̃

N
2 +1,Np +1

2,p,1 )
.(

‖h20‖
B̃
N
2 −1,Np
2,p,1

+ ‖u20‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖F ′‖
L̃1
t (B̃

N
2 −1,Np
2,p,1 )

+ ‖G′‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )

+

∫ t

0
‖∇u1(τ)‖

B
N
q
q,1

‖(h2(τ))HF ‖
L̃∞τ (B

N
p
p,1)
dτ + ‖(∂t(∆)−1∇h2)HF ‖

L̃1
t (B

N
p −1

p,1 )

+

∫ t

0
‖∇u2(τ)‖

B̃
N
2 ,
N
p

2,p,1

‖(h2(τ))HF ‖
L̃∞τ (B

N
p
p,1)
dτ + ‖(u · ∇h2)BF ‖

L̃1
t (B

N
2 −1

2,1 )

)
.

(3.42) rimp3

In other word we have:

‖h2‖
L̃∞t (B̃

N
2 −1,Np
2,p,1 )

+ ‖h2‖
L̃1
t (B̃

N
2 +1,Np
2,p,1 )

+ ‖u2‖
L̃∞t (B̃

N
2 −1,Np −1

p,1 )
+ ‖u2‖

L̃1
t (B̃

N
2 +1,Np +1

p,1 )
≤(

‖h20‖
B̃
N
2 −1,Np
2,p,1

+ ‖u20‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖F ′‖
L̃1
t (B̃

N
2 −1,Np
2,p,1 )

+ ‖G′‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )

+

∫ t

0
‖∇u1(τ)‖

B
N
q
q,1

‖h2(τ)‖
L̃∞τ (B̃

N
2 −1,Np
2,p,1 )

dτ + ‖(∂t(∆)−1∇h2)HF ‖
L̃1
t (B

N
p −1

p,1 )

+

∫ t

0
‖∇u2(τ)‖

B̃
N
2 ,
N
p

2,p,1

‖h2(τ)‖
L̃∞τ (B̃

N
2 −1,Np
2,p,1 )

dτ + ‖(u · ∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )

)
.

(3.43) rimp4

It remains only to treat the terms on the right hand side of (
rimp4
3.43). We verify via the first

equation of (
0.2b
3.35) that:

∂t(∆)−1∇h2 = (∆)−1∇F ′ − (∆)−1∇divu2 − (∆)−1∇(div(uh2)− h2divu).

We have then:

‖(∂t(∆)−1∇h2)HF ‖
L̃1
t (B

N
p −1

p,1 )
. ‖F ′‖

L̃1
t (B̃

N
2 −1,Np
2,p,1 )

+ ‖u2HF ‖
L̃1
t (B

N
p −1

p,1 )

+ ‖(uh2)HF ‖
L̃1
t (B

N
p −1

p,1 )
+ ‖(h2divu)HF ‖

L̃1
t (B

N
p −2

p,1 )
.

(3.44) impfi

Let us deal now with the term (u1 · ∇h2)BF in (
rimp4
3.43), similarly by using proposition

hybrid
2.5,

hybriinter
2.4 and interpolation we have with λ = λ′ = +∞:

‖(u1 · ∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )
≤ ‖T∇h2u1‖

L̃1
t (B̃

N
2 −1,Nq
2,q,1 )

+ ‖Tu1∇h2‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )

+ ‖R(u1,∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )

‖T∇h2u1‖
L̃1
t (B̃

N
2 −1,Nq
2,q,1 )

.
∫ t

0
‖∇h2(τ)‖

B̃
N
2 −2,Np −1

2,p,1

‖u1(τ)‖
B̃
N
2 +1,Nq +1

2,q,1

dτ

.
∫ t

0
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

‖u1(τ)‖
B̃
N
2 +1,Nq +1

2,q,1

dτ.

(3.45) atest1
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Similarly we have by proposition
hybrid
2.5,

hybriinter
2.4 and Young inequality for any ε > 0:

‖Tu1∇h2‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )
.
∫ t

0
‖u1(τ)‖L∞‖∇h2(τ)‖

B̃
N
2 −1,Np −1

2,p,1

dτ,

.
∫ t

0
‖u1(τ)‖L∞‖h2(τ)‖

1
2

B̃
N
2 −1,Np
2,p,1

‖h2(τ)‖
1
2

B̃
N
2 +1,Np
2,p,1

dτ,

. Cε

∫ t

0
‖u1(τ)‖2B0

∞,1
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

dτ + ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ.

(3.46) test2

By proposition
hybrid
2.5 we have with s1 = N

2 , s3 = N
q , s2 = N

2 − 1, s4 = N
p − 1, p1 = p2 = 2,

p3 = q and p4 = p and since p ≥ 2, q ≥ 2, 1
2 ≤

1
p + 1

q , 1
p + 1

q >
1
N :

‖R(∇h2, u1)BF ‖
L̃1
t (B

N
2 −1

2,1 )
.
∫ t

0
‖u1(τ)‖

B̃
N
2 ,
N
q

2,q,1

‖∇h2(τ)‖
B̃
N
2 −1,Np −1

2,p,1

dτ,

.
∫ t

0
‖u1(τ)‖

B̃
N
2 ,
N
q

2,q,1

‖h2(τ)‖
B̃
N
2 ,
N
p

2,p,1

dτ,

. Cε

∫ t

0
‖u1(τ)‖2

B̃
N
2 ,
N
q

2,q,1

‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ + ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ.

(3.47) test3

Finally we have obtained for any ε > 0 and C ′ε > 0 sufficiently large:

‖(u1 · ∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )
≤
∫ t

0
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

‖u1(τ)‖
B̃
N
2 +1,Nq +1

2,q,1

dτ

+ ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ + C ′ε

∫ t

0
(‖u1(τ)‖2B0

∞,1
+ ‖u1(τ)‖2

B̃
N
2 ,
N
q

2,q,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ.

(3.48) convecfi

Similarly we are going to deal with the term (u2 · ∇h2)BF . We have then:

‖(u2 · ∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )
≤ ‖T∇h2u2‖

L̃1
t (B̃

N
2 −1,Np
2,p,1 )

+ ‖Tu2∇h2‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )

+ ‖R(u2,∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )

‖T∇h2u2‖
L̃1
t (B̃

N
2 −1,Np
2,p,1 )

.
∫ t

0
‖∇h2(τ)‖

B̃
N
2 −2,Np −1

2,p,1

‖u2(τ)‖
B̃
N
2 +1,Np +1

2,p,1

dτ

.
∫ t

0
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

‖u1(τ)‖
B̃
N
2 +1,Np +1

2,p,1

dτ.

(3.49) batest1

Similarly we have by proposition
hybrid
2.5,

hybriinter
2.4 and Young inequality for any ε > 0:

‖Tu2∇h2‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )
.
∫ t

0
‖u2(τ)‖L∞‖∇h2(τ)‖

B̃
N
2 −1,Np −1

2,p,1

dτ,

.
∫ t

0
‖u2(τ)‖L∞‖h2(τ)‖

1
2

B̃
N
2 −1,Np
2,p,1

‖h2(τ)‖
1
2

B̃
N
2 +1,Np
2,p,1

dτ,

. Cε

∫ t

0
‖u2(τ)‖2B0

∞,1
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

dτ + ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ.

(3.50) btest2
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It remains now to deal with the remainder R(u2,∇h2), it gives using the proposition
hybrid
2.5

since 2 ≤ p ≤ 4:

‖R(∇h2, u2)BF ‖
L̃1
t (B

N
2 −1

2,1 )
.
∫ t

0
‖u2(τ)‖

B̃
N
2 ,
N
p

2,p,1

‖∇h2(τ)‖
B̃
N
2 −1,Np −1

2,p,1

dτ,

.
∫ t

0
‖u2(τ)‖

B̃
N
2 ,
N
p

2,p,1

‖h2(τ)‖
B̃
N
2 ,
N
p

2,p,1

dτ,

. Cε

∫ t

0
‖u2(τ)‖2

B̃
N
2 ,
N
p

2,p,1

‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ + ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ.

(3.51) btest3

It gives then:

‖(u2 · ∇h2)BF ‖
L̃1
t (B

N
2 −1

2,1 )
.
∫ t

0
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

‖u2(τ)‖
B̃
N
2 +1,Np +1

2,p,1

dτ

+ ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ + C ′ε

∫ t

0
(‖u2(τ)‖2B0

∞,1
+ ‖u2(τ)‖2

B̃
N
2 ,
N
p

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ.

(3.52) bconvecfi

Let us deal now with the term (u1h2)HF and (u2h2)HF in the right hand side of (
rimp4
3.43),

by using proposition
hybrid
2.5 we have since 1

p ≤
1
N + 1

q , interpolation and Young inequality
we have:

‖(u1h2)HF ‖
L̃1
t (B

N
p −1

p,1 )
.
∫ t

0

(
‖Tu1h2(τ)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖Th2u1(τ)‖
B̃
N
2 ,
N
p −1

2,p,1

+ ‖(R(u1, h2))HF (τ)‖
B
N
p −1

p,1

)
dτ∫ t

0

(
‖Tu1h2(τ)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖Th2u1(τ)‖
B̃
N
2 ,
N
p −1

2,p,1

dτ

.
∫ t

0
(‖u1(τ)‖B0

∞,1
‖h2(τ)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖h2(τ)‖
B̃
N
2 −1,Np −2

2,p,1

‖u1(τ)‖
B̃
N
2 +1,Nq +1

2,q,1

)dτ

. Cε

∫ t

0
(‖u1(τ)‖2B0

∞,1
+ ‖u1(τ)‖

B̃
N
2 +1,Nq +1

2,q,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ + ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ.

(3.53) impfi1

In the same way we have since 1
p + 1

q >
1
N :∫ t

0
‖(R(u1, h2))HF (τ)‖

B
N
p −1

p,1

dτ .
∫ t

0
‖u1(τ)‖

B̃
N
2 +1,Nq −1

2,q,1

‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ. (3.54) rimpa
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Similarly we obtain:

‖(u2h2)HF ‖
L̃1
t (B

N
p −1

p,1 )
.
∫ t

0

(
‖Tu2h2(τ)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖Th2u2(τ)‖
B̃
N
2 ,
N
p −1

2,p,1

+ ‖(R(u2, h2))HF (τ)‖
B
N
p −1

p,1

)
dτ.∫ t

0

(
‖Tu2h2(τ)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖Th2u2(τ)‖
B̃
N
2 ,
N
p −1

2,p,1

dτ

.
∫ t

0
(‖u2(τ)‖B0

∞,1
‖h2(τ)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖h2(τ)‖
B̃
N
2 −1,Np −2

2,p,1

‖u2(τ)‖
B̃
N
2 +1,Np +1

2,p,1

)dτ

. Cε

∫ t

0
(‖u2(τ)‖2B0

∞,1
+ ‖u2(τ)‖

B̃
N
2 +1,Np +1

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ + ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ.

(3.55) impfi1b

In the same way we have since p ≤ 4 < 2N :∫ t

0
‖(R(u2, h2))HF (τ)‖

B
N
p −1

p,1

dτ .
∫ t

0
‖u2(τ)‖

B̃
N
2 +1,Np −1

2,p,1

‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ. (3.56) rimpab

Finally combining (
impfi1
3.53), (

rimpa
3.54), (

impfi1
3.53) and (

rimpab
3.56) we have for any ε > 0 and C ′ε suffi-

ciently large:

‖(uh2)HF ‖
L̃1
t (B

N
p −1

p,1 )

. C ′ε

∫ t

0
(‖u1(τ)‖2B0

∞,1
+ ‖u1(τ)‖

B̃
N
2 +1,Nq +1

2,q,1

+ ‖u2(τ)‖2B0
∞,1

+ ‖u2(τ)‖
B̃
N
2 +1,Np +1

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ

+ ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ +

∫ t

0
(‖u1(τ)‖

B̃
N
2 +1,Nq −1

2,q,1

+ ‖u2(τ)‖
B̃
N
2 +1,Np −1

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ

(3.57) superimo

Let us treat now the terms (divu1h2)HF and (divu2h2)HF . We have then using again the
proposition

hybrid
2.5 since 1

p ≤
1
N + 1

q :

‖(h2divu1)HF ‖
L̃1
t (B

N
p −2

p,1 )
.
∫ t

0

(
‖Tdivu1h2(τ)‖

B̃
N
2 −1,Np
2,p,1

+ ‖Th2divu1(τ)‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖(R(divu1, h2))HF (τ)‖
B
N
p
p,1

)
dτ

.
∫ t

0
(‖divu1(τ)‖L∞‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

+ ‖h2(τ)‖
B̃
N
2 −1,Np −1

2,p,1

‖divu1(τ)‖
B̃
N
2 ,
N
q

2,q,1

)dτ.

(3.58) impfi2
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Similarly we have:

‖(h2divu2)HF ‖
L̃1
t (B

N
p −2

p,1 )
.
∫ t

0

(
‖Tdivu2h2(τ)‖

B̃
N
2 −1,Np
2,p,1

+ ‖Th2divu2(τ)‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖(R(divu2, h2))HF (τ)‖
B
N
p
p,1

)
dτ

.
∫ t

0
(‖divu2(τ)‖L∞‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

+ ‖h2(τ)‖
B̃
N
2 −1,Np −1

2,p,1

‖divu2(τ)‖
B̃
N
2 ,
N
p

2,p,1

)dτ.

(3.59) cimpfi2

Let us combine (
rimp4
3.43), (

impfi
3.44), (

convecfi
3.48), (

bconvecfi
3.52), (

superimo
3.57), (

impfi2
3.58) and (

cimpfi2
3.59) we have for ε >

and C ′ε sufficiently large:

‖h2‖
L̃∞t (B̃

N
2 −1,Np
2,p,1 )

+ ‖h2‖
L̃1
t (B̃

N
2 +1,Np
2,p,1 )

+ ‖u2‖
L̃∞t (B̃

N
p −1,Np −1

p,1 )
+ ‖u2‖

L̃1
t (B̃

N
p +1

p,1 )
≤(

‖h20‖
B̃
N
2 −1,Np
2,p,1

+ ‖u20‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖F ′‖
L̃1
t (B̃

N
2 −1,Np
2,p,1 )

+ ‖G′‖
L̃1
t (B̃

N
2 −1,Np −1

2,p,1 )

+

∫ t

0
(‖∇u1(τ)‖

B
N
q
q,1

+ ‖∇u2(τ)‖
B̃
N
2 ,
N
p

2,p,1

)‖h2(τ)‖
L̃∞τ (B̃

N
2 −1,Np
2,p,1 )

dτ + ‖u2HF ‖
L̃1
t (B

N
p −1

p,1 )

+

∫ t

0
‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

(‖u1(τ)‖
B̃
N
2 +1,Nq +1

2,q,1

+ ‖u2(τ)‖
B̃
N
2 +1,Np +1

2,p,1

)dτ

+ C ′ε

∫ t

0
(‖u1(τ)‖2B0

∞,1
+ ‖u1(τ)‖2

B̃
N
2 ,
N
q

2,q,1

+ ‖u2(τ)‖2B0
∞,1

+ ‖u2(τ)‖2
B̃
N
2 ,
N
p

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ

(3.60) rimp4cc

+ ε

∫ t

0
‖h2(τ)‖

B̃
N
2 +1,Np
2,p,1

dτ + C ′ε

∫ t

0
(‖u1(τ)‖

B̃
N
2 +1,Nq +1

2,q,1

+ ‖u2(τ)‖
B̃
N
2 +1,Np +1

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ

+

∫ t

0
(‖u1(τ)‖

B̃
N
2 +1,Nq −1

2,q,1

+ ‖u2(τ)‖
B̃
N
2 +1,Np −1

2,p,1

)‖h2(τ)‖
B̃
N
2 −1,Np
2,p,1

dτ

+

∫ t

0
((‖divu1(τ)‖L∞ + ‖divu2(τ)‖L∞)‖h2(τ)‖

B̃
N
2 −1,Np
2,p,1

dτ

+

∫ t

0
‖h2(τ)‖

B̃
N
2 −1,Np −1

2,p,1

(‖divu1(τ)‖
B̃
N
2 ,
N
q

2,q,1

+ ‖divu2(τ)‖
B̃
N
2 ,
N
p

2,p,1

)dτ.

It remains only to deal with the term ‖u2HF ‖
L̃1
t (B

N
p −1

p,1 )
on the right hand side of (

rimp4cc
3.60),

we recall that:

‖u2HF ‖
L̃1
t (B

N
p −1

p,1 )
≤ 1

22l0
‖u2HF ‖

L̃1
t (B

N
p +1

p,1 )
. (3.61) hautefre

Combining (
rimp4cc
3.60), (

hautefre
3.61), taking l0 large enough in order to apply a bootstrap argument

in (
rimp4cc
3.60) and using Gronwall lemma we obtain the desired result for a C > 0:

‖(h2, u2(t)‖
L̃∞t (B̃

N
2 −1,Np
2,p,1 ×B̃

N
2 −1,Np −1

2,p,1 )
+ ‖(h2, u2)‖

L̃1
T (B̃

N
2 +1,Np
2,p,1 ×B

N
2 +1,Np +1

2,p,1 )

≤ CeV (t)
(
‖(h20, u20)‖

B̃
N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1

+ ‖(F ′, G′)‖
L̃1(B̃

N
2 −1,Np
2,p,1 ×B̃

N
2 −1,Np −1

2,p,1 )

)
.
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with:

V (t) =

∫ t

0

(
‖∇u1(s)‖

B̃
N
2 ,
N
q

2,q,1

+ ‖∇u2(s)‖
B̃
N
2 ,
N
p

2,p,1

+ ‖u1(s)‖2
B̃
N
2 ,
N
q

2,q,1

+ ‖u2(τ)‖2
B̃
N
2 ,
N
p

2,p,1

)
ds.

�

We are going to generalize the proposition
propestim
3.9 to the case of the system (

0.2a
3.30), more

precisely we have the following proposition.

Danchinbas Proposition 3.11 Let 2 ≤ p ≤ 4, q ≥ 2 such that:

1

2
≤ 1

p
+

1

q
,

1

N
<

1

p
+

1

q
,

1

p
≤ 1

N
+

1

q
.

Let (h2, u2) the solution of (
0.2b
3.35). There exists a constant C depending only on µ, N , s

and s
′

such that the following estimate holds:

‖(h2, u2)(t)‖
L̃∞T (B̃

N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1 )
+ ‖(h2, u2)‖

L̃1
T (B̃

N
2 +1,Np
2,p,1 ×B̃

N
2 +1,Np +1

2,p,1 )

≤ CeV (T )
(
‖(h20, u20)‖

B̃
N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1

+ ‖(F ′, G′)‖
L̃1(B̃

N
2 −1,Np
2,p,1 ×B

N
2 −1,Np −1

2,p,1 )

)
.

with:

V ′(T ) = C

∫ t

0

(
‖∇u1(s)‖

B̃
N
2 ,
N
q

2,q,1

+ ‖∇u2(s)‖
B̃
N
2 ,
N
p

2,p,1

+ ‖u1(s)‖2
B̃
N
2 ,
N
q

2,q,1

+ ‖u2(τ)‖2
B̃
N
2 ,
N
p

2,p,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 +1,Nq +1

2,q,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 ,
N
q +1

2,q,1

+ ‖∇ ln ρ1(s)‖2
B̃
N
2 −1,Nq
2,q,1

)
ds.

Proof: By using the proposition
propestim
3.9 we obtain that:

‖(h2, u2)‖
L̃∞T (B̃

N
2 −1,Np
2,p,1 ×B̃

N
2 −1,Np −1

2,p,1 )
+ ‖(h2, u2)‖

L̃1
T (B̃

N
2 +1,Np
2,p,1 ×B̃

N
2 +1,Np +1

2,p,1 )

≤ CeV (T )
(
‖(h20, u20)‖

B̃
N
2 −1,Np
2,p,1 ×B̃

N
2 −1,Np −1

2,p,1

+ ‖(F1, G1)‖
L̃1(B̃

N
2 −1,Np
2,p,1 ×B̃

N
2 −1,Np −1

2,p,1 )

)
.

(3.62) 1estimimp

with:
F1 = F − u2 · ∇ ln ρ1,

G1 = G− u2 · ∇u1 − u1 · ∇u2 + 2µ∇ ln ρ1 ·Du2 + 2µ∇h2 ·Du1,

with:

V (t) =

∫ t

0

(
‖∇u1(s)‖

B̃
N
2 ,
N
q

2,q,1

+ ‖∇u2(s)‖
B̃
N
2 ,
N
p

2,p,1

+ ‖u1(s)‖2
B̃
N
2 ,
N
q

2,q,1

+ ‖u2(τ)‖2
B̃
N
2 ,
N
p

2,p,1

)
ds.

Therefore, it is only a matter of proving appropriate estimates for F1, G1 by using
properties of continuity on the paraproduct.
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We start with the first term u2 · ∇ ln ρ1, by propositions
hybrid
2.5,

interpolation
2.1, composition estimates,

Hölder inequality and since 1
p ≤

1
N + 1

q , 1
2 ≤

1
p + 1

q we have for any ε > 0:∫ T

0
‖u2 · ∇ ln ρ1(s)‖

B̃
N
2 −1,Np
2,p,1

ds .
∫ T

0
(‖∇ ln ρ1(s)‖

B̃
N
2 −1,Nq
2,q,1

‖u2(s)‖
B̃
N
2 ,
N
p

2,p,1

+ ‖u2(s)‖
B̃
N
2 −1,Np −1

2,p,1

‖∇ ln ρ1(s)‖
B̃
N
2 ,
N
q +1

2,q,1

+ ‖u2(s)‖
B̃
N
2 −1,Np −1

2,p,1

‖∇ ln ρ1(s)‖
B̃
N
2 +1,Nq +1

2,q,1

)ds,

.
∫ T

0
‖u2(s)‖

B̃
N
2 −1,Np −1

2,p,1

(‖∇ ln ρ1(s)‖
B̃
N
2 +1,Nq +1

2,q,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 ,
N
q +1

2,q,1

+ Cε‖∇ ln ρ1(s)‖2
B̃
N
2 −1,Nq
2,q,1

) + ε

∫ T

0
‖u2(s)‖

B̃
N
2 +1,Np +1

2,p,1

ds,

(3.63) 1estim

with Cε > 0 sufficiently large.
We are now going to deal with the terms of G1, let us start with the term u2 · ∇u1 , we
have by proposition

hybrid
2.5 and the fact that 1

p ≤
1
N + 1

q , 1
p + 1

q >
1
N , 1

2 ≤
1
p + 1

q :∫ T

0
‖u2 · ∇u1(s)‖

B̃
N
2 −1,Np −1

2,p,1

ds .
∫ T

0
‖u2‖

B̃
N
2 −1,Np −1

2,p,1

‖∇u1(s)‖
B̃
N
2 ,
N
q

2,q,1

ds∫ T

0
‖∇h2 ·Du1(s)‖

B̃
N
2 −1,Np −1

2,p,1

ds .
∫ T

0
‖∇h2‖

B̃
N
2 −1,Np −1

2,p,1

‖∇u1(s)‖
B̃
N
2 ,
N
q

2,q,1

ds.

(3.64) estim2

Similarly we have (since 1
p ≤

1
N + 1

q , 1
p + 1

q >
1
N , 1

2 ≤
1
p + 1

q ) for all ε > 0 there exists
Cε > 0 sufficiently large such that:∫ T

0
‖∇ ln ρ1 ·Du2(s)‖

B̃
N
2 −1,Np −1

2,p,1

ds .
∫ T

0
‖∇ ln ρ1‖

B̃
N
p ,
N
q

2,q,1

‖Du2(s)‖
B̃
N
2 −1,Np −1

2,p,1

ds

. ε
∫ T

0
‖u2(s)‖

B̃
N
2 −1,Np −1

2,p,1

ds+ Cε

∫ T

0
‖∇ ln ρ1‖2

B̃
N
p ,
N
q

2,q,1

‖u2(s)‖
B̃
N
2 −1,Np −1

2,p,1

ds.

(3.65) aestim2

and: ∫ T

0
‖u1 · ∇u2‖

B̃
N
2 −1,Np −1

2,p,1

. ε
∫ T

0
‖u2(s)‖

B̃
N
2 −1,Np −1

2,p,1

ds+ Cε

∫ T

0
‖u1‖2

B̃
N
p ,
N
q

2,q,1

‖u2(s)‖
B̃
N
2 −1,Np −1

2,p,1

ds.

(3.66) estim3

By combining the estimates (
1estimimp
3.62), (

1estim
3.63), (

estim2
3.64), (

aestim2
3.65), (

estim3
3.66) and Gronwall lemma, it

achieves the proof of the proposition.

4 The proof of theorem
theo1

1.1
section5

4.1 Proof of the existence

We recall here that (ρ1, u1) = (ρ1,−2µ∇ ln ρ1) is a quasi-solution of the system (
0.1
1.1)

when: {
∂tρ

1 − 2µ∆ρ1 = 0,

ρ1t=0 = ρ10.
(4.67)
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It means that (ρ1, u1) is an irrotational solution of the pressure less system:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(2µρD(u)) = 0,

(ρ, u)/t=0 = (ρ10, u
1
0).

(4.68) 0.1bis

Our goal now consists in solving the system (
0.2
1.6) in order to obtain global strong solution

of the system (
0.1
1.1) under the form ρ = ρ1εh

2
, u = u1 + u2 with ρ ≥ c

′
> 0. To do this,

we use a standard scheme:

1. We smooth out the data and get a sequence of local solutions (h2n, u
2
n)n∈N on [0, Tn]

to (
0.2
1.6) by using the result of

JDE
[15].

2. We prove uniform estimates on (h2n, u
2
n) on [0, Tn] by using the proposition

Danchinbas
3.11 and

we deduce that Tn = +∞ .

3. We use compactness to prove that the sequence (h2n, u
2
n) converges, up to extraction,

to a solution of (
0.2
1.6).

Construction of approximate solutions

We smooth out the data as follows:

(h20)n = Snh
2
0 and (u20)n = Snu

2
0 .

Note that we have:

∀l ∈ Z, ‖∆l(h
2
0)n‖Lp ≤ ‖∆lh

2
0‖Lp and ‖(h20)n‖

B̃
N
2 −1,Np
2,p,1

≤ ‖h20‖
B̃
N
2 −1,Np
2,p,1

,

and similar properties for (u20)n, a fact which will be used repeatedly during the next
steps. Now, according

JDE
[15], one can solve (

0.2
1.6) with the smooth data ((q20)n, (u

2
0)n). We

get a solution (h2n, u
2
n) on a non trivial time interval [0, Tn] such that:

h2n ∈ C̃([0, Tn], B̃
N
2
−1,N

p

2,p,1 ) u2n ∈ C̃([0, Tn], B̃
N
2
−1,N

p
−1

2,p,1 ) ∩ L̃1([0, Tn], B̃
N
2
+1,N

p
+1

2,p,1 ). (4.69) a26

Uniform bounds

In the sequel we set:
ln ρn = ln ρ1 + h2n and un = u1 + u2n.

We recall that (h2n, u
2
n) satisfies the following system:

∂th
2
n + u1 · ∇h2n + divu2n + u2n · ∇ ln ρ1 + u2n · ∇h2n = 0,

∂tu
2
n + u1 · ∇u2n + u2n · ∇u1 − 2µ∇ ln ρ1 ·Du2n − 2µ∇h2n ·Du1 − µ∆u2n − µ∇divu2n

+ a∇h2n = −a∇ ln ρ1 − u2n · ∇u2n + 2µ∇h2n ·Du2n,
(h2, u2)/t=0 = ((h20)n, (u

2
0)n).

(4.70) 0.2aa
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In this part, we aim at getting uniform estimates on (h2n, u
2
n) in the following space FT

with the norm ‖ · ‖FT :

FT =
(
L̃∞T (B̃

N
2
−1,N

p

2,p,1 ) ∩ L̃1
T (B̃

N
2
+1,N

p

2,p,1 )
)
×
(
L̃∞T (B̃

N
2
−1,N

p
−1

2,p,1 ) ∩ L̃1
T (B̃

N
2
+1,N

p
+1

2,p,1 )
)
.

‖(h2n, u2n)‖FT = ‖h2n‖
L̃∞T (B̃

N
2 −1,Np
2,p,1 )∩L̃1

T (B̃
N
2 +1,Np
2,p,1 )

+ ‖u2n‖
L̃∞T (B̃

N
2 −1,Np −1

2,p,1 )∩L̃1
T (B̃

N
2 +1,Np +1

2,p,1 )
.

We can observe that (h2n, u
2
n) verifies exactly the system (

0.2a
3.30) with:

Fn = 0,

Gn = −a∇ ln ρ1 − u2n · ∇u2n + 2µ∇h2n ·Du2n.

By using proposition
Danchinbas
3.11, we have the following estimate on (h2n, u

2
n):

‖(h2n, u2n)‖FT ≤ Ce
Vn(T )

(
‖(h20)n‖

B̃
N
2 −1,Np
2,p,1

+ ‖(u20)n‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖Gn‖
L̃1
T (B̃

N
2 −1,Np −1

2,p,1 )

)
,

(4.71) crucial

with:

Vn(T ) = C

∫ t

0

(
‖∇u1(s)‖

B̃
N
2 ,
N
q

2,q,1

+ ‖∇u2n(s)‖
B̃
N
2 ,
N
p

2,p,1

+ ‖u1(s)‖2
B̃
N
2 ,
N
q

2,q,1

+ ‖u2n(τ)‖2
B̃
N
2 ,
N
p

2,p,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 +1,Nq +1

2,q,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 ,
N
q +1

2,q,1

+ ‖∇ ln ρ1(s)‖2
B̃
N
2 −1,Nq
2,q,1

)
ds.

(4.72) crucial1

We set in the sequel:

V1(T ) = C

∫ t

0

(
‖∇u1(s)‖

B̃
N
2 ,
N
q

2,q,1

+ ‖u1(s)‖2
B̃
N
2 ,
N
q

2,q,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 +1,Nq +1

2,q,1

+ ‖∇ ln ρ1(s)‖
B̃
N
2 ,
N
q +1

2,q,1

+ ‖∇ ln ρ1(s)‖2
B̃
N
2 −1,Nq
2,q,1

)
ds.

V n
2 (T ) = C

∫ t

0
(‖∇u2n(s)‖

B̃
N
2 ,
N
p

2,p,1

+ ‖u2n(τ)‖2
B̃
N
2 ,
N
p

2,p,1

)ds.

Therefore, it is only a matter of proving appropriate estimates for Gn by using proposition
hybrid
2.5. Let us deal now with the term Gn. We begin by estimating ∇h2n ·Du2n and we obtain
by proposition

hybrid
2.5 and since p < 2N :

‖∇h2n ·Du2n‖
L̃1
T (B̃

N
2 −1,Np −1

2,p,1 )
. ‖∇h2n‖

L̃∞T (B̃
N
2 −1,Np −1

2,p,1 )
‖Du2n‖

L̃1
T (B̃

N
2 ,
N
p

2,p,1 )
. (4.73) estimb1

Similarly we have:

‖u2n · ∇u2n‖
L̃1
T (B̃

N
2 −1,Np −1

2,p,1 )
. ‖u2n‖

L̃∞T (B̃
N
2 −1,Np −1

2,p,1 )
‖∇u2n‖

L̃1
T (B̃

N
2 ,
N
p

2,p,1 )
. (4.74) estimb2

It remains to deal with the most important term a∇ ln ρ1, we have by using propositions
hybrid
2.5,

composition
2.3,

5chaleur
2.6 and the maximum principle for ρ1 (indeed we recall that ρ1 = 1 + q1 with q1

27



verifying a heat equation) that it exists regular functions g1, g2 such that:

‖a∇ ln ρ1‖
L̃1
T (B̃

N
2 −1,Np −1

2,p,1 )
. ‖ ln ρ1‖

L̃1
T (B̃

N
2 ,
N
p

2,p,1 )
,

. g1(‖
1

ρ1
‖L∞ , ‖ρ1‖L∞)‖q1‖

L̃1
T (B̃

N
2 ,
N
p

2,p,1 )
,

. g2(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

(4.75) estimb3

Finally by combining the estimates (
crucial
4.71), (

estimb1
4.73), (

estimb2
4.74) and (

estimb3
4.75) we have:

‖(h2n, u2n)‖FT ≤ Ce
V1(T )+V n2 (T )

(
‖(h20)n‖

B̃
N
2 −1,Np
2,p,1

+ ‖(u20)n‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖(h2n, u2n)‖2FT

+ g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Nq −2

2,p,1

)
.

(4.76) superimp

In particular we have:

‖(h2n, u2n)‖FT ≤ Ce
V1(T )+V n2 (T )

(
ε0 + ‖(h2n, u2n)‖2FT + g1(‖

1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

)
.

(4.77) superimp1

We are going to prove by a simple bootstrapping argument that for any T ∈ (0, Tn):

‖(h2n, u2n)‖FT ≤ 4CeV1(+∞)g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

= ε1. (4.78) uniformestim

We are going to set in the sequel α = g1(‖ 1
ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

.

It is right by continuity on a small interval (0, T ′n) choosing ε0 sufficiently small. Let us
set T 1

n ( with (T1)
n < Tn) the maximal time such that (

uniformestim
4.78) remains true. Using (

superimp1
4.77)

we observe that:

‖(h2n, u2n)‖FTn1 ≤ Ce
V1(+∞)α eε1

(
1 +

ε0
α

+
ε21
α

)
(4.79) superimp2

Now we have to choose ε0 and ε1 such that:

eε1
(
1 +

ε0
α

+
ε21
α

)
≤ 24

7
. (4.80) superimp3

In particular it suffices to take ε1 and ε0 sufficiently small such that we have:

eε1 ≤ 8

7
, ε21 ≤ α, ε0 ≤ α. (4.81) superimp4

In conclusion there exists ε2 sufficiently small such that if:

4CeV1(+∞)g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

≤ ε2

16C2e2V1(+∞)g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

≤ 1

ε0 ≤ g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

,

(4.82) superimp5
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then by a classical bootstrap argument we can show that (T1)
n = Tn. In particular by

using proposition
5chaleur
2.6 and

composition
2.3 we deduce that it exists a regular function K1 such that:

e−2V1(+∞) ≥ e
−K1(‖ 1

ρ10
‖L∞ ,‖q10‖L∞ )‖q10‖

B̃

N
2 −1,Nq
2,q,1 . (4.83) impes13

Combining (
superimp5
4.82) and (

impes13
4.83) we have the following condition:

16C2g1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Np −2

2,p,1

≤ e
−K1(‖ 1

ρ10
‖L∞ ,‖q10‖L∞ )‖q10‖

B̃

N
2 −1,Nq
2,q,1 . (4.84) impes14

This last condition corresponds exactly to the assumption (
crucinitial
1.7) of theorem

theo1
1.1.

We now are interested in proving a continuation criterion in order to prove that Tn = +∞
when (

uniformestim
4.78) is verified. Since (h2n, u

2
n) is bounded in FTn , it implies in particular that

∇un = ∇u1 + ∇u2n is bounded in L̃1
Tn

(B̃
N
2
,N
q

2,q,1 + B
N
2
,N
p

2,p,1 ) (in particular u is Lipschitz by
Besov injection) then by classical continuation criterion (see

DL,M3AS
[13, 17]) we deduce that for

any n, Tn = +∞.

Compactness arguments

We have proved that our sequence (h2n, u
2
n)n∈N of solutions of (

0.2
1.6) with initial data

((h20)n, (u
2
0)n) is uniformly bounded in n ∈ N in:

(
L̃∞(R+, B̃

N
2
−1,N

p

2,p,1 ) ∩ L̃1(R+, B̃
N
2
+1,N

p

2,p,1 )
)
× L̃∞(R+, B̃

N
2
−1,N

p
−1

2,p,1 ) ∩ L̃1(R+, B̃
N
2
+1,N

p
+1

2,p,1 )N .

It remains now to prove that up to a subsequence (h2n, u
2
n)n∈N converges in the sense of

distribution to a solution (h2, u2) of the system (
0.2
1.6) with (h2, u2) belonging to the space:(

L̃∞(R+, B̃
N
2
−1,N

p

2,p,1 ) ∩ L̃1(R+, B̃
N
2
+1,N

p

2,p,1 )
)
× L̃∞(R+, B̃

N
2
−1,N

p
−1

2,p,1 ) ∩ L̃1(R+, B̃
N
2
+1,N

p
+1

2,p,1 )N .

It suffices to use the Ascoli theorem, this is classic and we refer to
BCD
[1] for the proof.

The proof of the uniqueness

In the case 2
N ≤

1
p + 1

p1
, the uniqueness has been established in

BCD
[1], see also

Darx
[14].

4.2 Proof of the theorem
cor3
1.2 and

theo3
1.3

In the theorem (
cor3
1.2), the smallness assumption is different since we suppose that K is

sufficiently small. Indeed by proceeding similarly as in the proof of the theorem
theo1
1.1, we

obtain the inequality (
superimp
4.76) at the difference that we take into account the constant K

which gives:

‖(h2n, u2n)‖FT ≤ Ce
V1(T )+V n2 (T )

(
‖(h20)n‖

B̃
N
2 −1,Np
2,p,1

+ ‖(u20)n‖
B̃
N
2 −1,Np −1

2,p,1

+ ‖(h2n, u2n)‖2FT

+Kg1(‖
1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Nq −2

2,p,1

)
.

(4.85) superimpa
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We have now to change slightly our bootstrap argument, indeed we are going to set T 1
n

the maximal time such that:

‖(h2n, u2n)‖F
T1
n
≤ 4CKeV1(+∞)g1(‖

1

ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Nq −2

2,p,1

)
= ε′1. (4.86) cruim

We set α′ = Kg1(‖ 1
ρ10
‖L∞ , ‖ρ10‖L∞)‖q10‖

B̃
N
2 −2,Nq −2

2,p,1

. We have then:

‖(h2n, u2n)‖FTn1 ≤
ε′1
4
eε
′
1
(
1 +

ε0
α′

+
(ε′1)

2

α′
)

(4.87) asuperimp2

Now we have to choose ε0 and ε′1 such that:

eε
′
1
(
1 +

ε0
α′

+
(ε′1)

2

α′
)
≤ 24

7
. (4.88) asuperimp3

In particular it suffices to take ε′1 and ε0 sufficiently small such that we have:

eε
′
1 ≤ 8

7
, (ε′1)

2 ≤ α′, ε0 ≤ α′. (4.89) asuperimp4

In other word it suffices to take K sufficiently small compared with the initial data q10.
It achieves the proof of the theorem

cor3
1.2 since the rest of the proof follows the arguments

of the proof of the theorem
theo1
1.1.

In order to prove the theorem
theo3
1.3, it suffices to use the same argument than in theo-

rem
theo1
1.1. In particular since (ρ1,−2µ∇ ln ρ1) is an exact solution in this case, we do not

have remainder term of the form a∇ ln ρ1 which implies that the smallness assumption
has the form (

crucinitialbb
1.12). The only change corresponds to have good estimate in Besov space

for the following linearized system:
∂th

2 + u · ∇h2 + divu2 + u2 · ∇ ln ρ1 = F,

∂tu
2 + u1 · ∇u2 + u2 · ∇u1 − 2µ∇ ln ρ1 ·Du2 − 2µ∇h2 ·Du1 − µ∆u2 − µ∇divu2

+ a∇h2 + bu2 = G,

(h2, u2)/t=0 = (h20, u
2
0).

(4.90) bb0.2a

To obtain such estimates, it suffices to follow exactly the same line as in the theo-
rem

theo1
1.1. Indeed the damping term bu2 gives additional estimate on u2 of the form

L̃1(R+, B̃
N
2
−1,N

p
−1

2,p,1 .
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