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Global existence of strong solution for viscous shallow water
system with large initial data on the irrotational part

Boris Haspot*

Abstract

We are interested in studying the Cauchy problem for the viscous shallow-water
system in dimension N > 2, we show the existence of global strong solutions with
large initial data on the irrotational part of the velocity for the scaling of the equa-
tions. More precisely our smallness assumption on the initial data is supercritical for
the scaling of the equations. It allows us to give a first kind of answer to the problem
of the existence of global strong solution with large initial energy data in dimension
N = 2. To do this, we introduce the notion of quasi-solutions which consists in
solving the pressureless viscous shallow water system. We can obtain such solutions
at least for irrotationnal data which exhibit regularizing effects both on the velocity
and also on the density. This smoothing effect is purely non linear and is crucial in
order to build solution of the viscous shallow water system as perturbations of the
”quasi-solutions”. Indeed the pressure term remainder becomes small in high fre-
quencies for the scaling of the equations. To finish we prove the existence of global
strong solution with large initial data when N > 2 for the viscous shallow water
system provided that the Mach number is sufficiently large.

1 Introduction
The motion of a general barotropic compressible fluid is described by the following system:

Op + div(pu) = 0,
Or(pu) + div(pu @ u) — div(2u(p)D(u)) — V(A(p)divu) + VP(p) = 0, (1.1)
(p;w) ji=0 = (po, uo).

Here u = u(t,z) € RN stands for the velocity field, p = p(t,z) € Rt is the density
and D(u) = %(Vu +! Vu) is the strain tensor. We denote by A and p the two viscosity
coefficients of the fluid, which are assumed to satisfy ¢ > 0 and A + 2 > 0. Such a
condition ensures ellipticity for the momentum equation and is satisfied in the physical
cases where A + QW“ > 0. In the sequel we shall only consider the viscous shallow-water
system which corresponds to:

w(p) = pp withpy >0 and A(p) =0.
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We supplement the problem with initial condition (pg,up). Throughout the paper, we
assume that the space variable z € R or to the periodic box 7;N with period a;, in the
i-th direction. We restrict ourselves to the case N > 2.

In this paper we are interested in proving the existence of global strong solution for
the system (@T) with large initial data for the scaling of the equations. Before giving
our main resuhb) et us recall some important results concerning the question of the well-
posedness for h_[ For small smooth perturbations of a stable equilibrium wi gonstant
positive density, global well-posedness has been proved for the first time in %@5] More
precisely Matsumura and Nishida obtained the existence of global strong solutions for
three-dimensional polytropic ideal fluids and no outer force with initial data chosen small
in the following spaces (po — 1,ug) € H x H3.

Guided in our approac g) Jiumerous works dﬁié?ated to the incompressible Navier-
Stokes equation (see e.g 12} ) we aim at solving (I[.T) in the case where the data (#)%uo)
have critical regularity. By critical, we mean that we want to solve the s%)it%em (CT) in
functional spaces with norm invariant by the changes of scales which leave (I[.T) invariant.
In the case of barotropic fluids, we can observe that the transformations:

(p(t,z),u(t,x)) — (p(%t,1x), lu(l’t,lz)), 1R, (1.2)

have that property, provided that the pressure term has been changed accordingly.
Roughly speaking we expect that such spaces are optimal in term of regularity on the
initial data in order to prove the well-posedness of the system (I.T).

One of the main difficulty of compressible fluid mechanics is to deal with the vacuum
(which corresponds to the state p = 0), indeed when it occurs, the momentum equation
loses its parabolicity. That is why in the sequel we shall work around stable equilibrium
in order to be far away the vacuum, we have then the following definition.

Definition 1.1 Let us note: ¢ =p — 1.

The use of critical functional frameworks Led CEOC gzveg@& 1n88VDaeH }B%Sg(}rﬁla?ssrﬁfs%ﬁsfoﬂ 1 Mucha
compressible fluids in Besov spaces (see %TTFO,_TI,TZ,—WL,—FE),—TGTS,—W,—FQ_TST)*
We would like to point out that this is in general not sufficient to deal with initial data

(po, uo) invariant by (I.2) to obtain the existence of global strong solution. Indeed it is
important to obtain a control on the L norm of the density for at least two reasons.

First it allows to consider a density which remains far way from the vacuum, it is crucial

in order to ensure the parabolic behavior of the velocity u. The second reason is related

to the estimations of the non linear term depending on the density as the pressure ,
indeed in general we need to use composition theorems. Finally it seems necessary to
control the velocity in Lipschitz norm in order to estimate the density which is governed

by a transport equation.

That is why, we restricted our study to the case where the initial data (go,up) are in
homogeneous Besov spaces with the thord index equal to one:

N N
P
qo0 € B, and wup € B/pll1

N

with (p,p1) € [1, +oo[ suitably chosen. Indeed in this case we recall that B/, is embedded
in L.



Let us mention that in the literature most of the results of existenTi&?f global strong
solution with small initial data in critical space concern the system (II.T) with constant
viscosity coefficient. In particular Danchin in %2 shows for the first time a result of
existence of global strong solution with small initial data in critical space for the scaj\lring

of the system. More precisely the initial data are chosen as follows (qo,up) € (Bf,1 N

J-1 J-1 o L . : .
B2 1 ) x By, ". The main difficulty consists in obtaining suitable estimates on the

linearized system with convection terms. The crucial point is the proof of damping effect
on the density which enables to control the pressure term. This last result has been
generahzed%)] the case of Begqv space constructed on LP space by F. Charve and R.
Da, gﬁhé Chen et al in% and the author in by using two different methods.
In IfG, Igi in order to get estimates on the density and the velocity 1ﬁesov space for
the hnearlzed system (including the convection terms) associated to (I[.T), the authors
combine in a very Subtlg way a paralinearization method and a accurate Fourier study of
the linear system. In we introduce a notion of effective velocity in high frequencies
which allows us to cancel out the coupling between the velocity and the pressure. Indﬁ;d
the system becomes simply a heat equation with a damped transport equation, as in [12]
we obtain then a L' decay on ¢ in the ll_gr'g%h frequency regime. In low frequencies, the
first order terms predominate, so that (I.1) has to be treated by means of hyperbolic
energy methods (roughly speaking ¢ and the potential part of the velocity verify a wave
equation). %%Fus mention also that a very interesting approach has been proposed by R.
Danchin in in order to improve the results of uniqueness inasmuch as initial velocities
in critical Besov spaces with negative indices generate a unique local solution. The key
tool is the use of Lagrangian coordinates which allows to solve the system by means of
the basic contraction mapping theorem:.
However the existence of global strong solution with large initial data remains Qpen even
in dimension N = 2 except for some very specific viscosity coefficients (see R[B‘l]) In a
remarkable work Vaigant and Kazhikhov prove the existence of global strong solution
when the viscosity coefficients are chosen such that u(p) = u and A(p) = p® with 3 > 3.
To do this, they use clever energy inequalities which take into account the structure of the
viscosity coefficient by introducing the effective flux. The choice A\(p) = p” with 8 > 3 is
essentially due to technic restrictions when the authgrs prove some L3 (LP) estimates on
the density for any p € (2, +00) (we refer also toﬁ.lig for a slight extension of the work
of [31] to the case § > 2).
In this paper we would like to improve the previous results by proving the existence of
global strong solution with large initial data for the scaling of the equations for the viscous
shallow water system (the initial data has to be choose irrotational in our case). Indeed
at the difference of the previous works that we mention, our smallness assumption on the
initial data is supercritical for the scaling of the equations (and in particular nonlinear).
N
It implies that it is possible to have initial data (g, ug Wh1c}F?—%e large in 32 1 X (Bfl_l)N
and which generates global strong solution to the system ( It gives in particular a
first kind of answer to the problem of the existence of global strong solution with large
energy ?}tial data when N = 2 for suitable choice on the initial velocity (we refer to the
remark [T for more details). o1
To do this we are going to work around an irrotational quasi-solution of the system (h)
(we also refer to %8 for a such type of solution in the context of Korteweg system). More




precisely we are interested in solving the pressureless system for an irrotational velocity
u = V6. Due to the strong coupling between the velocity, the density and viscosity
tensor, we can check easily that (p', —2uV Inp!) is a particular irrotational solution of
the pressureless system if:
opt — 2uipt = 0. (1.3)
pl (Oa ) = p(l) '
Here we recall that the initial density pé does not admit vacuum, it implies in particular
by the maximum principle that p—ll is bounded in L (L>®(RY)) for any T > 0. It is
then natural to work around this particylar quasi-solution in order to obtain global
strong solution with large initial data for JbTT), to do this we have obviously to take into
account the effects of the pressure term P(p1). We can observe that the regularizing
effects on the density p! enable us to consider the pressure term P(p') as a small term,
in high frequencies (indeed we get a gain of two deriv. tlves on p! via the equation (IT.
This is essentially due to the fact that the system (?%T) is not completely invariant by
scaling because the pressure term.The regularizing effects on p' is then absolutely crucial
and is surprising since the density is governed by a transport equation, it means that
this property is purely non linear and is due to the coupling between the density and the
velocity ( we will discuss on this point in more details in the sequel).
Let us now search solution of the form Inp = Inp' + A% with p; =1+ ¢*, p = plel n1d
u = —2uV In p; + u?, assuming that there is no vacuum, we can rewrite the system ( h)
under the following eulerlan form (we recall that p(p) = up and A(p) = 0):

Olnp+u-Vinp+divu =0,
Ou+ u - Vu — pAu — pVdivu — 2uV1n p - Du+ VF(p) =0, (1.4)
(In p,u) 4—¢ = (In po, up),

l

with F'(p) = ( ) By usmg the fact that (p,ul) = (p*, —2uVInpl) is a quasi solution
with p! verlfylng l 3i t gives in particular:

o Inp! +ut - Vinp! + divu! =0,
ot +ul - Vol — pAut — pVdive! — 2uVinp! - Dul =0, (1.5)
(ln p1¢ Ul)/tzo = (ln péa u(l))
3 t
We can rewrite the system (l?zzsi as Tollows:

Oh? +u - Vh? +divu? +u? - Vinp! =0,
o +ut - Vu? +u? - Vub —2uVinp' - Du? — 2uVh? - Dul — pAu® — pVdive?
+aVh? = —aVinp' — u? - Vu? + 2uVh? - Du?,
(h’27 uz)/t:(] = (h(Q)a U%)
(1.6)

where we have assumed that P(p) = ap (in order to simplify the notation). 0
We now are going to prove the existence of global strong solution for the system (h)
To do this the first step consists in proving estimate in Besov sp geg on (h2,u?), it will
require an accurate study of the linearized system associated to (T.6). In particular we



will have to distinguish the behavior between the low and the high frequencies as in i
The last step is to observe that the pressure term aV In p' can be considered as a small
remalnder term in high frequenc1es Indeed roughly speaking it must be estimated in

LY(RT, B p ) but if Inp{ is in B ”1 then via the heat equation ( I§) Vinp! belongs
to LY(RT, Bp’j 1 ) It means that via this gain of regularity on VIn p! this term is small

N_4
in high frequencies for the norm L!(R™, B, ). It explains why we obtain a result of
global strong solution with a nonlinear smallness assumption on pj and this one will be
supercritical for the scaling of the equations.

Definition 1.2 Furthermore we will note Bf;’ rl) (p2 ) the Besov space where the be-
havior is Bp! . in low frequencies and B;g ro high frequencies. If r1 = ro we will

251,52

simplify the notation, and we will write B;}’f,g r for B degt)dpar) For more details on
the definition of these spaces we refer to the definition 12.6.

One can now state our main theorem.

Theorem 1.1 Let P(p) =ap and 2 <p <4, p < 2N, q > 2 such that:

1 < 1 n 11 - 1 n 1 1 1 1

25 TNy TSN Ty
Let py = pge h wzth ph=1+qb, up = —2,uV In Po + ud. Furthermore we assume that

LN N g N_ N NN
p0>c>0 qOEB2q17q ﬂB;’pJ’p , h B;’p’l’p andu0€B2p1 . There exists
€0, €1, C > 0 and two reqular function g, g1 such that if:
gl lle)ladll o, o0 (Corll(h—pl)ladll 1) < a1
Pl §7_27?_2 1 Bg?q,l d

2,p,1

(17)

5 -

1
1Al NN J[us]| yoax g <e =gl lpollzo)llaoll 2N
2,p,1 2,p,1 Po 2,p,1

0.1
then there ezists a global solution (p,u) of the system (+7_I) written under the following
form: p = pleh2 and uw = —2uV In p* + u? with:

Oip' —2ulp' =0,
P%:o = P(l)-

(19)

In addition we have:

<2

~ ~N_q
n*e C(RY, B2 ") N L RY, B;;l’ )

NN ~ N N
and u? € C’(R+ BQP1 P )le(R+aB22,pJ,r1 o )-

L ‘ - 1.1 . %e_fél_}ﬁ
Moreover the solution is unique if 5 < > T 7 We refer to the definition 2.6 for the

notion of hybrid Besov spaces.



Remark 1 Let us mention than the main interest of this theorem is to prove the existence

of global strong solution with large initial data for the scaling of the equation which s
N_o9 N
2

new up to our knowledge. Indeed it suffices to choose qi(z) = (Ax) with ¢ € §2271
(where p = q = 2) such that 1 + ¢ > ¢ > 0, we then verify easily that:
(|| L —

Il 5 = el 5.

lpollzoe = 111 + @llze,

1 1 :
= [z = [l —— |z, (1.9)

Po L+¢

I x0 = <ol .
32?172 )\2 3572

crucinitial
It implies that q§ verifies (1.7] by choosing \ large enough. In particular it implies that
N N

taking ¢ large in Bfl our initial density hY is large in the Besov space 327,1 which is
critical for the scaling of the equations. In addition it implies that t%s &4"; norm of the
density po can be chosen large (let us recall that it is not the case in l[6, 10,

In particular when N = 2, it is possible to choose o large in B%}Q which shows that there
1s existence of global strong solution for large initial data in the energy space. Indeed
for the viscous shallow water system we recall that the energy data for the BD trapy
corresponds to initial data such that V\/py and \/pouo belong to L*(RN) (see [[3, 26]
for more details). It gives in particular a first answer to the existence of global strong
solution with large initial data when N = 2 at legst for a family of suitable initial data.
Indeed our case is not recover by the results of [[31] since their viscosity coefficients are
completely different. This question remains obviously open for general initial data.

We could also choose ¢} (x) = In(A\)p(Ax) with A > 0 which improves again the size of

N

the large initial data in By, .

Remark 2 We would like to emphasize on the fact that the density Inp consists in
the sum of a regular function Inp' and of a small perturbation h®. This point is very
surprising in the sense that the density is governed by a hyperbolic equation which means
that a priori we do notexpect any reqularizing effects on the density. It seems that there is
a singular behavior around the quasi-solution (p', —uV In p') and we note that this effect
18 strictly non-linear. Indeed it depends on the convection term u - Vu.

Furthermore this reqularizing effect is crucial in order to deal with the term u? - VIn p!,
which loses one derivate. Secondly this reqularizing effect allows us to consider ¥V 1n p'
as a small remainder term in high frequencies.

Remark 3 We would like to mention that this result is strongly related to the structure
of the viscosity coefficients as we are able to construct quasi-solutions. Indeed for constant
viscosity coefficient it seems not clear how to construct quasi-solution.

crucinitial
Remark 4 Let us point out that that nonlinear conditio%gf Csgallness as (1.77) have been

proved also in some works of Chemin and Gallagher in I[8, or incompressible Navier-
Stokes equations. Indeed in these works the authors prove the existence of global strong
solution for large initial data in B;ol,oo which is the large aijré%ié:al space for the Navier-
Stokes equations. However our proof is really different of |8, 9] since our initial data are



cor3

completely irrotational (that is of course not the case for incompressible equation). In
addition we work around the quasi-solution which absor tuhcel convgctzon terg& z&gnables
to obtain better results in term of smallness assumption (; 7) compared with Wmdee
in these papers the authors work around the solution of the heat equation, and the process
of smallness is related to a smallness assumption on the term of convection). This is
obviously due to the fact that our system is compressible which allows us to deal with
wrrotational data.

Remark 5 We could weaken the condition on (h?,u?) by following also the idea of %/

NE_ 7ﬁ_ Nﬁ_g E_Q
indeed it may be possible to take us only in B2p 9 with divug in B2p 1

Remark 6 We think that we could treat also the general 258, when p(p) = pp® with

>1— = (a# 1) when p and \ verify the BD entropy (see . Indeed we have proved
. PAl PAfMi L . . . 1 2ue 1ya—1
in 722, Z1] that there exists in this case quasi-solutions of the form (p*, =255V (p')*™")

with p' solution of the fast diffusion equation or the porous medium equation:
Orp1 — 2MA(P1)Q =0.

When p' is far away from the vacuum the previous equation has the same behavior than
a heat equation, then we can adapt our proof in a similar way.

We are going to finish by presenting a result of global strong solution with large initial
data provided that the Mach number is sufficiently large.

Theorem 1.2 Let P(p) = Kp with K >0 and 2 <p <4, p <2N, q > 2 such that:

1 < 1 n 11 - 1 n 1 1 1 1
25y TN PN
Let pg = p(l)ehg with Py =1+q, ug = —2uV ln p[l) + u3. Purthermore we assume that

N N N N N 1

-1

b b 2 K
pg > >0, qoeng1 “NBy,, ", hie 322p1 Pandu0€B2p1
There exists eg > 0 (depending on hY and the viscosity coefficient y1) such that for any
K < e, there exits e > 0 such that if

0 0
thHézgfll,% + Hquygzl,%fl < e (1.10)
P Py

3 t
then there exists a global solution (p,u) of the system (f%s) Z%eih: u = —2uVinp + ug
and Inp =1n p; + he with p1 = 1+ q1 verifying the following system:

Opr — 2ulpr =0,
p1(0,-) = p} =1+ hj.

Furthermore we have:

N N N
L+1,

——1 1
h? € C(R* By, p)le(W B;R p)

Moreover the solution is unique if % < % + %.

bcrucinitial



Remark 7 The main interest of this theorem is to prove the existence of global strong
solution for any large initial data provided that K is sufficiently small with P(p) = Kp
(here K = E% with € the Mach number). In other terms we get global existence and
uniqueness for highly compressible fluids (which corresponds to large Mach number €) in
any dimension N > 2. Up to our knowledge it is the first time that we have a result of
global strong solution with large initial data in dimension 3 (under a condition of course
of high compressibility, it means that K must be sufficiently small in function of the
initial data). Roughly speaking K tends to be very small when Hh?”ggﬁ% is very large.
2,1

We are now going to consider the viscous shallow water model with friction. This model
is also called the Saint-Venant equations and is generally used in oceanography. Indeed
it allows to model vertically averaged flows in terms of the horizontal mean velocity field
u and the depth variation p. In the rotating framework, the model is described by the
following system:

Op + div(pu) =0,
\Y%
O (pu) + div(pu @ u) — div(2upD(u)) + F—:; +rpu =0, (1.11) |10.1

(p; ) jt=0 = (po, uo).

Fr > 0 denotes the Froude number. The turbulent regime (r > %’s obtained from the
friction condition on the bottom (see [29] for more details and [3, 8] for the existence of
global weak solutions). We assume now that r = ﬁ
. 1 . . .o %% . .

easily tha ag%a —2uVIn pl) is an explicit solution of system (T.1T) if p; verifies the heat
equation (IL.

With this choice on r, we verify

Remark 8 Let us mention in particular that we could choose initial density py in L*(RY)
with p§ > 0. Let us emphasize that here we can take an initial density which is close
from the vacuum, this is generally an open problem for compressible fluids with degenerate
viscosity coefficients.

Indeed since py verifies the heat equation, for any t > 0 we would have pi(t,z) > 0 for
all (t,x) €]0,+oo[xRYN and p1(t,-) € C®(RN) for t > 0. In particular uy(t,-) is well
defined fort > 0.

Using similar idea than in theorem T.T we obtain the following result.

Theorem 1.3 Let 2 < p <4, q > 2 such that:

1<1+1 1<1+11<1+1
27p ¢N p ¢p N g
Let py = p(l)ehg with py = 1+ ¢}, uo = —2uV1Inp} + ud. Furthermore we assume that
N N N N N N N N

~771’7 s 59 b s .
pe>c>0,q € B22q 1 'n Bz2p1 P hde 322p P andud € B22p1 P . There exists
€0 depending on py such that if:

0 0
||h2||~71}—1,% + Hu2||~%—1,%—1 < €o, (1.12) ’crucinitialbb

2,p,1 2,p,1



section2

0.1
then there exists a global solution (p,u) of the system 2U7) written under the following
form: p = pleh2 and w = —2uV In p* + u? with:

Op' —2ulp' =0,

T 1 (1.13)
Pt=0 = Po-

In addition we have:

~ N _ +17N
h? e C(R+,B;p1 )mL (RT, By, ")
~N N ~N1 N
and v? € C(RT; B, "7 )NL'(R+,B7,, 7 ).
Moreover the solution is unique if 2 ~ <1 5+ 5'

theol
Remark 9 Compared with the theorem b._,fwe do not need any assumption of smallness
on the density py, it corresponds to a result of global strong solution for large initial
data when N > 2. To do this we simply perturbate Lhe explicit large strong solution
(pt, —2uV In pl) with p' verifying the heat equation (%7% It is the first result up to our
knowledge of global strong solution with large initial data for a compressible system when
N > 3.

. . section2 . X
Our paper is structured as follows. In section b, we give a few notation and brleiz%ction 4

introduce the basic Fourier analysis techniques needed to prove our result. In s gtlon
we prove e%tirgates on a linear ?’Stﬁﬁl \g{ith convection terms. In section h We prove the
theo or¥heo

theorems [I.T and the theorems

2 Littlewood-Paley theory and Besov spaces

Throughout the paper, C' stands for a constant whose exact meaning depends on the
context. The notation A < B means that A < CB. For all Banach space X, we
denote by C([0,T],X) the set of continuous functions on [0,7] with values in X. For

€ [1,40o0], the notation LP(0, T, X) or L%.(X) stands for the set of measurable functions
on (0,7T) with values in X such that ¢ — || f(¢)||x belongs to LP(0,T"). Littlewood-Paley
decomposition corresponds to a dyadic decomposition of the space in Fourier variables.
We can use for instance any ¢ € C’OO(RN) supported in C = {¢ € RV /3 < [¢| < 8} and
X € C*°(RY) supported in B(0, 3) such that:

O+ 27 =1 forall R,
leEN

D e =1 if £#£0.

leZ

Denoting h = F 'y, we then define the dyadic blocks by:

A= (27! D)u = 2lN/ h(2'y)u(x — y)dy and Sju = x(27w).
RN

u ZIEE:ZSku.

keZ
This decomposition is called homogeneous Littlewood-Paley decomposition.



2.1 Homogeneous Besov spaces and first properties

Definition 2.3 We denote by S,ll the space of temperate distribution u such that:

lim Sju=0 in S

j——o0
Definition 2.4 For s € R, p € [1,+00], ¢ € [1,+00], and u € S'(RY) we set:

1
lullg,, = Q2% Awlze)?)s.

leZ

The homogeneous Besov space B , is the set of distribution u in S, such that ullss, <
~+00.

Remark 10 The above definition is a natural generalization of the homogeneous Sobolev
and Holder spaces: one can show that BS, , is the homogeneous Holder space C* and
that B5 5 is the homogeneous space H®.

interpolation| Proposition 2.1 The following properties holds:

1. there exists a constant universal C such that:
CHulls;, < Vullgs-1 < Cllullsg,-
2. If pr <p2 and 11 <1y then By . < B;;,{g(l/pl_l/m).

1,71

’ o, ' )
3. B;,Tl ‘—)B;T lfS > s or ’I,fS:S andrl ST-

4. Moreover we have the following interpolation inequalities, it exists C' > 0 such that
for any 6 €]0,1] and s < s we have:

0 —0
el oo < llullsy, a5,

c 0 1-6
t(1-0)7F X ——————— s PO
HuHBz,;F(l 0)s > 9(1 — 0)(8 — S) ||uHBp,oo||u”Bgyoo

’interpolation‘

Let us now recall a few product law JHI eSOV spaces coming directly from the paradif-
ferential calculus of J-M. Bony (see [2,

Proposition 2.2 We have the following laws of product:

e Forall s €R, (p,r) € [1,+00]? we have:
[uvllgg, < C(lullre<lvllBg, + [[vllL~llulls;,) - (2.14)

e Let (p,p1,p2,7, A1, A2) € [1,+00]% such that:% < p% + p%, p1 < A2, p2 < A, % <

p% + )\% and % < p% + )\% We have then the following inequalities:

if51+52+Ninf(0,1—p%—p%)>0, 51+%<pﬂ1 and82+%<pﬁ2 then:

0l rsepwigo - S Tl Il (2.15)

p,7T
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when s1 + % = pﬁl (resp so + )\ﬂl = p%) we replace ||uHB;i’r||vHB;§7(><> (resp HU”Bﬁg,oo)

by Hu||B;i’1Hv||B;;T (resp HUHB;;OOOLOO), if 51+ % = pﬂl and sy + /\% = % we take
=1.

7Iﬂfsl—i-:sQ:O, s1 € (%—%,pﬂl—%] cmdpil—i-pi2 <1 then:

HUUHB;iQ%+E%—%)iSHuHBEJHUHBEﬂm‘ (2.16)
If |s| < % forp>2 and —g <s< % else, we have:
luvl|Bg, < Cllullsg, vl ~ . (2.17)
BPooNL>®

Remark 11 In the sequel p will be either p1 or ps and in this case % = pil— p% if p1 < pa,

resp x = 5o — 5 P2 <1

The study of non stationary PDE’s requires space of type LP(0,T, X) for appropriate
Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural
to localize the equation through Littlewood-Paley decomposition. But, in doing so, we
obtain bounds in spaces which are not type L?(0,T, X) (except if r = p). We are now go-
ing to define some useful spaces in which we will work, which are a refinement of the spaces
L%(B;,T).

Definition 2.5 Let p € [1,400], T € [1,+0o0] and s; € R. We set:

lllze gy = (32 27 A0 [F0)
leZ

1
p-

We then define the space E%(B;}T) as the set of temperate distribution u over (0,T) x RN
such that limy_, o Squ =0 in S ((0,T) x RN) and |l 50 (B < +00.
T\=p,T

We set éT(Egl,,) = E%O (E;lT) N C([0,7T],ByL.). Let us emphasize that, according to
Minkowski inequality, we have:

lellze sy, < Mellg sy 1 r = e Nullze gy = lull g sy 1 7 < pe

roduiti-
Remark 12 [t is easy to generalize proposition %.2, to L?(B;}T) spaces. The indices s1,
p, r behave just as in the stationary case whereas the time exponent p behaves according
to Holder inequality.

In the sequel we will need composition lemma in sz(B;’T) spaces.

Proposition 2.3 Let s >0, (p,r) € [1,+00] and u € z%(B;J,) N L3F(L>).

1. Let F € WEF22(RNY such that F(0) = 0. Then F(u € LE(B: ). More precisely
T\ p,r

loc

there exists a function C depending only on s, p, r, N and F' such that:

IF ()75 55 < Clllullzge ooyl s

11



alemme?2

2. Let F e Wi (RN such that F(0) = 0. Then F(u)— F (0)u € sz(B;T). More

loc

precisely there exists a function C' depending only on s, p, r, N and F such that:

1)~ F O)ullzy g, ) < Cllulage o) g e

C
Let us give now some estimates on the commutators ( seehﬁlﬂgchapter 2).

Lemma 1 Letl <p; <p<+4ooando € (— min(%, pﬂ,), %—1—1). There exists a sequence
1

cg € IN(Z) such that ||cgllp =1 and a constant C' depending only on N and o such that:

VgeZ, ||[v-V,Ajalpmn < Cc279||Vu|| ~ Ha||]_c;p1 L (2.18)
poom
In the limit case o = — min(%, g), we have:
1
VgeZ, |[[v-V,Agalrm < C’cq2qp HVUH § ||all - (2.19)
pl p,oo

Finally, for all o > 0 and p% = p%

and on o and a sequence c, € I*(Z) with norm 1 such that:

— L there exists a constant C' depending only on N

Va € Z, |[[v-V,Aqvlrr < Ceg2™([Vollze<|lvll By, , + [Vollzre[[Voll goa). (2:20)

2.2 Hybrid Besov spaces

The homogeneous Besov spaces fail to have nice inclusion properties: owing to the low
frequencies, the embedding B, — tl does not hold for s > t. Still, the functions
of By, are locally more regular than those of B 1 for any ¢ € C§° and u € B4, the
func‘mon pu € Bt a5 aThéS motivates the deﬁnltlon of Hybrid Besov spaces introduced by
R. Danchin (see hgl,_ﬁﬁ’f%where the growth conditions satisfied by the dyadic blocks and the
coefficient of integrability are not the same for low and high frequencies. Hybrid Besov
spaces have been used in to prove global well-posedness for compressible Navier-
Stokes equation. We generalize here a little bit the definition by allowing for different
Lebesgue norms in low and high frequencies.

Definition 2.6 Letly € N, s,t,€ R, (r,71) € [1,+00]? and (p,q) € [1,+0c0]. We set:

lull g = 25 Aulle + > 2% Apul|a,

1<lo 1>l

and:

3=

lullgee = (D@1 AwuLe)")" + (Z(2lt!\AzUIILq)T1)%-

[CEONCHST 1<l 1>l
Remark 13 [t will be important in the sequel to chose ly big enough.

Notation 1 We will often use the following notation:

UBF = ZA[U and Ugp = ZAlu.

1<lg >lp

12



hybriinter

Remark 14 We have the following properties:

5 »S _ S
° B p,p,1 Bp,l

53732 81754
o Ifs1 > s3 and so > sy then qul ‘—>qu1

Proposition 2.4 We have:
lull 545 < llull

1
2
s ./
B2
p,q,T Bp,q T

Proof: For the proof (see 6 ).

O

We shall also make use of hybrid Besov-spaces.The basic idea of paradifferentiel calculus

is that any product of two distributions v and v can be formally decomposed into:

w = Tyv + Tyu + R(u,v) = Tyo + Tou

where the paraproduct operator is defined by T,v = ) q Sq—1ul4v, the remainder oper-

ator R, by R(u,v) =3, Aqu(Ag—1v + Agv + Agy1v) and Tou = Tyu + R(u,v).

V¥e recall here an important proposition on the paraproduct for hybrid Besov spaces (see

Proposition 2.5 Let p1,p2, ps,pa € [1,400], (s1,2,53,51) € R? and (p,q)

we have then the followmg inequalities:

1 : !
o pr _p—2+ <1,1 7 < }7—4—1—% <1 with (A, X)) € [1,+00)?
p3 <\ then:
L - e 2 R Ll UL P
N - N N . N N - N
if si+ 37 < sty < 50 and sg+ 57 < ok
. If%g pi+pi nd53—{—54—|—Ninf(0,1—%—i) > 0 then
gllsatsatf—Jr -k
> 2 ot 5 ) | A R (u, )| e S IIUI|351 5 Mvllgzes
>4
1 1 1 1 1 1 1
° [f})__ 5§<+-§Z <1, » < Eg‘+'5; <1, » < 5;‘+'§Z <
s34+ 84 >0, 83+82>0, 84+51 >0, s1+52>0 then
+s2+ g~y
22 o 22| A R (u, )| e S lull o200,
<4 P1,P3,1
wzths;g—%——%-sl and34—pﬂ4——+52

o Ifue L>®, we also have:
ITuvllgsrse S NullLoollvll gs1ea

and if min(sy, s2) > 0 then:

[B(u o)l gsrse S Nlullzeelvl sz

13

€ [1,+00]?,

and b1 < )\/7 p1 < )\7

(2.21)

(2.23)

(2.24)

(2.25)



2.3 The heat equation and the mass conservation equation

section3

Let us now give some estimates for the heat equation:

Proposition 2.6 Let s € R, (p,r) € [1,+00]? and 1 < py < p; < +oo. Assume that

ug € By, and f € Lo (B;;2+2/p2). Let u be a solution of:

Ut=0 = UQ -

{8tu—uAu:f

Then there exists C' > 0 depending only on N, u, p1 and py such that:
Hu”f?(é;f/’”) < C(HUOHBg,T + Hf”z;z(B;;?H/pz)) .

If in addition v is finite then u belongs to C([0,T], B, ).

Let us now give some estimates in Besov spages for the solution of the transport equation.
For more details, the reader is referred to [I].

Proposition 2.7 Let 1 <p; < p < 400, r € [1,40] and s € R be such that:

1 1 N
—Nmin(—, =) <s< 14 —.
P p D1

Suppose that qo € By ., F € LY(0,T, By ,) and that ¢ € LF(B,,) N C([O,T];Sl) solves

the following transport equation:
dhq+u-Vqg=F,
q t=0 = qo-

There exists a constant C' depending only on N, p, p1, v and s such that , we have for
a.et € [0,T]:

t
lallze s ) < €O (llollsg, + /0 e O F(7)| By, dT), (2.26)

with: U(t) = [3 |Vu(r)| ~ dr.

Pl
transportl R

We want to study now the following damped transport equation:

oq+u-Vqg+ ag=F,
(H) {

4/t=0 = q0-
Above ¢ is the unknown function. We assume that F € zl(O,T; B, ), that v is time

|
dependent vector-fields with coefficients in L' (0, T; B!

o1 ) and a > 0 a constant.

14



Proposition 2.8 Let 1 < p; < p < +o0o, r € [1,400]| and s € R be such that:
1 1 N
—Nmin(—, =) <s<1+ —.
b1 p p1

There exists a constant C depending only on N, p, p1, r and s such that for all a €
L>([0,T],BS,) of (H) with initial data ag in By, and g € L'([0,T], B ), we have for
a.etel0,T):

CU(t
laliz s, + 1907355 ) < €7D (laolg, + 1F 735, ) (2.27)

with: U(t) = [7 |Vu(r)| ~ dr.

p1
transport?2 Bpi,00NL>

Proof: Applying A; to (H) yields:
OtAg +u-VAg+alig= R+ AF,
with R; = [u -V, Aj]g. Multiplying by Aja|A;a|P~2 then performing a time integration,
we easily get:
t t 1
8Ol -+ [ I8a(s)lrds < [ waoles + [ (1Rilr + vl e} v
0 0

+ | A F||r)dr.
alemme?2 (2‘28) a3.7
Next the term || R;||z»may be bounded according to lemma Wget then:

¢

ol 55, + ellalzz g 85 < I18ollsg, + [ (IF s, +CV (g,

We end up with Gronwall lemma by letting X (¢) = Hq”Z;’O(B;,,.) + a”qHZ}(B;J.)' O
. . . a3.7 )

Remark 15 Let us mention that by using the equality W}, we show easily that:

larrllze s, )+ lanrlzy s, ) < Ig0)arls;, +1F @z p, )

. (2.29)
+/0 Vel x| Na@ls, dr

p1,00

3 A linear model with convection

I@Ghis section, we are interested in studying the linear system associated to the system
(T6) that we can write under the following form with u = u! + u?:

Oh? +u-Vh? +dive® +u? - Vinpt = F,
o +ut - Vu? +ug - Vub — 2uVinp' - Du? — 2uVh? - Dul — pAu® — pVdive?
+aVh? =G,
(hQ,U2)/t:o = (h(%vu(%)'
(3.30) |0.2a

15



anc £ Gs) some external force Wlth regularity that we shall premse in the proposition
b [ ; In our case we recall that u' = —2uV In p! with p! = 14 ¢! verifying the following
heat equation:

(3.31) |eqchaleur
ol

. . L. X eqchaleur
According th?{a maximum principle for the heat equation (b% J, the conditions on p!

{ Op' —2uAp' =0,

in theorem T.T and by interpolation for Besov space, it exists ¢, M > 0 such that for all
t>0:
1 1 1
0<e<p(t) <llpoll~ <1+ llgllse ;- (3.32)
. 5cha osition theo
Furthermore by the propositions 2.6, 2.3 an e initial condition on qO in theorem [T.T |
N _{N N_o N_
@ € Bilgoo' N By, " NBY ;) we have:
N N N+1 N+ ~N_oN_o ~N_ N
¢t € L'(By,} NBy, " NBL)NL®(B;, " "NBY " NBY,)
and (339
17133 bp— Tt 1 P R N S Ry -1
u' € L'(By,, NBy, & NBL,)NL®(B),, NByys ' NBLL),

ith ﬂfé ditions of theorem 1o M isely we have by th
with p, q, Q1 Ver 1n&itthl%ncon 1tions of theorem [I.1. ore precisely we have by the

propositions 2.6, 2.3 for a regular function C:
lg'll_ oy n xw, + ' ||~ N o N, NN
Lt (B2?p,1p nBQ?q,oo a ﬁBgo,l) (322;7,1 P nB22qo<> ¢ mBgo,l)
N HQOH~% ¥ + HQO”~— 2, M-
BZ,q,oo 2,1771

(3.34)

1
U N N ; _NN +u)l. N _sN_ 5 N _oN_
|| L1(§22 1,p 1 2,q+1 1 ) || HLOO(BQ?p’l&p BHBQ? 2 1

Cllgoll o<, le\lLoo)(quHE7 Ly +\|qu§7 2N )

0 2,q,00 2,p,1

Let us start with recalling some estimates in Besov space for the following system:

Oh® 4+ u-Vh? + dive® = F,
du? — pAu® — pvdive® + aVh? = G, (3.35) |0.2b
(h27 UQ)/tZO = (h(2)7 U(%)

rma,DG,C
with (F’, G') external forces. More precisely in [16, 12, Il; it has been proved the following
proposition by some different methods. In particular in ) \azeﬂntroduce the notion of
effective velocity which enables us to diagonalize the system (3.35).

Proposition 3.9 Let 2 < p <4, g > 2 such that:

< -+ +-,-< =+

9

| =

L
N

"=
| =
=

LR
¢ N

N | —
D=
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, 0.2b ‘ ‘
Let (h?,u?) the solution of (13.35). There exists a constant C depending only on u, N, s
and s such that the following estimate holds:

h2. u?) (¢ N_ N N_{N_, + h2 N NN
02O g yosyon FIO, oy e,
< CGV(T)(H(h?],ug)H~N71 N N _q, N I H(F, G/)H N1, N 1 N _4 )
Bi),l’px 27;;1 B,p,lyp prl 7o)
with:
! 1 2 1 2 2
V(T) =/ (IVul )l _y x + Ve ()] _x x +[[ut(s)]? y n + [[u?(s)]° y x )ds.
0 Bquq szlp 322 N 322 7
24, P 3qs 3Py

Proof: For the sake of the complete%less we are going to prove this proposition by fol-
lowing the same arguments than in

What happens in low frequencies?
Let us start by studying the following system in low frequencies:

(LH)

Oh? + dive® = F' —u - VK2,
o’ — pAu® — pvdivu® + aVh? = G'.

Proposition 3.10 Let (h?,u?) a solution of (LH)', let s € R. The following estimate
holds:

122, 0 Bl e g + 1002 6B 21 g2y <03, ed)mrlmg, + ICE GV arll s

+ H(u . th)BFHzl(Bé,l)'

MZ ’
Proof: In this case for j <0, in terms of Green matrix (see ﬁﬁ]), the solution of (LH)
can be expressed as:

(3480 ~wi0 (3 ) [w-a (738 )

M
with W the Green matrix. From proposition 4.4 in (Z]) and Young’s inequality we obtain
the result.

What happens in high frequencies?
To do this, we are going to consider the following pressure velocity where v? is the solution
of the following equation:

—pAv? — pVdive? = aVh.

Let &€ the fundamental solution of the Laplacian operator and we verify that v? is as

follows:
a

2 _ ARy O —1w2
v = 5*(2MVh) (A)""Vh2,

dive? = —2ih2, curlv? = 0.
I

17
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We set set now w? = u? + v?, and we observe that (h?, w?) verify the following system

(we use in particular the fact that dive? = —2h?):
"
Ouh? + - VI + div? + Z-h? =
i
dw? — pAw? — pVdivw? = G’ — Qiat(A)ﬂVh?, (3.37) [0.2¢
w

(h*,u?) ji=o = (h{, u).-

5chaleur
We are ﬁglng now to apply the proposition b 6 and follovvlng the proof of the proposition
b 8 I order to obtain estimates in Besov space on (k% w?) in high frequencies. We have

thenlf]; €] — mln(g,g),z—l— 1], then:
! .
Wl el SRl x4 IFhel o+ Idivedel
Ltoo(Bp,l Lt p,1 Bp,l t p,1 Lt( pl)
t
+/ (IVu' (DIl x + [IVe (D) _y IR () mrll . dr
0 Bq?l BQ 1p L szl)
2 2 2
wypll. o~ +Hlwhpll. wHFﬂ,-i-G s
ol o el < CO@EmA s+ 1Grl,

+||( (A )1Vh2)HF||~ Ny ).
L%(sz,)l )

(3.38)

We have then:

Wl o~ +lhEel. HIwHF!L Ny A whpll xS
L(B),) A10:X, (B, \(B)

p,1 p,1 prl L B:DJ
el el / IVul O I )arl . x dr
qul L?o(prl)
/uw |y 0PN arll o drt lwdael g+ 1G]y
2 p,l T (Bppl) Bpl,ol Ltl(Bpl?l )
@A) VR el

I/t1 (sz,)l )

(339

In low.f?eq1gearl1lcciﬁsn§ggaare goin% tg, work with the unknown (h2, u?) and applying the
proposition 3. o the system (3.35) we have:
T N [ P Y [ X
t 2,1 , t 2,1 ) ) 2,1 (340)
+ lw- Vel oy +IFG)prll_  x_,-
Ly (32,1 ) Li (B3 )
1i

Since we have u? = w? — v? and that v? = QM(A) 1Vh? it implies by proposition s7l7n P

that:

2 2 2
HUHFHZOO(B%—1) + ||uHFHE1(BN+1) N ||wHFH~ (B%—l + ||wHF||~1 N

LY (B
p,1 p,1 p,1 ) p,1 ) (341)
+ ||hHFH~OO

N, + [|hEpll N .
L>(B,; ) LY(B}S))

p,1

18



Combining (E.llm}B%,aa( Elzim“) and (I.1In ) we have:

”h2H~ S L + Hh2”~ “H+ N + ”u2H~ N1, Ny + Hu2H~l ~H+1, 8 S
?OB2p1 Lt 2,p,1 t p,1 ) tB2p1
(||h0]|~2 Lt ||u0||~7_1 N+ I I,y + IG’ H~ NN

2;)1 2p1 Lt B2,p,1 BQpl
+/ IVul(7)]] ﬁH(hQ(T))HF!L N dr +[[(0:(A) VR mpl . v,
q L_?.O(Bpljl L%( pl,)l )
Vu N N HF|| _ N dT + U‘Vh2 BF|| - N _ 1 ).
# IRy 10 ODnrl_ e e 1 TR, o)

(3.42)

In other word we have:

20,y I s # IRy + I e S
t 2,p,1 ) 2,p,1 t (Bpl t p,1 )
(IRSI a2 +HUOH~N S 1l I /(e

2,p,1 BQpl B2p1 t 2,p,1 )

+ [ Ve O IOy oy dr+ [(0(A) T VR el v
0 Lo(B.2 P) P

1
q, 1 T 2,p,1 Lt (Bp,l )

+ [ VeI _y IOy d7 +|(u Vh?)BFIL )
0 3 <(B,2 7)) 2

B2,P,1 T 2,p,1 2,1 )
(349

It remains o & go treat the terms on the right hand side of %% We verify via the first
equation of (LS 35) that:

8 (A)'Vh? = (A)T'VE — (A)"'Vdive® — (A) MV (div(uh?) — h2divu).
We have then:

@A) VR mpll . xoy SIFN oy +lldiel oy

Ly(B,1 ) Li(By,1 7) Li(B), )
: - i (31)

+ H(Uh2)HFH B + ||(R*divu) grl| B

pl t p,1 )

rimp4 brid
Eebt us deal now with the term (u'-Vh?)pp in (}'3 13 ), similarly by using proposition 55,
b 1 ana 1nterp01at10n we have with A = X = +oo:

(! th)BFH v S Topeu'll xoyn +|TaVE_ v x
LB Bz, " LiB2,, 7 1)
+IRG Vs,
2,1 )
. (3.45)
ol xS / [ TIPS TN
2q1 2,p,1 B2,q,1

/W gy O]y oy
2p1

2q1
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L L brid/briinter . i
Similarly we have by proposition and Young inequality for any € > 0:

t
||Tu1v;z2||m%_l,%_l S [ IO ITRON g 1y
2,p,1

1 1
Hu Ml (12 x v 1B (7 )H?NHNdT
BZ P B

(3.46)
2,p,1 2,p,1
<c/ Jut (g, Iy lwdwe/ Ih2(r)

2,p,1

%H%dr
2p1 2;1’»1
hy.b d
By proposition 2. rvlve have with s; = %, s3 = %, So = % —1,8 = % —1,p1 =p2 =2,
po=qandps=pandsince p>2,g>2 3 <i+1 1415 L
¢
|R(VA?, u )BF||~ yo S IOy x (IVRA)I _y v dr,
2,1 ) BQ,q,lq 2,p,1
¢
< @y 1ROy v, (3.47)
BQ2q 1 BQ?p,lp
SO [ WOy y WOy gir+e [ IOy
nglq 2p1 By 1
Finally we have obtained for any ¢ > 0 and C! > 0 sufficiently large
It Vh2)BFH~ i _/ 1h%(7) My - . s Dy 1m0
2p1 2(11
o [ IRy Ndr+c’/ (e (DB, + I (I ) IFE] gy
2 p,1 0 < B2,q,1q By o
(3.15)
Similarly we are going to deal with the term (u? - Vh?)gr. We have then:
I(u® Vh2)BFH~ yo STonee® . yox +TeVR v x,
(321 ) L(szl ") 2p1 P
T HR(uz,w?)BﬂLl .
Lt(Bz,1 )
) 2 (3.9
ITowl, 5y % / VR _y o Py
L (BZpl BQpl B2,p,1
< [ IOy g 1Oy e
2p1 2p1
briinter
Similarly we have by proposition B D, 5 T and Young inequality for any ¢ > 0
1T VR v, N/ (D)l VR (D] _y - d,
Lt (szl 2,p,1
1
2 2
/ru eIy, IRy, dr (3.50)
B2pl B2pl
< C. / l|u? (7 ”BO th(’l’)H~N 1Nd7'+€/ |h2(7) N+1 NdT
2p1 2p1

20



. . . 9 N s s . .. B}%}E
It remains now to deal with the remainder R(u®, Vh?), it gives using the proposition 2.
since 2 < p < 4:

IRTR e,y S / [y IVE gy s
21 2p1 B2p1
</ uu2<r>H§§,?uh2<7>u§§,?dn (3.51)
sy 3Py

t
e [ e W W e [ IOl
1
It gives then:

2 VRl xS / G N TR

2p 1 2,p,1

W (D) _y_y xdr.

2,p,1

s [ N+1Nd7+c’/0<||u<>||Bgo1+||u2<f>||iN
2p1 ’

B7

H"@‘Z

2,p,

)

I3 52
Let us deal now with thbe term (u'h?) HF and ( 2h2)HF in the right hand side of ( ,
by using proposition B 5 Wi have since = 5SS W + E’ interpolation and Young inequality
we have:

1,2 2
el oy % [ (o))

gy A+ ([ Thew (7| _y vy
t Bpl BQ?p,lp B;jp,lp
+ (R, h2) e ()|~ )dr

s

t
5/0 (Il ()l go, 171 sy +th(T)Hégfl%fzHul(T)HEgH,%H)dT
3P,

2,p,1 2,q,1

<c/ A T I T 1Ndr+e/ W2y .

2q1 2p1 BQ,p,l

359

In the same way we have since 11; + % > %

t
RO RES] WRUE / Oy gy g (359

2 ,q,1 2,p,1
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Similarly we obtain:

t
I[P gpl . ~ ,S/ (1T k()
Li(BS ) 0

t
S [ U@l IO + 1ROy g lRO] y oy addr
0 Bypi By pa 2,p,1

K t
SC [ Uy, + 1Oy oy DIy ydr +e [ IRy o ydr

2,p,1 2,p,1 2,p,1

(35)
In the same way we have since p < 4 < 2N:

t t
2 2 2 2 N
/ IR B)r ()] & [ I gy IOy yin (350

2,p,1 2,p,1

impfil [ri impfil impab
Finally combining (%r.nggi, (E%, (%%3; and (£r3.15m8ai we have for any € > 0 and C/ suffi-

ciently large:

I(wh®) mr|
I

N_,
%(sz,jl )

2,q,1

0
! 2 ! 1 2
e [Py ydr+ [ QO] gy o+ 1)

2,p,1 2,q,1

t
S, + 1Oy o + 12Oy + 1ROy IOy ydr

2,p,1 2,p,1

| yan IRy vdr

2,p,1 2,p,1

(35
Let us treat now the terms (divu'h?)gr and (divu®h?)gr. We have then using again the
proposition b.B since % < % + %:

t
”(thivul)HF”p(B%_Q 5/0 (HTdivulhz(T)”E%}—l,% +HTh2diVU1(7—)H~i}—1,

t p,1 )

N_y
2,p,1 2,p,1
+ I(R(divu', ) gp(T)|| ~)dr
sz,)l
¢
5/ (Idive (7)o P2 (P _y o + IRH O]y oy dived ()] _x x)dr
0 By ¥ 2pl By g

(335)
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Similarly we have:
N N+ HThzdivu2(T)||~%_17%_1

t
vyl xS [ (Tash® @l g1y
L%(szjl ) 0 By, P By 1

+ RV B2 ()] y )dr
p,1
! 2 2 2 2
5/ (Idivu™(7) [ o< |h*(7 Moy H ROy o vy [l dive(7)]] g%)df
0 2p1 B2p1 B p,1
. rim convecfjbconvec erimgimpfi2 cim (3 59)
Let us combine bﬁ) %ﬁ% EZ 48], i%? 52), (E%gﬂ (E% 58; and &3 55) we have for € >
and C! sufficiently large:
h? Non + |k Non | NN U Ny, <
1 o, H L, g+ Hztm@:l e HIL
(1881 s + 1081 s +IFL, oy +IGD s
p,l B2,p,1 t 2,p,1 (BQ,p,l
N1, N dT"‘”uHFH N_y
1By )

2
IO oy oy

/(IIVU ( )II +||Vu ()l
B p,1 2.p,1
/ Ih(r) ||ﬂz; L (g + PO g o)
B2p1 P 2q1 B2,p,1
2 g+ 0@+ 2O IRy
’ 2,p,1 2,p,1
(360

O[O, + O
0 Rk By,

2 2
41, N + HU (7_)H§%+1,%+1)Hh (T)HE% 1,1;’d7-

t
+e/ ROy ydr +CL [ (O yor g
By o1 0 By on e 2,p,1 2.p,1
—|—/ u _ N_, + u2 T)| N, N_ h2 T)|| N _ ~dr
; (% )HBQZT,Q L+ [lu( )HBZI;LP DR )Hpr,f’p

t
+/ ((ldive' (7 )IILoo+||divu2(T)HLoo)Hh2(T)H§g L dr
2,p,1

/ IRy oy (ldivid (9] _y e+ [dive® (0] x ).
2pl B2,q,1 BQ,pl
4
It remains only to deal with the term ||u%p|_  ~_, the right hand side of (Ele”icc
L{(B )
we recall that: ’
el oo S el v (3.61)
t p,1 t p,1
4 tef
Co 1ning &r316m“ iCC( E%a6ulei rfgkmg lp large enough in order to apply a bootstrap argument
in and using Gronwall lemma we obtain the desired result for a C' > 0:
R, u(t NN _N_;N_; T N N NN
L X S (L1 [
< Cev( )(H(hzauo)H N1, II\[ N_q, N Tt H(F/ G/ H N1 % ~%71,%71 )
sz1 XBg p1 p1  XDPapa )
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1(.\(12 20_\/12
555 Hlu (I x v + (DI x v )ds.

q
Byl B

=

2,p,1

O

ropestim 0.2a
We are going to generalize the proposition F%Q to the case of the system (b.SU), more
precisely we have the following proposition.

Proposition 3.11 Let 2 <p <4, q > 2 such that:

1 1+1 1<1+11<1+
2" p ¢N p ¢p N

%Qr—‘

0.2b
Let (h%,u?) the solution of (13.35). There exists a constant C' depending only on ju, N, s
and s such that the following estimate holds:

h2, u?)(t N_, N N_ﬂ_"‘ u? N,y N _N.{4N
02Oy ysyen FIOR, Cyany e
< CD (g ui)ll_yvx i, + I, N, yry  yaya)
2.p,1 ><B2p1 B2,p,1 XByp1 )
with:
C/ IVul(s)] - gﬂﬂlVU N _yx +lu (I y v + (D y x
By 1 B2 i B2 B2P
,q5 P, 2,q,1 2,p,1
2
F IV _yor s + TIPSy s + (VI (5) 2y, x )ds.
B2,q,1 2,q,1 Bzyq’l 1
1
Proof: By using the proposition E:.CQO We Obtain that:
H(hQ’UQ)HLoo(B 1 % 37—1 ﬁ—l) + H( 2)H~1 §%+1,ﬁ E%-H,%-H)
2,p,1 2,p,1 7 2,p,1 XDg 51 —
(3.62) __1est1m1mp
< CeV(T)(H(hOaUO)” N1, N %—1 N+ H(Flle)H %—1,% ~%—1,%—1 )
2 Pl ><B2 p,1 B2,p,1 XBy 1 )
with:
Fi=F—u%-Vinp',
G1 =G —u?-Vuy —uy - Vu? +2uVnpt - Du? +2uVh? - Dut,
with:
! 1 2 2 2
V(1) =/ (IVul () _yx + Ve ()] _x n +[lut ()] y n + [ ()] y x )ds.
0 B2,q,1q B2,p,1p B2?q,1q B2?p’1p

Therefore, it is only a matter of proving appropriate estimates for Fjy, Gi by using
properties of continuity on the paraproduct.
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hybriidhterpolation

We start with the first term u? - VIn p', by propositions 2.5, 2.1, composition estimates,
Hoélder inequality and since 1% < % + %, % < 1% + % we have for any € > 0:

T T
[ Vil yds s [ 090Gy )] >
0 BQ,p’1 0 B

2,q,1

B
2,p,1
+ ||u2(8)||§g71,%71HWHPI(S)IIE%%H + HUQ(S)Hngl,gflIIVIHP () ¥+ vy, )ds,

2,p,1 2,q,1 2,p,1 2q1

T
2 1 1
S [ Iy IV Oy oy + 1T )]
2,p,1

2,q,1 BQ@J

T
FCAVIP I g ) e [ NPy yads
32%1 ¢ 0 BZPJ ?

(3.63)

with C¢ > 0 sufficiently large.

We are now going to d}e)zal with the terms of G, let us start Wlth the term u? - Vu'! | we
have by proposition and the fact that 1 < L —|— 2= + > 3 % =+ %
T T
[ vt @)y s S [ Iy g 9]y ds
0 B;;J, P 0 B2p1 B;i]? -
. (3.60
| 1w D)y s / 1903 gV 0y
Bypa © By, . B,
Similarly we have (since 5 < L —I— =y 2 + > %, 12 < % + 5) for all € > 0 there exists

Ce > 0 sufficiently large such that

T
[ IV D))y s € / IVt D)y ids
0 By, ;;J By, *

(3.65)

N_, N_,ds.
¥ -1, 81

T
se/ ()l _yux 1ds+c/ 1V o ()
0 BQpl

NN [
BP’ B
r 1 2
u - Vu N_ | N_
Jﬁ || |L§;2‘;’P 1

24& 2,p,1
T
Se [ Iy 1ds+c/ o2y y I (6)] g .

2,p,1

1 pl
lestimifiestim est1 2 aest m2est1
By combining the estimates (3.62), and Gronwall lemma, it

achieves the proof of the proposmon.

and:

(3.66)

theol
4 The proof of theorem 1.1

4.1 Proof of the existence

0.1
We recall here that (p!,ul) = (p!, —2uVInp!) is a quasi-solution of the system (h)
when:

{ Op' — 2ulp' =0, (467)

1 1
Pi=0 = Po-
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It means that (p',u!) is an irrotational solution of the pressure less system:
Op + div(pu) = 0,

(o) + div(pu @ u) — div(2upD(u) = 0, (1.65)
(pa u)/t:O = (p(:%a u(l))

0.2
Our goal now C@?lsts in solving the system (h) in order to obtain global strong solution
of the system (I.T) under the form p = p'e", u = u! + u? with p > ¢ > 0. To do this,
we use a standard scheme:

1. We smooth out the data and gef a sequence of local solutions (h2,u2)pen on [0,T,]
to (I.6) by using the result of?rg]

Danchinbas
2. We prove uniform estimates on (h2,u2) on [0, T},] by using the proposition b.l [and
we deduce that T,, = +oco .

3. We use compact 655 to prove that the sequence (h%, n) converges, up to extraction,
to a solution of (II.G).
Construction of approximate solutions

We smooth out the data as follows:
(h%)n = th% and (u%)n = Snu%
Note that we have:

Vi€ Z, [Ai(hg)nllze < [Ahillze and [|(hd)n nll gy <

, h N N
oy S

1

~N

and similar propertles uo n, a fact W%Eél will be used repeatedly during the next
steps. Now, accordmg % one can solve with the smooth data ((¢3)n, (ud)n). We
get a solution (h2,u2) on a non trivial time interval [0, T},] such that:

N

9 ~J-1,¥ ~J-1 81~ ~N 1M 4
h2 € C(0,T], By, ") u? € C(I0,T,), By, " )NLY(0,T,),By,, " ). (469) [a26

Uniform bounds

In the sequel we set:
Inp, =Inp' + A2 and u, = u' +u2.

We recall that (hfl7 n) satisfies the following system:
Oh2 +u' - VhE + divi +u2 - Vinp' +u? - VA2 =0,

o +ut -Vl +u? - Vul —2uVinpt - Du? — 2uVh: - Du' — pAu? — pVdivu?
+aVh: = —aVinp' —u? - Vu2 +2uVh2 - Du?,

(4.70)

(h?,4%) ji=o = ((h)n, (ud)n)-
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2) in the following space Fr

In this part, we aim at getting uniform estimates on (h2,u

with the norm | - ||,
~ N_1 N ~ ~N N ~ ~N_1N_4 ~ NN
) 1 ) ) 1 )
Fr = (L%O(Bz?m ")n LT(B22,p,1 7)) x (L%O(B;,p,l o)n LT(BQQ,pJ 7))
Ihasud e = MRl xoaw oy el yony NN
O T R (B, nh(BEy ) U IE(B, T k(B
9 9 . 0.2a .
We can observe that (hz,u?) verifies exactly the system (b.BU) with:
=0,
G" = —aVinp' —u? - Vu2 4+ 2uVh: - Dul.
g hinb
By using proposition ?nc, We have the following estimate on (h2,u2):
N 1,%_1 )a

2,p,1 2,p,1

(A, up) || 7 < Cev”(T)(ll(hg)nll~g_1,ﬂ Flud)all oy v NG
B p B P L%(sz’l )
(71)

with:

=)z
o)
N

t
VT—C/ Vul(s N + [V (s
(0= [V Oy g + IRy

H~%,%+1+‘

F VI ()]s + [V Inpl(s)
B q Bz,q,

2,q,1

N
BQ?q,l e
(172)

—_

We set in the sequel:
1
HIVIA O

t
W@ =C [ (9 Gl y y + 10 G
0 By g1 By 2,q,1
FIVIP @]y + VI @, )ds.
BZ,q,lq BQ?q,l e

t

V(1) =C ; (IVun ()

erefore, it is only a matter of proving appropriate estimates for G™ by using proposition
rl% . . . . 2 2 .
.b. Let us dea nolyﬁzvlth the term G™. We begin by estimating Vh: - Du; and we obtain

b
and since p < 2N:
(173)

by proposition 2.
Vh2 . Du? N~ S|VAE N~ ||[Du? NN
IV Dl oy SIVAL ooy IDGEL, o

3

s

Similarly we have:
lun - Vunll o vy Sl o N (4.74)
L%" B2?p,1 P ) L%O BQ?p,l P )

2
~v_, [[Vu N
s IV,

0 delgl with the most important term aV In p!, we have by using propositions

!t regai%% t
brobm
.5, 2.3, 2.6 and the maximum principle for p! (indeed we recall that p! = 1+ ¢! with ¢
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verifying a heat equation) that it exists regular functions g1, g2 such that:

aVinpl oy iy STty
B p
T 2p1 Li(Byp 1
<91(H*\|L°°a||p lze)llg'll .y -
~ pl E%(E?p’?) (4'75)

1
<g2(Hp1HLw IIP(%IILoo)IIQéHETQJX >

2,p,1

cruciallestimbllestimb2 estl b3
Finally by combining the estimates ( and (4. we have:

(B )| < CHDHED (|[(), ||§7_1N + [ (wd)n ||§7 vy (R )1

2,p,1 2,p,1

1 1 1
+ — oo, oo N _o5 N _ .
gl(”pé Iz llpollze)llaoll o)

2,p,1

(11)

In particular we have:

(B3, ui)lly < CeMTVED (o 4 || (7, up) |17, +91(Hp1HLoo HpoHLoo)quHg*—z X 5)-

0
(a7

We are going to prove by a simple bootstrapping argument that for any 7" € (0,7),):

02 )l < 40 (e bl gy a2 = €1 (4.78)

0 2,p,1

We are going to set in the sequel a = gl(H HLoo lpdlle)llad N 5N

Iy
2,p,1

It is right by continuity on a small interval (0 T!) choo sing €g St suﬂ"lmently small. Let us. ol
set T ( with (Ty)" < T},) the maximal time such that (E 78) remains true. Using (b )

we observe that: )

e e (4.79)

a o«
Now we have to choose ¢y and €1 such that:

2
ST (130)

(07 «

In particular it suffices to take €; and € sufficiently small such that we have:

e <a, < a. (4.81)

In conclusion there exists ey sufficiently small such that if:

et <

3| Co

1
4Cevl(+°°)gl(||THLOOa llooll =)l N 2N S €
p 2 P

0 B2,p,1
1
16071 (|l ||pé||Lw>||qélr§i12,%_2 <1 (4.82)
1
é0 < g1(ll—t = ool z=)llaoll_y 2
Po 2,p,1

28



. n o .
then by a classmaﬂscl%%?g%‘% a p%gglcllrggnt we can show that (71)" = T,,. In particular by

using proposition 2.6 and 2.3 we deduce that it exists a regular function K; such that:

—Ki(ll=rllzee lladlizeo)llasl vy &
&) =2 ’

e—2Vi(+00) > ¢ Boan (4.83)

superimpb

i 13
Combining (4.82) an (%%39) we have the following condition:

1 *Kl(”%”Lm7||(16||L00)”(I(%”~%_17%
160291(\\;\\% ”ptl)HL‘”)Hq(l)HE%fz%fz <e Pt T (4.84)
0 2,p,1
. L X crucinjtial theol
This last condition corresponds exactly to the assumption (I.7) of theorem [I.T.

We now ﬁa{ieoirrrlntéeslgcel%ted in proving a continuation criterion in order to prove that T, = 400
when (E.?S) is verified. Since (h2,u?2) is bounded in Fpn, it implies in particular that

NN N N
Vu, = Vu' + Vg, is bounded in L, (By,{ + By, 1) (in prficular u is Lipschitz by
Besov injection) then by classical continuation criterion (see [13, 17]) we deduce that for

any n, 1, = 4o0.

Compactness arguments

0.2
We have proved that our sequence (h2,u2),en of solutions of (h) with initial data
((h3)n, (ud)n) is uniformly bounded in n € N in:

N
I3

T oo m+ N%_L T1/m+ ~%+17
(L>®(R ,By,1 P)NLH(RY, By

N N N N N
N ~ NN ~N 1,84

1,¥1
)) x LX(R", By, "7 )ﬂLl(RJ“,B;p’l W,

It remains now to prove that up to a subseque 06, (h2,u2),en converges in the sense of
distribution to a solution (h?,u?) of the system (I.6) with (h?, u?) belonging to the space:

~ ~N N ~ ~N N ~ ~N N g ~ NNy
(L®(RF, By, ") N LY R, By y 7)) x L¥(R, By, 7 )N LYRT, By 7 )Y,

It suffices to use the Ascoli theorem, this is classic and we refer to hﬁﬁgfor the proof.

The proof of the uniqueness

C ar.
In the case % < ]% + p%’ the uniqueness has been established in H see also .

cor3 theo3
4.2 Proof of the theorem 1.2 and 1.3

cor3
In the theorem (II.2), the smallness assumption is different since we suppose th Wt elo(l is

sufficiently small. Inde(;(li ]g A Iyroceeding similarly as in the proof of the theorem [I.T, we
obtain the inequality (b 56; at the difference that we take into account the constant K

which gives:

Vi |25
5wy < Ce OO (I(hG)all_y .y + Nwd)nll y 0 + (ks u)llE
2,p,1 2,p,1

1 1 1
+ Kgl(H;HLm ||:00||L°°)HQOHEi}—z,%—Q)'

0 2,p,1

(1)
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BCD

BJM

We have now to change slightly our bootstrap argument, indeed we are going to set 7!
the maximal time such that:

1
I(hos up) |7,y < 4CK€V1(+°°)91(||;IILOO, IIPéIILw)Ilq(%HEg_Q,g_z) =€ (4.86)
" 0 2,p,1

We set o/ = Kg(|| x|z, HP(l)HLoo)\lq(%Hégfz,%fz' We have then:

1
0

2,p,1
6/ / €0 (6/ )2
(i i)y < et (1 5+ 1) (4.87)

Now we have to choose ¢y and €} such that:

/ e (€))? 24
a1+ = < 2= 4.88
0 @r) 2 (45
In particular it suffices to take €] and ¢y sufficiently small such that we have:
et < %, ()*<da, e <d. (4.89)

In other word it suffices to take K r}101:rﬁsciently small compared with the initial data g{.
It achieves the proof of the &%%liem [.2 since the rest of the proof follows the arguments
of the proof of the theorem IT.T.

theo3 .
In 0&%{) Jfo prove the theorem [1.3; it suffices to use the same argument than in theo-
rem [[.T. In particular since (p, —2uV Inp!) is an exact solution in this case, we do not

have remaind gr‘lclgrgrit%f:a {;El)jbe form aV In p' which implies that the smallness assumption
has the form (II. 2&. ['he only change corresponds to have good estimate in Besov space

for the following linearized system:
Oh? +u-Vh? +divu® +u? - Vinp' = F,
o +ul - Vu? +uy - Vul —2uVinp' - Du? — 2uVA? - Dul — pAu? — pVdive?
+aVh? +bu? =G,
(h*, %) o = (R, up)-

(4.90)
To olgﬁgi)? such estimates, it suffices to follow exactly the same line as in the theo-
rem I.I. Indeed the damping term bu? gives additional estimate on u? of the form

N_1 N
~ N1,

~ 1,
LI(RJr’ B2,p,1 !
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